Btrfs: send, fix incorrect file layout after hole punching beyond eof
[linux/fpc-iii.git] / fs / btrfs / send.c
blobba8950bfd9c714627b59ff41f4aa4e5e8ffef653
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 */
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
19 #include "send.h"
20 #include "backref.h"
21 #include "locking.h"
22 #include "disk-io.h"
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
28 * A fs_path is a helper to dynamically build path names with unknown size.
29 * It reallocates the internal buffer on demand.
30 * It allows fast adding of path elements on the right side (normal path) and
31 * fast adding to the left side (reversed path). A reversed path can also be
32 * unreversed if needed.
34 struct fs_path {
35 union {
36 struct {
37 char *start;
38 char *end;
40 char *buf;
41 unsigned short buf_len:15;
42 unsigned short reversed:1;
43 char inline_buf[];
46 * Average path length does not exceed 200 bytes, we'll have
47 * better packing in the slab and higher chance to satisfy
48 * a allocation later during send.
50 char pad[256];
53 #define FS_PATH_INLINE_SIZE \
54 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
57 /* reused for each extent */
58 struct clone_root {
59 struct btrfs_root *root;
60 u64 ino;
61 u64 offset;
63 u64 found_refs;
66 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
67 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
69 struct send_ctx {
70 struct file *send_filp;
71 loff_t send_off;
72 char *send_buf;
73 u32 send_size;
74 u32 send_max_size;
75 u64 total_send_size;
76 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
77 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
79 struct btrfs_root *send_root;
80 struct btrfs_root *parent_root;
81 struct clone_root *clone_roots;
82 int clone_roots_cnt;
84 /* current state of the compare_tree call */
85 struct btrfs_path *left_path;
86 struct btrfs_path *right_path;
87 struct btrfs_key *cmp_key;
90 * infos of the currently processed inode. In case of deleted inodes,
91 * these are the values from the deleted inode.
93 u64 cur_ino;
94 u64 cur_inode_gen;
95 int cur_inode_new;
96 int cur_inode_new_gen;
97 int cur_inode_deleted;
98 u64 cur_inode_size;
99 u64 cur_inode_mode;
100 u64 cur_inode_rdev;
101 u64 cur_inode_last_extent;
102 u64 cur_inode_next_write_offset;
103 bool ignore_cur_inode;
105 u64 send_progress;
107 struct list_head new_refs;
108 struct list_head deleted_refs;
110 struct radix_tree_root name_cache;
111 struct list_head name_cache_list;
112 int name_cache_size;
114 struct file_ra_state ra;
116 char *read_buf;
119 * We process inodes by their increasing order, so if before an
120 * incremental send we reverse the parent/child relationship of
121 * directories such that a directory with a lower inode number was
122 * the parent of a directory with a higher inode number, and the one
123 * becoming the new parent got renamed too, we can't rename/move the
124 * directory with lower inode number when we finish processing it - we
125 * must process the directory with higher inode number first, then
126 * rename/move it and then rename/move the directory with lower inode
127 * number. Example follows.
129 * Tree state when the first send was performed:
132 * |-- a (ino 257)
133 * |-- b (ino 258)
136 * |-- c (ino 259)
137 * | |-- d (ino 260)
139 * |-- c2 (ino 261)
141 * Tree state when the second (incremental) send is performed:
144 * |-- a (ino 257)
145 * |-- b (ino 258)
146 * |-- c2 (ino 261)
147 * |-- d2 (ino 260)
148 * |-- cc (ino 259)
150 * The sequence of steps that lead to the second state was:
152 * mv /a/b/c/d /a/b/c2/d2
153 * mv /a/b/c /a/b/c2/d2/cc
155 * "c" has lower inode number, but we can't move it (2nd mv operation)
156 * before we move "d", which has higher inode number.
158 * So we just memorize which move/rename operations must be performed
159 * later when their respective parent is processed and moved/renamed.
162 /* Indexed by parent directory inode number. */
163 struct rb_root pending_dir_moves;
166 * Reverse index, indexed by the inode number of a directory that
167 * is waiting for the move/rename of its immediate parent before its
168 * own move/rename can be performed.
170 struct rb_root waiting_dir_moves;
173 * A directory that is going to be rm'ed might have a child directory
174 * which is in the pending directory moves index above. In this case,
175 * the directory can only be removed after the move/rename of its child
176 * is performed. Example:
178 * Parent snapshot:
180 * . (ino 256)
181 * |-- a/ (ino 257)
182 * |-- b/ (ino 258)
183 * |-- c/ (ino 259)
184 * | |-- x/ (ino 260)
186 * |-- y/ (ino 261)
188 * Send snapshot:
190 * . (ino 256)
191 * |-- a/ (ino 257)
192 * |-- b/ (ino 258)
193 * |-- YY/ (ino 261)
194 * |-- x/ (ino 260)
196 * Sequence of steps that lead to the send snapshot:
197 * rm -f /a/b/c/foo.txt
198 * mv /a/b/y /a/b/YY
199 * mv /a/b/c/x /a/b/YY
200 * rmdir /a/b/c
202 * When the child is processed, its move/rename is delayed until its
203 * parent is processed (as explained above), but all other operations
204 * like update utimes, chown, chgrp, etc, are performed and the paths
205 * that it uses for those operations must use the orphanized name of
206 * its parent (the directory we're going to rm later), so we need to
207 * memorize that name.
209 * Indexed by the inode number of the directory to be deleted.
211 struct rb_root orphan_dirs;
214 struct pending_dir_move {
215 struct rb_node node;
216 struct list_head list;
217 u64 parent_ino;
218 u64 ino;
219 u64 gen;
220 struct list_head update_refs;
223 struct waiting_dir_move {
224 struct rb_node node;
225 u64 ino;
227 * There might be some directory that could not be removed because it
228 * was waiting for this directory inode to be moved first. Therefore
229 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
231 u64 rmdir_ino;
232 bool orphanized;
235 struct orphan_dir_info {
236 struct rb_node node;
237 u64 ino;
238 u64 gen;
239 u64 last_dir_index_offset;
242 struct name_cache_entry {
243 struct list_head list;
245 * radix_tree has only 32bit entries but we need to handle 64bit inums.
246 * We use the lower 32bit of the 64bit inum to store it in the tree. If
247 * more then one inum would fall into the same entry, we use radix_list
248 * to store the additional entries. radix_list is also used to store
249 * entries where two entries have the same inum but different
250 * generations.
252 struct list_head radix_list;
253 u64 ino;
254 u64 gen;
255 u64 parent_ino;
256 u64 parent_gen;
257 int ret;
258 int need_later_update;
259 int name_len;
260 char name[];
263 __cold
264 static void inconsistent_snapshot_error(struct send_ctx *sctx,
265 enum btrfs_compare_tree_result result,
266 const char *what)
268 const char *result_string;
270 switch (result) {
271 case BTRFS_COMPARE_TREE_NEW:
272 result_string = "new";
273 break;
274 case BTRFS_COMPARE_TREE_DELETED:
275 result_string = "deleted";
276 break;
277 case BTRFS_COMPARE_TREE_CHANGED:
278 result_string = "updated";
279 break;
280 case BTRFS_COMPARE_TREE_SAME:
281 ASSERT(0);
282 result_string = "unchanged";
283 break;
284 default:
285 ASSERT(0);
286 result_string = "unexpected";
289 btrfs_err(sctx->send_root->fs_info,
290 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
291 result_string, what, sctx->cmp_key->objectid,
292 sctx->send_root->root_key.objectid,
293 (sctx->parent_root ?
294 sctx->parent_root->root_key.objectid : 0));
297 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
299 static struct waiting_dir_move *
300 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
302 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
304 static int need_send_hole(struct send_ctx *sctx)
306 return (sctx->parent_root && !sctx->cur_inode_new &&
307 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
308 S_ISREG(sctx->cur_inode_mode));
311 static void fs_path_reset(struct fs_path *p)
313 if (p->reversed) {
314 p->start = p->buf + p->buf_len - 1;
315 p->end = p->start;
316 *p->start = 0;
317 } else {
318 p->start = p->buf;
319 p->end = p->start;
320 *p->start = 0;
324 static struct fs_path *fs_path_alloc(void)
326 struct fs_path *p;
328 p = kmalloc(sizeof(*p), GFP_KERNEL);
329 if (!p)
330 return NULL;
331 p->reversed = 0;
332 p->buf = p->inline_buf;
333 p->buf_len = FS_PATH_INLINE_SIZE;
334 fs_path_reset(p);
335 return p;
338 static struct fs_path *fs_path_alloc_reversed(void)
340 struct fs_path *p;
342 p = fs_path_alloc();
343 if (!p)
344 return NULL;
345 p->reversed = 1;
346 fs_path_reset(p);
347 return p;
350 static void fs_path_free(struct fs_path *p)
352 if (!p)
353 return;
354 if (p->buf != p->inline_buf)
355 kfree(p->buf);
356 kfree(p);
359 static int fs_path_len(struct fs_path *p)
361 return p->end - p->start;
364 static int fs_path_ensure_buf(struct fs_path *p, int len)
366 char *tmp_buf;
367 int path_len;
368 int old_buf_len;
370 len++;
372 if (p->buf_len >= len)
373 return 0;
375 if (len > PATH_MAX) {
376 WARN_ON(1);
377 return -ENOMEM;
380 path_len = p->end - p->start;
381 old_buf_len = p->buf_len;
384 * First time the inline_buf does not suffice
386 if (p->buf == p->inline_buf) {
387 tmp_buf = kmalloc(len, GFP_KERNEL);
388 if (tmp_buf)
389 memcpy(tmp_buf, p->buf, old_buf_len);
390 } else {
391 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
393 if (!tmp_buf)
394 return -ENOMEM;
395 p->buf = tmp_buf;
397 * The real size of the buffer is bigger, this will let the fast path
398 * happen most of the time
400 p->buf_len = ksize(p->buf);
402 if (p->reversed) {
403 tmp_buf = p->buf + old_buf_len - path_len - 1;
404 p->end = p->buf + p->buf_len - 1;
405 p->start = p->end - path_len;
406 memmove(p->start, tmp_buf, path_len + 1);
407 } else {
408 p->start = p->buf;
409 p->end = p->start + path_len;
411 return 0;
414 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
415 char **prepared)
417 int ret;
418 int new_len;
420 new_len = p->end - p->start + name_len;
421 if (p->start != p->end)
422 new_len++;
423 ret = fs_path_ensure_buf(p, new_len);
424 if (ret < 0)
425 goto out;
427 if (p->reversed) {
428 if (p->start != p->end)
429 *--p->start = '/';
430 p->start -= name_len;
431 *prepared = p->start;
432 } else {
433 if (p->start != p->end)
434 *p->end++ = '/';
435 *prepared = p->end;
436 p->end += name_len;
437 *p->end = 0;
440 out:
441 return ret;
444 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
446 int ret;
447 char *prepared;
449 ret = fs_path_prepare_for_add(p, name_len, &prepared);
450 if (ret < 0)
451 goto out;
452 memcpy(prepared, name, name_len);
454 out:
455 return ret;
458 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
460 int ret;
461 char *prepared;
463 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
464 if (ret < 0)
465 goto out;
466 memcpy(prepared, p2->start, p2->end - p2->start);
468 out:
469 return ret;
472 static int fs_path_add_from_extent_buffer(struct fs_path *p,
473 struct extent_buffer *eb,
474 unsigned long off, int len)
476 int ret;
477 char *prepared;
479 ret = fs_path_prepare_for_add(p, len, &prepared);
480 if (ret < 0)
481 goto out;
483 read_extent_buffer(eb, prepared, off, len);
485 out:
486 return ret;
489 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
491 int ret;
493 p->reversed = from->reversed;
494 fs_path_reset(p);
496 ret = fs_path_add_path(p, from);
498 return ret;
502 static void fs_path_unreverse(struct fs_path *p)
504 char *tmp;
505 int len;
507 if (!p->reversed)
508 return;
510 tmp = p->start;
511 len = p->end - p->start;
512 p->start = p->buf;
513 p->end = p->start + len;
514 memmove(p->start, tmp, len + 1);
515 p->reversed = 0;
518 static struct btrfs_path *alloc_path_for_send(void)
520 struct btrfs_path *path;
522 path = btrfs_alloc_path();
523 if (!path)
524 return NULL;
525 path->search_commit_root = 1;
526 path->skip_locking = 1;
527 path->need_commit_sem = 1;
528 return path;
531 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
533 int ret;
534 u32 pos = 0;
536 while (pos < len) {
537 ret = kernel_write(filp, buf + pos, len - pos, off);
538 /* TODO handle that correctly */
539 /*if (ret == -ERESTARTSYS) {
540 continue;
542 if (ret < 0)
543 return ret;
544 if (ret == 0) {
545 return -EIO;
547 pos += ret;
550 return 0;
553 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
555 struct btrfs_tlv_header *hdr;
556 int total_len = sizeof(*hdr) + len;
557 int left = sctx->send_max_size - sctx->send_size;
559 if (unlikely(left < total_len))
560 return -EOVERFLOW;
562 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
563 hdr->tlv_type = cpu_to_le16(attr);
564 hdr->tlv_len = cpu_to_le16(len);
565 memcpy(hdr + 1, data, len);
566 sctx->send_size += total_len;
568 return 0;
571 #define TLV_PUT_DEFINE_INT(bits) \
572 static int tlv_put_u##bits(struct send_ctx *sctx, \
573 u##bits attr, u##bits value) \
575 __le##bits __tmp = cpu_to_le##bits(value); \
576 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
579 TLV_PUT_DEFINE_INT(64)
581 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
582 const char *str, int len)
584 if (len == -1)
585 len = strlen(str);
586 return tlv_put(sctx, attr, str, len);
589 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
590 const u8 *uuid)
592 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
595 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
596 struct extent_buffer *eb,
597 struct btrfs_timespec *ts)
599 struct btrfs_timespec bts;
600 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
601 return tlv_put(sctx, attr, &bts, sizeof(bts));
605 #define TLV_PUT(sctx, attrtype, data, attrlen) \
606 do { \
607 ret = tlv_put(sctx, attrtype, data, attrlen); \
608 if (ret < 0) \
609 goto tlv_put_failure; \
610 } while (0)
612 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
613 do { \
614 ret = tlv_put_u##bits(sctx, attrtype, value); \
615 if (ret < 0) \
616 goto tlv_put_failure; \
617 } while (0)
619 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
620 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
621 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
622 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
623 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
624 do { \
625 ret = tlv_put_string(sctx, attrtype, str, len); \
626 if (ret < 0) \
627 goto tlv_put_failure; \
628 } while (0)
629 #define TLV_PUT_PATH(sctx, attrtype, p) \
630 do { \
631 ret = tlv_put_string(sctx, attrtype, p->start, \
632 p->end - p->start); \
633 if (ret < 0) \
634 goto tlv_put_failure; \
635 } while(0)
636 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
637 do { \
638 ret = tlv_put_uuid(sctx, attrtype, uuid); \
639 if (ret < 0) \
640 goto tlv_put_failure; \
641 } while (0)
642 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
643 do { \
644 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
645 if (ret < 0) \
646 goto tlv_put_failure; \
647 } while (0)
649 static int send_header(struct send_ctx *sctx)
651 struct btrfs_stream_header hdr;
653 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
654 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
656 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
657 &sctx->send_off);
661 * For each command/item we want to send to userspace, we call this function.
663 static int begin_cmd(struct send_ctx *sctx, int cmd)
665 struct btrfs_cmd_header *hdr;
667 if (WARN_ON(!sctx->send_buf))
668 return -EINVAL;
670 BUG_ON(sctx->send_size);
672 sctx->send_size += sizeof(*hdr);
673 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
674 hdr->cmd = cpu_to_le16(cmd);
676 return 0;
679 static int send_cmd(struct send_ctx *sctx)
681 int ret;
682 struct btrfs_cmd_header *hdr;
683 u32 crc;
685 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
686 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
687 hdr->crc = 0;
689 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
690 hdr->crc = cpu_to_le32(crc);
692 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
693 &sctx->send_off);
695 sctx->total_send_size += sctx->send_size;
696 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
697 sctx->send_size = 0;
699 return ret;
703 * Sends a move instruction to user space
705 static int send_rename(struct send_ctx *sctx,
706 struct fs_path *from, struct fs_path *to)
708 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
709 int ret;
711 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
713 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
714 if (ret < 0)
715 goto out;
717 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
718 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
720 ret = send_cmd(sctx);
722 tlv_put_failure:
723 out:
724 return ret;
728 * Sends a link instruction to user space
730 static int send_link(struct send_ctx *sctx,
731 struct fs_path *path, struct fs_path *lnk)
733 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
734 int ret;
736 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
738 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
739 if (ret < 0)
740 goto out;
742 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
743 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
745 ret = send_cmd(sctx);
747 tlv_put_failure:
748 out:
749 return ret;
753 * Sends an unlink instruction to user space
755 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
757 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
758 int ret;
760 btrfs_debug(fs_info, "send_unlink %s", path->start);
762 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
763 if (ret < 0)
764 goto out;
766 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
768 ret = send_cmd(sctx);
770 tlv_put_failure:
771 out:
772 return ret;
776 * Sends a rmdir instruction to user space
778 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
780 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
781 int ret;
783 btrfs_debug(fs_info, "send_rmdir %s", path->start);
785 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
786 if (ret < 0)
787 goto out;
789 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
791 ret = send_cmd(sctx);
793 tlv_put_failure:
794 out:
795 return ret;
799 * Helper function to retrieve some fields from an inode item.
801 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
802 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
803 u64 *gid, u64 *rdev)
805 int ret;
806 struct btrfs_inode_item *ii;
807 struct btrfs_key key;
809 key.objectid = ino;
810 key.type = BTRFS_INODE_ITEM_KEY;
811 key.offset = 0;
812 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
813 if (ret) {
814 if (ret > 0)
815 ret = -ENOENT;
816 return ret;
819 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
820 struct btrfs_inode_item);
821 if (size)
822 *size = btrfs_inode_size(path->nodes[0], ii);
823 if (gen)
824 *gen = btrfs_inode_generation(path->nodes[0], ii);
825 if (mode)
826 *mode = btrfs_inode_mode(path->nodes[0], ii);
827 if (uid)
828 *uid = btrfs_inode_uid(path->nodes[0], ii);
829 if (gid)
830 *gid = btrfs_inode_gid(path->nodes[0], ii);
831 if (rdev)
832 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
834 return ret;
837 static int get_inode_info(struct btrfs_root *root,
838 u64 ino, u64 *size, u64 *gen,
839 u64 *mode, u64 *uid, u64 *gid,
840 u64 *rdev)
842 struct btrfs_path *path;
843 int ret;
845 path = alloc_path_for_send();
846 if (!path)
847 return -ENOMEM;
848 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
849 rdev);
850 btrfs_free_path(path);
851 return ret;
854 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
855 struct fs_path *p,
856 void *ctx);
859 * Helper function to iterate the entries in ONE btrfs_inode_ref or
860 * btrfs_inode_extref.
861 * The iterate callback may return a non zero value to stop iteration. This can
862 * be a negative value for error codes or 1 to simply stop it.
864 * path must point to the INODE_REF or INODE_EXTREF when called.
866 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
867 struct btrfs_key *found_key, int resolve,
868 iterate_inode_ref_t iterate, void *ctx)
870 struct extent_buffer *eb = path->nodes[0];
871 struct btrfs_item *item;
872 struct btrfs_inode_ref *iref;
873 struct btrfs_inode_extref *extref;
874 struct btrfs_path *tmp_path;
875 struct fs_path *p;
876 u32 cur = 0;
877 u32 total;
878 int slot = path->slots[0];
879 u32 name_len;
880 char *start;
881 int ret = 0;
882 int num = 0;
883 int index;
884 u64 dir;
885 unsigned long name_off;
886 unsigned long elem_size;
887 unsigned long ptr;
889 p = fs_path_alloc_reversed();
890 if (!p)
891 return -ENOMEM;
893 tmp_path = alloc_path_for_send();
894 if (!tmp_path) {
895 fs_path_free(p);
896 return -ENOMEM;
900 if (found_key->type == BTRFS_INODE_REF_KEY) {
901 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
902 struct btrfs_inode_ref);
903 item = btrfs_item_nr(slot);
904 total = btrfs_item_size(eb, item);
905 elem_size = sizeof(*iref);
906 } else {
907 ptr = btrfs_item_ptr_offset(eb, slot);
908 total = btrfs_item_size_nr(eb, slot);
909 elem_size = sizeof(*extref);
912 while (cur < total) {
913 fs_path_reset(p);
915 if (found_key->type == BTRFS_INODE_REF_KEY) {
916 iref = (struct btrfs_inode_ref *)(ptr + cur);
917 name_len = btrfs_inode_ref_name_len(eb, iref);
918 name_off = (unsigned long)(iref + 1);
919 index = btrfs_inode_ref_index(eb, iref);
920 dir = found_key->offset;
921 } else {
922 extref = (struct btrfs_inode_extref *)(ptr + cur);
923 name_len = btrfs_inode_extref_name_len(eb, extref);
924 name_off = (unsigned long)&extref->name;
925 index = btrfs_inode_extref_index(eb, extref);
926 dir = btrfs_inode_extref_parent(eb, extref);
929 if (resolve) {
930 start = btrfs_ref_to_path(root, tmp_path, name_len,
931 name_off, eb, dir,
932 p->buf, p->buf_len);
933 if (IS_ERR(start)) {
934 ret = PTR_ERR(start);
935 goto out;
937 if (start < p->buf) {
938 /* overflow , try again with larger buffer */
939 ret = fs_path_ensure_buf(p,
940 p->buf_len + p->buf - start);
941 if (ret < 0)
942 goto out;
943 start = btrfs_ref_to_path(root, tmp_path,
944 name_len, name_off,
945 eb, dir,
946 p->buf, p->buf_len);
947 if (IS_ERR(start)) {
948 ret = PTR_ERR(start);
949 goto out;
951 BUG_ON(start < p->buf);
953 p->start = start;
954 } else {
955 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
956 name_len);
957 if (ret < 0)
958 goto out;
961 cur += elem_size + name_len;
962 ret = iterate(num, dir, index, p, ctx);
963 if (ret)
964 goto out;
965 num++;
968 out:
969 btrfs_free_path(tmp_path);
970 fs_path_free(p);
971 return ret;
974 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
975 const char *name, int name_len,
976 const char *data, int data_len,
977 u8 type, void *ctx);
980 * Helper function to iterate the entries in ONE btrfs_dir_item.
