powerpc/rfi-flush: Make it possible to call setup_rfi_flush() again
[linux/fpc-iii.git] / fs / binfmt_elf.c
blobf1f32e55d8775646f4c9aab561210c5987063b91
1 /*
2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/elf-randomize.h>
35 #include <linux/utsname.h>
36 #include <linux/coredump.h>
37 #include <linux/sched.h>
38 #include <linux/dax.h>
39 #include <asm/uaccess.h>
40 #include <asm/param.h>
41 #include <asm/page.h>
43 #ifndef user_long_t
44 #define user_long_t long
45 #endif
46 #ifndef user_siginfo_t
47 #define user_siginfo_t siginfo_t
48 #endif
50 static int load_elf_binary(struct linux_binprm *bprm);
51 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
52 int, int, unsigned long);
54 #ifdef CONFIG_USELIB
55 static int load_elf_library(struct file *);
56 #else
57 #define load_elf_library NULL
58 #endif
61 * If we don't support core dumping, then supply a NULL so we
62 * don't even try.
64 #ifdef CONFIG_ELF_CORE
65 static int elf_core_dump(struct coredump_params *cprm);
66 #else
67 #define elf_core_dump NULL
68 #endif
70 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
71 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
72 #else
73 #define ELF_MIN_ALIGN PAGE_SIZE
74 #endif
76 #ifndef ELF_CORE_EFLAGS
77 #define ELF_CORE_EFLAGS 0
78 #endif
80 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
81 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
82 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
84 static struct linux_binfmt elf_format = {
85 .module = THIS_MODULE,
86 .load_binary = load_elf_binary,
87 .load_shlib = load_elf_library,
88 .core_dump = elf_core_dump,
89 .min_coredump = ELF_EXEC_PAGESIZE,
92 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
94 static int set_brk(unsigned long start, unsigned long end)
96 start = ELF_PAGEALIGN(start);
97 end = ELF_PAGEALIGN(end);
98 if (end > start) {
99 unsigned long addr;
100 addr = vm_brk(start, end - start);
101 if (BAD_ADDR(addr))
102 return addr;
104 current->mm->start_brk = current->mm->brk = end;
105 return 0;
108 /* We need to explicitly zero any fractional pages
109 after the data section (i.e. bss). This would
110 contain the junk from the file that should not
111 be in memory
113 static int padzero(unsigned long elf_bss)
115 unsigned long nbyte;
117 nbyte = ELF_PAGEOFFSET(elf_bss);
118 if (nbyte) {
119 nbyte = ELF_MIN_ALIGN - nbyte;
120 if (clear_user((void __user *) elf_bss, nbyte))
121 return -EFAULT;
123 return 0;
126 /* Let's use some macros to make this stack manipulation a little clearer */
127 #ifdef CONFIG_STACK_GROWSUP
128 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
129 #define STACK_ROUND(sp, items) \
130 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
131 #define STACK_ALLOC(sp, len) ({ \
132 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
133 old_sp; })
134 #else
135 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
136 #define STACK_ROUND(sp, items) \
137 (((unsigned long) (sp - items)) &~ 15UL)
138 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
139 #endif
141 #ifndef ELF_BASE_PLATFORM
143 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
144 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
145 * will be copied to the user stack in the same manner as AT_PLATFORM.
147 #define ELF_BASE_PLATFORM NULL
148 #endif
150 static int
151 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
152 unsigned long load_addr, unsigned long interp_load_addr)
154 unsigned long p = bprm->p;
155 int argc = bprm->argc;
156 int envc = bprm->envc;
157 elf_addr_t __user *argv;
158 elf_addr_t __user *envp;
159 elf_addr_t __user *sp;
160 elf_addr_t __user *u_platform;
161 elf_addr_t __user *u_base_platform;
162 elf_addr_t __user *u_rand_bytes;
163 const char *k_platform = ELF_PLATFORM;
164 const char *k_base_platform = ELF_BASE_PLATFORM;
165 unsigned char k_rand_bytes[16];
166 int items;
167 elf_addr_t *elf_info;
168 int ei_index = 0;
169 const struct cred *cred = current_cred();
170 struct vm_area_struct *vma;
173 * In some cases (e.g. Hyper-Threading), we want to avoid L1
174 * evictions by the processes running on the same package. One
175 * thing we can do is to shuffle the initial stack for them.
178 p = arch_align_stack(p);
181 * If this architecture has a platform capability string, copy it
182 * to userspace. In some cases (Sparc), this info is impossible
183 * for userspace to get any other way, in others (i386) it is
184 * merely difficult.
186 u_platform = NULL;
187 if (k_platform) {
188 size_t len = strlen(k_platform) + 1;
190 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
191 if (__copy_to_user(u_platform, k_platform, len))
192 return -EFAULT;
196 * If this architecture has a "base" platform capability
197 * string, copy it to userspace.
199 u_base_platform = NULL;
200 if (k_base_platform) {
201 size_t len = strlen(k_base_platform) + 1;
203 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
204 if (__copy_to_user(u_base_platform, k_base_platform, len))
205 return -EFAULT;
209 * Generate 16 random bytes for userspace PRNG seeding.
211 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
212 u_rand_bytes = (elf_addr_t __user *)
213 STACK_ALLOC(p, sizeof(k_rand_bytes));
214 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
215 return -EFAULT;
217 /* Create the ELF interpreter info */
218 elf_info = (elf_addr_t *)current->mm->saved_auxv;
219 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
220 #define NEW_AUX_ENT(id, val) \
221 do { \
222 elf_info[ei_index++] = id; \
223 elf_info[ei_index++] = val; \
224 } while (0)
226 #ifdef ARCH_DLINFO
228 * ARCH_DLINFO must come first so PPC can do its special alignment of
229 * AUXV.
230 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
231 * ARCH_DLINFO changes
233 ARCH_DLINFO;
234 #endif
235 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
236 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
237 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
238 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
239 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
240 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
241 NEW_AUX_ENT(AT_BASE, interp_load_addr);
242 NEW_AUX_ENT(AT_FLAGS, 0);
243 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
244 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
245 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
246 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
247 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
248 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
249 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
250 #ifdef ELF_HWCAP2
251 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
252 #endif
253 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
254 if (k_platform) {
255 NEW_AUX_ENT(AT_PLATFORM,
256 (elf_addr_t)(unsigned long)u_platform);
258 if (k_base_platform) {
259 NEW_AUX_ENT(AT_BASE_PLATFORM,
260 (elf_addr_t)(unsigned long)u_base_platform);
262 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
263 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
265 #undef NEW_AUX_ENT
266 /* AT_NULL is zero; clear the rest too */
267 memset(&elf_info[ei_index], 0,
268 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
270 /* And advance past the AT_NULL entry. */
271 ei_index += 2;
273 sp = STACK_ADD(p, ei_index);
275 items = (argc + 1) + (envc + 1) + 1;
276 bprm->p = STACK_ROUND(sp, items);
278 /* Point sp at the lowest address on the stack */
279 #ifdef CONFIG_STACK_GROWSUP
280 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
281 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
282 #else
283 sp = (elf_addr_t __user *)bprm->p;
284 #endif
288 * Grow the stack manually; some architectures have a limit on how
289 * far ahead a user-space access may be in order to grow the stack.
291 vma = find_extend_vma(current->mm, bprm->p);
292 if (!vma)
293 return -EFAULT;
295 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
296 if (__put_user(argc, sp++))
297 return -EFAULT;
298 argv = sp;
299 envp = argv + argc + 1;
301 /* Populate argv and envp */
302 p = current->mm->arg_end = current->mm->arg_start;
303 while (argc-- > 0) {
304 size_t len;
305 if (__put_user((elf_addr_t)p, argv++))
306 return -EFAULT;
307 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
308 if (!len || len > MAX_ARG_STRLEN)
309 return -EINVAL;
310 p += len;
312 if (__put_user(0, argv))
313 return -EFAULT;
314 current->mm->arg_end = current->mm->env_start = p;
315 while (envc-- > 0) {
316 size_t len;
317 if (__put_user((elf_addr_t)p, envp++))
318 return -EFAULT;
319 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
320 if (!len || len > MAX_ARG_STRLEN)
321 return -EINVAL;
322 p += len;
324 if (__put_user(0, envp))
325 return -EFAULT;
326 current->mm->env_end = p;
328 /* Put the elf_info on the stack in the right place. */
329 sp = (elf_addr_t __user *)envp + 1;
330 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
331 return -EFAULT;
332 return 0;
335 #ifndef elf_map
337 static unsigned long elf_map(struct file *filep, unsigned long addr,
338 struct elf_phdr *eppnt, int prot, int type,
339 unsigned long total_size)
341 unsigned long map_addr;
342 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
343 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
344 addr = ELF_PAGESTART(addr);
345 size = ELF_PAGEALIGN(size);
347 /* mmap() will return -EINVAL if given a zero size, but a
348 * segment with zero filesize is perfectly valid */
349 if (!size)
350 return addr;
353 * total_size is the size of the ELF (interpreter) image.
