2 * Deadline Scheduling Class (SCHED_DEADLINE)
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Juri Lelli <juri.lelli@gmail.com>,
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
19 #include <linux/slab.h>
21 struct dl_bandwidth def_dl_bandwidth
;
23 static inline struct task_struct
*dl_task_of(struct sched_dl_entity
*dl_se
)
25 return container_of(dl_se
, struct task_struct
, dl
);
28 static inline struct rq
*rq_of_dl_rq(struct dl_rq
*dl_rq
)
30 return container_of(dl_rq
, struct rq
, dl
);
33 static inline struct dl_rq
*dl_rq_of_se(struct sched_dl_entity
*dl_se
)
35 struct task_struct
*p
= dl_task_of(dl_se
);
36 struct rq
*rq
= task_rq(p
);
41 static inline int on_dl_rq(struct sched_dl_entity
*dl_se
)
43 return !RB_EMPTY_NODE(&dl_se
->rb_node
);
46 static inline int is_leftmost(struct task_struct
*p
, struct dl_rq
*dl_rq
)
48 struct sched_dl_entity
*dl_se
= &p
->dl
;
50 return dl_rq
->rb_leftmost
== &dl_se
->rb_node
;
53 void init_dl_bandwidth(struct dl_bandwidth
*dl_b
, u64 period
, u64 runtime
)
55 raw_spin_lock_init(&dl_b
->dl_runtime_lock
);
56 dl_b
->dl_period
= period
;
57 dl_b
->dl_runtime
= runtime
;
60 void init_dl_bw(struct dl_bw
*dl_b
)
62 raw_spin_lock_init(&dl_b
->lock
);
63 raw_spin_lock(&def_dl_bandwidth
.dl_runtime_lock
);
64 if (global_rt_runtime() == RUNTIME_INF
)
67 dl_b
->bw
= to_ratio(global_rt_period(), global_rt_runtime());
68 raw_spin_unlock(&def_dl_bandwidth
.dl_runtime_lock
);
72 void init_dl_rq(struct dl_rq
*dl_rq
)
74 dl_rq
->rb_root
= RB_ROOT
;
77 /* zero means no -deadline tasks */
78 dl_rq
->earliest_dl
.curr
= dl_rq
->earliest_dl
.next
= 0;
80 dl_rq
->dl_nr_migratory
= 0;
81 dl_rq
->overloaded
= 0;
82 dl_rq
->pushable_dl_tasks_root
= RB_ROOT
;
84 init_dl_bw(&dl_rq
->dl_bw
);
90 static inline int dl_overloaded(struct rq
*rq
)
92 return atomic_read(&rq
->rd
->dlo_count
);
95 static inline void dl_set_overload(struct rq
*rq
)
100 cpumask_set_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
105 * Matched by the barrier in pull_dl_task().
108 atomic_inc(&rq
->rd
->dlo_count
);
111 static inline void dl_clear_overload(struct rq
*rq
)
116 atomic_dec(&rq
->rd
->dlo_count
);
117 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
120 static void update_dl_migration(struct dl_rq
*dl_rq
)
122 if (dl_rq
->dl_nr_migratory
&& dl_rq
->dl_nr_running
> 1) {
123 if (!dl_rq
->overloaded
) {
124 dl_set_overload(rq_of_dl_rq(dl_rq
));
125 dl_rq
->overloaded
= 1;
127 } else if (dl_rq
->overloaded
) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq
));
129 dl_rq
->overloaded
= 0;
133 static void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
135 struct task_struct
*p
= dl_task_of(dl_se
);
137 if (p
->nr_cpus_allowed
> 1)
138 dl_rq
->dl_nr_migratory
++;
140 update_dl_migration(dl_rq
);
143 static void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
145 struct task_struct
*p
= dl_task_of(dl_se
);
147 if (p
->nr_cpus_allowed
> 1)
148 dl_rq
->dl_nr_migratory
--;
150 update_dl_migration(dl_rq
);
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
157 static void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
159 struct dl_rq
*dl_rq
= &rq
->dl
;
160 struct rb_node
**link
= &dl_rq
->pushable_dl_tasks_root
.rb_node
;
161 struct rb_node
*parent
= NULL
;
162 struct task_struct
*entry
;
165 BUG_ON(!RB_EMPTY_NODE(&p
->pushable_dl_tasks
));
169 entry
= rb_entry(parent
, struct task_struct
,
171 if (dl_entity_preempt(&p
->dl
, &entry
->dl
))
172 link
= &parent
->rb_left
;