981 * The iterate callback may return a non zero value to stop iteration. This can
982 * be a negative value for error codes or 1 to simply stop it.
984 * path must point to the dir item when called.
986 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
987 iterate_dir_item_t iterate, void *ctx)
989 int ret = 0;
990 struct extent_buffer *eb;
991 struct btrfs_item *item;
992 struct btrfs_dir_item *di;
993 struct btrfs_key di_key;
994 char *buf = NULL;
995 int buf_len;
996 u32 name_len;
997 u32 data_len;
998 u32 cur;
999 u32 len;
1000 u32 total;
1001 int slot;
1002 int num;
1003 u8 type;
1006 * Start with a small buffer (1 page). If later we end up needing more
1007 * space, which can happen for xattrs on a fs with a leaf size greater
1008 * then the page size, attempt to increase the buffer. Typically xattr
1009 * values are small.
1011 buf_len = PATH_MAX;
1012 buf = kmalloc(buf_len, GFP_KERNEL);
1013 if (!buf) {
1014 ret = -ENOMEM;
1015 goto out;
1018 eb = path->nodes[0];
1019 slot = path->slots[0];
1020 item = btrfs_item_nr(slot);
1021 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1022 cur = 0;
1023 len = 0;
1024 total = btrfs_item_size(eb, item);
1026 num = 0;
1027 while (cur < total) {
1028 name_len = btrfs_dir_name_len(eb, di);
1029 data_len = btrfs_dir_data_len(eb, di);
1030 type = btrfs_dir_type(eb, di);
1031 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1033 if (type == BTRFS_FT_XATTR) {
1034 if (name_len > XATTR_NAME_MAX) {
1035 ret = -ENAMETOOLONG;
1036 goto out;
1038 if (name_len + data_len >
1039 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1040 ret = -E2BIG;
1041 goto out;
1043 } else {
1045 * Path too long
1047 if (name_len + data_len > PATH_MAX) {
1048 ret = -ENAMETOOLONG;
1049 goto out;
1053 if (name_len + data_len > buf_len) {
1054 buf_len = name_len + data_len;
1055 if (is_vmalloc_addr(buf)) {
1056 vfree(buf);
1057 buf = NULL;
1058 } else {
1059 char *tmp = krealloc(buf, buf_len,
1060 GFP_KERNEL | __GFP_NOWARN);
1062 if (!tmp)
1063 kfree(buf);
1064 buf = tmp;
1066 if (!buf) {
1067 buf = kvmalloc(buf_len, GFP_KERNEL);
1068 if (!buf) {
1069 ret = -ENOMEM;
1070 goto out;
1075 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1076 name_len + data_len);
1078 len = sizeof(*di) + name_len + data_len;
1079 di = (struct btrfs_dir_item *)((char *)di + len);
1080 cur += len;
1082 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1083 data_len, type, ctx);
1084 if (ret < 0)
1085 goto out;
1086 if (ret) {
1087 ret = 0;
1088 goto out;
1091 num++;
1094 out:
1095 kvfree(buf);
1096 return ret;
1099 static int __copy_first_ref(int num, u64 dir, int index,
1100 struct fs_path *p, void *ctx)
1102 int ret;
1103 struct fs_path *pt = ctx;
1105 ret = fs_path_copy(pt, p);
1106 if (ret < 0)
1107 return ret;
1109 /* we want the first only */
1110 return 1;
1114 * Retrieve the first path of an inode. If an inode has more then one
1115 * ref/hardlink, this is ignored.
1117 static int get_inode_path(struct btrfs_root *root,
1118 u64 ino, struct fs_path *path)
1120 int ret;
1121 struct btrfs_key key, found_key;
1122 struct btrfs_path *p;
1124 p = alloc_path_for_send();
1125 if (!p)
1126 return -ENOMEM;
1128 fs_path_reset(path);
1130 key.objectid = ino;
1131 key.type = BTRFS_INODE_REF_KEY;
1132 key.offset = 0;
1134 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1135 if (ret < 0)
1136 goto out;
1137 if (ret) {
1138 ret = 1;
1139 goto out;
1141 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1142 if (found_key.objectid != ino ||
1143 (found_key.type != BTRFS_INODE_REF_KEY &&
1144 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1145 ret = -ENOENT;
1146 goto out;
1149 ret = iterate_inode_ref(root, p, &found_key, 1,
1150 __copy_first_ref, path);
1151 if (ret < 0)
1152 goto out;
1153 ret = 0;
1155 out:
1156 btrfs_free_path(p);
1157 return ret;
1160 struct backref_ctx {
1161 struct send_ctx *sctx;
1163 struct btrfs_path *path;
1164 /* number of total found references */
1165 u64 found;
1168 * used for clones found in send_root. clones found behind cur_objectid
1169 * and cur_offset are not considered as allowed clones.
1171 u64 cur_objectid;
1172 u64 cur_offset;
1174 /* may be truncated in case it's the last extent in a file */
1175 u64 extent_len;
1177 /* data offset in the file extent item */
1178 u64 data_offset;
1180 /* Just to check for bugs in backref resolving */
1181 int found_itself;
1184 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1186 u64 root = (u64)(uintptr_t)key;
1187 struct clone_root *cr = (struct clone_root *)elt;
1189 if (root < cr->root->objectid)
1190 return -1;
1191 if (root > cr->root->objectid)
1192 return 1;
1193 return 0;
1196 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1198 struct clone_root *cr1 = (struct clone_root *)e1;
1199 struct clone_root *cr2 = (struct clone_root *)e2;
1201 if (cr1->root->objectid < cr2->root->objectid)
1202 return -1;
1203 if (cr1->root->objectid > cr2->root->objectid)
1204 return 1;
1205 return 0;
1209 * Called for every backref that is found for the current extent.
1210 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1212 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1214 struct backref_ctx *bctx = ctx_;
1215 struct clone_root *found;
1216 int ret;
1217 u64 i_size;
1219 /* First check if the root is in the list of accepted clone sources */
1220 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1221 bctx->sctx->clone_roots_cnt,
1222 sizeof(struct clone_root),
1223 __clone_root_cmp_bsearch);
1224 if (!found)
1225 return 0;
1227 if (found->root == bctx->sctx->send_root &&
1228 ino == bctx->cur_objectid &&
1229 offset == bctx->cur_offset) {
1230 bctx->found_itself = 1;
1234 * There are inodes that have extents that lie behind its i_size. Don't
1235 * accept clones from these extents.
1237 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1238 NULL, NULL, NULL);
1239 btrfs_release_path(bctx->path);
1240 if (ret < 0)
1241 return ret;
1243 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1244 return 0;
1247 * Make sure we don't consider clones from send_root that are
1248 * behind the current inode/offset.
1250 if (found->root == bctx->sctx->send_root) {
1252 * TODO for the moment we don't accept clones from the inode
1253 * that is currently send. We may change this when
1254 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1255 * file.
1257 if (ino >= bctx->cur_objectid)
1258 return 0;
1261 bctx->found++;
1262 found->found_refs++;
1263 if (ino < found->ino) {
1264 found->ino = ino;
1265 found->offset = offset;
1266 } else if (found->ino == ino) {
1268 * same extent found more then once in the same file.
1270 if (found->offset > offset + bctx->extent_len)
1271 found->offset = offset;
1274 return 0;
1278 * Given an inode, offset and extent item, it finds a good clone for a clone
1279 * instruction. Returns -ENOENT when none could be found. The function makes
1280 * sure that the returned clone is usable at the point where sending is at the
1281 * moment. This means, that no clones are accepted which lie behind the current
1282 * inode+offset.
1284 * path must point to the extent item when called.
1286 static int find_extent_clone(struct send_ctx *sctx,
1287 struct btrfs_path *path,
1288 u64 ino, u64 data_offset,
1289 u64 ino_size,
1290 struct clone_root **found)
1292 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1293 int ret;
1294 int extent_type;
1295 u64 logical;
1296 u64 disk_byte;
1297 u64 num_bytes;
1298 u64 extent_item_pos;
1299 u64 flags = 0;
1300 struct btrfs_file_extent_item *fi;
1301 struct extent_buffer *eb = path->nodes[0];
1302 struct backref_ctx *backref_ctx = NULL;
1303 struct clone_root *cur_clone_root;
1304 struct btrfs_key found_key;
1305 struct btrfs_path *tmp_path;
1306 int compressed;
1307 u32 i;
1309 tmp_path = alloc_path_for_send();
1310 if (!tmp_path)
1311 return -ENOMEM;
1313 /* We only use this path under the commit sem */
1314 tmp_path->need_commit_sem = 0;
1316 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1317 if (!backref_ctx) {
1318 ret = -ENOMEM;
1319 goto out;
1322 backref_ctx->path = tmp_path;
1324 if (data_offset >= ino_size) {
1326 * There may be extents that lie behind the file's size.
1327 * I at least had this in combination with snapshotting while
1328 * writing large files.
1330 ret = 0;
1331 goto out;
1334 fi = btrfs_item_ptr(eb, path->slots[0],
1335 struct btrfs_file_extent_item);
1336 extent_type = btrfs_file_extent_type(eb, fi);
1337 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1338 ret = -ENOENT;
1339 goto out;
1341 compressed = btrfs_file_extent_compression(eb, fi);
1343 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1344 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1345 if (disk_byte == 0) {
1346 ret = -ENOENT;
1347 goto out;
1349 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1351 down_read(&fs_info->commit_root_sem);
1352 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1353 &found_key, &flags);
1354 up_read(&fs_info->commit_root_sem);
1355 btrfs_release_path(tmp_path);
1357 if (ret < 0)
1358 goto out;
1359 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1360 ret = -EIO;
1361 goto out;
1365 * Setup the clone roots.
1367 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1368 cur_clone_root = sctx->clone_roots + i;
1369 cur_clone_root->ino = (u64)-1;
1370 cur_clone_root->offset = 0;
1371 cur_clone_root->found_refs = 0;
1374 backref_ctx->sctx = sctx;
1375 backref_ctx->found = 0;
1376 backref_ctx->cur_objectid = ino;
1377 backref_ctx->cur_offset = data_offset;
1378 backref_ctx->found_itself = 0;
1379 backref_ctx->extent_len = num_bytes;
1381 * For non-compressed extents iterate_extent_inodes() gives us extent
1382 * offsets that already take into account the data offset, but not for
1383 * compressed extents, since the offset is logical and not relative to
1384 * the physical extent locations. We must take this into account to
1385 * avoid sending clone offsets that go beyond the source file's size,
1386 * which would result in the clone ioctl failing with -EINVAL on the
1387 * receiving end.
1389 if (compressed == BTRFS_COMPRESS_NONE)
1390 backref_ctx->data_offset = 0;
1391 else
1392 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1395 * The last extent of a file may be too large due to page alignment.
1396 * We need to adjust extent_len in this case so that the checks in
1397 * __iterate_backrefs work.
1399 if (data_offset + num_bytes >= ino_size)
1400 backref_ctx->extent_len = ino_size - data_offset;
1403 * Now collect all backrefs.
1405 if (compressed == BTRFS_COMPRESS_NONE)
1406 extent_item_pos = logical - found_key.objectid;
1407 else
1408 extent_item_pos = 0;
1409 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1410 extent_item_pos, 1, __iterate_backrefs,
1411 backref_ctx, false);
1413 if (ret < 0)
1414 goto out;
1416 if (!backref_ctx->found_itself) {
1417 /* found a bug in backref code? */
1418 ret = -EIO;
1419 btrfs_err(fs_info,
1420 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1421 ino, data_offset, disk_byte, found_key.objectid);
1422 goto out;
1425 btrfs_debug(fs_info,
1426 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1427 data_offset, ino, num_bytes, logical);
1429 if (!backref_ctx->found)
1430 btrfs_debug(fs_info, "no clones found");
1432 cur_clone_root = NULL;
1433 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1434 if (sctx->clone_roots[i].found_refs) {
1435 if (!cur_clone_root)
1436 cur_clone_root = sctx->clone_roots + i;
1437 else if (sctx->clone_roots[i].root == sctx->send_root)
1438 /* prefer clones from send_root over others */
1439 cur_clone_root = sctx->clone_roots + i;
1444 if (cur_clone_root) {
1445 *found = cur_clone_root;
1446 ret = 0;
1447 } else {
1448 ret = -ENOENT;
1451 out:
1452 btrfs_free_path(tmp_path);
1453 kfree(backref_ctx);
1454 return ret;
1457 static int read_symlink(struct btrfs_root *root,
1458 u64 ino,
1459 struct fs_path *dest)
1461 int ret;
1462 struct btrfs_path *path;
1463 struct btrfs_key key;
1464 struct btrfs_file_extent_item *ei;
1465 u8 type;
1466 u8 compression;
1467 unsigned long off;
1468 int len;
1470 path = alloc_path_for_send();
1471 if (!path)
1472 return -ENOMEM;
1474 key.objectid = ino;
1475 key.type = BTRFS_EXTENT_DATA_KEY;
1476 key.offset = 0;
1477 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1478 if (ret < 0)
1479 goto out;
1480 if (ret) {
1482 * An empty symlink inode. Can happen in rare error paths when
1483 * creating a symlink (transaction committed before the inode
1484 * eviction handler removed the symlink inode items and a crash
1485 * happened in between or the subvol was snapshoted in between).
1486 * Print an informative message to dmesg/syslog so that the user
1487 * can delete the symlink.
1489 btrfs_err(root->fs_info,
1490 "Found empty symlink inode %llu at root %llu",
1491 ino, root->root_key.objectid);
1492 ret = -EIO;
1493 goto out;
1496 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1497 struct btrfs_file_extent_item);
1498 type = btrfs_file_extent_type(path->nodes[0], ei);
1499 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1500 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1501 BUG_ON(compression);
1503 off = btrfs_file_extent_inline_start(ei);
1504 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1506 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1508 out:
1509 btrfs_free_path(path);
1510 return ret;
1514 * Helper function to generate a file name that is unique in the root of
1515 * send_root and parent_root. This is used to generate names for orphan inodes.
1517 static int gen_unique_name(struct send_ctx *sctx,
1518 u64 ino, u64 gen,
1519 struct fs_path *dest)
1521 int ret = 0;
1522 struct btrfs_path *path;
1523 struct btrfs_dir_item *di;
1524 char tmp[64];
1525 int len;
1526 u64 idx = 0;
1528 path = alloc_path_for_send();
1529 if (!path)
1530 return -ENOMEM;
1532 while (1) {
1533 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1534 ino, gen, idx);
1535 ASSERT(len < sizeof(tmp));
1537 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1538 path, BTRFS_FIRST_FREE_OBJECTID,
1539 tmp, strlen(tmp), 0);
1540 btrfs_release_path(path);
1541 if (IS_ERR(di)) {
1542 ret = PTR_ERR(di);
1543 goto out;
1545 if (di) {
1546 /* not unique, try again */
1547 idx++;
1548 continue;
1551 if (!sctx->parent_root) {
1552 /* unique */
1553 ret = 0;
1554 break;
1557 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1558 path, BTRFS_FIRST_FREE_OBJECTID,
1559 tmp, strlen(tmp), 0);
1560 btrfs_release_path(path);
1561 if (IS_ERR(di)) {
1562 ret = PTR_ERR(di);
1563 goto out;
1565 if (di) {
1566 /* not unique, try again */
1567 idx++;
1568 continue;
1570 /* unique */
1571 break;
1574 ret = fs_path_add(dest, tmp, strlen(tmp));
1576 out:
1577 btrfs_free_path(path);
1578 return ret;
1581 enum inode_state {
1582 inode_state_no_change,
1583 inode_state_will_create,
1584 inode_state_did_create,
1585 inode_state_will_delete,
1586 inode_state_did_delete,
1589 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1591 int ret;
1592 int left_ret;
1593 int right_ret;
1594 u64 left_gen;
1595 u64 right_gen;
1597 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1598 NULL, NULL);
1599 if (ret < 0 && ret != -ENOENT)
1600 goto out;
1601 left_ret = ret;
1603 if (!sctx->parent_root) {
1604 right_ret = -ENOENT;
1605 } else {
1606 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1607 NULL, NULL, NULL, NULL);
1608 if (ret < 0 && ret != -ENOENT)
1609 goto out;
1610 right_ret = ret;
1613 if (!left_ret && !right_ret) {
1614 if (left_gen == gen && right_gen == gen) {
1615 ret = inode_state_no_change;
1616 } else if (left_gen == gen) {
1617 if (ino < sctx->send_progress)
1618 ret = inode_state_did_create;
1619 else
1620 ret = inode_state_will_create;
1621 } else if (right_gen == gen) {
1622 if (ino < sctx->send_progress)
1623 ret = inode_state_did_delete;
1624 else
1625 ret = inode_state_will_delete;
1626 } else {
1627 ret = -ENOENT;
1629 } else if (!left_ret) {
1630 if (left_gen == gen) {
1631 if (ino < sctx->send_progress)
1632 ret = inode_state_did_create;
1633 else
1634 ret = inode_state_will_create;
1635 } else {
1636 ret = -ENOENT;
1638 } else if (!right_ret) {
1639 if (right_gen == gen) {
1640 if (ino < sctx->send_progress)
1641 ret = inode_state_did_delete;
1642 else
1643 ret = inode_state_will_delete;
1644 } else {
1645 ret = -ENOENT;
1647 } else {
1648 ret = -ENOENT;
1651 out:
1652 return ret;
1655 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1657 int ret;
1659 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1660 return 1;
1662 ret = get_cur_inode_state(sctx, ino, gen);
1663 if (ret < 0)
1664 goto out;
1666 if (ret == inode_state_no_change ||
1667 ret == inode_state_did_create ||
1668 ret == inode_state_will_delete)
1669 ret = 1;
1670 else
1671 ret = 0;
1673 out:
1674 return ret;
1678 * Helper function to lookup a dir item in a dir.
1680 static int lookup_dir_item_inode(struct btrfs_root *root,
1681 u64 dir, const char *name, int name_len,
1682 u64 *found_inode,
1683 u8 *found_type)
1685 int ret = 0;
1686 struct btrfs_dir_item *di;
1687 struct btrfs_key key;
1688 struct btrfs_path *path;
1690 path = alloc_path_for_send();
1691 if (!path)
1692 return -ENOMEM;
1694 di = btrfs_lookup_dir_item(NULL, root, path,
1695 dir, name, name_len, 0);
1696 if (!di) {
1697 ret = -ENOENT;
1698 goto out;
1700 if (IS_ERR(di)) {
1701 ret = PTR_ERR(di);
1702 goto out;
1704 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1705 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1706 ret = -ENOENT;
1707 goto out;
1709 *found_inode = key.objectid;
1710 *found_type = btrfs_dir_type(path->nodes[0], di);
1712 out:
1713 btrfs_free_path(path);
1714 return ret;
1718 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1719 * generation of the parent dir and the name of the dir entry.
1721 static int get_first_ref(struct btrfs_root *root, u64 ino,
1722 u64 *dir, u64 *dir_gen, struct fs_path *name)
1724 int ret;
1725 struct btrfs_key key;
1726 struct btrfs_key found_key;
1727 struct btrfs_path *path;
1728 int len;
1729 u64 parent_dir;
1731 path = alloc_path_for_send();
1732 if (!path)
1733 return -ENOMEM;
1735 key.objectid = ino;
1736 key.type = BTRFS_INODE_REF_KEY;
1737 key.offset = 0;
1739 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1740 if (ret < 0)
1741 goto out;
1742 if (!ret)
1743 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1744 path->slots[0]);
1745 if (ret || found_key.objectid != ino ||
1746 (found_key.type != BTRFS_INODE_REF_KEY &&
1747 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1748 ret = -ENOENT;
1749 goto out;
1752 if (found_key.type == BTRFS_INODE_REF_KEY) {
1753 struct btrfs_inode_ref *iref;
1754 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1755 struct btrfs_inode_ref);
1756 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1757 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1758 (unsigned long)(iref + 1),
1759 len);
1760 parent_dir = found_key.offset;
1761 } else {
1762 struct btrfs_inode_extref *extref;
1763 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1764 struct btrfs_inode_extref);
1765 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1766 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1767 (unsigned long)&extref->name, len);
1768 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1770 if (ret < 0)
1771 goto out;
1772 btrfs_release_path(path);
1774 if (dir_gen) {
1775 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1776 NULL, NULL, NULL);
1777 if (ret < 0)
1778 goto out;
1781 *dir = parent_dir;
1783 out:
1784 btrfs_free_path(path);
1785 return ret;
1788 static int is_first_ref(struct btrfs_root *root,
1789 u64 ino, u64 dir,
1790 const char *name, int name_len)
1792 int ret;
1793 struct fs_path *tmp_name;
1794 u64 tmp_dir;
1796 tmp_name = fs_path_alloc();
1797 if (!tmp_name)
1798 return -ENOMEM;
1800 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1801 if (ret < 0)
1802 goto out;
1804 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1805 ret = 0;
1806 goto out;
1809 ret = !memcmp(tmp_name->start, name, name_len);
1811 out:
1812 fs_path_free(tmp_name);
1813 return ret;
1817 * Used by process_recorded_refs to determine if a new ref would overwrite an
1818 * already existing ref. In case it detects an overwrite, it returns the
1819 * inode/gen in who_ino/who_gen.
1820 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1821 * to make sure later references to the overwritten inode are possible.
1822 * Orphanizing is however only required for the first ref of an inode.
1823 * process_recorded_refs does an additional is_first_ref check to see if
1824 * orphanizing is really required.
1826 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1827 const char *name, int name_len,
1828 u64 *who_ino, u64 *who_gen, u64 *who_mode)
1830 int ret = 0;
1831 u64 gen;
1832 u64 other_inode = 0;
1833 u8 other_type = 0;
1835 if (!sctx->parent_root)
1836 goto out;
1838 ret = is_inode_existent(sctx, dir, dir_gen);
1839 if (ret <= 0)
1840 goto out;
1843 * If we have a parent root we need to verify that the parent dir was
1844 * not deleted and then re-created, if it was then we have no overwrite
1845 * and we can just unlink this entry.