354 * The _first_ mmap needs to know the full size, otherwise
355 * randomization might put this image into an overlapping
356 * position with the ELF binary image. (since size < total_size)
357 * So we first map the 'big' image - and unmap the remainder at
358 * the end. (which unmap is needed for ELF images with holes.)
360 if (total_size) {
361 total_size = ELF_PAGEALIGN(total_size);
362 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
363 if (!BAD_ADDR(map_addr))
364 vm_munmap(map_addr+size, total_size-size);
365 } else
366 map_addr = vm_mmap(filep, addr, size, prot, type, off);
368 return(map_addr);
371 #endif /* !elf_map */
373 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
375 int i, first_idx = -1, last_idx = -1;
377 for (i = 0; i < nr; i++) {
378 if (cmds[i].p_type == PT_LOAD) {
379 last_idx = i;
380 if (first_idx == -1)
381 first_idx = i;
384 if (first_idx == -1)
385 return 0;
387 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
388 ELF_PAGESTART(cmds[first_idx].p_vaddr);
392 * load_elf_phdrs() - load ELF program headers
393 * @elf_ex: ELF header of the binary whose program headers should be loaded
394 * @elf_file: the opened ELF binary file
396 * Loads ELF program headers from the binary file elf_file, which has the ELF
397 * header pointed to by elf_ex, into a newly allocated array. The caller is
398 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
400 static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
401 struct file *elf_file)
403 struct elf_phdr *elf_phdata = NULL;
404 int retval, size, err = -1;
407 * If the size of this structure has changed, then punt, since
408 * we will be doing the wrong thing.
410 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
411 goto out;
413 /* Sanity check the number of program headers... */
414 if (elf_ex->e_phnum < 1 ||
415 elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
416 goto out;
418 /* ...and their total size. */
419 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
420 if (size > ELF_MIN_ALIGN)
421 goto out;
423 elf_phdata = kmalloc(size, GFP_KERNEL);
424 if (!elf_phdata)
425 goto out;
427 /* Read in the program headers */
428 retval = kernel_read(elf_file, elf_ex->e_phoff,
429 (char *)elf_phdata, size);
430 if (retval != size) {
431 err = (retval < 0) ? retval : -EIO;
432 goto out;
435 /* Success! */
436 err = 0;
437 out:
438 if (err) {
439 kfree(elf_phdata);
440 elf_phdata = NULL;
442 return elf_phdata;
445 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
448 * struct arch_elf_state - arch-specific ELF loading state
450 * This structure is used to preserve architecture specific data during
451 * the loading of an ELF file, throughout the checking of architecture
452 * specific ELF headers & through to the point where the ELF load is
453 * known to be proceeding (ie. SET_PERSONALITY).
455 * This implementation is a dummy for architectures which require no
456 * specific state.
458 struct arch_elf_state {
461 #define INIT_ARCH_ELF_STATE {}
464 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
465 * @ehdr: The main ELF header
466 * @phdr: The program header to check
467 * @elf: The open ELF file
468 * @is_interp: True if the phdr is from the interpreter of the ELF being
469 * loaded, else false.
470 * @state: Architecture-specific state preserved throughout the process
471 * of loading the ELF.
473 * Inspects the program header phdr to validate its correctness and/or
474 * suitability for the system. Called once per ELF program header in the
475 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
476 * interpreter.
478 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
479 * with that return code.
481 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
482 struct elf_phdr *phdr,
483 struct file *elf, bool is_interp,
484 struct arch_elf_state *state)
486 /* Dummy implementation, always proceed */
487 return 0;
491 * arch_check_elf() - check an ELF executable
492 * @ehdr: The main ELF header
493 * @has_interp: True if the ELF has an interpreter, else false.
494 * @state: Architecture-specific state preserved throughout the process
495 * of loading the ELF.
497 * Provides a final opportunity for architecture code to reject the loading
498 * of the ELF & cause an exec syscall to return an error. This is called after
499 * all program headers to be checked by arch_elf_pt_proc have been.
501 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
502 * with that return code.
504 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
505 struct arch_elf_state *state)
507 /* Dummy implementation, always proceed */
508 return 0;
511 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
513 /* This is much more generalized than the library routine read function,
514 so we keep this separate. Technically the library read function
515 is only provided so that we can read a.out libraries that have
516 an ELF header */
518 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
519 struct file *interpreter, unsigned long *interp_map_addr,
520 unsigned long no_base, struct elf_phdr *interp_elf_phdata)
522 struct elf_phdr *eppnt;
523 unsigned long load_addr = 0;
524 int load_addr_set = 0;
525 unsigned long last_bss = 0, elf_bss = 0;
526 unsigned long error = ~0UL;
527 unsigned long total_size;
528 int i;
530 /* First of all, some simple consistency checks */
531 if (interp_elf_ex->e_type != ET_EXEC &&
532 interp_elf_ex->e_type != ET_DYN)
533 goto out;
534 if (!elf_check_arch(interp_elf_ex))
535 goto out;
536 if (!interpreter->f_op->mmap)
537 goto out;
539 total_size = total_mapping_size(interp_elf_phdata,
540 interp_elf_ex->e_phnum);
541 if (!total_size) {
542 error = -EINVAL;
543 goto out;
546 eppnt = interp_elf_phdata;
547 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
548 if (eppnt->p_type == PT_LOAD) {
549 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
550 int elf_prot = 0;
551 unsigned long vaddr = 0;
552 unsigned long k, map_addr;
554 if (eppnt->p_flags & PF_R)
555 elf_prot = PROT_READ;
556 if (eppnt->p_flags & PF_W)
557 elf_prot |= PROT_WRITE;
558 if (eppnt->p_flags & PF_X)
559 elf_prot |= PROT_EXEC;
560 vaddr = eppnt->p_vaddr;
561 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
562 elf_type |= MAP_FIXED;
563 else if (no_base && interp_elf_ex->e_type == ET_DYN)
564 load_addr = -vaddr;
566 map_addr = elf_map(interpreter, load_addr + vaddr,
567 eppnt, elf_prot, elf_type, total_size);
568 total_size = 0;
569 if (!*interp_map_addr)
570 *interp_map_addr = map_addr;
571 error = map_addr;
572 if (BAD_ADDR(map_addr))
573 goto out;
575 if (!load_addr_set &&
576 interp_elf_ex->e_type == ET_DYN) {
577 load_addr = map_addr - ELF_PAGESTART(vaddr);
578 load_addr_set = 1;
582 * Check to see if the section's size will overflow the
583 * allowed task size. Note that p_filesz must always be
584 * <= p_memsize so it's only necessary to check p_memsz.
586 k = load_addr + eppnt->p_vaddr;
587 if (BAD_ADDR(k) ||
588 eppnt->p_filesz > eppnt->p_memsz ||
589 eppnt->p_memsz > TASK_SIZE ||
590 TASK_SIZE - eppnt->p_memsz < k) {
591 error = -ENOMEM;
592 goto out;
596 * Find the end of the file mapping for this phdr, and
597 * keep track of the largest address we see for this.
599 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
600 if (k > elf_bss)
601 elf_bss = k;
604 * Do the same thing for the memory mapping - between
605 * elf_bss and last_bss is the bss section.
607 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
608 if (k > last_bss)
609 last_bss = k;
614 * Now fill out the bss section: first pad the last page from
615 * the file up to the page boundary, and zero it from elf_bss
616 * up to the end of the page.
618 if (padzero(elf_bss)) {
619 error = -EFAULT;
620 goto out;
623 * Next, align both the file and mem bss up to the page size,
624 * since this is where elf_bss was just zeroed up to, and where
625 * last_bss will end after the vm_brk() below.