174 link
= &parent
->rb_right
;
180 dl_rq
->pushable_dl_tasks_leftmost
= &p
->pushable_dl_tasks
;
181 dl_rq
->earliest_dl
.next
= p
->dl
.deadline
;
184 rb_link_node(&p
->pushable_dl_tasks
, parent
, link
);
185 rb_insert_color(&p
->pushable_dl_tasks
, &dl_rq
->pushable_dl_tasks_root
);
188 static void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
190 struct dl_rq
*dl_rq
= &rq
->dl
;
192 if (RB_EMPTY_NODE(&p
->pushable_dl_tasks
))
195 if (dl_rq
->pushable_dl_tasks_leftmost
== &p
->pushable_dl_tasks
) {
196 struct rb_node
*next_node
;
198 next_node
= rb_next(&p
->pushable_dl_tasks
);
199 dl_rq
->pushable_dl_tasks_leftmost
= next_node
;
201 dl_rq
->earliest_dl
.next
= rb_entry(next_node
,
202 struct task_struct
, pushable_dl_tasks
)->dl
.deadline
;
206 rb_erase(&p
->pushable_dl_tasks
, &dl_rq
->pushable_dl_tasks_root
);
207 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
210 static inline int has_pushable_dl_tasks(struct rq
*rq
)
212 return !RB_EMPTY_ROOT(&rq
->dl
.pushable_dl_tasks_root
);
215 static int push_dl_task(struct rq
*rq
);
217 static inline bool need_pull_dl_task(struct rq
*rq
, struct task_struct
*prev
)
219 return dl_task(prev
);
222 static DEFINE_PER_CPU(struct callback_head
, dl_push_head
);
223 static DEFINE_PER_CPU(struct callback_head
, dl_pull_head
);
225 static void push_dl_tasks(struct rq
*);
226 static void pull_dl_task(struct rq
*);
228 static inline void queue_push_tasks(struct rq
*rq
)
230 if (!has_pushable_dl_tasks(rq
))
233 queue_balance_callback(rq
, &per_cpu(dl_push_head
, rq
->cpu
), push_dl_tasks
);
236 static inline void queue_pull_task(struct rq
*rq
)
238 queue_balance_callback(rq
, &per_cpu(dl_pull_head
, rq
->cpu
), pull_dl_task
);
241 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
);
243 static struct rq
*dl_task_offline_migration(struct rq
*rq
, struct task_struct
*p
)
245 struct rq
*later_rq
= NULL
;
247 later_rq
= find_lock_later_rq(p
, rq
);
252 * If we cannot preempt any rq, fall back to pick any
255 cpu
= cpumask_any_and(cpu_active_mask
, &p
->cpus_allowed
);
256 if (cpu
>= nr_cpu_ids
) {
258 * Fail to find any suitable cpu.
259 * The task will never come back!
261 BUG_ON(dl_bandwidth_enabled());
264 * If admission control is disabled we
265 * try a little harder to let the task
268 cpu
= cpumask_any(cpu_active_mask
);
270 later_rq
= cpu_rq(cpu
);
271 double_lock_balance(rq
, later_rq
);
274 set_task_cpu(p
, later_rq
->cpu
);
275 double_unlock_balance(later_rq
, rq
);
283 void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
288 void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
293 void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
298 void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
302 static inline bool need_pull_dl_task(struct rq
*rq
, struct task_struct
*prev
)
307 static inline void pull_dl_task(struct rq
*rq
)
311 static inline void queue_push_tasks(struct rq
*rq
)
315 static inline void queue_pull_task(struct rq
*rq
)
318 #endif /* CONFIG_SMP */
320 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
321 static void __dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
322 static void check_preempt_curr_dl(struct rq
*rq
, struct task_struct
*p
,
326 * We are being explicitly informed that a new instance is starting,
327 * and this means that:
328 * - the absolute deadline of the entity has to be placed at
329 * current time + relative deadline;
330 * - the runtime of the entity has to be set to the maximum value.