1847 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1848 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1849 NULL, NULL, NULL);
1850 if (ret < 0 && ret != -ENOENT)
1851 goto out;
1852 if (ret) {
1853 ret = 0;
1854 goto out;
1856 if (gen != dir_gen)
1857 goto out;
1860 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1861 &other_inode, &other_type);
1862 if (ret < 0 && ret != -ENOENT)
1863 goto out;
1864 if (ret) {
1865 ret = 0;
1866 goto out;
1870 * Check if the overwritten ref was already processed. If yes, the ref
1871 * was already unlinked/moved, so we can safely assume that we will not
1872 * overwrite anything at this point in time.
1874 if (other_inode > sctx->send_progress ||
1875 is_waiting_for_move(sctx, other_inode)) {
1876 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1877 who_gen, who_mode, NULL, NULL, NULL);
1878 if (ret < 0)
1879 goto out;
1881 ret = 1;
1882 *who_ino = other_inode;
1883 } else {
1884 ret = 0;
1887 out:
1888 return ret;
1892 * Checks if the ref was overwritten by an already processed inode. This is
1893 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1894 * thus the orphan name needs be used.
1895 * process_recorded_refs also uses it to avoid unlinking of refs that were
1896 * overwritten.
1898 static int did_overwrite_ref(struct send_ctx *sctx,
1899 u64 dir, u64 dir_gen,
1900 u64 ino, u64 ino_gen,
1901 const char *name, int name_len)
1903 int ret = 0;
1904 u64 gen;
1905 u64 ow_inode;
1906 u8 other_type;
1908 if (!sctx->parent_root)
1909 goto out;
1911 ret = is_inode_existent(sctx, dir, dir_gen);
1912 if (ret <= 0)
1913 goto out;
1915 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1916 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1917 NULL, NULL, NULL);
1918 if (ret < 0 && ret != -ENOENT)
1919 goto out;
1920 if (ret) {
1921 ret = 0;
1922 goto out;
1924 if (gen != dir_gen)
1925 goto out;
1928 /* check if the ref was overwritten by another ref */
1929 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1930 &ow_inode, &other_type);
1931 if (ret < 0 && ret != -ENOENT)
1932 goto out;
1933 if (ret) {
1934 /* was never and will never be overwritten */
1935 ret = 0;
1936 goto out;
1939 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1940 NULL, NULL);
1941 if (ret < 0)
1942 goto out;
1944 if (ow_inode == ino && gen == ino_gen) {
1945 ret = 0;
1946 goto out;
1950 * We know that it is or will be overwritten. Check this now.
1951 * The current inode being processed might have been the one that caused
1952 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1953 * the current inode being processed.
1955 if ((ow_inode < sctx->send_progress) ||
1956 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1957 gen == sctx->cur_inode_gen))
1958 ret = 1;
1959 else
1960 ret = 0;
1962 out:
1963 return ret;
1967 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1968 * that got overwritten. This is used by process_recorded_refs to determine
1969 * if it has to use the path as returned by get_cur_path or the orphan name.
1971 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1973 int ret = 0;
1974 struct fs_path *name = NULL;
1975 u64 dir;
1976 u64 dir_gen;
1978 if (!sctx->parent_root)
1979 goto out;
1981 name = fs_path_alloc();
1982 if (!name)
1983 return -ENOMEM;
1985 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1986 if (ret < 0)
1987 goto out;
1989 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1990 name->start, fs_path_len(name));
1992 out:
1993 fs_path_free(name);
1994 return ret;
1998 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1999 * so we need to do some special handling in case we have clashes. This function
2000 * takes care of this with the help of name_cache_entry::radix_list.
2001 * In case of error, nce is kfreed.
2003 static int name_cache_insert(struct send_ctx *sctx,
2004 struct name_cache_entry *nce)
2006 int ret = 0;
2007 struct list_head *nce_head;
2009 nce_head = radix_tree_lookup(&sctx->name_cache,
2010 (unsigned long)nce->ino);
2011 if (!nce_head) {
2012 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2013 if (!nce_head) {
2014 kfree(nce);
2015 return -ENOMEM;
2017 INIT_LIST_HEAD(nce_head);
2019 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2020 if (ret < 0) {
2021 kfree(nce_head);
2022 kfree(nce);
2023 return ret;
2026 list_add_tail(&nce->radix_list, nce_head);
2027 list_add_tail(&nce->list, &sctx->name_cache_list);
2028 sctx->name_cache_size++;
2030 return ret;
2033 static void name_cache_delete(struct send_ctx *sctx,
2034 struct name_cache_entry *nce)
2036 struct list_head *nce_head;
2038 nce_head = radix_tree_lookup(&sctx->name_cache,
2039 (unsigned long)nce->ino);
2040 if (!nce_head) {
2041 btrfs_err(sctx->send_root->fs_info,
2042 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2043 nce->ino, sctx->name_cache_size);
2046 list_del(&nce->radix_list);
2047 list_del(&nce->list);
2048 sctx->name_cache_size--;
2051 * We may not get to the final release of nce_head if the lookup fails
2053 if (nce_head && list_empty(nce_head)) {
2054 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2055 kfree(nce_head);
2059 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2060 u64 ino, u64 gen)
2062 struct list_head *nce_head;
2063 struct name_cache_entry *cur;
2065 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2066 if (!nce_head)
2067 return NULL;
2069 list_for_each_entry(cur, nce_head, radix_list) {
2070 if (cur->ino == ino && cur->gen == gen)
2071 return cur;
2073 return NULL;
2077 * Removes the entry from the list and adds it back to the end. This marks the
2078 * entry as recently used so that name_cache_clean_unused does not remove it.
2080 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2082 list_del(&nce->list);
2083 list_add_tail(&nce->list, &sctx->name_cache_list);
2087 * Remove some entries from the beginning of name_cache_list.
2089 static void name_cache_clean_unused(struct send_ctx *sctx)
2091 struct name_cache_entry *nce;
2093 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2094 return;
2096 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2097 nce = list_entry(sctx->name_cache_list.next,
2098 struct name_cache_entry, list);
2099 name_cache_delete(sctx, nce);
2100 kfree(nce);
2104 static void name_cache_free(struct send_ctx *sctx)
2106 struct name_cache_entry *nce;
2108 while (!list_empty(&sctx->name_cache_list)) {
2109 nce = list_entry(sctx->name_cache_list.next,
2110 struct name_cache_entry, list);
2111 name_cache_delete(sctx, nce);
2112 kfree(nce);
2117 * Used by get_cur_path for each ref up to the root.
2118 * Returns 0 if it succeeded.
2119 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2120 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2121 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2122 * Returns <0 in case of error.
2124 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2125 u64 ino, u64 gen,
2126 u64 *parent_ino,
2127 u64 *parent_gen,
2128 struct fs_path *dest)
2130 int ret;
2131 int nce_ret;
2132 struct name_cache_entry *nce = NULL;
2135 * First check if we already did a call to this function with the same
2136 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2137 * return the cached result.
2139 nce = name_cache_search(sctx, ino, gen);
2140 if (nce) {
2141 if (ino < sctx->send_progress && nce->need_later_update) {
2142 name_cache_delete(sctx, nce);
2143 kfree(nce);
2144 nce = NULL;
2145 } else {
2146 name_cache_used(sctx, nce);
2147 *parent_ino = nce->parent_ino;
2148 *parent_gen = nce->parent_gen;
2149 ret = fs_path_add(dest, nce->name, nce->name_len);
2150 if (ret < 0)
2151 goto out;
2152 ret = nce->ret;
2153 goto out;
2158 * If the inode is not existent yet, add the orphan name and return 1.
2159 * This should only happen for the parent dir that we determine in
2160 * __record_new_ref
2162 ret = is_inode_existent(sctx, ino, gen);
2163 if (ret < 0)
2164 goto out;
2166 if (!ret) {
2167 ret = gen_unique_name(sctx, ino, gen, dest);
2168 if (ret < 0)
2169 goto out;
2170 ret = 1;
2171 goto out_cache;
2175 * Depending on whether the inode was already processed or not, use
2176 * send_root or parent_root for ref lookup.
2178 if (ino < sctx->send_progress)
2179 ret = get_first_ref(sctx->send_root, ino,
2180 parent_ino, parent_gen, dest);
2181 else
2182 ret = get_first_ref(sctx->parent_root, ino,
2183 parent_ino, parent_gen, dest);
2184 if (ret < 0)
2185 goto out;
2188 * Check if the ref was overwritten by an inode's ref that was processed
2189 * earlier. If yes, treat as orphan and return 1.
2191 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2192 dest->start, dest->end - dest->start);
2193 if (ret < 0)
2194 goto out;
2195 if (ret) {
2196 fs_path_reset(dest);
2197 ret = gen_unique_name(sctx, ino, gen, dest);
2198 if (ret < 0)
2199 goto out;
2200 ret = 1;
2203 out_cache:
2205 * Store the result of the lookup in the name cache.
2207 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2208 if (!nce) {
2209 ret = -ENOMEM;
2210 goto out;
2213 nce->ino = ino;
2214 nce->gen = gen;
2215 nce->parent_ino = *parent_ino;
2216 nce->parent_gen = *parent_gen;
2217 nce->name_len = fs_path_len(dest);
2218 nce->ret = ret;
2219 strcpy(nce->name, dest->start);
2221 if (ino < sctx->send_progress)
2222 nce->need_later_update = 0;
2223 else
2224 nce->need_later_update = 1;
2226 nce_ret = name_cache_insert(sctx, nce);
2227 if (nce_ret < 0)
2228 ret = nce_ret;
2229 name_cache_clean_unused(sctx);
2231 out:
2232 return ret;
2236 * Magic happens here. This function returns the first ref to an inode as it
2237 * would look like while receiving the stream at this point in time.
2238 * We walk the path up to the root. For every inode in between, we check if it
2239 * was already processed/sent. If yes, we continue with the parent as found
2240 * in send_root. If not, we continue with the parent as found in parent_root.
2241 * If we encounter an inode that was deleted at this point in time, we use the
2242 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2243 * that were not created yet and overwritten inodes/refs.
2245 * When do we have have orphan inodes:
2246 * 1. When an inode is freshly created and thus no valid refs are available yet
2247 * 2. When a directory lost all it's refs (deleted) but still has dir items
2248 * inside which were not processed yet (pending for move/delete). If anyone
2249 * tried to get the path to the dir items, it would get a path inside that
2250 * orphan directory.
2251 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2252 * of an unprocessed inode. If in that case the first ref would be
2253 * overwritten, the overwritten inode gets "orphanized". Later when we
2254 * process this overwritten inode, it is restored at a new place by moving
2255 * the orphan inode.
2257 * sctx->send_progress tells this function at which point in time receiving
2258 * would be.
2260 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2261 struct fs_path *dest)
2263 int ret = 0;
2264 struct fs_path *name = NULL;
2265 u64 parent_inode = 0;
2266 u64 parent_gen = 0;
2267 int stop = 0;
2269 name = fs_path_alloc();
2270 if (!name) {
2271 ret = -ENOMEM;
2272 goto out;
2275 dest->reversed = 1;
2276 fs_path_reset(dest);
2278 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2279 struct waiting_dir_move *wdm;
2281 fs_path_reset(name);
2283 if (is_waiting_for_rm(sctx, ino)) {
2284 ret = gen_unique_name(sctx, ino, gen, name);
2285 if (ret < 0)
2286 goto out;
2287 ret = fs_path_add_path(dest, name);
2288 break;
2291 wdm = get_waiting_dir_move(sctx, ino);
2292 if (wdm && wdm->orphanized) {
2293 ret = gen_unique_name(sctx, ino, gen, name);
2294 stop = 1;
2295 } else if (wdm) {
2296 ret = get_first_ref(sctx->parent_root, ino,
2297 &parent_inode, &parent_gen, name);
2298 } else {
2299 ret = __get_cur_name_and_parent(sctx, ino, gen,
2300 &parent_inode,
2301 &parent_gen, name);
2302 if (ret)
2303 stop = 1;
2306 if (ret < 0)
2307 goto out;
2309 ret = fs_path_add_path(dest, name);
2310 if (ret < 0)
2311 goto out;
2313 ino = parent_inode;
2314 gen = parent_gen;
2317 out:
2318 fs_path_free(name);
2319 if (!ret)
2320 fs_path_unreverse(dest);
2321 return ret;
2325 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2327 static int send_subvol_begin(struct send_ctx *sctx)
2329 int ret;
2330 struct btrfs_root *send_root = sctx->send_root;
2331 struct btrfs_root *parent_root = sctx->parent_root;
2332 struct btrfs_path *path;
2333 struct btrfs_key key;
2334 struct btrfs_root_ref *ref;
2335 struct extent_buffer *leaf;
2336 char *name = NULL;
2337 int namelen;
2339 path = btrfs_alloc_path();
2340 if (!path)
2341 return -ENOMEM;
2343 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2344 if (!name) {
2345 btrfs_free_path(path);
2346 return -ENOMEM;
2349 key.objectid = send_root->objectid;
2350 key.type = BTRFS_ROOT_BACKREF_KEY;
2351 key.offset = 0;
2353 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2354 &key, path, 1, 0);
2355 if (ret < 0)
2356 goto out;
2357 if (ret) {
2358 ret = -ENOENT;
2359 goto out;
2362 leaf = path->nodes[0];
2363 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2364 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2365 key.objectid != send_root->objectid) {
2366 ret = -ENOENT;
2367 goto out;
2369 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2370 namelen = btrfs_root_ref_name_len(leaf, ref);
2371 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2372 btrfs_release_path(path);
2374 if (parent_root) {
2375 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2376 if (ret < 0)
2377 goto out;
2378 } else {
2379 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2380 if (ret < 0)
2381 goto out;
2384 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2386 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2387 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2388 sctx->send_root->root_item.received_uuid);
2389 else
2390 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2391 sctx->send_root->root_item.uuid);
2393 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2394 le64_to_cpu(sctx->send_root->root_item.ctransid));
2395 if (parent_root) {
2396 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2397 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2398 parent_root->root_item.received_uuid);
2399 else
2400 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2401 parent_root->root_item.uuid);
2402 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2403 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2406 ret = send_cmd(sctx);
2408 tlv_put_failure:
2409 out:
2410 btrfs_free_path(path);
2411 kfree(name);
2412 return ret;
2415 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2417 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2418 int ret = 0;
2419 struct fs_path *p;
2421 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2423 p = fs_path_alloc();
2424 if (!p)
2425 return -ENOMEM;
2427 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2428 if (ret < 0)
2429 goto out;
2431 ret = get_cur_path(sctx, ino, gen, p);
2432 if (ret < 0)
2433 goto out;
2434 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2435 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2437 ret = send_cmd(sctx);
2439 tlv_put_failure:
2440 out:
2441 fs_path_free(p);
2442 return ret;
2445 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2447 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2448 int ret = 0;
2449 struct fs_path *p;
2451 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2453 p = fs_path_alloc();
2454 if (!p)
2455 return -ENOMEM;
2457 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2458 if (ret < 0)
2459 goto out;
2461 ret = get_cur_path(sctx, ino, gen, p);
2462 if (ret < 0)
2463 goto out;
2464 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2465 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2467 ret = send_cmd(sctx);
2469 tlv_put_failure:
2470 out:
2471 fs_path_free(p);
2472 return ret;
2475 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2477 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2478 int ret = 0;
2479 struct fs_path *p;
2481 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2482 ino, uid, gid);
2484 p = fs_path_alloc();
2485 if (!p)
2486 return -ENOMEM;
2488 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2489 if (ret < 0)
2490 goto out;
2492 ret = get_cur_path(sctx, ino, gen, p);
2493 if (ret < 0)
2494 goto out;
2495 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2496 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2497 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2499 ret = send_cmd(sctx);
2501 tlv_put_failure:
2502 out:
2503 fs_path_free(p);
2504 return ret;
2507 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2509 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2510 int ret = 0;
2511 struct fs_path *p = NULL;
2512 struct btrfs_inode_item *ii;
2513 struct btrfs_path *path = NULL;
2514 struct extent_buffer *eb;
2515 struct btrfs_key key;
2516 int slot;
2518 btrfs_debug(fs_info, "send_utimes %llu", ino);
2520 p = fs_path_alloc();
2521 if (!p)
2522 return -ENOMEM;
2524 path = alloc_path_for_send();
2525 if (!path) {
2526 ret = -ENOMEM;
2527 goto out;
2530 key.objectid = ino;
2531 key.type = BTRFS_INODE_ITEM_KEY;
2532 key.offset = 0;
2533 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2534 if (ret > 0)
2535 ret = -ENOENT;
2536 if (ret < 0)
2537 goto out;
2539 eb = path->nodes[0];
2540 slot = path->slots[0];
2541 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2543 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2544 if (ret < 0)
2545 goto out;
2547 ret = get_cur_path(sctx, ino, gen, p);
2548 if (ret < 0)
2549 goto out;
2550 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2551 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2552 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2553 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2554 /* TODO Add otime support when the otime patches get into upstream */
2556 ret = send_cmd(sctx);
2558 tlv_put_failure:
2559 out:
2560 fs_path_free(p);
2561 btrfs_free_path(path);
2562 return ret;
2566 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2567 * a valid path yet because we did not process the refs yet. So, the inode
2568 * is created as orphan.
2570 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2572 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2573 int ret = 0;
2574 struct fs_path *p;
2575 int cmd;
2576 u64 gen;
2577 u64 mode;
2578 u64 rdev;
2580 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2582 p = fs_path_alloc();
2583 if (!p)
2584 return -ENOMEM;
2586 if (ino != sctx->cur_ino) {
2587 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2588 NULL, NULL, &rdev);
2589 if (ret < 0)
2590 goto out;
2591 } else {
2592 gen = sctx->cur_inode_gen;
2593 mode = sctx->cur_inode_mode;
2594 rdev = sctx->cur_inode_rdev;
2597 if (S_ISREG(mode)) {
2598 cmd = BTRFS_SEND_C_MKFILE;
2599 } else if (S_ISDIR(mode)) {
2600 cmd = BTRFS_SEND_C_MKDIR;
2601 } else if (S_ISLNK(mode)) {
2602 cmd = BTRFS_SEND_C_SYMLINK;
2603 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2604 cmd = BTRFS_SEND_C_MKNOD;
2605 } else if (S_ISFIFO(mode)) {
2606 cmd = BTRFS_SEND_C_MKFIFO;
2607 } else if (S_ISSOCK(mode)) {
2608 cmd = BTRFS_SEND_C_MKSOCK;
2609 } else {
2610 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2611 (int)(mode & S_IFMT));
2612 ret = -EOPNOTSUPP;
2613 goto out;
2616 ret = begin_cmd(sctx, cmd);
2617 if (ret < 0)
2618 goto out;
2620 ret = gen_unique_name(sctx, ino, gen, p);
2621 if (ret < 0)
2622 goto out;
2624 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2625 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2627 if (S_ISLNK(mode)) {
2628 fs_path_reset(p);
2629 ret = read_symlink(sctx->send_root, ino, p);
2630 if (ret < 0)
2631 goto out;
2632 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2633 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2634 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2635 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2636 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2639 ret = send_cmd(sctx);
2640 if (ret < 0)
2641 goto out;
2644 tlv_put_failure:
2645 out:
2646 fs_path_free(p);
2647 return ret;
2651 * We need some special handling for inodes that get processed before the parent
2652 * directory got created. See process_recorded_refs for details.
2653 * This function does the check if we already created the dir out of order.
2655 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2657 int ret = 0;
2658 struct btrfs_path *path = NULL;
2659 struct btrfs_key key;
2660 struct btrfs_key found_key;
2661 struct btrfs_key di_key;
2662 struct extent_buffer *eb;
2663 struct btrfs_dir_item *di;
2664 int slot;
2666 path = alloc_path_for_send();
2667 if (!path) {
2668 ret = -ENOMEM;
2669 goto out;
2672 key.objectid = dir;
2673 key.type = BTRFS_DIR_INDEX_KEY;
2674 key.offset = 0;
2675 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2676 if (ret < 0)
2677 goto out;
2679 while (1) {
2680 eb = path->nodes[0];
2681 slot = path->slots[0];
2682 if (slot >= btrfs_header_nritems(eb)) {
2683 ret = btrfs_next_leaf(sctx->send_root, path);
2684 if (ret < 0) {
2685 goto out;
2686 } else if (ret > 0) {
2687 ret = 0;
2688 break;
2690 continue;
2693 btrfs_item_key_to_cpu(eb, &found_key, slot);
2694 if (found_key.objectid != key.objectid ||
2695 found_key.type != key.type) {
2696 ret = 0;
2697 goto out;
2700 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2701 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2703 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2704 di_key.objectid < sctx->send_progress) {
2705 ret = 1;
2706 goto out;
2709 path->slots[0]++;
2712 out:
2713 btrfs_free_path(path);
2714 return ret;
2718 * Only creates the inode if it is:
2719 * 1. Not a directory
2720 * 2. Or a directory which was not created already due to out of order
2721 * directories. See did_create_dir and process_recorded_refs for details.
2723 static int send_create_inode_if_needed(struct send_ctx *sctx)
2725 int ret;
2727 if (S_ISDIR(sctx->cur_inode_mode)) {
2728 ret = did_create_dir(sctx, sctx->cur_ino);
2729 if (ret < 0)
2730 goto out;
2731 if (ret) {
2732 ret = 0;
2733 goto out;
2737 ret = send_create_inode(sctx, sctx->cur_ino);
2738 if (ret < 0)
2739 goto out;
2741 out:
2742 return ret;
2745 struct recorded_ref {
2746 struct list_head list;
2747 char *name;
2748 struct fs_path *full_path;
2749 u64 dir;
2750 u64 dir_gen;
2751 int name_len;
2754 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2756 ref->full_path = path;
2757 ref->name = (char *)kbasename(ref->full_path->start);
2758 ref->name_len = ref->full_path->end - ref->name;
2762 * We need to process new refs before deleted refs, but compare_tree gives us
2763 * everything mixed. So we first record all refs and later process them.
2764 * This function is a helper to record one ref.