627 elf_bss = ELF_PAGEALIGN(elf_bss);
628 last_bss = ELF_PAGEALIGN(last_bss);
629 /* Finally, if there is still more bss to allocate, do it. */
630 if (last_bss > elf_bss) {
631 error = vm_brk(elf_bss, last_bss - elf_bss);
632 if (BAD_ADDR(error))
633 goto out;
636 error = load_addr;
637 out:
638 return error;
642 * These are the functions used to load ELF style executables and shared
643 * libraries. There is no binary dependent code anywhere else.
646 #ifndef STACK_RND_MASK
647 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
648 #endif
650 static unsigned long randomize_stack_top(unsigned long stack_top)
652 unsigned long random_variable = 0;
654 if ((current->flags & PF_RANDOMIZE) &&
655 !(current->personality & ADDR_NO_RANDOMIZE)) {
656 random_variable = (unsigned long) get_random_int();
657 random_variable &= STACK_RND_MASK;
658 random_variable <<= PAGE_SHIFT;
660 #ifdef CONFIG_STACK_GROWSUP
661 return PAGE_ALIGN(stack_top) + random_variable;
662 #else
663 return PAGE_ALIGN(stack_top) - random_variable;
664 #endif
667 static int load_elf_binary(struct linux_binprm *bprm)
669 struct file *interpreter = NULL; /* to shut gcc up */
670 unsigned long load_addr = 0, load_bias = 0;
671 int load_addr_set = 0;
672 char * elf_interpreter = NULL;
673 unsigned long error;
674 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
675 unsigned long elf_bss, elf_brk;
676 int retval, i;
677 unsigned long elf_entry;
678 unsigned long interp_load_addr = 0;
679 unsigned long start_code, end_code, start_data, end_data;
680 unsigned long reloc_func_desc __maybe_unused = 0;
681 int executable_stack = EXSTACK_DEFAULT;
682 struct pt_regs *regs = current_pt_regs();
683 struct {
684 struct elfhdr elf_ex;
685 struct elfhdr interp_elf_ex;
686 } *loc;
687 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
689 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
690 if (!loc) {
691 retval = -ENOMEM;
692 goto out_ret;
695 /* Get the exec-header */
696 loc->elf_ex = *((struct elfhdr *)bprm->buf);
698 retval = -ENOEXEC;
699 /* First of all, some simple consistency checks */
700 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
701 goto out;
703 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
704 goto out;
705 if (!elf_check_arch(&loc->elf_ex))
706 goto out;
707 if (!bprm->file->f_op->mmap)
708 goto out;
710 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
711 if (!elf_phdata)
712 goto out;
714 elf_ppnt = elf_phdata;
715 elf_bss = 0;
716 elf_brk = 0;
718 start_code = ~0UL;
719 end_code = 0;
720 start_data = 0;
721 end_data = 0;
723 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
724 if (elf_ppnt->p_type == PT_INTERP) {
725 /* This is the program interpreter used for
726 * shared libraries - for now assume that this
727 * is an a.out format binary
729 retval = -ENOEXEC;
730 if (elf_ppnt->p_filesz > PATH_MAX ||
731 elf_ppnt->p_filesz < 2)
732 goto out_free_ph;
734 retval = -ENOMEM;
735 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
736 GFP_KERNEL);
737 if (!elf_interpreter)
738 goto out_free_ph;
740 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
741 elf_interpreter,
742 elf_ppnt->p_filesz);
743 if (retval != elf_ppnt->p_filesz) {
744 if (retval >= 0)
745 retval = -EIO;
746 goto out_free_interp;
748 /* make sure path is NULL terminated */
749 retval = -ENOEXEC;
750 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
751 goto out_free_interp;
753 interpreter = open_exec(elf_interpreter);
754 retval = PTR_ERR(interpreter);
755 if (IS_ERR(interpreter))
756 goto out_free_interp;
759 * If the binary is not readable then enforce
760 * mm->dumpable = 0 regardless of the interpreter's
761 * permissions.
763 would_dump(bprm, interpreter);
765 /* Get the exec headers */
766 retval = kernel_read(interpreter, 0,
767 (void *)&loc->interp_elf_ex,
768 sizeof(loc->interp_elf_ex));
769 if (retval != sizeof(loc->interp_elf_ex)) {
770 if (retval >= 0)
771 retval = -EIO;
772 goto out_free_dentry;
775 break;
777 elf_ppnt++;
780 elf_ppnt = elf_phdata;
781 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
782 switch (elf_ppnt->p_type) {
783 case PT_GNU_STACK:
784 if (elf_ppnt->p_flags & PF_X)
785 executable_stack = EXSTACK_ENABLE_X;
786 else
787 executable_stack = EXSTACK_DISABLE_X;
788 break;
790 case PT_LOPROC ... PT_HIPROC:
791 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
792 bprm->file, false,
793 &arch_state);
794 if (retval)
795 goto out_free_dentry;
796 break;
799 /* Some simple consistency checks for the interpreter */
800 if (elf_interpreter) {
801 retval = -ELIBBAD;
802 /* Not an ELF interpreter */
803 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
804 goto out_free_dentry;
805 /* Verify the interpreter has a valid arch */
806 if (!elf_check_arch(&loc->interp_elf_ex))
807 goto out_free_dentry;
809 /* Load the interpreter program headers */
810 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
811 interpreter);
812 if (!interp_elf_phdata)
813 goto out_free_dentry;
815 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
816 elf_ppnt = interp_elf_phdata;
817 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
818 switch (elf_ppnt->p_type) {
819 case PT_LOPROC ... PT_HIPROC:
820 retval = arch_elf_pt_proc(&loc->interp_elf_ex,
821 elf_ppnt, interpreter,
822 true, &arch_state);
823 if (retval)
824 goto out_free_dentry;
825 break;
830 * Allow arch code to reject the ELF at this point, whilst it's
831 * still possible to return an error to the code that invoked
832 * the exec syscall.
834 retval = arch_check_elf(&loc->elf_ex, !!interpreter, &arch_state);
835 if (retval)
836 goto out_free_dentry;
838 /* Flush all traces of the currently running executable */
839 retval = flush_old_exec(bprm);
840 if (retval)
841 goto out_free_dentry;
843 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
844 may depend on the personality. */
845 SET_PERSONALITY2(loc->elf_ex, &arch_state);
846 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
847 current->personality |= READ_IMPLIES_EXEC;
849 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
850 current->flags |= PF_RANDOMIZE;
852 setup_new_exec(bprm);
853 install_exec_creds(bprm);
855 /* Do this so that we can load the interpreter, if need be. We will
856 change some of these later */
857 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
858 executable_stack);
859 if (retval < 0)
860 goto out_free_dentry;
862 current->mm->start_stack = bprm->p;
864 /* Now we do a little grungy work by mmapping the ELF image into
865 the correct location in memory. */
866 for(i = 0, elf_ppnt = elf_phdata;
867 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
868 int elf_prot = 0, elf_flags;
869 unsigned long k, vaddr;
870 unsigned long total_size = 0;
872 if (elf_ppnt->p_type != PT_LOAD)
873 continue;
875 if (unlikely (elf_brk > elf_bss)) {
876 unsigned long nbyte;
878 /* There was a PT_LOAD segment with p_memsz > p_filesz
879 before this one. Map anonymous pages, if needed,
880 and clear the area. */
881 retval = set_brk(elf_bss + load_bias,
882 elf_brk + load_bias);
883 if (retval)
884 goto out_free_dentry;
885 nbyte = ELF_PAGEOFFSET(elf_bss);
886 if (nbyte) {
887 nbyte = ELF_MIN_ALIGN - nbyte;
888 if (nbyte > elf_brk - elf_bss)
889 nbyte = elf_brk - elf_bss;
890 if (clear_user((void __user *)elf_bss +
891 load_bias, nbyte)) {
893 * This bss-zeroing can fail if the ELF
894 * file specifies odd protections. So
895 * we don't check the return value
901 if (elf_ppnt->p_flags & PF_R)
902 elf_prot |= PROT_READ;
903 if (elf_ppnt->p_flags & PF_W)
904 elf_prot |= PROT_WRITE;
905 if (elf_ppnt->p_flags & PF_X)
906 elf_prot |= PROT_EXEC;
908 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
910 vaddr = elf_ppnt->p_vaddr;
912 * If we are loading ET_EXEC or we have already performed
913 * the ET_DYN load_addr calculations, proceed normally.