332 * The capability of specifying such event is useful whenever a -deadline
333 * entity wants to (try to!) synchronize its behaviour with the scheduler's
334 * one, and to (try to!) reconcile itself with its own scheduling
337 static inline void setup_new_dl_entity(struct sched_dl_entity
*dl_se
)
339 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
340 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
342 WARN_ON(dl_se
->dl_boosted
);
343 WARN_ON(dl_time_before(rq_clock(rq
), dl_se
->deadline
));
346 * We are racing with the deadline timer. So, do nothing because
347 * the deadline timer handler will take care of properly recharging
348 * the runtime and postponing the deadline
350 if (dl_se
->dl_throttled
)
354 * We use the regular wall clock time to set deadlines in the
355 * future; in fact, we must consider execution overheads (time
356 * spent on hardirq context, etc.).
358 dl_se
->deadline
= rq_clock(rq
) + dl_se
->dl_deadline
;
359 dl_se
->runtime
= dl_se
->dl_runtime
;
363 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
364 * possibility of a entity lasting more than what it declared, and thus
365 * exhausting its runtime.
367 * Here we are interested in making runtime overrun possible, but we do
368 * not want a entity which is misbehaving to affect the scheduling of all
370 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
371 * is used, in order to confine each entity within its own bandwidth.
373 * This function deals exactly with that, and ensures that when the runtime
374 * of a entity is replenished, its deadline is also postponed. That ensures
375 * the overrunning entity can't interfere with other entity in the system and
376 * can't make them miss their deadlines. Reasons why this kind of overruns
377 * could happen are, typically, a entity voluntarily trying to overcome its
378 * runtime, or it just underestimated it during sched_setattr().
380 static void replenish_dl_entity(struct sched_dl_entity
*dl_se
,
381 struct sched_dl_entity
*pi_se
)
383 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
384 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
386 BUG_ON(pi_se
->dl_runtime
<= 0);
389 * This could be the case for a !-dl task that is boosted.
390 * Just go with full inherited parameters.
392 if (dl_se
->dl_deadline
== 0) {
393 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
394 dl_se
->runtime
= pi_se
->dl_runtime
;
397 if (dl_se
->dl_yielded
&& dl_se
->runtime
> 0)
401 * We keep moving the deadline away until we get some
402 * available runtime for the entity. This ensures correct
403 * handling of situations where the runtime overrun is
406 while (dl_se
->runtime
<= 0) {
407 dl_se
->deadline
+= pi_se
->dl_period
;
408 dl_se
->runtime
+= pi_se
->dl_runtime
;
412 * At this point, the deadline really should be "in
413 * the future" with respect to rq->clock. If it's
414 * not, we are, for some reason, lagging too much!
415 * Anyway, after having warn userspace abut that,
416 * we still try to keep the things running by
417 * resetting the deadline and the budget of the
420 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
))) {
421 printk_deferred_once("sched: DL replenish lagged too much\n");
422 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
423 dl_se
->runtime
= pi_se
->dl_runtime
;
426 if (dl_se
->dl_yielded
)
427 dl_se
->dl_yielded
= 0;
428 if (dl_se
->dl_throttled
)
429 dl_se
->dl_throttled
= 0;
433 * Here we check if --at time t-- an entity (which is probably being
434 * [re]activated or, in general, enqueued) can use its remaining runtime
435 * and its current deadline _without_ exceeding the bandwidth it is
436 * assigned (function returns true if it can't). We are in fact applying
437 * one of the CBS rules: when a task wakes up, if the residual runtime
438 * over residual deadline fits within the allocated bandwidth, then we
439 * can keep the current (absolute) deadline and residual budget without
440 * disrupting the schedulability of the system. Otherwise, we should
441 * refill the runtime and set the deadline a period in the future,
442 * because keeping the current (absolute) deadline of the task would
443 * result in breaking guarantees promised to other tasks (refer to
444 * Documentation/scheduler/sched-deadline.txt for more informations).
446 * This function returns true if:
448 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
450 * IOW we can't recycle current parameters.
452 * Notice that the bandwidth check is done against the deadline. For
453 * task with deadline equal to period this is the same of using
454 * dl_period instead of dl_deadline in the equation above.