2766 static int __record_ref(struct list_head *head, u64 dir,
2767 u64 dir_gen, struct fs_path *path)
2769 struct recorded_ref *ref;
2771 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2772 if (!ref)
2773 return -ENOMEM;
2775 ref->dir = dir;
2776 ref->dir_gen = dir_gen;
2777 set_ref_path(ref, path);
2778 list_add_tail(&ref->list, head);
2779 return 0;
2782 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2784 struct recorded_ref *new;
2786 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2787 if (!new)
2788 return -ENOMEM;
2790 new->dir = ref->dir;
2791 new->dir_gen = ref->dir_gen;
2792 new->full_path = NULL;
2793 INIT_LIST_HEAD(&new->list);
2794 list_add_tail(&new->list, list);
2795 return 0;
2798 static void __free_recorded_refs(struct list_head *head)
2800 struct recorded_ref *cur;
2802 while (!list_empty(head)) {
2803 cur = list_entry(head->next, struct recorded_ref, list);
2804 fs_path_free(cur->full_path);
2805 list_del(&cur->list);
2806 kfree(cur);
2810 static void free_recorded_refs(struct send_ctx *sctx)
2812 __free_recorded_refs(&sctx->new_refs);
2813 __free_recorded_refs(&sctx->deleted_refs);
2817 * Renames/moves a file/dir to its orphan name. Used when the first
2818 * ref of an unprocessed inode gets overwritten and for all non empty
2819 * directories.
2821 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2822 struct fs_path *path)
2824 int ret;
2825 struct fs_path *orphan;
2827 orphan = fs_path_alloc();
2828 if (!orphan)
2829 return -ENOMEM;
2831 ret = gen_unique_name(sctx, ino, gen, orphan);
2832 if (ret < 0)
2833 goto out;
2835 ret = send_rename(sctx, path, orphan);
2837 out:
2838 fs_path_free(orphan);
2839 return ret;
2842 static struct orphan_dir_info *
2843 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2845 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2846 struct rb_node *parent = NULL;
2847 struct orphan_dir_info *entry, *odi;
2849 while (*p) {
2850 parent = *p;
2851 entry = rb_entry(parent, struct orphan_dir_info, node);
2852 if (dir_ino < entry->ino) {
2853 p = &(*p)->rb_left;
2854 } else if (dir_ino > entry->ino) {
2855 p = &(*p)->rb_right;
2856 } else {
2857 return entry;
2861 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2862 if (!odi)
2863 return ERR_PTR(-ENOMEM);
2864 odi->ino = dir_ino;
2865 odi->gen = 0;
2866 odi->last_dir_index_offset = 0;
2868 rb_link_node(&odi->node, parent, p);
2869 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2870 return odi;
2873 static struct orphan_dir_info *
2874 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2876 struct rb_node *n = sctx->orphan_dirs.rb_node;
2877 struct orphan_dir_info *entry;
2879 while (n) {
2880 entry = rb_entry(n, struct orphan_dir_info, node);
2881 if (dir_ino < entry->ino)
2882 n = n->rb_left;
2883 else if (dir_ino > entry->ino)
2884 n = n->rb_right;
2885 else
2886 return entry;
2888 return NULL;
2891 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2893 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2895 return odi != NULL;
2898 static void free_orphan_dir_info(struct send_ctx *sctx,
2899 struct orphan_dir_info *odi)
2901 if (!odi)
2902 return;
2903 rb_erase(&odi->node, &sctx->orphan_dirs);
2904 kfree(odi);
2908 * Returns 1 if a directory can be removed at this point in time.
2909 * We check this by iterating all dir items and checking if the inode behind
2910 * the dir item was already processed.
2912 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2913 u64 send_progress)
2915 int ret = 0;
2916 struct btrfs_root *root = sctx->parent_root;
2917 struct btrfs_path *path;
2918 struct btrfs_key key;
2919 struct btrfs_key found_key;
2920 struct btrfs_key loc;
2921 struct btrfs_dir_item *di;
2922 struct orphan_dir_info *odi = NULL;
2925 * Don't try to rmdir the top/root subvolume dir.
2927 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2928 return 0;
2930 path = alloc_path_for_send();
2931 if (!path)
2932 return -ENOMEM;
2934 key.objectid = dir;
2935 key.type = BTRFS_DIR_INDEX_KEY;
2936 key.offset = 0;
2938 odi = get_orphan_dir_info(sctx, dir);
2939 if (odi)
2940 key.offset = odi->last_dir_index_offset;
2942 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2943 if (ret < 0)
2944 goto out;
2946 while (1) {
2947 struct waiting_dir_move *dm;
2949 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2950 ret = btrfs_next_leaf(root, path);
2951 if (ret < 0)
2952 goto out;
2953 else if (ret > 0)
2954 break;
2955 continue;
2957 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2958 path->slots[0]);
2959 if (found_key.objectid != key.objectid ||
2960 found_key.type != key.type)
2961 break;
2963 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2964 struct btrfs_dir_item);
2965 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2967 dm = get_waiting_dir_move(sctx, loc.objectid);
2968 if (dm) {
2969 odi = add_orphan_dir_info(sctx, dir);
2970 if (IS_ERR(odi)) {
2971 ret = PTR_ERR(odi);
2972 goto out;
2974 odi->gen = dir_gen;
2975 odi->last_dir_index_offset = found_key.offset;
2976 dm->rmdir_ino = dir;
2977 ret = 0;
2978 goto out;
2981 if (loc.objectid > send_progress) {
2982 odi = add_orphan_dir_info(sctx, dir);
2983 if (IS_ERR(odi)) {
2984 ret = PTR_ERR(odi);
2985 goto out;
2987 odi->gen = dir_gen;
2988 odi->last_dir_index_offset = found_key.offset;
2989 ret = 0;
2990 goto out;
2993 path->slots[0]++;
2995 free_orphan_dir_info(sctx, odi);
2997 ret = 1;
2999 out:
3000 btrfs_free_path(path);
3001 return ret;
3004 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3006 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3008 return entry != NULL;
3011 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3013 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3014 struct rb_node *parent = NULL;
3015 struct waiting_dir_move *entry, *dm;
3017 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3018 if (!dm)
3019 return -ENOMEM;
3020 dm->ino = ino;
3021 dm->rmdir_ino = 0;
3022 dm->orphanized = orphanized;
3024 while (*p) {
3025 parent = *p;
3026 entry = rb_entry(parent, struct waiting_dir_move, node);
3027 if (ino < entry->ino) {
3028 p = &(*p)->rb_left;
3029 } else if (ino > entry->ino) {
3030 p = &(*p)->rb_right;
3031 } else {
3032 kfree(dm);
3033 return -EEXIST;
3037 rb_link_node(&dm->node, parent, p);
3038 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3039 return 0;
3042 static struct waiting_dir_move *
3043 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3045 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3046 struct waiting_dir_move *entry;
3048 while (n) {
3049 entry = rb_entry(n, struct waiting_dir_move, node);
3050 if (ino < entry->ino)
3051 n = n->rb_left;
3052 else if (ino > entry->ino)
3053 n = n->rb_right;
3054 else
3055 return entry;
3057 return NULL;
3060 static void free_waiting_dir_move(struct send_ctx *sctx,
3061 struct waiting_dir_move *dm)
3063 if (!dm)
3064 return;
3065 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3066 kfree(dm);
3069 static int add_pending_dir_move(struct send_ctx *sctx,
3070 u64 ino,
3071 u64 ino_gen,
3072 u64 parent_ino,
3073 struct list_head *new_refs,
3074 struct list_head *deleted_refs,
3075 const bool is_orphan)
3077 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3078 struct rb_node *parent = NULL;
3079 struct pending_dir_move *entry = NULL, *pm;
3080 struct recorded_ref *cur;
3081 int exists = 0;
3082 int ret;
3084 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3085 if (!pm)
3086 return -ENOMEM;
3087 pm->parent_ino = parent_ino;
3088 pm->ino = ino;
3089 pm->gen = ino_gen;
3090 INIT_LIST_HEAD(&pm->list);
3091 INIT_LIST_HEAD(&pm->update_refs);
3092 RB_CLEAR_NODE(&pm->node);
3094 while (*p) {
3095 parent = *p;
3096 entry = rb_entry(parent, struct pending_dir_move, node);
3097 if (parent_ino < entry->parent_ino) {
3098 p = &(*p)->rb_left;
3099 } else if (parent_ino > entry->parent_ino) {
3100 p = &(*p)->rb_right;
3101 } else {
3102 exists = 1;
3103 break;
3107 list_for_each_entry(cur, deleted_refs, list) {
3108 ret = dup_ref(cur, &pm->update_refs);
3109 if (ret < 0)
3110 goto out;
3112 list_for_each_entry(cur, new_refs, list) {
3113 ret = dup_ref(cur, &pm->update_refs);
3114 if (ret < 0)
3115 goto out;
3118 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3119 if (ret)
3120 goto out;
3122 if (exists) {
3123 list_add_tail(&pm->list, &entry->list);
3124 } else {
3125 rb_link_node(&pm->node, parent, p);
3126 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3128 ret = 0;
3129 out:
3130 if (ret) {
3131 __free_recorded_refs(&pm->update_refs);
3132 kfree(pm);
3134 return ret;
3137 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3138 u64 parent_ino)
3140 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3141 struct pending_dir_move *entry;
3143 while (n) {
3144 entry = rb_entry(n, struct pending_dir_move, node);
3145 if (parent_ino < entry->parent_ino)
3146 n = n->rb_left;
3147 else if (parent_ino > entry->parent_ino)
3148 n = n->rb_right;
3149 else
3150 return entry;
3152 return NULL;
3155 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3156 u64 ino, u64 gen, u64 *ancestor_ino)
3158 int ret = 0;
3159 u64 parent_inode = 0;
3160 u64 parent_gen = 0;
3161 u64 start_ino = ino;
3163 *ancestor_ino = 0;
3164 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3165 fs_path_reset(name);
3167 if (is_waiting_for_rm(sctx, ino))
3168 break;
3169 if (is_waiting_for_move(sctx, ino)) {
3170 if (*ancestor_ino == 0)
3171 *ancestor_ino = ino;
3172 ret = get_first_ref(sctx->parent_root, ino,
3173 &parent_inode, &parent_gen, name);
3174 } else {
3175 ret = __get_cur_name_and_parent(sctx, ino, gen,
3176 &parent_inode,
3177 &parent_gen, name);
3178 if (ret > 0) {
3179 ret = 0;
3180 break;
3183 if (ret < 0)
3184 break;
3185 if (parent_inode == start_ino) {
3186 ret = 1;
3187 if (*ancestor_ino == 0)
3188 *ancestor_ino = ino;
3189 break;
3191 ino = parent_inode;
3192 gen = parent_gen;
3194 return ret;
3197 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3199 struct fs_path *from_path = NULL;
3200 struct fs_path *to_path = NULL;
3201 struct fs_path *name = NULL;
3202 u64 orig_progress = sctx->send_progress;
3203 struct recorded_ref *cur;
3204 u64 parent_ino, parent_gen;
3205 struct waiting_dir_move *dm = NULL;
3206 u64 rmdir_ino = 0;
3207 u64 ancestor;
3208 bool is_orphan;
3209 int ret;
3211 name = fs_path_alloc();
3212 from_path = fs_path_alloc();
3213 if (!name || !from_path) {
3214 ret = -ENOMEM;
3215 goto out;
3218 dm = get_waiting_dir_move(sctx, pm->ino);
3219 ASSERT(dm);
3220 rmdir_ino = dm->rmdir_ino;
3221 is_orphan = dm->orphanized;
3222 free_waiting_dir_move(sctx, dm);
3224 if (is_orphan) {
3225 ret = gen_unique_name(sctx, pm->ino,
3226 pm->gen, from_path);
3227 } else {
3228 ret = get_first_ref(sctx->parent_root, pm->ino,
3229 &parent_ino, &parent_gen, name);
3230 if (ret < 0)
3231 goto out;
3232 ret = get_cur_path(sctx, parent_ino, parent_gen,
3233 from_path);
3234 if (ret < 0)
3235 goto out;
3236 ret = fs_path_add_path(from_path, name);
3238 if (ret < 0)
3239 goto out;
3241 sctx->send_progress = sctx->cur_ino + 1;
3242 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3243 if (ret < 0)
3244 goto out;
3245 if (ret) {
3246 LIST_HEAD(deleted_refs);
3247 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3248 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3249 &pm->update_refs, &deleted_refs,
3250 is_orphan);
3251 if (ret < 0)
3252 goto out;
3253 if (rmdir_ino) {
3254 dm = get_waiting_dir_move(sctx, pm->ino);
3255 ASSERT(dm);
3256 dm->rmdir_ino = rmdir_ino;
3258 goto out;
3260 fs_path_reset(name);
3261 to_path = name;
3262 name = NULL;
3263 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3264 if (ret < 0)
3265 goto out;
3267 ret = send_rename(sctx, from_path, to_path);
3268 if (ret < 0)
3269 goto out;
3271 if (rmdir_ino) {
3272 struct orphan_dir_info *odi;
3273 u64 gen;
3275 odi = get_orphan_dir_info(sctx, rmdir_ino);
3276 if (!odi) {
3277 /* already deleted */
3278 goto finish;
3280 gen = odi->gen;
3282 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3283 if (ret < 0)
3284 goto out;
3285 if (!ret)
3286 goto finish;
3288 name = fs_path_alloc();
3289 if (!name) {
3290 ret = -ENOMEM;
3291 goto out;
3293 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3294 if (ret < 0)
3295 goto out;
3296 ret = send_rmdir(sctx, name);
3297 if (ret < 0)
3298 goto out;
3301 finish:
3302 ret = send_utimes(sctx, pm->ino, pm->gen);
3303 if (ret < 0)
3304 goto out;
3307 * After rename/move, need to update the utimes of both new parent(s)
3308 * and old parent(s).
3310 list_for_each_entry(cur, &pm->update_refs, list) {
3312 * The parent inode might have been deleted in the send snapshot
3314 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3315 NULL, NULL, NULL, NULL, NULL);
3316 if (ret == -ENOENT) {
3317 ret = 0;
3318 continue;
3320 if (ret < 0)
3321 goto out;
3323 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3324 if (ret < 0)
3325 goto out;
3328 out:
3329 fs_path_free(name);
3330 fs_path_free(from_path);
3331 fs_path_free(to_path);
3332 sctx->send_progress = orig_progress;
3334 return ret;
3337 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3339 if (!list_empty(&m->list))
3340 list_del(&m->list);
3341 if (!RB_EMPTY_NODE(&m->node))
3342 rb_erase(&m->node, &sctx->pending_dir_moves);
3343 __free_recorded_refs(&m->update_refs);
3344 kfree(m);
3347 static void tail_append_pending_moves(struct pending_dir_move *moves,
3348 struct list_head *stack)
3350 if (list_empty(&moves->list)) {
3351 list_add_tail(&moves->list, stack);
3352 } else {
3353 LIST_HEAD(list);
3354 list_splice_init(&moves->list, &list);
3355 list_add_tail(&moves->list, stack);
3356 list_splice_tail(&list, stack);
3360 static int apply_children_dir_moves(struct send_ctx *sctx)
3362 struct pending_dir_move *pm;
3363 struct list_head stack;
3364 u64 parent_ino = sctx->cur_ino;
3365 int ret = 0;
3367 pm = get_pending_dir_moves(sctx, parent_ino);
3368 if (!pm)
3369 return 0;
3371 INIT_LIST_HEAD(&stack);
3372 tail_append_pending_moves(pm, &stack);
3374 while (!list_empty(&stack)) {
3375 pm = list_first_entry(&stack, struct pending_dir_move, list);
3376 parent_ino = pm->ino;
3377 ret = apply_dir_move(sctx, pm);
3378 free_pending_move(sctx, pm);
3379 if (ret)
3380 goto out;
3381 pm = get_pending_dir_moves(sctx, parent_ino);
3382 if (pm)
3383 tail_append_pending_moves(pm, &stack);
3385 return 0;
3387 out:
3388 while (!list_empty(&stack)) {
3389 pm = list_first_entry(&stack, struct pending_dir_move, list);
3390 free_pending_move(sctx, pm);
3392 return ret;
3396 * We might need to delay a directory rename even when no ancestor directory
3397 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3398 * renamed. This happens when we rename a directory to the old name (the name
3399 * in the parent root) of some other unrelated directory that got its rename
3400 * delayed due to some ancestor with higher number that got renamed.
3402 * Example:
3404 * Parent snapshot:
3405 * . (ino 256)
3406 * |---- a/ (ino 257)
3407 * | |---- file (ino 260)
3409 * |---- b/ (ino 258)
3410 * |---- c/ (ino 259)
3412 * Send snapshot:
3413 * . (ino 256)
3414 * |---- a/ (ino 258)
3415 * |---- x/ (ino 259)
3416 * |---- y/ (ino 257)
3417 * |----- file (ino 260)
3419 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3420 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3421 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3422 * must issue is:
3424 * 1 - rename 259 from 'c' to 'x'
3425 * 2 - rename 257 from 'a' to 'x/y'
3426 * 3 - rename 258 from 'b' to 'a'
3428 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3429 * be done right away and < 0 on error.
3431 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3432 struct recorded_ref *parent_ref,
3433 const bool is_orphan)
3435 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3436 struct btrfs_path *path;
3437 struct btrfs_key key;
3438 struct btrfs_key di_key;
3439 struct btrfs_dir_item *di;
3440 u64 left_gen;
3441 u64 right_gen;
3442 int ret = 0;
3443 struct waiting_dir_move *wdm;
3445 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3446 return 0;
3448 path = alloc_path_for_send();
3449 if (!path)
3450 return -ENOMEM;
3452 key.objectid = parent_ref->dir;
3453 key.type = BTRFS_DIR_ITEM_KEY;
3454 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3456 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3457 if (ret < 0) {
3458 goto out;
3459 } else if (ret > 0) {
3460 ret = 0;
3461 goto out;
3464 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3465 parent_ref->name_len);
3466 if (!di) {
3467 ret = 0;
3468 goto out;
3471 * di_key.objectid has the number of the inode that has a dentry in the
3472 * parent directory with the same name that sctx->cur_ino is being
3473 * renamed to. We need to check if that inode is in the send root as
3474 * well and if it is currently marked as an inode with a pending rename,
3475 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3476 * that it happens after that other inode is renamed.
3478 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3479 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3480 ret = 0;
3481 goto out;
3484 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3485 &left_gen, NULL, NULL, NULL, NULL);
3486 if (ret < 0)
3487 goto out;
3488 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3489 &right_gen, NULL, NULL, NULL, NULL);
3490 if (ret < 0) {
3491 if (ret == -ENOENT)
3492 ret = 0;
3493 goto out;
3496 /* Different inode, no need to delay the rename of sctx->cur_ino */
3497 if (right_gen != left_gen) {
3498 ret = 0;
3499 goto out;
3502 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3503 if (wdm && !wdm->orphanized) {
3504 ret = add_pending_dir_move(sctx,
3505 sctx->cur_ino,
3506 sctx->cur_inode_gen,
3507 di_key.objectid,
3508 &sctx->new_refs,
3509 &sctx->deleted_refs,
3510 is_orphan);
3511 if (!ret)
3512 ret = 1;
3514 out:
3515 btrfs_free_path(path);
3516 return ret;
3520 * Check if inode ino2, or any of its ancestors, is inode ino1.
3521 * Return 1 if true, 0 if false and < 0 on error.
3523 static int check_ino_in_path(struct btrfs_root *root,
3524 const u64 ino1,
3525 const u64 ino1_gen,
3526 const u64 ino2,
3527 const u64 ino2_gen,
3528 struct fs_path *fs_path)
3530 u64 ino = ino2;
3532 if (ino1 == ino2)
3533 return ino1_gen == ino2_gen;
3535 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3536 u64 parent;
3537 u64 parent_gen;
3538 int ret;
3540 fs_path_reset(fs_path);
3541 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3542 if (ret < 0)
3543 return ret;
3544 if (parent == ino1)
3545 return parent_gen == ino1_gen;
3546 ino = parent;
3548 return 0;
3552 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3553 * possible path (in case ino2 is not a directory and has multiple hard links).
3554 * Return 1 if true, 0 if false and < 0 on error.
3556 static int is_ancestor(struct btrfs_root *root,
3557 const u64 ino1,
3558 const u64 ino1_gen,
3559 const u64 ino2,
3560 struct fs_path *fs_path)
3562 bool free_fs_path = false;
3563 int ret = 0;
3564 struct btrfs_path *path = NULL;
3565 struct btrfs_key key;
3567 if (!fs_path) {
3568 fs_path = fs_path_alloc();
3569 if (!fs_path)
3570 return -ENOMEM;
3571 free_fs_path = true;
3574 path = alloc_path_for_send();
3575 if (!path) {
3576 ret = -ENOMEM;
3577 goto out;
3580 key.objectid = ino2;
3581 key.type = BTRFS_INODE_REF_KEY;
3582 key.offset = 0;
3584 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3585 if (ret < 0)
3586 goto out;
3588 while (true) {
3589 struct extent_buffer *leaf = path->nodes[0];
3590 int slot = path->slots[0];
3591 u32 cur_offset = 0;
3592 u32 item_size;
3594 if (slot >= btrfs_header_nritems(leaf)) {
3595 ret = btrfs_next_leaf(root, path);
3596 if (ret < 0)
3597 goto out;
3598 if (ret > 0)
3599 break;
3600 continue;
3603 btrfs_item_key_to_cpu(leaf, &key, slot);
3604 if (key.objectid != ino2)
3605 break;
3606 if (key.type != BTRFS_INODE_REF_KEY &&
3607 key.type != BTRFS_INODE_EXTREF_KEY)
3608 break;
3610 item_size = btrfs_item_size_nr(leaf, slot);
3611 while (cur_offset < item_size) {
3612 u64 parent;
3613 u64 parent_gen;
3615 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3616 unsigned long ptr;
3617 struct btrfs_inode_extref *extref;
3619 ptr = btrfs_item_ptr_offset(leaf, slot);
3620 extref = (struct btrfs_inode_extref *)
3621 (ptr + cur_offset);
3622 parent = btrfs_inode_extref_parent(leaf,
3623 extref);
3624 cur_offset += sizeof(*extref);
3625 cur_offset += btrfs_inode_extref_name_len(leaf,
3626 extref);
3627 } else {
3628 parent = key.offset;
3629 cur_offset = item_size;
3632 ret = get_inode_info(root, parent, NULL, &parent_gen,
3633 NULL, NULL, NULL, NULL);
3634 if (ret < 0)
3635 goto out;
3636 ret = check_ino_in_path(root, ino1, ino1_gen,
3637 parent, parent_gen, fs_path);
3638 if (ret)
3639 goto out;
3641 path->slots[0]++;
3643 ret = 0;
3644 out:
3645 btrfs_free_path(path);
3646 if (free_fs_path)
3647 fs_path_free(fs_path);
3648 return ret;
3651 static int wait_for_parent_move(struct send_ctx *sctx,
3652 struct recorded_ref *parent_ref,
3653 const bool is_orphan)
3655 int ret = 0;
3656 u64 ino = parent_ref->dir;
3657 u64 ino_gen = parent_ref->dir_gen;
3658 u64 parent_ino_before, parent_ino_after;
3659 struct fs_path *path_before = NULL;
3660 struct fs_path *path_after = NULL;
3661 int len1, len2;
3663 path_after = fs_path_alloc();
3664 path_before = fs_path_alloc();
3665 if (!path_after || !path_before) {
3666 ret = -ENOMEM;
3667 goto out;
3671 * Our current directory inode may not yet be renamed/moved because some
3672 * ancestor (immediate or not) has to be renamed/moved first. So find if
3673 * such ancestor exists and make sure our own rename/move happens after
3674 * that ancestor is processed to avoid path build infinite loops (done
3675 * at get_cur_path()).