915 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
916 elf_flags |= MAP_FIXED;
917 } else if (loc->elf_ex.e_type == ET_DYN) {
919 * This logic is run once for the first LOAD Program
920 * Header for ET_DYN binaries to calculate the
921 * randomization (load_bias) for all the LOAD
922 * Program Headers, and to calculate the entire
923 * size of the ELF mapping (total_size). (Note that
924 * load_addr_set is set to true later once the
925 * initial mapping is performed.)
927 * There are effectively two types of ET_DYN
928 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
929 * and loaders (ET_DYN without INTERP, since they
930 * _are_ the ELF interpreter). The loaders must
931 * be loaded away from programs since the program
932 * may otherwise collide with the loader (especially
933 * for ET_EXEC which does not have a randomized
934 * position). For example to handle invocations of
935 * "./ld.so someprog" to test out a new version of
936 * the loader, the subsequent program that the
937 * loader loads must avoid the loader itself, so
938 * they cannot share the same load range. Sufficient
939 * room for the brk must be allocated with the
940 * loader as well, since brk must be available with
941 * the loader.
943 * Therefore, programs are loaded offset from
944 * ELF_ET_DYN_BASE and loaders are loaded into the
945 * independently randomized mmap region (0 load_bias
946 * without MAP_FIXED).
948 if (elf_interpreter) {
949 load_bias = ELF_ET_DYN_BASE;
950 if (current->flags & PF_RANDOMIZE)
951 load_bias += arch_mmap_rnd();
952 elf_flags |= MAP_FIXED;
953 } else
954 load_bias = 0;
957 * Since load_bias is used for all subsequent loading
958 * calculations, we must lower it by the first vaddr
959 * so that the remaining calculations based on the
960 * ELF vaddrs will be correctly offset. The result
961 * is then page aligned.
963 load_bias = ELF_PAGESTART(load_bias - vaddr);
965 total_size = total_mapping_size(elf_phdata,
966 loc->elf_ex.e_phnum);
967 if (!total_size) {
968 retval = -EINVAL;
969 goto out_free_dentry;
973 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
974 elf_prot, elf_flags, total_size);
975 if (BAD_ADDR(error)) {
976 retval = IS_ERR((void *)error) ?
977 PTR_ERR((void*)error) : -EINVAL;
978 goto out_free_dentry;
981 if (!load_addr_set) {
982 load_addr_set = 1;
983 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
984 if (loc->elf_ex.e_type == ET_DYN) {
985 load_bias += error -
986 ELF_PAGESTART(load_bias + vaddr);
987 load_addr += load_bias;
988 reloc_func_desc = load_bias;
991 k = elf_ppnt->p_vaddr;
992 if (k < start_code)
993 start_code = k;
994 if (start_data < k)
995 start_data = k;
998 * Check to see if the section's size will overflow the
999 * allowed task size. Note that p_filesz must always be
1000 * <= p_memsz so it is only necessary to check p_memsz.
1002 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1003 elf_ppnt->p_memsz > TASK_SIZE ||
1004 TASK_SIZE - elf_ppnt->p_memsz < k) {
1005 /* set_brk can never work. Avoid overflows. */
1006 retval = -EINVAL;
1007 goto out_free_dentry;
1010 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1012 if (k > elf_bss)
1013 elf_bss = k;
1014 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1015 end_code = k;
1016 if (end_data < k)
1017 end_data = k;
1018 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1019 if (k > elf_brk)
1020 elf_brk = k;
1023 loc->elf_ex.e_entry += load_bias;
1024 elf_bss += load_bias;
1025 elf_brk += load_bias;
1026 start_code += load_bias;
1027 end_code += load_bias;
1028 start_data += load_bias;
1029 end_data += load_bias;
1031 /* Calling set_brk effectively mmaps the pages that we need
1032 * for the bss and break sections. We must do this before
1033 * mapping in the interpreter, to make sure it doesn't wind
1034 * up getting placed where the bss needs to go.
1036 retval = set_brk(elf_bss, elf_brk);
1037 if (retval)
1038 goto out_free_dentry;
1039 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1040 retval = -EFAULT; /* Nobody gets to see this, but.. */
1041 goto out_free_dentry;
1044 if (elf_interpreter) {
1045 unsigned long interp_map_addr = 0;
1047 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1048 interpreter,
1049 &interp_map_addr,
1050 load_bias, interp_elf_phdata);
1051 if (!IS_ERR((void *)elf_entry)) {
1053 * load_elf_interp() returns relocation
1054 * adjustment
1056 interp_load_addr = elf_entry;
1057 elf_entry += loc->interp_elf_ex.e_entry;
1059 if (BAD_ADDR(elf_entry)) {
1060 retval = IS_ERR((void *)elf_entry) ?
1061 (int)elf_entry : -EINVAL;
1062 goto out_free_dentry;
1064 reloc_func_desc = interp_load_addr;
1066 allow_write_access(interpreter);
1067 fput(interpreter);
1068 kfree(elf_interpreter);
1069 } else {
1070 elf_entry = loc->elf_ex.e_entry;
1071 if (BAD_ADDR(elf_entry)) {
1072 retval = -EINVAL;
1073 goto out_free_dentry;
1077 kfree(interp_elf_phdata);
1078 kfree(elf_phdata);
1080 set_binfmt(&elf_format);
1082 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1083 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1084 if (retval < 0)
1085 goto out;
1086 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1088 retval = create_elf_tables(bprm, &loc->elf_ex,
1089 load_addr, interp_load_addr);
1090 if (retval < 0)
1091 goto out;
1092 /* N.B. passed_fileno might not be initialized? */
1093 current->mm->end_code = end_code;
1094 current->mm->start_code = start_code;
1095 current->mm->start_data = start_data;
1096 current->mm->end_data = end_data;
1097 current->mm->start_stack = bprm->p;
1099 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1100 current->mm->brk = current->mm->start_brk =
1101 arch_randomize_brk(current->mm);
1102 #ifdef compat_brk_randomized
1103 current->brk_randomized = 1;
1104 #endif
1107 if (current->personality & MMAP_PAGE_ZERO) {
1108 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1109 and some applications "depend" upon this behavior.
1110 Since we do not have the power to recompile these, we
1111 emulate the SVr4 behavior. Sigh. */
1112 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1113 MAP_FIXED | MAP_PRIVATE, 0);
1116 #ifdef ELF_PLAT_INIT
1118 * The ABI may specify that certain registers be set up in special
1119 * ways (on i386 %edx is the address of a DT_FINI function, for
1120 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1121 * that the e_entry field is the address of the function descriptor
1122 * for the startup routine, rather than the address of the startup
1123 * routine itself. This macro performs whatever initialization to
1124 * the regs structure is required as well as any relocations to the
1125 * function descriptor entries when executing dynamically links apps.