456 static bool dl_entity_overflow(struct sched_dl_entity
*dl_se
,
457 struct sched_dl_entity
*pi_se
, u64 t
)
462 * left and right are the two sides of the equation above,
463 * after a bit of shuffling to use multiplications instead
466 * Note that none of the time values involved in the two
467 * multiplications are absolute: dl_deadline and dl_runtime
468 * are the relative deadline and the maximum runtime of each
469 * instance, runtime is the runtime left for the last instance
470 * and (deadline - t), since t is rq->clock, is the time left
471 * to the (absolute) deadline. Even if overflowing the u64 type
472 * is very unlikely to occur in both cases, here we scale down
473 * as we want to avoid that risk at all. Scaling down by 10
474 * means that we reduce granularity to 1us. We are fine with it,
475 * since this is only a true/false check and, anyway, thinking
476 * of anything below microseconds resolution is actually fiction
477 * (but still we want to give the user that illusion >;).
479 left
= (pi_se
->dl_deadline
>> DL_SCALE
) * (dl_se
->runtime
>> DL_SCALE
);
480 right
= ((dl_se
->deadline
- t
) >> DL_SCALE
) *
481 (pi_se
->dl_runtime
>> DL_SCALE
);
483 return dl_time_before(right
, left
);
487 * When a -deadline entity is queued back on the runqueue, its runtime and
488 * deadline might need updating.
490 * The policy here is that we update the deadline of the entity only if:
491 * - the current deadline is in the past,
492 * - using the remaining runtime with the current deadline would make
493 * the entity exceed its bandwidth.
495 static void update_dl_entity(struct sched_dl_entity
*dl_se
,
496 struct sched_dl_entity
*pi_se
)
498 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
499 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
501 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
)) ||
502 dl_entity_overflow(dl_se
, pi_se
, rq_clock(rq
))) {
503 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
504 dl_se
->runtime
= pi_se
->dl_runtime
;
508 static inline u64
dl_next_period(struct sched_dl_entity
*dl_se
)
510 return dl_se
->deadline
- dl_se
->dl_deadline
+ dl_se
->dl_period
;
514 * If the entity depleted all its runtime, and if we want it to sleep
515 * while waiting for some new execution time to become available, we
516 * set the bandwidth replenishment timer to the replenishment instant
517 * and try to activate it.
519 * Notice that it is important for the caller to know if the timer
520 * actually started or not (i.e., the replenishment instant is in
521 * the future or in the past).
523 static int start_dl_timer(struct task_struct
*p
)
525 struct sched_dl_entity
*dl_se
= &p
->dl
;
526 struct hrtimer
*timer
= &dl_se
->dl_timer
;
527 struct rq
*rq
= task_rq(p
);
531 lockdep_assert_held(&rq
->lock
);
534 * We want the timer to fire at the deadline, but considering
535 * that it is actually coming from rq->clock and not from
536 * hrtimer's time base reading.
538 act
= ns_to_ktime(dl_next_period(dl_se
));
539 now
= hrtimer_cb_get_time(timer
);
540 delta
= ktime_to_ns(now
) - rq_clock(rq
);
541 act
= ktime_add_ns(act
, delta
);
544 * If the expiry time already passed, e.g., because the value
545 * chosen as the deadline is too small, don't even try to
546 * start the timer in the past!
548 if (ktime_us_delta(act
, now
) < 0)
552 * !enqueued will guarantee another callback; even if one is already in
553 * progress. This ensures a balanced {get,put}_task_struct().
555 * The race against __run_timer() clearing the enqueued state is
556 * harmless because we're holding task_rq()->lock, therefore the timer
557 * expiring after we've done the check will wait on its task_rq_lock()
558 * and observe our state.
560 if (!hrtimer_is_queued(timer
)) {
562 hrtimer_start(timer
, act
, HRTIMER_MODE_ABS
);
569 * This is the bandwidth enforcement timer callback. If here, we know
570 * a task is not on its dl_rq, since the fact that the timer was running
571 * means the task is throttled and needs a runtime replenishment.
573 * However, what we actually do depends on the fact the task is active,
574 * (it is on its rq) or has been removed from there by a call to
575 * dequeue_task_dl(). In the former case we must issue the runtime
576 * replenishment and add the task back to the dl_rq; in the latter, we just
577 * do nothing but clearing dl_throttled, so that runtime and deadline
578 * updating (and the queueing back to dl_rq) will be done by the
579 * next call to enqueue_task_dl().