3677 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3678 u64 parent_ino_after_gen;
3680 if (is_waiting_for_move(sctx, ino)) {
3682 * If the current inode is an ancestor of ino in the
3683 * parent root, we need to delay the rename of the
3684 * current inode, otherwise don't delayed the rename
3685 * because we can end up with a circular dependency
3686 * of renames, resulting in some directories never
3687 * getting the respective rename operations issued in
3688 * the send stream or getting into infinite path build
3689 * loops.
3691 ret = is_ancestor(sctx->parent_root,
3692 sctx->cur_ino, sctx->cur_inode_gen,
3693 ino, path_before);
3694 if (ret)
3695 break;
3698 fs_path_reset(path_before);
3699 fs_path_reset(path_after);
3701 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3702 &parent_ino_after_gen, path_after);
3703 if (ret < 0)
3704 goto out;
3705 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3706 NULL, path_before);
3707 if (ret < 0 && ret != -ENOENT) {
3708 goto out;
3709 } else if (ret == -ENOENT) {
3710 ret = 0;
3711 break;
3714 len1 = fs_path_len(path_before);
3715 len2 = fs_path_len(path_after);
3716 if (ino > sctx->cur_ino &&
3717 (parent_ino_before != parent_ino_after || len1 != len2 ||
3718 memcmp(path_before->start, path_after->start, len1))) {
3719 u64 parent_ino_gen;
3721 ret = get_inode_info(sctx->parent_root, ino, NULL,
3722 &parent_ino_gen, NULL, NULL, NULL,
3723 NULL);
3724 if (ret < 0)
3725 goto out;
3726 if (ino_gen == parent_ino_gen) {
3727 ret = 1;
3728 break;
3731 ino = parent_ino_after;
3732 ino_gen = parent_ino_after_gen;
3735 out:
3736 fs_path_free(path_before);
3737 fs_path_free(path_after);
3739 if (ret == 1) {
3740 ret = add_pending_dir_move(sctx,
3741 sctx->cur_ino,
3742 sctx->cur_inode_gen,
3743 ino,
3744 &sctx->new_refs,
3745 &sctx->deleted_refs,
3746 is_orphan);
3747 if (!ret)
3748 ret = 1;
3751 return ret;
3754 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3756 int ret;
3757 struct fs_path *new_path;
3760 * Our reference's name member points to its full_path member string, so
3761 * we use here a new path.
3763 new_path = fs_path_alloc();
3764 if (!new_path)
3765 return -ENOMEM;
3767 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3768 if (ret < 0) {
3769 fs_path_free(new_path);
3770 return ret;
3772 ret = fs_path_add(new_path, ref->name, ref->name_len);
3773 if (ret < 0) {
3774 fs_path_free(new_path);
3775 return ret;
3778 fs_path_free(ref->full_path);
3779 set_ref_path(ref, new_path);
3781 return 0;
3785 * This does all the move/link/unlink/rmdir magic.
3787 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3789 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3790 int ret = 0;
3791 struct recorded_ref *cur;
3792 struct recorded_ref *cur2;
3793 struct list_head check_dirs;
3794 struct fs_path *valid_path = NULL;
3795 u64 ow_inode = 0;
3796 u64 ow_gen;
3797 u64 ow_mode;
3798 int did_overwrite = 0;
3799 int is_orphan = 0;
3800 u64 last_dir_ino_rm = 0;
3801 bool can_rename = true;
3802 bool orphanized_dir = false;
3803 bool orphanized_ancestor = false;
3805 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3808 * This should never happen as the root dir always has the same ref
3809 * which is always '..'
3811 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3812 INIT_LIST_HEAD(&check_dirs);
3814 valid_path = fs_path_alloc();
3815 if (!valid_path) {
3816 ret = -ENOMEM;
3817 goto out;
3821 * First, check if the first ref of the current inode was overwritten
3822 * before. If yes, we know that the current inode was already orphanized
3823 * and thus use the orphan name. If not, we can use get_cur_path to
3824 * get the path of the first ref as it would like while receiving at
3825 * this point in time.
3826 * New inodes are always orphan at the beginning, so force to use the
3827 * orphan name in this case.
3828 * The first ref is stored in valid_path and will be updated if it
3829 * gets moved around.
3831 if (!sctx->cur_inode_new) {
3832 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3833 sctx->cur_inode_gen);
3834 if (ret < 0)
3835 goto out;
3836 if (ret)
3837 did_overwrite = 1;
3839 if (sctx->cur_inode_new || did_overwrite) {
3840 ret = gen_unique_name(sctx, sctx->cur_ino,
3841 sctx->cur_inode_gen, valid_path);
3842 if (ret < 0)
3843 goto out;
3844 is_orphan = 1;
3845 } else {
3846 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3847 valid_path);
3848 if (ret < 0)
3849 goto out;
3852 list_for_each_entry(cur, &sctx->new_refs, list) {
3854 * We may have refs where the parent directory does not exist
3855 * yet. This happens if the parent directories inum is higher
3856 * the the current inum. To handle this case, we create the
3857 * parent directory out of order. But we need to check if this
3858 * did already happen before due to other refs in the same dir.
3860 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3861 if (ret < 0)
3862 goto out;
3863 if (ret == inode_state_will_create) {
3864 ret = 0;
3866 * First check if any of the current inodes refs did
3867 * already create the dir.
3869 list_for_each_entry(cur2, &sctx->new_refs, list) {
3870 if (cur == cur2)
3871 break;
3872 if (cur2->dir == cur->dir) {
3873 ret = 1;
3874 break;
3879 * If that did not happen, check if a previous inode
3880 * did already create the dir.
3882 if (!ret)
3883 ret = did_create_dir(sctx, cur->dir);
3884 if (ret < 0)
3885 goto out;
3886 if (!ret) {
3887 ret = send_create_inode(sctx, cur->dir);
3888 if (ret < 0)
3889 goto out;
3894 * Check if this new ref would overwrite the first ref of
3895 * another unprocessed inode. If yes, orphanize the
3896 * overwritten inode. If we find an overwritten ref that is
3897 * not the first ref, simply unlink it.
3899 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3900 cur->name, cur->name_len,
3901 &ow_inode, &ow_gen, &ow_mode);
3902 if (ret < 0)
3903 goto out;
3904 if (ret) {
3905 ret = is_first_ref(sctx->parent_root,
3906 ow_inode, cur->dir, cur->name,
3907 cur->name_len);
3908 if (ret < 0)
3909 goto out;
3910 if (ret) {
3911 struct name_cache_entry *nce;
3912 struct waiting_dir_move *wdm;
3914 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3915 cur->full_path);
3916 if (ret < 0)
3917 goto out;
3918 if (S_ISDIR(ow_mode))
3919 orphanized_dir = true;
3922 * If ow_inode has its rename operation delayed
3923 * make sure that its orphanized name is used in
3924 * the source path when performing its rename
3925 * operation.
3927 if (is_waiting_for_move(sctx, ow_inode)) {
3928 wdm = get_waiting_dir_move(sctx,
3929 ow_inode);
3930 ASSERT(wdm);
3931 wdm->orphanized = true;
3935 * Make sure we clear our orphanized inode's
3936 * name from the name cache. This is because the
3937 * inode ow_inode might be an ancestor of some
3938 * other inode that will be orphanized as well
3939 * later and has an inode number greater than
3940 * sctx->send_progress. We need to prevent
3941 * future name lookups from using the old name
3942 * and get instead the orphan name.
3944 nce = name_cache_search(sctx, ow_inode, ow_gen);
3945 if (nce) {
3946 name_cache_delete(sctx, nce);
3947 kfree(nce);
3951 * ow_inode might currently be an ancestor of
3952 * cur_ino, therefore compute valid_path (the
3953 * current path of cur_ino) again because it
3954 * might contain the pre-orphanization name of
3955 * ow_inode, which is no longer valid.
3957 ret = is_ancestor(sctx->parent_root,
3958 ow_inode, ow_gen,
3959 sctx->cur_ino, NULL);
3960 if (ret > 0) {
3961 orphanized_ancestor = true;
3962 fs_path_reset(valid_path);
3963 ret = get_cur_path(sctx, sctx->cur_ino,
3964 sctx->cur_inode_gen,
3965 valid_path);
3967 if (ret < 0)
3968 goto out;
3969 } else {
3970 ret = send_unlink(sctx, cur->full_path);
3971 if (ret < 0)
3972 goto out;
3976 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3977 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3978 if (ret < 0)
3979 goto out;
3980 if (ret == 1) {
3981 can_rename = false;
3982 *pending_move = 1;
3986 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3987 can_rename) {
3988 ret = wait_for_parent_move(sctx, cur, is_orphan);
3989 if (ret < 0)
3990 goto out;
3991 if (ret == 1) {
3992 can_rename = false;
3993 *pending_move = 1;
3998 * link/move the ref to the new place. If we have an orphan
3999 * inode, move it and update valid_path. If not, link or move
4000 * it depending on the inode mode.
4002 if (is_orphan && can_rename) {
4003 ret = send_rename(sctx, valid_path, cur->full_path);
4004 if (ret < 0)
4005 goto out;
4006 is_orphan = 0;
4007 ret = fs_path_copy(valid_path, cur->full_path);
4008 if (ret < 0)
4009 goto out;
4010 } else if (can_rename) {
4011 if (S_ISDIR(sctx->cur_inode_mode)) {
4013 * Dirs can't be linked, so move it. For moved
4014 * dirs, we always have one new and one deleted
4015 * ref. The deleted ref is ignored later.
4017 ret = send_rename(sctx, valid_path,
4018 cur->full_path);
4019 if (!ret)
4020 ret = fs_path_copy(valid_path,
4021 cur->full_path);
4022 if (ret < 0)
4023 goto out;
4024 } else {
4026 * We might have previously orphanized an inode
4027 * which is an ancestor of our current inode,
4028 * so our reference's full path, which was
4029 * computed before any such orphanizations, must
4030 * be updated.
4032 if (orphanized_dir) {
4033 ret = update_ref_path(sctx, cur);
4034 if (ret < 0)
4035 goto out;
4037 ret = send_link(sctx, cur->full_path,
4038 valid_path);
4039 if (ret < 0)
4040 goto out;
4043 ret = dup_ref(cur, &check_dirs);
4044 if (ret < 0)
4045 goto out;
4048 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4050 * Check if we can already rmdir the directory. If not,
4051 * orphanize it. For every dir item inside that gets deleted
4052 * later, we do this check again and rmdir it then if possible.
4053 * See the use of check_dirs for more details.
4055 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4056 sctx->cur_ino);
4057 if (ret < 0)
4058 goto out;
4059 if (ret) {
4060 ret = send_rmdir(sctx, valid_path);
4061 if (ret < 0)
4062 goto out;
4063 } else if (!is_orphan) {
4064 ret = orphanize_inode(sctx, sctx->cur_ino,
4065 sctx->cur_inode_gen, valid_path);
4066 if (ret < 0)
4067 goto out;
4068 is_orphan = 1;
4071 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4072 ret = dup_ref(cur, &check_dirs);
4073 if (ret < 0)
4074 goto out;
4076 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4077 !list_empty(&sctx->deleted_refs)) {
4079 * We have a moved dir. Add the old parent to check_dirs
4081 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4082 list);
4083 ret = dup_ref(cur, &check_dirs);
4084 if (ret < 0)
4085 goto out;
4086 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4088 * We have a non dir inode. Go through all deleted refs and
4089 * unlink them if they were not already overwritten by other
4090 * inodes.
4092 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4093 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4094 sctx->cur_ino, sctx->cur_inode_gen,
4095 cur->name, cur->name_len);
4096 if (ret < 0)
4097 goto out;
4098 if (!ret) {
4100 * If we orphanized any ancestor before, we need
4101 * to recompute the full path for deleted names,
4102 * since any such path was computed before we
4103 * processed any references and orphanized any
4104 * ancestor inode.
4106 if (orphanized_ancestor) {
4107 ret = update_ref_path(sctx, cur);
4108 if (ret < 0)
4109 goto out;
4111 ret = send_unlink(sctx, cur->full_path);
4112 if (ret < 0)
4113 goto out;
4115 ret = dup_ref(cur, &check_dirs);
4116 if (ret < 0)
4117 goto out;
4120 * If the inode is still orphan, unlink the orphan. This may
4121 * happen when a previous inode did overwrite the first ref
4122 * of this inode and no new refs were added for the current
4123 * inode. Unlinking does not mean that the inode is deleted in
4124 * all cases. There may still be links to this inode in other
4125 * places.
4127 if (is_orphan) {
4128 ret = send_unlink(sctx, valid_path);
4129 if (ret < 0)
4130 goto out;
4135 * We did collect all parent dirs where cur_inode was once located. We
4136 * now go through all these dirs and check if they are pending for
4137 * deletion and if it's finally possible to perform the rmdir now.
4138 * We also update the inode stats of the parent dirs here.
4140 list_for_each_entry(cur, &check_dirs, list) {
4142 * In case we had refs into dirs that were not processed yet,
4143 * we don't need to do the utime and rmdir logic for these dirs.
4144 * The dir will be processed later.
4146 if (cur->dir > sctx->cur_ino)
4147 continue;
4149 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4150 if (ret < 0)
4151 goto out;
4153 if (ret == inode_state_did_create ||
4154 ret == inode_state_no_change) {
4155 /* TODO delayed utimes */
4156 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4157 if (ret < 0)
4158 goto out;
4159 } else if (ret == inode_state_did_delete &&
4160 cur->dir != last_dir_ino_rm) {
4161 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4162 sctx->cur_ino);
4163 if (ret < 0)
4164 goto out;
4165 if (ret) {
4166 ret = get_cur_path(sctx, cur->dir,
4167 cur->dir_gen, valid_path);
4168 if (ret < 0)
4169 goto out;
4170 ret = send_rmdir(sctx, valid_path);
4171 if (ret < 0)
4172 goto out;
4173 last_dir_ino_rm = cur->dir;
4178 ret = 0;
4180 out:
4181 __free_recorded_refs(&check_dirs);
4182 free_recorded_refs(sctx);
4183 fs_path_free(valid_path);
4184 return ret;
4187 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4188 void *ctx, struct list_head *refs)
4190 int ret = 0;
4191 struct send_ctx *sctx = ctx;
4192 struct fs_path *p;
4193 u64 gen;
4195 p = fs_path_alloc();
4196 if (!p)
4197 return -ENOMEM;
4199 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4200 NULL, NULL);
4201 if (ret < 0)
4202 goto out;
4204 ret = get_cur_path(sctx, dir, gen, p);
4205 if (ret < 0)
4206 goto out;
4207 ret = fs_path_add_path(p, name);
4208 if (ret < 0)
4209 goto out;
4211 ret = __record_ref(refs, dir, gen, p);
4213 out:
4214 if (ret)
4215 fs_path_free(p);
4216 return ret;
4219 static int __record_new_ref(int num, u64 dir, int index,
4220 struct fs_path *name,
4221 void *ctx)
4223 struct send_ctx *sctx = ctx;
4224 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4228 static int __record_deleted_ref(int num, u64 dir, int index,
4229 struct fs_path *name,
4230 void *ctx)
4232 struct send_ctx *sctx = ctx;
4233 return record_ref(sctx->parent_root, dir, name, ctx,
4234 &sctx->deleted_refs);
4237 static int record_new_ref(struct send_ctx *sctx)
4239 int ret;
4241 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4242 sctx->cmp_key, 0, __record_new_ref, sctx);
4243 if (ret < 0)
4244 goto out;
4245 ret = 0;
4247 out:
4248 return ret;
4251 static int record_deleted_ref(struct send_ctx *sctx)
4253 int ret;
4255 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4256 sctx->cmp_key, 0, __record_deleted_ref, sctx);
4257 if (ret < 0)
4258 goto out;
4259 ret = 0;
4261 out:
4262 return ret;
4265 struct find_ref_ctx {
4266 u64 dir;
4267 u64 dir_gen;
4268 struct btrfs_root *root;
4269 struct fs_path *name;
4270 int found_idx;
4273 static int __find_iref(int num, u64 dir, int index,
4274 struct fs_path *name,
4275 void *ctx_)
4277 struct find_ref_ctx *ctx = ctx_;
4278 u64 dir_gen;
4279 int ret;
4281 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4282 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4284 * To avoid doing extra lookups we'll only do this if everything
4285 * else matches.
4287 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4288 NULL, NULL, NULL);
4289 if (ret)
4290 return ret;
4291 if (dir_gen != ctx->dir_gen)
4292 return 0;
4293 ctx->found_idx = num;
4294 return 1;
4296 return 0;
4299 static int find_iref(struct btrfs_root *root,
4300 struct btrfs_path *path,
4301 struct btrfs_key *key,
4302 u64 dir, u64 dir_gen, struct fs_path *name)
4304 int ret;
4305 struct find_ref_ctx ctx;
4307 ctx.dir = dir;
4308 ctx.name = name;
4309 ctx.dir_gen = dir_gen;
4310 ctx.found_idx = -1;
4311 ctx.root = root;
4313 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4314 if (ret < 0)
4315 return ret;
4317 if (ctx.found_idx == -1)
4318 return -ENOENT;
4320 return ctx.found_idx;
4323 static int __record_changed_new_ref(int num, u64 dir, int index,
4324 struct fs_path *name,
4325 void *ctx)
4327 u64 dir_gen;
4328 int ret;
4329 struct send_ctx *sctx = ctx;
4331 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4332 NULL, NULL, NULL);
4333 if (ret)
4334 return ret;
4336 ret = find_iref(sctx->parent_root, sctx->right_path,
4337 sctx->cmp_key, dir, dir_gen, name);
4338 if (ret == -ENOENT)
4339 ret = __record_new_ref(num, dir, index, name, sctx);
4340 else if (ret > 0)
4341 ret = 0;
4343 return ret;
4346 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4347 struct fs_path *name,
4348 void *ctx)
4350 u64 dir_gen;
4351 int ret;
4352 struct send_ctx *sctx = ctx;
4354 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4355 NULL, NULL, NULL);
4356 if (ret)
4357 return ret;
4359 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4360 dir, dir_gen, name);
4361 if (ret == -ENOENT)
4362 ret = __record_deleted_ref(num, dir, index, name, sctx);
4363 else if (ret > 0)
4364 ret = 0;
4366 return ret;
4369 static int record_changed_ref(struct send_ctx *sctx)
4371 int ret = 0;
4373 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4374 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4375 if (ret < 0)
4376 goto out;
4377 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4378 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4379 if (ret < 0)
4380 goto out;
4381 ret = 0;
4383 out:
4384 return ret;
4388 * Record and process all refs at once. Needed when an inode changes the
4389 * generation number, which means that it was deleted and recreated.
4391 static int process_all_refs(struct send_ctx *sctx,
4392 enum btrfs_compare_tree_result cmd)
4394 int ret;
4395 struct btrfs_root *root;
4396 struct btrfs_path *path;
4397 struct btrfs_key key;
4398 struct btrfs_key found_key;
4399 struct extent_buffer *eb;
4400 int slot;
4401 iterate_inode_ref_t cb;
4402 int pending_move = 0;
4404 path = alloc_path_for_send();
4405 if (!path)
4406 return -ENOMEM;
4408 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4409 root = sctx->send_root;
4410 cb = __record_new_ref;
4411 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4412 root = sctx->parent_root;
4413 cb = __record_deleted_ref;
4414 } else {
4415 btrfs_err(sctx->send_root->fs_info,
4416 "Wrong command %d in process_all_refs", cmd);
4417 ret = -EINVAL;
4418 goto out;
4421 key.objectid = sctx->cmp_key->objectid;
4422 key.type = BTRFS_INODE_REF_KEY;
4423 key.offset = 0;
4424 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4425 if (ret < 0)
4426 goto out;
4428 while (1) {
4429 eb = path->nodes[0];
4430 slot = path->slots[0];
4431 if (slot >= btrfs_header_nritems(eb)) {
4432 ret = btrfs_next_leaf(root, path);
4433 if (ret < 0)
4434 goto out;
4435 else if (ret > 0)
4436 break;
4437 continue;
4440 btrfs_item_key_to_cpu(eb, &found_key, slot);
4442 if (found_key.objectid != key.objectid ||
4443 (found_key.type != BTRFS_INODE_REF_KEY &&
4444 found_key.type != BTRFS_INODE_EXTREF_KEY))
4445 break;
4447 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4448 if (ret < 0)
4449 goto out;
4451 path->slots[0]++;
4453 btrfs_release_path(path);
4456 * We don't actually care about pending_move as we are simply
4457 * re-creating this inode and will be rename'ing it into place once we
4458 * rename the parent directory.