1127 ELF_PLAT_INIT(regs, reloc_func_desc);
1128 #endif
1130 start_thread(regs, elf_entry, bprm->p);
1131 retval = 0;
1132 out:
1133 kfree(loc);
1134 out_ret:
1135 return retval;
1137 /* error cleanup */
1138 out_free_dentry:
1139 kfree(interp_elf_phdata);
1140 allow_write_access(interpreter);
1141 if (interpreter)
1142 fput(interpreter);
1143 out_free_interp:
1144 kfree(elf_interpreter);
1145 out_free_ph:
1146 kfree(elf_phdata);
1147 goto out;
1150 #ifdef CONFIG_USELIB
1151 /* This is really simpleminded and specialized - we are loading an
1152 a.out library that is given an ELF header. */
1153 static int load_elf_library(struct file *file)
1155 struct elf_phdr *elf_phdata;
1156 struct elf_phdr *eppnt;
1157 unsigned long elf_bss, bss, len;
1158 int retval, error, i, j;
1159 struct elfhdr elf_ex;
1161 error = -ENOEXEC;
1162 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1163 if (retval != sizeof(elf_ex))
1164 goto out;
1166 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1167 goto out;
1169 /* First of all, some simple consistency checks */
1170 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1171 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1172 goto out;
1174 /* Now read in all of the header information */
1176 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1177 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1179 error = -ENOMEM;
1180 elf_phdata = kmalloc(j, GFP_KERNEL);
1181 if (!elf_phdata)
1182 goto out;
1184 eppnt = elf_phdata;
1185 error = -ENOEXEC;
1186 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1187 if (retval != j)
1188 goto out_free_ph;
1190 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1191 if ((eppnt + i)->p_type == PT_LOAD)
1192 j++;
1193 if (j != 1)
1194 goto out_free_ph;
1196 while (eppnt->p_type != PT_LOAD)
1197 eppnt++;
1199 /* Now use mmap to map the library into memory. */
1200 error = vm_mmap(file,
1201 ELF_PAGESTART(eppnt->p_vaddr),
1202 (eppnt->p_filesz +
1203 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1204 PROT_READ | PROT_WRITE | PROT_EXEC,
1205 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1206 (eppnt->p_offset -
1207 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1208 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1209 goto out_free_ph;
1211 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1212 if (padzero(elf_bss)) {
1213 error = -EFAULT;
1214 goto out_free_ph;
1217 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1218 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1219 if (bss > len) {
1220 error = vm_brk(len, bss - len);
1221 if (BAD_ADDR(error))
1222 goto out_free_ph;
1224 error = 0;
1226 out_free_ph:
1227 kfree(elf_phdata);
1228 out:
1229 return error;
1231 #endif /* #ifdef CONFIG_USELIB */
1233 #ifdef CONFIG_ELF_CORE
1235 * ELF core dumper
1237 * Modelled on fs/exec.c:aout_core_dump()
1238 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1242 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1243 * that are useful for post-mortem analysis are included in every core dump.
1244 * In that way we ensure that the core dump is fully interpretable later
1245 * without matching up the same kernel and hardware config to see what PC values
1246 * meant. These special mappings include - vDSO, vsyscall, and other
1247 * architecture specific mappings
1249 static bool always_dump_vma(struct vm_area_struct *vma)
1251 /* Any vsyscall mappings? */
1252 if (vma == get_gate_vma(vma->vm_mm))
1253 return true;
1256 * Assume that all vmas with a .name op should always be dumped.
1257 * If this changes, a new vm_ops field can easily be added.
1259 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1260 return true;
1263 * arch_vma_name() returns non-NULL for special architecture mappings,
1264 * such as vDSO sections.
1266 if (arch_vma_name(vma))
1267 return true;
1269 return false;
1273 * Decide what to dump of a segment, part, all or none.
1275 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1276 unsigned long mm_flags)
1278 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1280 /* always dump the vdso and vsyscall sections */
1281 if (always_dump_vma(vma))
1282 goto whole;
1284 if (vma->vm_flags & VM_DONTDUMP)
1285 return 0;
1287 /* support for DAX */
1288 if (vma_is_dax(vma)) {
1289 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1290 goto whole;
1291 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1292 goto whole;
1293 return 0;
1296 /* Hugetlb memory check */
1297 if (vma->vm_flags & VM_HUGETLB) {
1298 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1299 goto whole;
1300 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1301 goto whole;
1302 return 0;
1305 /* Do not dump I/O mapped devices or special mappings */
1306 if (vma->vm_flags & VM_IO)
1307 return 0;
1309 /* By default, dump shared memory if mapped from an anonymous file. */
1310 if (vma->vm_flags & VM_SHARED) {
1311 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1312 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1313 goto whole;
1314 return 0;
1317 /* Dump segments that have been written to. */
1318 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1319 goto whole;
1320 if (vma->vm_file == NULL)
1321 return 0;
1323 if (FILTER(MAPPED_PRIVATE))
1324 goto whole;
1327 * If this looks like the beginning of a DSO or executable mapping,
1328 * check for an ELF header. If we find one, dump the first page to
1329 * aid in determining what was mapped here.
1331 if (FILTER(ELF_HEADERS) &&
1332 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1333 u32 __user *header = (u32 __user *) vma->vm_start;
1334 u32 word;
1335 mm_segment_t fs = get_fs();
1337 * Doing it this way gets the constant folded by GCC.
1339 union {
1340 u32 cmp;
1341 char elfmag[SELFMAG];
1342 } magic;
1343 BUILD_BUG_ON(SELFMAG != sizeof word);
1344 magic.elfmag[EI_MAG0] = ELFMAG0;
1345 magic.elfmag[EI_MAG1] = ELFMAG1;
1346 magic.elfmag[EI_MAG2] = ELFMAG2;
1347 magic.elfmag[EI_MAG3] = ELFMAG3;
1349 * Switch to the user "segment" for get_user(),
1350 * then put back what elf_core_dump() had in place.
1352 set_fs(USER_DS);
1353 if (unlikely(get_user(word, header)))
1354 word = 0;
1355 set_fs(fs);
1356 if (word == magic.cmp)
1357 return PAGE_SIZE;
1360 #undef FILTER
1362 return 0;
1364 whole:
1365 return vma->vm_end - vma->vm_start;
1368 /* An ELF note in memory */
1369 struct memelfnote
1371 const char *name;
1372 int type;
1373 unsigned int datasz;
1374 void *data;
1377 static int notesize(struct memelfnote *en)
1379 int sz;
1381 sz = sizeof(struct elf_note);
1382 sz += roundup(strlen(en->name) + 1, 4);
1383 sz += roundup(en->datasz, 4);
1385 return sz;
1388 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1390 struct elf_note en;
1391 en.n_namesz = strlen(men->name) + 1;
1392 en.n_descsz = men->datasz;
1393 en.n_type = men->type;
1395 return dump_emit(cprm, &en, sizeof(en)) &&
1396 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1397 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1400 static void fill_elf_header(struct elfhdr *elf, int segs,
1401 u16 machine, u32 flags)
1403 memset(elf, 0, sizeof(*elf));
1405 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1406 elf->e_ident[EI_CLASS] = ELF_CLASS;
1407 elf->e_ident[EI_DATA] = ELF_DATA;
1408 elf->e_ident[EI_VERSION] = EV_CURRENT;
1409 elf->e_ident[EI_OSABI] = ELF_OSABI;
1411 elf->e_type = ET_CORE;
1412 elf->e_machine = machine;
1413 elf->e_version = EV_CURRENT;
1414 elf->e_phoff = sizeof(struct elfhdr);
1415 elf->e_flags = flags;
1416 elf->e_ehsize = sizeof(struct elfhdr);
1417 elf->e_phentsize = sizeof(struct elf_phdr);
1418 elf->e_phnum = segs;
1420 return;
1423 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1425 phdr->p_type = PT_NOTE;
1426 phdr->p_offset = offset;
1427 phdr->p_vaddr = 0;
1428 phdr->p_paddr = 0;
1429 phdr->p_filesz = sz;
1430 phdr->p_memsz = 0;
1431 phdr->p_flags = 0;
1432 phdr->p_align = 0;
1433 return;
1436 static void fill_note(struct memelfnote *note, const char *name, int type,
1437 unsigned int sz, void *data)
1439 note->name = name;
1440 note->type = type;
1441 note->datasz = sz;
1442 note->data = data;
1443 return;
1447 * fill up all the fields in prstatus from the given task struct, except
1448 * registers which need to be filled up separately.
1450 static void fill_prstatus(struct elf_prstatus *prstatus,
1451 struct task_struct *p, long signr)
1453 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1454 prstatus->pr_sigpend = p->pending.signal.sig[0];
1455 prstatus->pr_sighold = p->blocked.sig[0];
1456 rcu_read_lock();
1457 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1458 rcu_read_unlock();
1459 prstatus->pr_pid = task_pid_vnr(p);
1460 prstatus->pr_pgrp = task_pgrp_vnr(p);
1461 prstatus->pr_sid = task_session_vnr(p);
1462 if (thread_group_leader(p)) {
1463 struct task_cputime cputime;
1466 * This is the record for the group leader. It shows the
1467 * group-wide total, not its individual thread total.