581 static enum hrtimer_restart
dl_task_timer(struct hrtimer
*timer
)
583 struct sched_dl_entity
*dl_se
= container_of(timer
,
584 struct sched_dl_entity
,
586 struct task_struct
*p
= dl_task_of(dl_se
);
590 rq
= task_rq_lock(p
, &rf
);
593 * The task might have changed its scheduling policy to something
594 * different than SCHED_DEADLINE (through switched_from_dl()).
597 __dl_clear_params(p
);
602 * The task might have been boosted by someone else and might be in the
603 * boosting/deboosting path, its not throttled.
605 if (dl_se
->dl_boosted
)
609 * Spurious timer due to start_dl_timer() race; or we already received
610 * a replenishment from rt_mutex_setprio().
612 if (!dl_se
->dl_throttled
)
619 * If the throttle happened during sched-out; like:
626 * __dequeue_task_dl()
629 * We can be both throttled and !queued. Replenish the counter
630 * but do not enqueue -- wait for our wakeup to do that.
632 if (!task_on_rq_queued(p
)) {
633 replenish_dl_entity(dl_se
, dl_se
);
638 if (unlikely(!rq
->online
)) {
640 * If the runqueue is no longer available, migrate the
641 * task elsewhere. This necessarily changes rq.
643 lockdep_unpin_lock(&rq
->lock
, rf
.cookie
);
644 rq
= dl_task_offline_migration(rq
, p
);
645 rf
.cookie
= lockdep_pin_lock(&rq
->lock
);
649 * Now that the task has been migrated to the new RQ and we
650 * have that locked, proceed as normal and enqueue the task
656 enqueue_task_dl(rq
, p
, ENQUEUE_REPLENISH
);
657 if (dl_task(rq
->curr
))
658 check_preempt_curr_dl(rq
, p
, 0);
664 * Queueing this task back might have overloaded rq, check if we need
665 * to kick someone away.
667 if (has_pushable_dl_tasks(rq
)) {
669 * Nothing relies on rq->lock after this, so its safe to drop
672 rq_unpin_lock(rq
, &rf
);
674 rq_repin_lock(rq
, &rf
);
679 task_rq_unlock(rq
, p
, &rf
);
682 * This can free the task_struct, including this hrtimer, do not touch
683 * anything related to that after this.
687 return HRTIMER_NORESTART
;
690 void init_dl_task_timer(struct sched_dl_entity
*dl_se
)
692 struct hrtimer
*timer
= &dl_se
->dl_timer
;
694 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
695 timer
->function
= dl_task_timer
;
699 * During the activation, CBS checks if it can reuse the current task's
700 * runtime and period. If the deadline of the task is in the past, CBS
701 * cannot use the runtime, and so it replenishes the task. This rule
702 * works fine for implicit deadline tasks (deadline == period), and the
703 * CBS was designed for implicit deadline tasks. However, a task with
704 * constrained deadline (deadine < period) might be awakened after the
705 * deadline, but before the next period. In this case, replenishing the
706 * task would allow it to run for runtime / deadline. As in this case
707 * deadline < period, CBS enables a task to run for more than the
708 * runtime / period. In a very loaded system, this can cause a domino
709 * effect, making other tasks miss their deadlines.
711 * To avoid this problem, in the activation of a constrained deadline
712 * task after the deadline but before the next period, throttle the
713 * task and set the replenishing timer to the begin of the next period,
714 * unless it is boosted.
716 static inline void dl_check_constrained_dl(struct sched_dl_entity
*dl_se
)
718 struct task_struct
*p
= dl_task_of(dl_se
);
719 struct rq
*rq
= rq_of_dl_rq(dl_rq_of_se(dl_se
));
721 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
)) &&
722 dl_time_before(rq_clock(rq
), dl_next_period(dl_se
))) {
723 if (unlikely(dl_se
->dl_boosted
|| !start_dl_timer(p
)))
725 dl_se
->dl_throttled
= 1;
730 int dl_runtime_exceeded(struct sched_dl_entity
*dl_se
)
732 return (dl_se
->runtime
<= 0);
735 extern bool sched_rt_bandwidth_account(struct rt_rq
*rt_rq
);
738 * Update the current task's runtime statistics (provided it is still
739 * a -deadline task and has not been removed from the dl_rq).