4460 ret = process_recorded_refs(sctx, &pending_move);
4461 out:
4462 btrfs_free_path(path);
4463 return ret;
4466 static int send_set_xattr(struct send_ctx *sctx,
4467 struct fs_path *path,
4468 const char *name, int name_len,
4469 const char *data, int data_len)
4471 int ret = 0;
4473 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4474 if (ret < 0)
4475 goto out;
4477 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4478 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4479 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4481 ret = send_cmd(sctx);
4483 tlv_put_failure:
4484 out:
4485 return ret;
4488 static int send_remove_xattr(struct send_ctx *sctx,
4489 struct fs_path *path,
4490 const char *name, int name_len)
4492 int ret = 0;
4494 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4495 if (ret < 0)
4496 goto out;
4498 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4499 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4501 ret = send_cmd(sctx);
4503 tlv_put_failure:
4504 out:
4505 return ret;
4508 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4509 const char *name, int name_len,
4510 const char *data, int data_len,
4511 u8 type, void *ctx)
4513 int ret;
4514 struct send_ctx *sctx = ctx;
4515 struct fs_path *p;
4516 struct posix_acl_xattr_header dummy_acl;
4518 p = fs_path_alloc();
4519 if (!p)
4520 return -ENOMEM;
4523 * This hack is needed because empty acls are stored as zero byte
4524 * data in xattrs. Problem with that is, that receiving these zero byte
4525 * acls will fail later. To fix this, we send a dummy acl list that
4526 * only contains the version number and no entries.
4528 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4529 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4530 if (data_len == 0) {
4531 dummy_acl.a_version =
4532 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4533 data = (char *)&dummy_acl;
4534 data_len = sizeof(dummy_acl);
4538 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4539 if (ret < 0)
4540 goto out;
4542 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4544 out:
4545 fs_path_free(p);
4546 return ret;
4549 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4550 const char *name, int name_len,
4551 const char *data, int data_len,
4552 u8 type, void *ctx)
4554 int ret;
4555 struct send_ctx *sctx = ctx;
4556 struct fs_path *p;
4558 p = fs_path_alloc();
4559 if (!p)
4560 return -ENOMEM;
4562 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4563 if (ret < 0)
4564 goto out;
4566 ret = send_remove_xattr(sctx, p, name, name_len);
4568 out:
4569 fs_path_free(p);
4570 return ret;
4573 static int process_new_xattr(struct send_ctx *sctx)
4575 int ret = 0;
4577 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4578 __process_new_xattr, sctx);
4580 return ret;
4583 static int process_deleted_xattr(struct send_ctx *sctx)
4585 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4586 __process_deleted_xattr, sctx);
4589 struct find_xattr_ctx {
4590 const char *name;
4591 int name_len;
4592 int found_idx;
4593 char *found_data;
4594 int found_data_len;
4597 static int __find_xattr(int num, struct btrfs_key *di_key,
4598 const char *name, int name_len,
4599 const char *data, int data_len,
4600 u8 type, void *vctx)
4602 struct find_xattr_ctx *ctx = vctx;
4604 if (name_len == ctx->name_len &&
4605 strncmp(name, ctx->name, name_len) == 0) {
4606 ctx->found_idx = num;
4607 ctx->found_data_len = data_len;
4608 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4609 if (!ctx->found_data)
4610 return -ENOMEM;
4611 return 1;
4613 return 0;
4616 static int find_xattr(struct btrfs_root *root,
4617 struct btrfs_path *path,
4618 struct btrfs_key *key,
4619 const char *name, int name_len,
4620 char **data, int *data_len)
4622 int ret;
4623 struct find_xattr_ctx ctx;
4625 ctx.name = name;
4626 ctx.name_len = name_len;
4627 ctx.found_idx = -1;
4628 ctx.found_data = NULL;
4629 ctx.found_data_len = 0;
4631 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4632 if (ret < 0)
4633 return ret;
4635 if (ctx.found_idx == -1)
4636 return -ENOENT;
4637 if (data) {
4638 *data = ctx.found_data;
4639 *data_len = ctx.found_data_len;
4640 } else {
4641 kfree(ctx.found_data);
4643 return ctx.found_idx;
4647 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4648 const char *name, int name_len,
4649 const char *data, int data_len,
4650 u8 type, void *ctx)
4652 int ret;
4653 struct send_ctx *sctx = ctx;
4654 char *found_data = NULL;
4655 int found_data_len = 0;
4657 ret = find_xattr(sctx->parent_root, sctx->right_path,
4658 sctx->cmp_key, name, name_len, &found_data,
4659 &found_data_len);
4660 if (ret == -ENOENT) {
4661 ret = __process_new_xattr(num, di_key, name, name_len, data,
4662 data_len, type, ctx);
4663 } else if (ret >= 0) {
4664 if (data_len != found_data_len ||
4665 memcmp(data, found_data, data_len)) {
4666 ret = __process_new_xattr(num, di_key, name, name_len,
4667 data, data_len, type, ctx);
4668 } else {
4669 ret = 0;
4673 kfree(found_data);
4674 return ret;
4677 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4678 const char *name, int name_len,
4679 const char *data, int data_len,
4680 u8 type, void *ctx)
4682 int ret;
4683 struct send_ctx *sctx = ctx;
4685 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4686 name, name_len, NULL, NULL);
4687 if (ret == -ENOENT)
4688 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4689 data_len, type, ctx);
4690 else if (ret >= 0)
4691 ret = 0;
4693 return ret;
4696 static int process_changed_xattr(struct send_ctx *sctx)
4698 int ret = 0;
4700 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4701 __process_changed_new_xattr, sctx);
4702 if (ret < 0)
4703 goto out;
4704 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4705 __process_changed_deleted_xattr, sctx);
4707 out:
4708 return ret;
4711 static int process_all_new_xattrs(struct send_ctx *sctx)
4713 int ret;
4714 struct btrfs_root *root;
4715 struct btrfs_path *path;
4716 struct btrfs_key key;
4717 struct btrfs_key found_key;
4718 struct extent_buffer *eb;
4719 int slot;
4721 path = alloc_path_for_send();
4722 if (!path)
4723 return -ENOMEM;
4725 root = sctx->send_root;
4727 key.objectid = sctx->cmp_key->objectid;
4728 key.type = BTRFS_XATTR_ITEM_KEY;
4729 key.offset = 0;
4730 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4731 if (ret < 0)
4732 goto out;
4734 while (1) {
4735 eb = path->nodes[0];
4736 slot = path->slots[0];
4737 if (slot >= btrfs_header_nritems(eb)) {
4738 ret = btrfs_next_leaf(root, path);
4739 if (ret < 0) {
4740 goto out;
4741 } else if (ret > 0) {
4742 ret = 0;
4743 break;
4745 continue;
4748 btrfs_item_key_to_cpu(eb, &found_key, slot);
4749 if (found_key.objectid != key.objectid ||
4750 found_key.type != key.type) {
4751 ret = 0;
4752 goto out;
4755 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4756 if (ret < 0)
4757 goto out;
4759 path->slots[0]++;
4762 out:
4763 btrfs_free_path(path);
4764 return ret;
4767 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4769 struct btrfs_root *root = sctx->send_root;
4770 struct btrfs_fs_info *fs_info = root->fs_info;
4771 struct inode *inode;
4772 struct page *page;
4773 char *addr;
4774 struct btrfs_key key;
4775 pgoff_t index = offset >> PAGE_SHIFT;
4776 pgoff_t last_index;
4777 unsigned pg_offset = offset & ~PAGE_MASK;
4778 ssize_t ret = 0;
4780 key.objectid = sctx->cur_ino;
4781 key.type = BTRFS_INODE_ITEM_KEY;
4782 key.offset = 0;
4784 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4785 if (IS_ERR(inode))
4786 return PTR_ERR(inode);
4788 if (offset + len > i_size_read(inode)) {
4789 if (offset > i_size_read(inode))
4790 len = 0;
4791 else
4792 len = offset - i_size_read(inode);
4794 if (len == 0)
4795 goto out;
4797 last_index = (offset + len - 1) >> PAGE_SHIFT;
4799 /* initial readahead */
4800 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4801 file_ra_state_init(&sctx->ra, inode->i_mapping);
4803 while (index <= last_index) {
4804 unsigned cur_len = min_t(unsigned, len,
4805 PAGE_SIZE - pg_offset);
4807 page = find_lock_page(inode->i_mapping, index);
4808 if (!page) {
4809 page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4810 NULL, index, last_index + 1 - index);
4812 page = find_or_create_page(inode->i_mapping, index,
4813 GFP_KERNEL);
4814 if (!page) {
4815 ret = -ENOMEM;
4816 break;
4820 if (PageReadahead(page)) {
4821 page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4822 NULL, page, index, last_index + 1 - index);
4825 if (!PageUptodate(page)) {
4826 btrfs_readpage(NULL, page);
4827 lock_page(page);
4828 if (!PageUptodate(page)) {
4829 unlock_page(page);
4830 put_page(page);
4831 ret = -EIO;
4832 break;
4836 addr = kmap(page);
4837 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4838 kunmap(page);
4839 unlock_page(page);
4840 put_page(page);
4841 index++;
4842 pg_offset = 0;
4843 len -= cur_len;
4844 ret += cur_len;
4846 out:
4847 iput(inode);
4848 return ret;
4852 * Read some bytes from the current inode/file and send a write command to
4853 * user space.
4855 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4857 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4858 int ret = 0;
4859 struct fs_path *p;
4860 ssize_t num_read = 0;
4862 p = fs_path_alloc();
4863 if (!p)
4864 return -ENOMEM;
4866 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4868 num_read = fill_read_buf(sctx, offset, len);
4869 if (num_read <= 0) {
4870 if (num_read < 0)
4871 ret = num_read;
4872 goto out;
4875 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4876 if (ret < 0)
4877 goto out;
4879 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4880 if (ret < 0)
4881 goto out;
4883 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4884 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4885 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4887 ret = send_cmd(sctx);
4889 tlv_put_failure:
4890 out:
4891 fs_path_free(p);
4892 if (ret < 0)
4893 return ret;
4894 return num_read;
4898 * Send a clone command to user space.
4900 static int send_clone(struct send_ctx *sctx,
4901 u64 offset, u32 len,
4902 struct clone_root *clone_root)
4904 int ret = 0;
4905 struct fs_path *p;
4906 u64 gen;
4908 btrfs_debug(sctx->send_root->fs_info,
4909 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4910 offset, len, clone_root->root->objectid, clone_root->ino,
4911 clone_root->offset);
4913 p = fs_path_alloc();
4914 if (!p)
4915 return -ENOMEM;
4917 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4918 if (ret < 0)
4919 goto out;
4921 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4922 if (ret < 0)
4923 goto out;
4925 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4926 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4927 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4929 if (clone_root->root == sctx->send_root) {
4930 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4931 &gen, NULL, NULL, NULL, NULL);
4932 if (ret < 0)
4933 goto out;
4934 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4935 } else {
4936 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4938 if (ret < 0)
4939 goto out;
4942 * If the parent we're using has a received_uuid set then use that as
4943 * our clone source as that is what we will look for when doing a
4944 * receive.
4946 * This covers the case that we create a snapshot off of a received
4947 * subvolume and then use that as the parent and try to receive on a
4948 * different host.
4950 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4951 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4952 clone_root->root->root_item.received_uuid);
4953 else
4954 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4955 clone_root->root->root_item.uuid);
4956 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4957 le64_to_cpu(clone_root->root->root_item.ctransid));
4958 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4959 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4960 clone_root->offset);
4962 ret = send_cmd(sctx);
4964 tlv_put_failure:
4965 out:
4966 fs_path_free(p);
4967 return ret;
4971 * Send an update extent command to user space.
4973 static int send_update_extent(struct send_ctx *sctx,
4974 u64 offset, u32 len)
4976 int ret = 0;
4977 struct fs_path *p;
4979 p = fs_path_alloc();
4980 if (!p)
4981 return -ENOMEM;
4983 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4984 if (ret < 0)
4985 goto out;
4987 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4988 if (ret < 0)
4989 goto out;
4991 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4992 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4993 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4995 ret = send_cmd(sctx);
4997 tlv_put_failure:
4998 out:
4999 fs_path_free(p);
5000 return ret;
5003 static int send_hole(struct send_ctx *sctx, u64 end)
5005 struct fs_path *p = NULL;
5006 u64 offset = sctx->cur_inode_last_extent;
5007 u64 len;
5008 int ret = 0;
5011 * A hole that starts at EOF or beyond it. Since we do not yet support
5012 * fallocate (for extent preallocation and hole punching), sending a
5013 * write of zeroes starting at EOF or beyond would later require issuing
5014 * a truncate operation which would undo the write and achieve nothing.
5016 if (offset >= sctx->cur_inode_size)
5017 return 0;
5019 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5020 return send_update_extent(sctx, offset, end - offset);
5022 p = fs_path_alloc();
5023 if (!p)
5024 return -ENOMEM;
5025 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5026 if (ret < 0)
5027 goto tlv_put_failure;
5028 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5029 while (offset < end) {
5030 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5032 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5033 if (ret < 0)
5034 break;
5035 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5036 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5037 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5038 ret = send_cmd(sctx);
5039 if (ret < 0)
5040 break;
5041 offset += len;
5043 sctx->cur_inode_next_write_offset = offset;
5044 tlv_put_failure:
5045 fs_path_free(p);
5046 return ret;
5049 static int send_extent_data(struct send_ctx *sctx,
5050 const u64 offset,
5051 const u64 len)
5053 u64 sent = 0;
5055 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5056 return send_update_extent(sctx, offset, len);
5058 while (sent < len) {
5059 u64 size = len - sent;
5060 int ret;
5062 if (size > BTRFS_SEND_READ_SIZE)
5063 size = BTRFS_SEND_READ_SIZE;
5064 ret = send_write(sctx, offset + sent, size);
5065 if (ret < 0)
5066 return ret;
5067 if (!ret)
5068 break;
5069 sent += ret;
5071 return 0;
5074 static int clone_range(struct send_ctx *sctx,
5075 struct clone_root *clone_root,
5076 const u64 disk_byte,
5077 u64 data_offset,
5078 u64 offset,
5079 u64 len)
5081 struct btrfs_path *path;
5082 struct btrfs_key key;
5083 int ret;
5086 * Prevent cloning from a zero offset with a length matching the sector
5087 * size because in some scenarios this will make the receiver fail.
5089 * For example, if in the source filesystem the extent at offset 0
5090 * has a length of sectorsize and it was written using direct IO, then
5091 * it can never be an inline extent (even if compression is enabled).
5092 * Then this extent can be cloned in the original filesystem to a non
5093 * zero file offset, but it may not be possible to clone in the
5094 * destination filesystem because it can be inlined due to compression
5095 * on the destination filesystem (as the receiver's write operations are
5096 * always done using buffered IO). The same happens when the original
5097 * filesystem does not have compression enabled but the destination
5098 * filesystem has.
5100 if (clone_root->offset == 0 &&
5101 len == sctx->send_root->fs_info->sectorsize)
5102 return send_extent_data(sctx, offset, len);
5104 path = alloc_path_for_send();
5105 if (!path)
5106 return -ENOMEM;
5109 * We can't send a clone operation for the entire range if we find
5110 * extent items in the respective range in the source file that
5111 * refer to different extents or if we find holes.
5112 * So check for that and do a mix of clone and regular write/copy
5113 * operations if needed.
5115 * Example:
5117 * mkfs.btrfs -f /dev/sda
5118 * mount /dev/sda /mnt
5119 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5120 * cp --reflink=always /mnt/foo /mnt/bar
5121 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5122 * btrfs subvolume snapshot -r /mnt /mnt/snap
5124 * If when we send the snapshot and we are processing file bar (which
5125 * has a higher inode number than foo) we blindly send a clone operation
5126 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5127 * a file bar that matches the content of file foo - iow, doesn't match
5128 * the content from bar in the original filesystem.
5130 key.objectid = clone_root->ino;
5131 key.type = BTRFS_EXTENT_DATA_KEY;
5132 key.offset = clone_root->offset;
5133 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5134 if (ret < 0)
5135 goto out;
5136 if (ret > 0 && path->slots[0] > 0) {
5137 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5138 if (key.objectid == clone_root->ino &&
5139 key.type == BTRFS_EXTENT_DATA_KEY)
5140 path->slots[0]--;
5143 while (true) {
5144 struct extent_buffer *leaf = path->nodes[0];
5145 int slot = path->slots[0];
5146 struct btrfs_file_extent_item *ei;
5147 u8 type;
5148 u64 ext_len;
5149 u64 clone_len;
5151 if (slot >= btrfs_header_nritems(leaf)) {
5152 ret = btrfs_next_leaf(clone_root->root, path);
5153 if (ret < 0)
5154 goto out;
5155 else if (ret > 0)
5156 break;
5157 continue;
5160 btrfs_item_key_to_cpu(leaf, &key, slot);
5163 * We might have an implicit trailing hole (NO_HOLES feature
5164 * enabled). We deal with it after leaving this loop.
5166 if (key.objectid != clone_root->ino ||
5167 key.type != BTRFS_EXTENT_DATA_KEY)
5168 break;
5170 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5171 type = btrfs_file_extent_type(leaf, ei);
5172 if (type == BTRFS_FILE_EXTENT_INLINE) {
5173 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5174 ext_len = PAGE_ALIGN(ext_len);
5175 } else {
5176 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5179 if (key.offset + ext_len <= clone_root->offset)
5180 goto next;
5182 if (key.offset > clone_root->offset) {
5183 /* Implicit hole, NO_HOLES feature enabled. */
5184 u64 hole_len = key.offset - clone_root->offset;
5186 if (hole_len > len)
5187 hole_len = len;
5188 ret = send_extent_data(sctx, offset, hole_len);
5189 if (ret < 0)
5190 goto out;
5192 len -= hole_len;
5193 if (len == 0)
5194 break;
5195 offset += hole_len;
5196 clone_root->offset += hole_len;
5197 data_offset += hole_len;
5200 if (key.offset >= clone_root->offset + len)
5201 break;
5203 clone_len = min_t(u64, ext_len, len);
5205 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5206 btrfs_file_extent_offset(leaf, ei) == data_offset)
5207 ret = send_clone(sctx, offset, clone_len, clone_root);
5208 else
5209 ret = send_extent_data(sctx, offset, clone_len);
5211 if (ret < 0)
5212 goto out;
5214 len -= clone_len;
5215 if (len == 0)
5216 break;
5217 offset += clone_len;
5218 clone_root->offset += clone_len;
5219 data_offset += clone_len;
5220 next:
5221 path->slots[0]++;
5224 if (len > 0)
5225 ret = send_extent_data(sctx, offset, len);
5226 else
5227 ret = 0;
5228 out:
5229 btrfs_free_path(path);
5230 return ret;
5233 static int send_write_or_clone(struct send_ctx *sctx,
5234 struct btrfs_path *path,
5235 struct btrfs_key *key,
5236 struct clone_root *clone_root)
5238 int ret = 0;
5239 struct btrfs_file_extent_item *ei;
5240 u64 offset = key->offset;
5241 u64 len;
5242 u8 type;
5243 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5245 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5246 struct btrfs_file_extent_item);
5247 type = btrfs_file_extent_type(path->nodes[0], ei);
5248 if (type == BTRFS_FILE_EXTENT_INLINE) {
5249 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
5251 * it is possible the inline item won't cover the whole page,
5252 * but there may be items after this page. Make
5253 * sure to send the whole thing
5255 len = PAGE_ALIGN(len);
5256 } else {
5257 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5260 if (offset >= sctx->cur_inode_size) {
5261 ret = 0;
5262 goto out;
5264 if (offset + len > sctx->cur_inode_size)
5265 len = sctx->cur_inode_size - offset;
5266 if (len == 0) {
5267 ret = 0;
5268 goto out;
5271 if (clone_root && IS_ALIGNED(offset + len, bs)) {
5272 u64 disk_byte;
5273 u64 data_offset;
5275 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5276 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5277 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5278 offset, len);
5279 } else {
5280 ret = send_extent_data(sctx, offset, len);
5282 sctx->cur_inode_next_write_offset = offset + len;
5283 out:
5284 return ret;
5287 static int is_extent_unchanged(struct send_ctx *sctx,
5288 struct btrfs_path *left_path,
5289 struct btrfs_key *ekey)
5291 int ret = 0;
5292 struct btrfs_key key;
5293 struct btrfs_path *path = NULL;
5294 struct extent_buffer *eb;
5295 int slot;
5296 struct btrfs_key found_key;
5297 struct btrfs_file_extent_item *ei;
5298 u64 left_disknr;
5299 u64 right_disknr;
5300 u64 left_offset;
5301 u64 right_offset;
5302 u64 left_offset_fixed;
5303 u64 left_len;
5304 u64 right_len;
5305 u64 left_gen;
5306 u64 right_gen;
5307 u8 left_type;
5308 u8 right_type;
5310 path = alloc_path_for_send();
5311 if (!path)
5312 return -ENOMEM;
5314 eb = left_path->nodes[0];
5315 slot = left_path->slots[0];
5316 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5317 left_type = btrfs_file_extent_type(eb, ei);
5319 if (left_type != BTRFS_FILE_EXTENT_REG) {
5320 ret = 0;
5321 goto out;
5323 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5324 left_len = btrfs_file_extent_num_bytes(eb, ei);
5325 left_offset = btrfs_file_extent_offset(eb, ei);
5326 left_gen = btrfs_file_extent_generation(eb, ei);
5329 * Following comments will refer to these graphics. L is the left
5330 * extents which we are checking at the moment. 1-8 are the right
5331 * extents that we iterate.
5333 * |-----L-----|
5334 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5336 * |-----L-----|
5337 * |--1--|-2b-|...(same as above)
5339 * Alternative situation. Happens on files where extents got split.
5340 * |-----L-----|
5341 * |-----------7-----------|-6-|
5343 * Alternative situation. Happens on files which got larger.
5344 * |-----L-----|
5345 * |-8-|
5346 * Nothing follows after 8.