1469 thread_group_cputime(p, &cputime);
1470 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1471 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1472 } else {
1473 cputime_t utime, stime;
1475 task_cputime(p, &utime, &stime);
1476 cputime_to_timeval(utime, &prstatus->pr_utime);
1477 cputime_to_timeval(stime, &prstatus->pr_stime);
1479 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1480 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1483 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1484 struct mm_struct *mm)
1486 const struct cred *cred;
1487 unsigned int i, len;
1489 /* first copy the parameters from user space */
1490 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1492 len = mm->arg_end - mm->arg_start;
1493 if (len >= ELF_PRARGSZ)
1494 len = ELF_PRARGSZ-1;
1495 if (copy_from_user(&psinfo->pr_psargs,
1496 (const char __user *)mm->arg_start, len))
1497 return -EFAULT;
1498 for(i = 0; i < len; i++)
1499 if (psinfo->pr_psargs[i] == 0)
1500 psinfo->pr_psargs[i] = ' ';
1501 psinfo->pr_psargs[len] = 0;
1503 rcu_read_lock();
1504 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1505 rcu_read_unlock();
1506 psinfo->pr_pid = task_pid_vnr(p);
1507 psinfo->pr_pgrp = task_pgrp_vnr(p);
1508 psinfo->pr_sid = task_session_vnr(p);
1510 i = p->state ? ffz(~p->state) + 1 : 0;
1511 psinfo->pr_state = i;
1512 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1513 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1514 psinfo->pr_nice = task_nice(p);
1515 psinfo->pr_flag = p->flags;
1516 rcu_read_lock();
1517 cred = __task_cred(p);
1518 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1519 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1520 rcu_read_unlock();
1521 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1523 return 0;
1526 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1528 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1529 int i = 0;
1531 i += 2;
1532 while (auxv[i - 2] != AT_NULL);
1533 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1536 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1537 const siginfo_t *siginfo)
1539 mm_segment_t old_fs = get_fs();
1540 set_fs(KERNEL_DS);
1541 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1542 set_fs(old_fs);
1543 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1546 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1548 * Format of NT_FILE note:
1550 * long count -- how many files are mapped
1551 * long page_size -- units for file_ofs
1552 * array of [COUNT] elements of
1553 * long start
1554 * long end
1555 * long file_ofs
1556 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1558 static int fill_files_note(struct memelfnote *note)
1560 struct vm_area_struct *vma;
1561 unsigned count, size, names_ofs, remaining, n;
1562 user_long_t *data;
1563 user_long_t *start_end_ofs;
1564 char *name_base, *name_curpos;
1566 /* *Estimated* file count and total data size needed */
1567 count = current->mm->map_count;
1568 size = count * 64;
1570 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1571 alloc:
1572 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1573 return -EINVAL;
1574 size = round_up(size, PAGE_SIZE);
1575 data = vmalloc(size);
1576 if (!data)
1577 return -ENOMEM;
1579 start_end_ofs = data + 2;
1580 name_base = name_curpos = ((char *)data) + names_ofs;
1581 remaining = size - names_ofs;
1582 count = 0;
1583 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1584 struct file *file;
1585 const char *filename;
1587 file = vma->vm_file;
1588 if (!file)
1589 continue;
1590 filename = file_path(file, name_curpos, remaining);
1591 if (IS_ERR(filename)) {
1592 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1593 vfree(data);
1594 size = size * 5 / 4;
1595 goto alloc;
1597 continue;
1600 /* file_path() fills at the end, move name down */
1601 /* n = strlen(filename) + 1: */
1602 n = (name_curpos + remaining) - filename;
1603 remaining = filename - name_curpos;
1604 memmove(name_curpos, filename, n);
1605 name_curpos += n;
1607 *start_end_ofs++ = vma->vm_start;
1608 *start_end_ofs++ = vma->vm_end;
1609 *start_end_ofs++ = vma->vm_pgoff;
1610 count++;
1613 /* Now we know exact count of files, can store it */
1614 data[0] = count;
1615 data[1] = PAGE_SIZE;
1617 * Count usually is less than current->mm->map_count,
1618 * we need to move filenames down.
1620 n = current->mm->map_count - count;
1621 if (n != 0) {
1622 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1623 memmove(name_base - shift_bytes, name_base,
1624 name_curpos - name_base);
1625 name_curpos -= shift_bytes;
1628 size = name_curpos - (char *)data;
1629 fill_note(note, "CORE", NT_FILE, size, data);
1630 return 0;
1633 #ifdef CORE_DUMP_USE_REGSET
1634 #include <linux/regset.h>
1636 struct elf_thread_core_info {
1637 struct elf_thread_core_info *next;
1638 struct task_struct *task;
1639 struct elf_prstatus prstatus;
1640 struct memelfnote notes[0];
1643 struct elf_note_info {
1644 struct elf_thread_core_info *thread;
1645 struct memelfnote psinfo;
1646 struct memelfnote signote;
1647 struct memelfnote auxv;
1648 struct memelfnote files;
1649 user_siginfo_t csigdata;
1650 size_t size;
1651 int thread_notes;
1655 * When a regset has a writeback hook, we call it on each thread before
1656 * dumping user memory. On register window machines, this makes sure the
1657 * user memory backing the register data is up to date before we read it.
1659 static void do_thread_regset_writeback(struct task_struct *task,
1660 const struct user_regset *regset)
1662 if (regset->writeback)
1663 regset->writeback(task, regset, 1);
1666 #ifndef PR_REG_SIZE
1667 #define PR_REG_SIZE(S) sizeof(S)
1668 #endif
1670 #ifndef PRSTATUS_SIZE
1671 #define PRSTATUS_SIZE(S) sizeof(S)
1672 #endif
1674 #ifndef PR_REG_PTR
1675 #define PR_REG_PTR(S) (&((S)->pr_reg))
1676 #endif
1678 #ifndef SET_PR_FPVALID
1679 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1680 #endif
1682 static int fill_thread_core_info(struct elf_thread_core_info *t,
1683 const struct user_regset_view *view,
1684 long signr, size_t *total)
1686 unsigned int i;
1689 * NT_PRSTATUS is the one special case, because the regset data
1690 * goes into the pr_reg field inside the note contents, rather
1691 * than being the whole note contents. We fill the reset in here.
1692 * We assume that regset 0 is NT_PRSTATUS.
1694 fill_prstatus(&t->prstatus, t->task, signr);
1695 (void) view->regsets[0].get(t->task, &view->regsets[0],
1696 0, PR_REG_SIZE(t->prstatus.pr_reg),
1697 PR_REG_PTR(&t->prstatus), NULL);
1699 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1700 PRSTATUS_SIZE(t->prstatus), &t->prstatus);
1701 *total += notesize(&t->notes[0]);
1703 do_thread_regset_writeback(t->task, &view->regsets[0]);
1706 * Each other regset might generate a note too. For each regset
1707 * that has no core_note_type or is inactive, we leave t->notes[i]
1708 * all zero and we'll know to skip writing it later.
1710 for (i = 1; i < view->n; ++i) {
1711 const struct user_regset *regset = &view->regsets[i];
1712 do_thread_regset_writeback(t->task, regset);
1713 if (regset->core_note_type && regset->get &&
1714 (!regset->active || regset->active(t->task, regset) > 0)) {
1715 int ret;
1716 size_t size = regset->n * regset->size;
1717 void *data = kmalloc(size, GFP_KERNEL);
1718 if (unlikely(!data))
1719 return 0;
1720 ret = regset->get(t->task, regset,
1721 0, size, data, NULL);
1722 if (unlikely(ret))
1723 kfree(data);
1724 else {
1725 if (regset->core_note_type != NT_PRFPREG)
1726 fill_note(&t->notes[i], "LINUX",
1727 regset->core_note_type,
1728 size, data);
1729 else {
1730 SET_PR_FPVALID(&t->prstatus, 1);
1731 fill_note(&t->notes[i], "CORE",
1732 NT_PRFPREG, size, data);
1734 *total += notesize(&t->notes[i]);
1739 return 1;
1742 static int fill_note_info(struct elfhdr *elf, int phdrs,
1743 struct elf_note_info *info,
1744 const siginfo_t *siginfo, struct pt_regs *regs)
1746 struct task_struct *dump_task = current;
1747 const struct user_regset_view *view = task_user_regset_view(dump_task);
1748 struct elf_thread_core_info *t;
1749 struct elf_prpsinfo *psinfo;
1750 struct core_thread *ct;
1751 unsigned int i;
1753 info->size = 0;
1754 info->thread = NULL;
1756 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1757 if (psinfo == NULL) {
1758 info->psinfo.data = NULL; /* So we don't free this wrongly */
1759 return 0;
1762 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1765 * Figure out how many notes we're going to need for each thread.