5349 key.objectid = ekey->objectid;
5350 key.type = BTRFS_EXTENT_DATA_KEY;
5351 key.offset = ekey->offset;
5352 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5353 if (ret < 0)
5354 goto out;
5355 if (ret) {
5356 ret = 0;
5357 goto out;
5361 * Handle special case where the right side has no extents at all.
5363 eb = path->nodes[0];
5364 slot = path->slots[0];
5365 btrfs_item_key_to_cpu(eb, &found_key, slot);
5366 if (found_key.objectid != key.objectid ||
5367 found_key.type != key.type) {
5368 /* If we're a hole then just pretend nothing changed */
5369 ret = (left_disknr) ? 0 : 1;
5370 goto out;
5374 * We're now on 2a, 2b or 7.
5376 key = found_key;
5377 while (key.offset < ekey->offset + left_len) {
5378 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5379 right_type = btrfs_file_extent_type(eb, ei);
5380 if (right_type != BTRFS_FILE_EXTENT_REG &&
5381 right_type != BTRFS_FILE_EXTENT_INLINE) {
5382 ret = 0;
5383 goto out;
5386 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5387 right_len = btrfs_file_extent_ram_bytes(eb, ei);
5388 right_len = PAGE_ALIGN(right_len);
5389 } else {
5390 right_len = btrfs_file_extent_num_bytes(eb, ei);
5394 * Are we at extent 8? If yes, we know the extent is changed.
5395 * This may only happen on the first iteration.
5397 if (found_key.offset + right_len <= ekey->offset) {
5398 /* If we're a hole just pretend nothing changed */
5399 ret = (left_disknr) ? 0 : 1;
5400 goto out;
5404 * We just wanted to see if when we have an inline extent, what
5405 * follows it is a regular extent (wanted to check the above
5406 * condition for inline extents too). This should normally not
5407 * happen but it's possible for example when we have an inline
5408 * compressed extent representing data with a size matching
5409 * the page size (currently the same as sector size).
5411 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5412 ret = 0;
5413 goto out;
5416 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5417 right_offset = btrfs_file_extent_offset(eb, ei);
5418 right_gen = btrfs_file_extent_generation(eb, ei);
5420 left_offset_fixed = left_offset;
5421 if (key.offset < ekey->offset) {
5422 /* Fix the right offset for 2a and 7. */
5423 right_offset += ekey->offset - key.offset;
5424 } else {
5425 /* Fix the left offset for all behind 2a and 2b */
5426 left_offset_fixed += key.offset - ekey->offset;
5430 * Check if we have the same extent.
5432 if (left_disknr != right_disknr ||
5433 left_offset_fixed != right_offset ||
5434 left_gen != right_gen) {
5435 ret = 0;
5436 goto out;
5440 * Go to the next extent.
5442 ret = btrfs_next_item(sctx->parent_root, path);
5443 if (ret < 0)
5444 goto out;
5445 if (!ret) {
5446 eb = path->nodes[0];
5447 slot = path->slots[0];
5448 btrfs_item_key_to_cpu(eb, &found_key, slot);
5450 if (ret || found_key.objectid != key.objectid ||
5451 found_key.type != key.type) {
5452 key.offset += right_len;
5453 break;
5455 if (found_key.offset != key.offset + right_len) {
5456 ret = 0;
5457 goto out;
5459 key = found_key;
5463 * We're now behind the left extent (treat as unchanged) or at the end
5464 * of the right side (treat as changed).
5466 if (key.offset >= ekey->offset + left_len)
5467 ret = 1;
5468 else
5469 ret = 0;
5472 out:
5473 btrfs_free_path(path);
5474 return ret;
5477 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5479 struct btrfs_path *path;
5480 struct btrfs_root *root = sctx->send_root;
5481 struct btrfs_file_extent_item *fi;
5482 struct btrfs_key key;
5483 u64 extent_end;
5484 u8 type;
5485 int ret;
5487 path = alloc_path_for_send();
5488 if (!path)
5489 return -ENOMEM;
5491 sctx->cur_inode_last_extent = 0;
5493 key.objectid = sctx->cur_ino;
5494 key.type = BTRFS_EXTENT_DATA_KEY;
5495 key.offset = offset;
5496 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5497 if (ret < 0)
5498 goto out;
5499 ret = 0;
5500 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5501 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5502 goto out;
5504 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5505 struct btrfs_file_extent_item);
5506 type = btrfs_file_extent_type(path->nodes[0], fi);
5507 if (type == BTRFS_FILE_EXTENT_INLINE) {
5508 u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5509 extent_end = ALIGN(key.offset + size,
5510 sctx->send_root->fs_info->sectorsize);
5511 } else {
5512 extent_end = key.offset +
5513 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5515 sctx->cur_inode_last_extent = extent_end;
5516 out:
5517 btrfs_free_path(path);
5518 return ret;
5521 static int range_is_hole_in_parent(struct send_ctx *sctx,
5522 const u64 start,
5523 const u64 end)
5525 struct btrfs_path *path;
5526 struct btrfs_key key;
5527 struct btrfs_root *root = sctx->parent_root;
5528 u64 search_start = start;
5529 int ret;
5531 path = alloc_path_for_send();
5532 if (!path)
5533 return -ENOMEM;
5535 key.objectid = sctx->cur_ino;
5536 key.type = BTRFS_EXTENT_DATA_KEY;
5537 key.offset = search_start;
5538 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5539 if (ret < 0)
5540 goto out;
5541 if (ret > 0 && path->slots[0] > 0)
5542 path->slots[0]--;
5544 while (search_start < end) {
5545 struct extent_buffer *leaf = path->nodes[0];
5546 int slot = path->slots[0];
5547 struct btrfs_file_extent_item *fi;
5548 u64 extent_end;
5550 if (slot >= btrfs_header_nritems(leaf)) {
5551 ret = btrfs_next_leaf(root, path);
5552 if (ret < 0)
5553 goto out;
5554 else if (ret > 0)
5555 break;
5556 continue;
5559 btrfs_item_key_to_cpu(leaf, &key, slot);
5560 if (key.objectid < sctx->cur_ino ||
5561 key.type < BTRFS_EXTENT_DATA_KEY)
5562 goto next;
5563 if (key.objectid > sctx->cur_ino ||
5564 key.type > BTRFS_EXTENT_DATA_KEY ||
5565 key.offset >= end)
5566 break;
5568 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5569 if (btrfs_file_extent_type(leaf, fi) ==
5570 BTRFS_FILE_EXTENT_INLINE) {
5571 u64 size = btrfs_file_extent_ram_bytes(leaf, fi);
5573 extent_end = ALIGN(key.offset + size,
5574 root->fs_info->sectorsize);
5575 } else {
5576 extent_end = key.offset +
5577 btrfs_file_extent_num_bytes(leaf, fi);
5579 if (extent_end <= start)
5580 goto next;
5581 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5582 search_start = extent_end;
5583 goto next;
5585 ret = 0;
5586 goto out;
5587 next:
5588 path->slots[0]++;
5590 ret = 1;
5591 out:
5592 btrfs_free_path(path);
5593 return ret;
5596 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5597 struct btrfs_key *key)
5599 struct btrfs_file_extent_item *fi;
5600 u64 extent_end;
5601 u8 type;
5602 int ret = 0;
5604 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5605 return 0;
5607 if (sctx->cur_inode_last_extent == (u64)-1) {
5608 ret = get_last_extent(sctx, key->offset - 1);
5609 if (ret)
5610 return ret;
5613 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5614 struct btrfs_file_extent_item);
5615 type = btrfs_file_extent_type(path->nodes[0], fi);
5616 if (type == BTRFS_FILE_EXTENT_INLINE) {
5617 u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5618 extent_end = ALIGN(key->offset + size,
5619 sctx->send_root->fs_info->sectorsize);
5620 } else {
5621 extent_end = key->offset +
5622 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5625 if (path->slots[0] == 0 &&
5626 sctx->cur_inode_last_extent < key->offset) {
5628 * We might have skipped entire leafs that contained only
5629 * file extent items for our current inode. These leafs have
5630 * a generation number smaller (older) than the one in the
5631 * current leaf and the leaf our last extent came from, and
5632 * are located between these 2 leafs.
5634 ret = get_last_extent(sctx, key->offset - 1);
5635 if (ret)
5636 return ret;
5639 if (sctx->cur_inode_last_extent < key->offset) {
5640 ret = range_is_hole_in_parent(sctx,
5641 sctx->cur_inode_last_extent,
5642 key->offset);
5643 if (ret < 0)
5644 return ret;
5645 else if (ret == 0)
5646 ret = send_hole(sctx, key->offset);
5647 else
5648 ret = 0;
5650 sctx->cur_inode_last_extent = extent_end;
5651 return ret;
5654 static int process_extent(struct send_ctx *sctx,
5655 struct btrfs_path *path,
5656 struct btrfs_key *key)
5658 struct clone_root *found_clone = NULL;
5659 int ret = 0;
5661 if (S_ISLNK(sctx->cur_inode_mode))
5662 return 0;
5664 if (sctx->parent_root && !sctx->cur_inode_new) {
5665 ret = is_extent_unchanged(sctx, path, key);
5666 if (ret < 0)
5667 goto out;
5668 if (ret) {
5669 ret = 0;
5670 goto out_hole;
5672 } else {
5673 struct btrfs_file_extent_item *ei;
5674 u8 type;
5676 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5677 struct btrfs_file_extent_item);
5678 type = btrfs_file_extent_type(path->nodes[0], ei);
5679 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5680 type == BTRFS_FILE_EXTENT_REG) {
5682 * The send spec does not have a prealloc command yet,
5683 * so just leave a hole for prealloc'ed extents until
5684 * we have enough commands queued up to justify rev'ing
5685 * the send spec.
5687 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5688 ret = 0;
5689 goto out;
5692 /* Have a hole, just skip it. */
5693 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5694 ret = 0;
5695 goto out;
5700 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5701 sctx->cur_inode_size, &found_clone);
5702 if (ret != -ENOENT && ret < 0)
5703 goto out;
5705 ret = send_write_or_clone(sctx, path, key, found_clone);
5706 if (ret)
5707 goto out;
5708 out_hole:
5709 ret = maybe_send_hole(sctx, path, key);
5710 out:
5711 return ret;
5714 static int process_all_extents(struct send_ctx *sctx)
5716 int ret;
5717 struct btrfs_root *root;
5718 struct btrfs_path *path;
5719 struct btrfs_key key;
5720 struct btrfs_key found_key;
5721 struct extent_buffer *eb;
5722 int slot;
5724 root = sctx->send_root;
5725 path = alloc_path_for_send();
5726 if (!path)
5727 return -ENOMEM;
5729 key.objectid = sctx->cmp_key->objectid;
5730 key.type = BTRFS_EXTENT_DATA_KEY;
5731 key.offset = 0;
5732 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5733 if (ret < 0)
5734 goto out;
5736 while (1) {
5737 eb = path->nodes[0];
5738 slot = path->slots[0];
5740 if (slot >= btrfs_header_nritems(eb)) {
5741 ret = btrfs_next_leaf(root, path);
5742 if (ret < 0) {
5743 goto out;
5744 } else if (ret > 0) {
5745 ret = 0;
5746 break;
5748 continue;
5751 btrfs_item_key_to_cpu(eb, &found_key, slot);
5753 if (found_key.objectid != key.objectid ||
5754 found_key.type != key.type) {
5755 ret = 0;
5756 goto out;
5759 ret = process_extent(sctx, path, &found_key);
5760 if (ret < 0)
5761 goto out;
5763 path->slots[0]++;
5766 out:
5767 btrfs_free_path(path);
5768 return ret;
5771 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5772 int *pending_move,
5773 int *refs_processed)
5775 int ret = 0;
5777 if (sctx->cur_ino == 0)
5778 goto out;
5779 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5780 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5781 goto out;
5782 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5783 goto out;
5785 ret = process_recorded_refs(sctx, pending_move);
5786 if (ret < 0)
5787 goto out;
5789 *refs_processed = 1;
5790 out:
5791 return ret;
5794 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5796 int ret = 0;
5797 u64 left_mode;
5798 u64 left_uid;
5799 u64 left_gid;
5800 u64 right_mode;
5801 u64 right_uid;
5802 u64 right_gid;
5803 int need_chmod = 0;
5804 int need_chown = 0;
5805 int need_truncate = 1;
5806 int pending_move = 0;
5807 int refs_processed = 0;
5809 if (sctx->ignore_cur_inode)
5810 return 0;
5812 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5813 &refs_processed);
5814 if (ret < 0)
5815 goto out;
5818 * We have processed the refs and thus need to advance send_progress.
5819 * Now, calls to get_cur_xxx will take the updated refs of the current
5820 * inode into account.
5822 * On the other hand, if our current inode is a directory and couldn't
5823 * be moved/renamed because its parent was renamed/moved too and it has
5824 * a higher inode number, we can only move/rename our current inode
5825 * after we moved/renamed its parent. Therefore in this case operate on
5826 * the old path (pre move/rename) of our current inode, and the
5827 * move/rename will be performed later.
5829 if (refs_processed && !pending_move)
5830 sctx->send_progress = sctx->cur_ino + 1;
5832 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5833 goto out;
5834 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5835 goto out;
5837 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5838 &left_mode, &left_uid, &left_gid, NULL);
5839 if (ret < 0)
5840 goto out;
5842 if (!sctx->parent_root || sctx->cur_inode_new) {
5843 need_chown = 1;
5844 if (!S_ISLNK(sctx->cur_inode_mode))
5845 need_chmod = 1;
5846 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5847 need_truncate = 0;
5848 } else {
5849 u64 old_size;
5851 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5852 &old_size, NULL, &right_mode, &right_uid,
5853 &right_gid, NULL);
5854 if (ret < 0)
5855 goto out;
5857 if (left_uid != right_uid || left_gid != right_gid)
5858 need_chown = 1;
5859 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5860 need_chmod = 1;
5861 if ((old_size == sctx->cur_inode_size) ||
5862 (sctx->cur_inode_size > old_size &&
5863 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5864 need_truncate = 0;
5867 if (S_ISREG(sctx->cur_inode_mode)) {
5868 if (need_send_hole(sctx)) {
5869 if (sctx->cur_inode_last_extent == (u64)-1 ||
5870 sctx->cur_inode_last_extent <
5871 sctx->cur_inode_size) {
5872 ret = get_last_extent(sctx, (u64)-1);
5873 if (ret)
5874 goto out;
5876 if (sctx->cur_inode_last_extent <
5877 sctx->cur_inode_size) {
5878 ret = send_hole(sctx, sctx->cur_inode_size);
5879 if (ret)
5880 goto out;
5883 if (need_truncate) {
5884 ret = send_truncate(sctx, sctx->cur_ino,
5885 sctx->cur_inode_gen,
5886 sctx->cur_inode_size);
5887 if (ret < 0)
5888 goto out;
5892 if (need_chown) {
5893 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5894 left_uid, left_gid);
5895 if (ret < 0)
5896 goto out;
5898 if (need_chmod) {
5899 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5900 left_mode);
5901 if (ret < 0)
5902 goto out;
5906 * If other directory inodes depended on our current directory
5907 * inode's move/rename, now do their move/rename operations.
5909 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5910 ret = apply_children_dir_moves(sctx);
5911 if (ret)
5912 goto out;
5914 * Need to send that every time, no matter if it actually
5915 * changed between the two trees as we have done changes to
5916 * the inode before. If our inode is a directory and it's
5917 * waiting to be moved/renamed, we will send its utimes when
5918 * it's moved/renamed, therefore we don't need to do it here.
5920 sctx->send_progress = sctx->cur_ino + 1;
5921 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5922 if (ret < 0)
5923 goto out;
5926 out:
5927 return ret;
5930 struct parent_paths_ctx {
5931 struct list_head *refs;
5932 struct send_ctx *sctx;
5935 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
5936 void *ctx)
5938 struct parent_paths_ctx *ppctx = ctx;
5940 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
5941 ppctx->refs);
5945 * Issue unlink operations for all paths of the current inode found in the
5946 * parent snapshot.
5948 static int btrfs_unlink_all_paths(struct send_ctx *sctx)
5950 LIST_HEAD(deleted_refs);
5951 struct btrfs_path *path;
5952 struct btrfs_key key;
5953 struct parent_paths_ctx ctx;
5954 int ret;
5956 path = alloc_path_for_send();
5957 if (!path)
5958 return -ENOMEM;
5960 key.objectid = sctx->cur_ino;
5961 key.type = BTRFS_INODE_REF_KEY;
5962 key.offset = 0;
5963 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
5964 if (ret < 0)
5965 goto out;
5967 ctx.refs = &deleted_refs;
5968 ctx.sctx = sctx;
5970 while (true) {
5971 struct extent_buffer *eb = path->nodes[0];
5972 int slot = path->slots[0];
5974 if (slot >= btrfs_header_nritems(eb)) {
5975 ret = btrfs_next_leaf(sctx->parent_root, path);
5976 if (ret < 0)
5977 goto out;
5978 else if (ret > 0)
5979 break;
5980 continue;
5983 btrfs_item_key_to_cpu(eb, &key, slot);
5984 if (key.objectid != sctx->cur_ino)
5985 break;
5986 if (key.type != BTRFS_INODE_REF_KEY &&
5987 key.type != BTRFS_INODE_EXTREF_KEY)
5988 break;
5990 ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
5991 record_parent_ref, &ctx);
5992 if (ret < 0)
5993 goto out;
5995 path->slots[0]++;
5998 while (!list_empty(&deleted_refs)) {
5999 struct recorded_ref *ref;
6001 ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6002 ret = send_unlink(sctx, ref->full_path);
6003 if (ret < 0)
6004 goto out;
6005 fs_path_free(ref->full_path);
6006 list_del(&ref->list);
6007 kfree(ref);
6009 ret = 0;
6010 out:
6011 btrfs_free_path(path);
6012 if (ret)
6013 __free_recorded_refs(&deleted_refs);
6014 return ret;
6017 static int changed_inode(struct send_ctx *sctx,
6018 enum btrfs_compare_tree_result result)
6020 int ret = 0;
6021 struct btrfs_key *key = sctx->cmp_key;
6022 struct btrfs_inode_item *left_ii = NULL;
6023 struct btrfs_inode_item *right_ii = NULL;
6024 u64 left_gen = 0;
6025 u64 right_gen = 0;
6027 sctx->cur_ino = key->objectid;
6028 sctx->cur_inode_new_gen = 0;
6029 sctx->cur_inode_last_extent = (u64)-1;
6030 sctx->cur_inode_next_write_offset = 0;
6031 sctx->ignore_cur_inode = false;
6034 * Set send_progress to current inode. This will tell all get_cur_xxx
6035 * functions that the current inode's refs are not updated yet. Later,
6036 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6038 sctx->send_progress = sctx->cur_ino;
6040 if (result == BTRFS_COMPARE_TREE_NEW ||
6041 result == BTRFS_COMPARE_TREE_CHANGED) {
6042 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6043 sctx->left_path->slots[0],
6044 struct btrfs_inode_item);
6045 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6046 left_ii);
6047 } else {
6048 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6049 sctx->right_path->slots[0],
6050 struct btrfs_inode_item);
6051 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6052 right_ii);
6054 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6055 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6056 sctx->right_path->slots[0],
6057 struct btrfs_inode_item);
6059 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6060 right_ii);
6063 * The cur_ino = root dir case is special here. We can't treat
6064 * the inode as deleted+reused because it would generate a
6065 * stream that tries to delete/mkdir the root dir.
6067 if (left_gen != right_gen &&
6068 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6069 sctx->cur_inode_new_gen = 1;
6073 * Normally we do not find inodes with a link count of zero (orphans)
6074 * because the most common case is to create a snapshot and use it
6075 * for a send operation. However other less common use cases involve
6076 * using a subvolume and send it after turning it to RO mode just
6077 * after deleting all hard links of a file while holding an open
6078 * file descriptor against it or turning a RO snapshot into RW mode,
6079 * keep an open file descriptor against a file, delete it and then
6080 * turn the snapshot back to RO mode before using it for a send
6081 * operation. So if we find such cases, ignore the inode and all its
6082 * items completely if it's a new inode, or if it's a changed inode
6083 * make sure all its previous paths (from the parent snapshot) are all
6084 * unlinked and all other the inode items are ignored.
6086 if (result == BTRFS_COMPARE_TREE_NEW ||
6087 result == BTRFS_COMPARE_TREE_CHANGED) {
6088 u32 nlinks;
6090 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6091 if (nlinks == 0) {
6092 sctx->ignore_cur_inode = true;
6093 if (result == BTRFS_COMPARE_TREE_CHANGED)
6094 ret = btrfs_unlink_all_paths(sctx);
6095 goto out;
6099 if (result == BTRFS_COMPARE_TREE_NEW) {
6100 sctx->cur_inode_gen = left_gen;
6101 sctx->cur_inode_new = 1;
6102 sctx->cur_inode_deleted = 0;
6103 sctx->cur_inode_size = btrfs_inode_size(
6104 sctx->left_path->nodes[0], left_ii);
6105 sctx->cur_inode_mode = btrfs_inode_mode(
6106 sctx->left_path->nodes[0], left_ii);
6107 sctx->cur_inode_rdev = btrfs_inode_rdev(
6108 sctx->left_path->nodes[0], left_ii);
6109 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6110 ret = send_create_inode_if_needed(sctx);
6111 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6112 sctx->cur_inode_gen = right_gen;
6113 sctx->cur_inode_new = 0;
6114 sctx->cur_inode_deleted = 1;
6115 sctx->cur_inode_size = btrfs_inode_size(
6116 sctx->right_path->nodes[0], right_ii);
6117 sctx->cur_inode_mode = btrfs_inode_mode(
6118 sctx->right_path->nodes[0], right_ii);
6119 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6121 * We need to do some special handling in case the inode was
6122 * reported as changed with a changed generation number. This
6123 * means that the original inode was deleted and new inode
6124 * reused the same inum. So we have to treat the old inode as
6125 * deleted and the new one as new.
6127 if (sctx->cur_inode_new_gen) {
6129 * First, process the inode as if it was deleted.