1767 info->thread_notes = 0;
1768 for (i = 0; i < view->n; ++i)
1769 if (view->regsets[i].core_note_type != 0)
1770 ++info->thread_notes;
1773 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1774 * since it is our one special case.
1776 if (unlikely(info->thread_notes == 0) ||
1777 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1778 WARN_ON(1);
1779 return 0;
1783 * Initialize the ELF file header.
1785 fill_elf_header(elf, phdrs,
1786 view->e_machine, view->e_flags);
1789 * Allocate a structure for each thread.
1791 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1792 t = kzalloc(offsetof(struct elf_thread_core_info,
1793 notes[info->thread_notes]),
1794 GFP_KERNEL);
1795 if (unlikely(!t))
1796 return 0;
1798 t->task = ct->task;
1799 if (ct->task == dump_task || !info->thread) {
1800 t->next = info->thread;
1801 info->thread = t;
1802 } else {
1804 * Make sure to keep the original task at
1805 * the head of the list.
1807 t->next = info->thread->next;
1808 info->thread->next = t;
1813 * Now fill in each thread's information.
1815 for (t = info->thread; t != NULL; t = t->next)
1816 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1817 return 0;
1820 * Fill in the two process-wide notes.
1822 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1823 info->size += notesize(&info->psinfo);
1825 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1826 info->size += notesize(&info->signote);
1828 fill_auxv_note(&info->auxv, current->mm);
1829 info->size += notesize(&info->auxv);
1831 if (fill_files_note(&info->files) == 0)
1832 info->size += notesize(&info->files);
1834 return 1;
1837 static size_t get_note_info_size(struct elf_note_info *info)
1839 return info->size;
1843 * Write all the notes for each thread. When writing the first thread, the
1844 * process-wide notes are interleaved after the first thread-specific note.
1846 static int write_note_info(struct elf_note_info *info,
1847 struct coredump_params *cprm)
1849 bool first = true;
1850 struct elf_thread_core_info *t = info->thread;
1852 do {
1853 int i;
1855 if (!writenote(&t->notes[0], cprm))
1856 return 0;
1858 if (first && !writenote(&info->psinfo, cprm))
1859 return 0;
1860 if (first && !writenote(&info->signote, cprm))
1861 return 0;
1862 if (first && !writenote(&info->auxv, cprm))
1863 return 0;
1864 if (first && info->files.data &&
1865 !writenote(&info->files, cprm))
1866 return 0;
1868 for (i = 1; i < info->thread_notes; ++i)
1869 if (t->notes[i].data &&
1870 !writenote(&t->notes[i], cprm))
1871 return 0;
1873 first = false;
1874 t = t->next;
1875 } while (t);
1877 return 1;
1880 static void free_note_info(struct elf_note_info *info)
1882 struct elf_thread_core_info *threads = info->thread;
1883 while (threads) {
1884 unsigned int i;
1885 struct elf_thread_core_info *t = threads;
1886 threads = t->next;
1887 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1888 for (i = 1; i < info->thread_notes; ++i)
1889 kfree(t->notes[i].data);
1890 kfree(t);
1892 kfree(info->psinfo.data);
1893 vfree(info->files.data);
1896 #else
1898 /* Here is the structure in which status of each thread is captured. */
1899 struct elf_thread_status
1901 struct list_head list;
1902 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1903 elf_fpregset_t fpu; /* NT_PRFPREG */
1904 struct task_struct *thread;
1905 #ifdef ELF_CORE_COPY_XFPREGS
1906 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1907 #endif
1908 struct memelfnote notes[3];
1909 int num_notes;
1913 * In order to add the specific thread information for the elf file format,
1914 * we need to keep a linked list of every threads pr_status and then create
1915 * a single section for them in the final core file.
1917 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1919 int sz = 0;
1920 struct task_struct *p = t->thread;
1921 t->num_notes = 0;
1923 fill_prstatus(&t->prstatus, p, signr);
1924 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1926 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1927 &(t->prstatus));
1928 t->num_notes++;
1929 sz += notesize(&t->notes[0]);
1931 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1932 &t->fpu))) {
1933 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1934 &(t->fpu));
1935 t->num_notes++;
1936 sz += notesize(&t->notes[1]);
1939 #ifdef ELF_CORE_COPY_XFPREGS
1940 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1941 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1942 sizeof(t->xfpu), &t->xfpu);
1943 t->num_notes++;
1944 sz += notesize(&t->notes[2]);
1946 #endif
1947 return sz;
1950 struct elf_note_info {
1951 struct memelfnote *notes;
1952 struct memelfnote *notes_files;
1953 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1954 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1955 struct list_head thread_list;
1956 elf_fpregset_t *fpu;
1957 #ifdef ELF_CORE_COPY_XFPREGS
1958 elf_fpxregset_t *xfpu;
1959 #endif
1960 user_siginfo_t csigdata;
1961 int thread_status_size;
1962 int numnote;
1965 static int elf_note_info_init(struct elf_note_info *info)
1967 memset(info, 0, sizeof(*info));
1968 INIT_LIST_HEAD(&info->thread_list);
1970 /* Allocate space for ELF notes */
1971 info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1972 if (!info->notes)
1973 return 0;
1974 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1975 if (!info->psinfo)
1976 return 0;
1977 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1978 if (!info->prstatus)
1979 return 0;
1980 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1981 if (!info->fpu)
1982 return 0;
1983 #ifdef ELF_CORE_COPY_XFPREGS
1984 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1985 if (!info->xfpu)
1986 return 0;
1987 #endif
1988 return 1;
1991 static int fill_note_info(struct elfhdr *elf, int phdrs,
1992 struct elf_note_info *info,
1993 const siginfo_t *siginfo, struct pt_regs *regs)
1995 struct list_head *t;
1996 struct core_thread *ct;
1997 struct elf_thread_status *ets;
1999 if (!elf_note_info_init(info))
2000 return 0;
2002 for (ct = current->mm->core_state->dumper.next;
2003 ct; ct = ct->next) {
2004 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2005 if (!ets)
2006 return 0;
2008 ets->thread = ct->task;
2009 list_add(&ets->list, &info->thread_list);
2012 list_for_each(t, &info->thread_list) {
2013 int sz;
2015 ets = list_entry(t, struct elf_thread_status, list);
2016 sz = elf_dump_thread_status(siginfo->si_signo, ets);
2017 info->thread_status_size += sz;
2019 /* now collect the dump for the current */
2020 memset(info->prstatus, 0, sizeof(*info->prstatus));
2021 fill_prstatus(info->prstatus, current, siginfo->si_signo);
2022 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2024 /* Set up header */
2025 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2028 * Set up the notes in similar form to SVR4 core dumps made
2029 * with info from their /proc.
2032 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2033 sizeof(*info->prstatus), info->prstatus);
2034 fill_psinfo(info->psinfo, current->group_leader, current->mm);
2035 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2036 sizeof(*info->psinfo), info->psinfo);
2038 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2039 fill_auxv_note(info->notes + 3, current->mm);
2040 info->numnote = 4;
2042 if (fill_files_note(info->notes + info->numnote) == 0) {
2043 info->notes_files = info->notes + info->numnote;
2044 info->numnote++;
2047 /* Try to dump the FPU. */
2048 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2049 info->fpu);
2050 if (info->prstatus->pr_fpvalid)
2051 fill_note(info->notes + info->numnote++,
2052 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2053 #ifdef ELF_CORE_COPY_XFPREGS
2054 if (elf_core_copy_task_xfpregs(current, info->xfpu))
2055 fill_note(info->notes + info->numnote++,
2056 "LINUX", ELF_CORE_XFPREG_TYPE,
2057 sizeof(*info->xfpu), info->xfpu);
2058 #endif
2060 return 1;
2063 static size_t get_note_info_size(struct elf_note_info *info)
2065 int sz = 0;
2066 int i;
2068 for (i = 0; i < info->numnote; i++)
2069 sz += notesize(info->notes + i);
2071 sz += info->thread_status_size;
2073 return sz;
2076 static int write_note_info(struct elf_note_info *info,
2077 struct coredump_params *cprm)
2079 int i;
2080 struct list_head *t;
2082 for (i = 0; i < info->numnote; i++)
2083 if (!writenote(info->notes + i, cprm))
2084 return 0;
2086 /* write out the thread status notes section */
2087 list_for_each(t, &info->thread_list) {
2088 struct elf_thread_status *tmp =
2089 list_entry(t, struct elf_thread_status, list);
2091 for (i = 0; i < tmp->num_notes; i++)
2092 if (!writenote(&tmp->notes[i], cprm))
2093 return 0;
2096 return 1;
2099 static void free_note_info(struct elf_note_info *info)
2101 while (!list_empty(&info->thread_list)) {
2102 struct list_head *tmp = info->thread_list.next;
2103 list_del(tmp);
2104 kfree(list_entry(tmp, struct elf_thread_status, list));
2107 /* Free data possibly allocated by fill_files_note(): */
2108 if (info->notes_files)
2109 vfree(info->notes_files->data);
2111 kfree(info->prstatus);
2112 kfree(info->psinfo);
2113 kfree(info->notes);
2114 kfree(info->fpu);
2115 #ifdef ELF_CORE_COPY_XFPREGS
2116 kfree(info->xfpu);
2117 #endif
2120 #endif
2122 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2123 struct vm_area_struct *gate_vma)
2125 struct vm_area_struct *ret = tsk->mm->mmap;
2127 if (ret)
2128 return ret;
2129 return gate_vma;
2132 * Helper function for iterating across a vma list. It ensures that the caller
2133 * will visit `gate_vma' prior to terminating the search.
2135 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2136 struct vm_area_struct *gate_vma)
2138 struct vm_area_struct *ret;
2140 ret = this_vma->vm_next;
2141 if (ret)
2142 return ret;
2143 if (this_vma == gate_vma)
2144 return NULL;
2145 return gate_vma;
2148 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2149 elf_addr_t e_shoff, int segs)
2151 elf->e_shoff = e_shoff;
2152 elf->e_shentsize = sizeof(*shdr4extnum);
2153 elf->e_shnum = 1;
2154 elf->e_shstrndx = SHN_UNDEF;
2156 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2158 shdr4extnum->sh_type = SHT_NULL;
2159 shdr4extnum->sh_size = elf->e_shnum;
2160 shdr4extnum->sh_link = elf->e_shstrndx;
2161 shdr4extnum->sh_info = segs;
2165 * Actual dumper
2167 * This is a two-pass process; first we find the offsets of the bits,
2168 * and then they are actually written out. If we run out of core limit
2169 * we just truncate.
2171 static int elf_core_dump(struct coredump_params *cprm)
2173 int has_dumped = 0;
2174 mm_segment_t fs;
2175 int segs, i;
2176 size_t vma_data_size = 0;
2177 struct vm_area_struct *vma, *gate_vma;
2178 struct elfhdr *elf = NULL;
2179 loff_t offset = 0, dataoff;
2180 struct elf_note_info info = { };
2181 struct elf_phdr *phdr4note = NULL;
2182 struct elf_shdr *shdr4extnum = NULL;
2183 Elf_Half e_phnum;
2184 elf_addr_t e_shoff;
2185 elf_addr_t *vma_filesz = NULL;
2188 * We no longer stop all VM operations.
2190 * This is because those proceses that could possibly change map_count
2191 * or the mmap / vma pages are now blocked in do_exit on current
2192 * finishing this core dump.
2194 * Only ptrace can touch these memory addresses, but it doesn't change
2195 * the map_count or the pages allocated. So no possibility of crashing
2196 * exists while dumping the mm->vm_next areas to the core file.
2199 /* alloc memory for large data structures: too large to be on stack */
2200 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2201 if (!elf)
2202 goto out;
2204 * The number of segs are recored into ELF header as 16bit value.
2205 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2207 segs = current->mm->map_count;
2208 segs += elf_core_extra_phdrs();
2210 gate_vma = get_gate_vma(current->mm);
2211 if (gate_vma != NULL)
2212 segs++;
2214 /* for notes section */
2215 segs++;
2217 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2218 * this, kernel supports extended numbering. Have a look at
2219 * include/linux/elf.h for further information. */
2220 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2223 * Collect all the non-memory information about the process for the
2224 * notes. This also sets up the file header.
2226 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2227 goto cleanup;
2229 has_dumped = 1;
2231 fs = get_fs();
2232 set_fs(KERNEL_DS);
2234 offset += sizeof(*elf); /* Elf header */
2235 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2237 /* Write notes phdr entry */
2239 size_t sz = get_note_info_size(&info);
2241 sz += elf_coredump_extra_notes_size();
2243 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2244 if (!phdr4note)
2245 goto end_coredump;
2247 fill_elf_note_phdr(phdr4note, sz, offset);
2248 offset += sz;
2251 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2253 vma_filesz = kmalloc_array(segs - 1, sizeof(*vma_filesz), GFP_KERNEL);
2254 if (!vma_filesz)
2255 goto end_coredump;
2257 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2258 vma = next_vma(vma, gate_vma)) {
2259 unsigned long dump_size;
2261 dump_size = vma_dump_size(vma, cprm->mm_flags);
2262 vma_filesz[i++] = dump_size;
2263 vma_data_size += dump_size;
2266 offset += vma_data_size;
2267 offset += elf_core_extra_data_size();
2268 e_shoff = offset;
2270 if (e_phnum == PN_XNUM) {
2271 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2272 if (!shdr4extnum)
2273 goto end_coredump;
2274 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2277 offset = dataoff;
2279 if (!dump_emit(cprm, elf, sizeof(*elf)))
2280 goto end_coredump;
2282 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2283 goto end_coredump;
2285 /* Write program headers for segments dump */
2286 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2287 vma = next_vma(vma, gate_vma)) {
2288 struct elf_phdr phdr;
2290 phdr.p_type = PT_LOAD;
2291 phdr.p_offset = offset;
2292 phdr.p_vaddr = vma->vm_start;
2293 phdr.p_paddr = 0;
2294 phdr.p_filesz = vma_filesz[i++];
2295 phdr.p_memsz = vma->vm_end - vma->vm_start;
2296 offset += phdr.p_filesz;
2297 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2298 if (vma->vm_flags & VM_WRITE)
2299 phdr.p_flags |= PF_W;
2300 if (vma->vm_flags & VM_EXEC)
2301 phdr.p_flags |= PF_X;
2302 phdr.p_align = ELF_EXEC_PAGESIZE;
2304 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2305 goto end_coredump;
2308 if (!elf_core_write_extra_phdrs(cprm, offset))
2309 goto end_coredump;
2311 /* write out the notes section */
2312 if (!write_note_info(&info, cprm))
2313 goto end_coredump;
2315 if (elf_coredump_extra_notes_write(cprm))
2316 goto end_coredump;
2318 /* Align to page */
2319 if (!dump_skip(cprm, dataoff - cprm->written))
2320 goto end_coredump;
2322 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2323 vma = next_vma(vma, gate_vma)) {
2324 unsigned long addr;
2325 unsigned long end;
2327 end = vma->vm_start + vma_filesz[i++];
2329 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2330 struct page *page;
2331 int stop;
2333 page = get_dump_page(addr);
2334 if (page) {
2335 void *kaddr = kmap(page);
2336 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2337 kunmap(page);
2338 page_cache_release(page);
2339 } else
2340 stop = !dump_skip(cprm, PAGE_SIZE);
2341 if (stop)
2342 goto end_coredump;
2345 dump_truncate(cprm);
2347 if (!elf_core_write_extra_data(cprm))
2348 goto end_coredump;
2350 if (e_phnum == PN_XNUM) {
2351 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2352 goto end_coredump;
2355 end_coredump:
2356 set_fs(fs);
2358 cleanup:
2359 free_note_info(&info);
2360 kfree(shdr4extnum);
2361 kfree(vma_filesz);
2362 kfree(phdr4note);
2363 kfree(elf);
2364 out:
2365 return has_dumped;
2368 #endif /* CONFIG_ELF_CORE */
2370 static int __init init_elf_binfmt(void)
2372 register_binfmt(&elf_format);
2373 return 0;
2376 static void __exit exit_elf_binfmt(void)
2378 /* Remove the COFF and ELF loaders. */
2379 unregister_binfmt(&elf_format);
2382 core_initcall(init_elf_binfmt);
2383 module_exit(exit_elf_binfmt);
2384 MODULE_LICENSE("GPL");