6131 sctx->cur_inode_gen = right_gen;
6132 sctx->cur_inode_new = 0;
6133 sctx->cur_inode_deleted = 1;
6134 sctx->cur_inode_size = btrfs_inode_size(
6135 sctx->right_path->nodes[0], right_ii);
6136 sctx->cur_inode_mode = btrfs_inode_mode(
6137 sctx->right_path->nodes[0], right_ii);
6138 ret = process_all_refs(sctx,
6139 BTRFS_COMPARE_TREE_DELETED);
6140 if (ret < 0)
6141 goto out;
6144 * Now process the inode as if it was new.
6146 sctx->cur_inode_gen = left_gen;
6147 sctx->cur_inode_new = 1;
6148 sctx->cur_inode_deleted = 0;
6149 sctx->cur_inode_size = btrfs_inode_size(
6150 sctx->left_path->nodes[0], left_ii);
6151 sctx->cur_inode_mode = btrfs_inode_mode(
6152 sctx->left_path->nodes[0], left_ii);
6153 sctx->cur_inode_rdev = btrfs_inode_rdev(
6154 sctx->left_path->nodes[0], left_ii);
6155 ret = send_create_inode_if_needed(sctx);
6156 if (ret < 0)
6157 goto out;
6159 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6160 if (ret < 0)
6161 goto out;
6163 * Advance send_progress now as we did not get into
6164 * process_recorded_refs_if_needed in the new_gen case.
6166 sctx->send_progress = sctx->cur_ino + 1;
6169 * Now process all extents and xattrs of the inode as if
6170 * they were all new.
6172 ret = process_all_extents(sctx);
6173 if (ret < 0)
6174 goto out;
6175 ret = process_all_new_xattrs(sctx);
6176 if (ret < 0)
6177 goto out;
6178 } else {
6179 sctx->cur_inode_gen = left_gen;
6180 sctx->cur_inode_new = 0;
6181 sctx->cur_inode_new_gen = 0;
6182 sctx->cur_inode_deleted = 0;
6183 sctx->cur_inode_size = btrfs_inode_size(
6184 sctx->left_path->nodes[0], left_ii);
6185 sctx->cur_inode_mode = btrfs_inode_mode(
6186 sctx->left_path->nodes[0], left_ii);
6190 out:
6191 return ret;
6195 * We have to process new refs before deleted refs, but compare_trees gives us
6196 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6197 * first and later process them in process_recorded_refs.
6198 * For the cur_inode_new_gen case, we skip recording completely because
6199 * changed_inode did already initiate processing of refs. The reason for this is
6200 * that in this case, compare_tree actually compares the refs of 2 different
6201 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6202 * refs of the right tree as deleted and all refs of the left tree as new.
6204 static int changed_ref(struct send_ctx *sctx,
6205 enum btrfs_compare_tree_result result)
6207 int ret = 0;
6209 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6210 inconsistent_snapshot_error(sctx, result, "reference");
6211 return -EIO;
6214 if (!sctx->cur_inode_new_gen &&
6215 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6216 if (result == BTRFS_COMPARE_TREE_NEW)
6217 ret = record_new_ref(sctx);
6218 else if (result == BTRFS_COMPARE_TREE_DELETED)
6219 ret = record_deleted_ref(sctx);
6220 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6221 ret = record_changed_ref(sctx);
6224 return ret;
6228 * Process new/deleted/changed xattrs. We skip processing in the
6229 * cur_inode_new_gen case because changed_inode did already initiate processing
6230 * of xattrs. The reason is the same as in changed_ref
6232 static int changed_xattr(struct send_ctx *sctx,
6233 enum btrfs_compare_tree_result result)
6235 int ret = 0;
6237 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6238 inconsistent_snapshot_error(sctx, result, "xattr");
6239 return -EIO;
6242 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6243 if (result == BTRFS_COMPARE_TREE_NEW)
6244 ret = process_new_xattr(sctx);
6245 else if (result == BTRFS_COMPARE_TREE_DELETED)
6246 ret = process_deleted_xattr(sctx);
6247 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6248 ret = process_changed_xattr(sctx);
6251 return ret;
6255 * Process new/deleted/changed extents. We skip processing in the
6256 * cur_inode_new_gen case because changed_inode did already initiate processing
6257 * of extents. The reason is the same as in changed_ref
6259 static int changed_extent(struct send_ctx *sctx,
6260 enum btrfs_compare_tree_result result)
6262 int ret = 0;
6264 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6266 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6267 struct extent_buffer *leaf_l;
6268 struct extent_buffer *leaf_r;
6269 struct btrfs_file_extent_item *ei_l;
6270 struct btrfs_file_extent_item *ei_r;
6272 leaf_l = sctx->left_path->nodes[0];
6273 leaf_r = sctx->right_path->nodes[0];
6274 ei_l = btrfs_item_ptr(leaf_l,
6275 sctx->left_path->slots[0],
6276 struct btrfs_file_extent_item);
6277 ei_r = btrfs_item_ptr(leaf_r,
6278 sctx->right_path->slots[0],
6279 struct btrfs_file_extent_item);
6282 * We may have found an extent item that has changed
6283 * only its disk_bytenr field and the corresponding
6284 * inode item was not updated. This case happens due to
6285 * very specific timings during relocation when a leaf
6286 * that contains file extent items is COWed while
6287 * relocation is ongoing and its in the stage where it
6288 * updates data pointers. So when this happens we can
6289 * safely ignore it since we know it's the same extent,
6290 * but just at different logical and physical locations
6291 * (when an extent is fully replaced with a new one, we
6292 * know the generation number must have changed too,
6293 * since snapshot creation implies committing the current
6294 * transaction, and the inode item must have been updated
6295 * as well).
6296 * This replacement of the disk_bytenr happens at
6297 * relocation.c:replace_file_extents() through
6298 * relocation.c:btrfs_reloc_cow_block().
6300 if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6301 btrfs_file_extent_generation(leaf_r, ei_r) &&
6302 btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6303 btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6304 btrfs_file_extent_compression(leaf_l, ei_l) ==
6305 btrfs_file_extent_compression(leaf_r, ei_r) &&
6306 btrfs_file_extent_encryption(leaf_l, ei_l) ==
6307 btrfs_file_extent_encryption(leaf_r, ei_r) &&
6308 btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6309 btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6310 btrfs_file_extent_type(leaf_l, ei_l) ==
6311 btrfs_file_extent_type(leaf_r, ei_r) &&
6312 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6313 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6314 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6315 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6316 btrfs_file_extent_offset(leaf_l, ei_l) ==
6317 btrfs_file_extent_offset(leaf_r, ei_r) &&
6318 btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6319 btrfs_file_extent_num_bytes(leaf_r, ei_r))
6320 return 0;
6323 inconsistent_snapshot_error(sctx, result, "extent");
6324 return -EIO;
6327 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6328 if (result != BTRFS_COMPARE_TREE_DELETED)
6329 ret = process_extent(sctx, sctx->left_path,
6330 sctx->cmp_key);
6333 return ret;
6336 static int dir_changed(struct send_ctx *sctx, u64 dir)
6338 u64 orig_gen, new_gen;
6339 int ret;
6341 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6342 NULL, NULL);
6343 if (ret)
6344 return ret;
6346 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6347 NULL, NULL, NULL);
6348 if (ret)
6349 return ret;
6351 return (orig_gen != new_gen) ? 1 : 0;
6354 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6355 struct btrfs_key *key)
6357 struct btrfs_inode_extref *extref;
6358 struct extent_buffer *leaf;
6359 u64 dirid = 0, last_dirid = 0;
6360 unsigned long ptr;
6361 u32 item_size;
6362 u32 cur_offset = 0;
6363 int ref_name_len;
6364 int ret = 0;
6366 /* Easy case, just check this one dirid */
6367 if (key->type == BTRFS_INODE_REF_KEY) {
6368 dirid = key->offset;
6370 ret = dir_changed(sctx, dirid);
6371 goto out;
6374 leaf = path->nodes[0];
6375 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6376 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6377 while (cur_offset < item_size) {
6378 extref = (struct btrfs_inode_extref *)(ptr +
6379 cur_offset);
6380 dirid = btrfs_inode_extref_parent(leaf, extref);
6381 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6382 cur_offset += ref_name_len + sizeof(*extref);
6383 if (dirid == last_dirid)
6384 continue;
6385 ret = dir_changed(sctx, dirid);
6386 if (ret)
6387 break;
6388 last_dirid = dirid;
6390 out:
6391 return ret;
6395 * Updates compare related fields in sctx and simply forwards to the actual
6396 * changed_xxx functions.
6398 static int changed_cb(struct btrfs_path *left_path,
6399 struct btrfs_path *right_path,
6400 struct btrfs_key *key,
6401 enum btrfs_compare_tree_result result,
6402 void *ctx)
6404 int ret = 0;
6405 struct send_ctx *sctx = ctx;
6407 if (result == BTRFS_COMPARE_TREE_SAME) {
6408 if (key->type == BTRFS_INODE_REF_KEY ||
6409 key->type == BTRFS_INODE_EXTREF_KEY) {
6410 ret = compare_refs(sctx, left_path, key);
6411 if (!ret)
6412 return 0;
6413 if (ret < 0)
6414 return ret;
6415 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6416 return maybe_send_hole(sctx, left_path, key);
6417 } else {
6418 return 0;
6420 result = BTRFS_COMPARE_TREE_CHANGED;
6421 ret = 0;
6424 sctx->left_path = left_path;
6425 sctx->right_path = right_path;
6426 sctx->cmp_key = key;
6428 ret = finish_inode_if_needed(sctx, 0);
6429 if (ret < 0)
6430 goto out;
6432 /* Ignore non-FS objects */
6433 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6434 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6435 goto out;
6437 if (key->type == BTRFS_INODE_ITEM_KEY) {
6438 ret = changed_inode(sctx, result);
6439 } else if (!sctx->ignore_cur_inode) {
6440 if (key->type == BTRFS_INODE_REF_KEY ||
6441 key->type == BTRFS_INODE_EXTREF_KEY)
6442 ret = changed_ref(sctx, result);
6443 else if (key->type == BTRFS_XATTR_ITEM_KEY)
6444 ret = changed_xattr(sctx, result);
6445 else if (key->type == BTRFS_EXTENT_DATA_KEY)
6446 ret = changed_extent(sctx, result);
6449 out:
6450 return ret;
6453 static int full_send_tree(struct send_ctx *sctx)
6455 int ret;
6456 struct btrfs_root *send_root = sctx->send_root;
6457 struct btrfs_key key;
6458 struct btrfs_path *path;
6459 struct extent_buffer *eb;
6460 int slot;
6462 path = alloc_path_for_send();
6463 if (!path)
6464 return -ENOMEM;
6466 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6467 key.type = BTRFS_INODE_ITEM_KEY;
6468 key.offset = 0;
6470 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6471 if (ret < 0)
6472 goto out;
6473 if (ret)
6474 goto out_finish;
6476 while (1) {
6477 eb = path->nodes[0];
6478 slot = path->slots[0];
6479 btrfs_item_key_to_cpu(eb, &key, slot);
6481 ret = changed_cb(path, NULL, &key,
6482 BTRFS_COMPARE_TREE_NEW, sctx);
6483 if (ret < 0)
6484 goto out;
6486 ret = btrfs_next_item(send_root, path);
6487 if (ret < 0)
6488 goto out;
6489 if (ret) {
6490 ret = 0;
6491 break;
6495 out_finish:
6496 ret = finish_inode_if_needed(sctx, 1);
6498 out:
6499 btrfs_free_path(path);
6500 return ret;
6503 static int send_subvol(struct send_ctx *sctx)
6505 int ret;
6507 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6508 ret = send_header(sctx);
6509 if (ret < 0)
6510 goto out;
6513 ret = send_subvol_begin(sctx);
6514 if (ret < 0)
6515 goto out;
6517 if (sctx->parent_root) {
6518 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6519 changed_cb, sctx);
6520 if (ret < 0)
6521 goto out;
6522 ret = finish_inode_if_needed(sctx, 1);
6523 if (ret < 0)
6524 goto out;
6525 } else {
6526 ret = full_send_tree(sctx);
6527 if (ret < 0)
6528 goto out;
6531 out:
6532 free_recorded_refs(sctx);
6533 return ret;
6537 * If orphan cleanup did remove any orphans from a root, it means the tree
6538 * was modified and therefore the commit root is not the same as the current
6539 * root anymore. This is a problem, because send uses the commit root and
6540 * therefore can see inode items that don't exist in the current root anymore,
6541 * and for example make calls to btrfs_iget, which will do tree lookups based
6542 * on the current root and not on the commit root. Those lookups will fail,
6543 * returning a -ESTALE error, and making send fail with that error. So make
6544 * sure a send does not see any orphans we have just removed, and that it will
6545 * see the same inodes regardless of whether a transaction commit happened
6546 * before it started (meaning that the commit root will be the same as the
6547 * current root) or not.
6549 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6551 int i;
6552 struct btrfs_trans_handle *trans = NULL;
6554 again:
6555 if (sctx->parent_root &&
6556 sctx->parent_root->node != sctx->parent_root->commit_root)
6557 goto commit_trans;
6559 for (i = 0; i < sctx->clone_roots_cnt; i++)
6560 if (sctx->clone_roots[i].root->node !=
6561 sctx->clone_roots[i].root->commit_root)
6562 goto commit_trans;
6564 if (trans)
6565 return btrfs_end_transaction(trans);
6567 return 0;
6569 commit_trans:
6570 /* Use any root, all fs roots will get their commit roots updated. */
6571 if (!trans) {
6572 trans = btrfs_join_transaction(sctx->send_root);
6573 if (IS_ERR(trans))
6574 return PTR_ERR(trans);
6575 goto again;
6578 return btrfs_commit_transaction(trans);
6581 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6583 spin_lock(&root->root_item_lock);
6584 root->send_in_progress--;
6586 * Not much left to do, we don't know why it's unbalanced and
6587 * can't blindly reset it to 0.
6589 if (root->send_in_progress < 0)
6590 btrfs_err(root->fs_info,
6591 "send_in_progress unbalanced %d root %llu",
6592 root->send_in_progress, root->root_key.objectid);
6593 spin_unlock(&root->root_item_lock);
6596 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
6598 int ret = 0;
6599 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6600 struct btrfs_fs_info *fs_info = send_root->fs_info;
6601 struct btrfs_root *clone_root;
6602 struct btrfs_key key;
6603 struct send_ctx *sctx = NULL;
6604 u32 i;
6605 u64 *clone_sources_tmp = NULL;
6606 int clone_sources_to_rollback = 0;
6607 unsigned alloc_size;
6608 int sort_clone_roots = 0;
6609 int index;
6611 if (!capable(CAP_SYS_ADMIN))
6612 return -EPERM;
6615 * The subvolume must remain read-only during send, protect against
6616 * making it RW. This also protects against deletion.
6618 spin_lock(&send_root->root_item_lock);
6619 send_root->send_in_progress++;
6620 spin_unlock(&send_root->root_item_lock);
6623 * This is done when we lookup the root, it should already be complete
6624 * by the time we get here.
6626 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6629 * Userspace tools do the checks and warn the user if it's
6630 * not RO.
6632 if (!btrfs_root_readonly(send_root)) {
6633 ret = -EPERM;
6634 goto out;
6638 * Check that we don't overflow at later allocations, we request
6639 * clone_sources_count + 1 items, and compare to unsigned long inside
6640 * access_ok.
6642 if (arg->clone_sources_count >
6643 ULONG_MAX / sizeof(struct clone_root) - 1) {
6644 ret = -EINVAL;
6645 goto out;
6648 if (!access_ok(VERIFY_READ, arg->clone_sources,
6649 sizeof(*arg->clone_sources) *
6650 arg->clone_sources_count)) {
6651 ret = -EFAULT;
6652 goto out;
6655 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6656 ret = -EINVAL;
6657 goto out;
6660 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6661 if (!sctx) {
6662 ret = -ENOMEM;
6663 goto out;
6666 INIT_LIST_HEAD(&sctx->new_refs);
6667 INIT_LIST_HEAD(&sctx->deleted_refs);
6668 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6669 INIT_LIST_HEAD(&sctx->name_cache_list);
6671 sctx->flags = arg->flags;
6673 sctx->send_filp = fget(arg->send_fd);
6674 if (!sctx->send_filp) {
6675 ret = -EBADF;
6676 goto out;
6679 sctx->send_root = send_root;
6681 * Unlikely but possible, if the subvolume is marked for deletion but
6682 * is slow to remove the directory entry, send can still be started
6684 if (btrfs_root_dead(sctx->send_root)) {
6685 ret = -EPERM;
6686 goto out;
6689 sctx->clone_roots_cnt = arg->clone_sources_count;
6691 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6692 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6693 if (!sctx->send_buf) {
6694 ret = -ENOMEM;
6695 goto out;
6698 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6699 if (!sctx->read_buf) {
6700 ret = -ENOMEM;
6701 goto out;
6704 sctx->pending_dir_moves = RB_ROOT;
6705 sctx->waiting_dir_moves = RB_ROOT;
6706 sctx->orphan_dirs = RB_ROOT;
6708 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6710 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6711 if (!sctx->clone_roots) {
6712 ret = -ENOMEM;
6713 goto out;
6716 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6718 if (arg->clone_sources_count) {
6719 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6720 if (!clone_sources_tmp) {
6721 ret = -ENOMEM;
6722 goto out;
6725 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6726 alloc_size);
6727 if (ret) {
6728 ret = -EFAULT;
6729 goto out;
6732 for (i = 0; i < arg->clone_sources_count; i++) {
6733 key.objectid = clone_sources_tmp[i];
6734 key.type = BTRFS_ROOT_ITEM_KEY;
6735 key.offset = (u64)-1;
6737 index = srcu_read_lock(&fs_info->subvol_srcu);
6739 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6740 if (IS_ERR(clone_root)) {
6741 srcu_read_unlock(&fs_info->subvol_srcu, index);
6742 ret = PTR_ERR(clone_root);
6743 goto out;
6745 spin_lock(&clone_root->root_item_lock);
6746 if (!btrfs_root_readonly(clone_root) ||
6747 btrfs_root_dead(clone_root)) {
6748 spin_unlock(&clone_root->root_item_lock);
6749 srcu_read_unlock(&fs_info->subvol_srcu, index);
6750 ret = -EPERM;
6751 goto out;
6753 clone_root->send_in_progress++;
6754 spin_unlock(&clone_root->root_item_lock);
6755 srcu_read_unlock(&fs_info->subvol_srcu, index);
6757 sctx->clone_roots[i].root = clone_root;
6758 clone_sources_to_rollback = i + 1;
6760 kvfree(clone_sources_tmp);
6761 clone_sources_tmp = NULL;
6764 if (arg->parent_root) {
6765 key.objectid = arg->parent_root;
6766 key.type = BTRFS_ROOT_ITEM_KEY;
6767 key.offset = (u64)-1;
6769 index = srcu_read_lock(&fs_info->subvol_srcu);
6771 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6772 if (IS_ERR(sctx->parent_root)) {
6773 srcu_read_unlock(&fs_info->subvol_srcu, index);
6774 ret = PTR_ERR(sctx->parent_root);
6775 goto out;
6778 spin_lock(&sctx->parent_root->root_item_lock);
6779 sctx->parent_root->send_in_progress++;
6780 if (!btrfs_root_readonly(sctx->parent_root) ||
6781 btrfs_root_dead(sctx->parent_root)) {
6782 spin_unlock(&sctx->parent_root->root_item_lock);
6783 srcu_read_unlock(&fs_info->subvol_srcu, index);
6784 ret = -EPERM;
6785 goto out;
6787 spin_unlock(&sctx->parent_root->root_item_lock);
6789 srcu_read_unlock(&fs_info->subvol_srcu, index);
6793 * Clones from send_root are allowed, but only if the clone source
6794 * is behind the current send position. This is checked while searching
6795 * for possible clone sources.
6797 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6799 /* We do a bsearch later */
6800 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6801 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6802 NULL);
6803 sort_clone_roots = 1;
6805 ret = ensure_commit_roots_uptodate(sctx);
6806 if (ret)
6807 goto out;
6809 current->journal_info = BTRFS_SEND_TRANS_STUB;
6810 ret = send_subvol(sctx);
6811 current->journal_info = NULL;
6812 if (ret < 0)
6813 goto out;
6815 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6816 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6817 if (ret < 0)
6818 goto out;
6819 ret = send_cmd(sctx);
6820 if (ret < 0)
6821 goto out;
6824 out:
6825 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6826 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6827 struct rb_node *n;
6828 struct pending_dir_move *pm;
6830 n = rb_first(&sctx->pending_dir_moves);
6831 pm = rb_entry(n, struct pending_dir_move, node);
6832 while (!list_empty(&pm->list)) {
6833 struct pending_dir_move *pm2;
6835 pm2 = list_first_entry(&pm->list,
6836 struct pending_dir_move, list);
6837 free_pending_move(sctx, pm2);
6839 free_pending_move(sctx, pm);
6842 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6843 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6844 struct rb_node *n;
6845 struct waiting_dir_move *dm;
6847 n = rb_first(&sctx->waiting_dir_moves);
6848 dm = rb_entry(n, struct waiting_dir_move, node);
6849 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6850 kfree(dm);
6853 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6854 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6855 struct rb_node *n;
6856 struct orphan_dir_info *odi;
6858 n = rb_first(&sctx->orphan_dirs);
6859 odi = rb_entry(n, struct orphan_dir_info, node);
6860 free_orphan_dir_info(sctx, odi);
6863 if (sort_clone_roots) {
6864 for (i = 0; i < sctx->clone_roots_cnt; i++)
6865 btrfs_root_dec_send_in_progress(
6866 sctx->clone_roots[i].root);
6867 } else {
6868 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6869 btrfs_root_dec_send_in_progress(
6870 sctx->clone_roots[i].root);
6872 btrfs_root_dec_send_in_progress(send_root);
6874 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6875 btrfs_root_dec_send_in_progress(sctx->parent_root);
6877 kvfree(clone_sources_tmp);
6879 if (sctx) {
6880 if (sctx->send_filp)
6881 fput(sctx->send_filp);
6883 kvfree(sctx->clone_roots);
6884 kvfree(sctx->send_buf);
6885 kvfree(sctx->read_buf);
6887 name_cache_free(sctx);
6889 kfree(sctx);
6892 return ret;