741 static void update_curr_dl(struct rq
*rq
)
743 struct task_struct
*curr
= rq
->curr
;
744 struct sched_dl_entity
*dl_se
= &curr
->dl
;
747 if (!dl_task(curr
) || !on_dl_rq(dl_se
))
751 * Consumed budget is computed considering the time as
752 * observed by schedulable tasks (excluding time spent
753 * in hardirq context, etc.). Deadlines are instead
754 * computed using hard walltime. This seems to be the more
755 * natural solution, but the full ramifications of this
756 * approach need further study.
758 delta_exec
= rq_clock_task(rq
) - curr
->se
.exec_start
;
759 if (unlikely((s64
)delta_exec
<= 0)) {
760 if (unlikely(dl_se
->dl_yielded
))
765 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
766 cpufreq_update_this_cpu(rq
, SCHED_CPUFREQ_DL
);
768 schedstat_set(curr
->se
.statistics
.exec_max
,
769 max(curr
->se
.statistics
.exec_max
, delta_exec
));
771 curr
->se
.sum_exec_runtime
+= delta_exec
;
772 account_group_exec_runtime(curr
, delta_exec
);
774 curr
->se
.exec_start
= rq_clock_task(rq
);
775 cpuacct_charge(curr
, delta_exec
);
777 sched_rt_avg_update(rq
, delta_exec
);
779 dl_se
->runtime
-= delta_exec
;
782 if (dl_runtime_exceeded(dl_se
) || dl_se
->dl_yielded
) {
783 dl_se
->dl_throttled
= 1;
784 __dequeue_task_dl(rq
, curr
, 0);
785 if (unlikely(dl_se
->dl_boosted
|| !start_dl_timer(curr
)))
786 enqueue_task_dl(rq
, curr
, ENQUEUE_REPLENISH
);
788 if (!is_leftmost(curr
, &rq
->dl
))
793 * Because -- for now -- we share the rt bandwidth, we need to
794 * account our runtime there too, otherwise actual rt tasks
795 * would be able to exceed the shared quota.
797 * Account to the root rt group for now.
799 * The solution we're working towards is having the RT groups scheduled
800 * using deadline servers -- however there's a few nasties to figure
801 * out before that can happen.
803 if (rt_bandwidth_enabled()) {
804 struct rt_rq
*rt_rq
= &rq
->rt
;
806 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
808 * We'll let actual RT tasks worry about the overflow here, we
809 * have our own CBS to keep us inline; only account when RT
810 * bandwidth is relevant.
812 if (sched_rt_bandwidth_account(rt_rq
))
813 rt_rq
->rt_time
+= delta_exec
;
814 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
820 static void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
822 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
824 if (dl_rq
->earliest_dl
.curr
== 0 ||
825 dl_time_before(deadline
, dl_rq
->earliest_dl
.curr
)) {
826 dl_rq
->earliest_dl
.curr
= deadline
;
827 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, deadline
);
831 static void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
833 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
836 * Since we may have removed our earliest (and/or next earliest)
837 * task we must recompute them.
839 if (!dl_rq
->dl_nr_running
) {
840 dl_rq
->earliest_dl
.curr
= 0;
841 dl_rq
->earliest_dl
.next
= 0;
842 cpudl_clear(&rq
->rd
->cpudl
, rq
->cpu
);
844 struct rb_node
*leftmost
= dl_rq
->rb_leftmost
;
845 struct sched_dl_entity
*entry
;
847 entry
= rb_entry(leftmost
, struct sched_dl_entity
, rb_node
);
848 dl_rq
->earliest_dl
.curr
= entry
->deadline
;
849 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, entry
->deadline
);
855 static inline void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
856 static inline void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
858 #endif /* CONFIG_SMP */
861 void inc_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
863 int prio
= dl_task_of(dl_se
)->prio
;
864 u64 deadline
= dl_se
->deadline
;
866 WARN_ON(!dl_prio(prio
));
867 dl_rq
->dl_nr_running
++;
868 add_nr_running(rq_of_dl_rq(dl_rq
), 1);
870 inc_dl_deadline(dl_rq
, deadline
);
871 inc_dl_migration(dl_se
, dl_rq
);
875 void dec_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
877 int prio
= dl_task_of(dl_se
)->prio
;
879 WARN_ON(!dl_prio(prio
));
880 WARN_ON(!dl_rq
->dl_nr_running
);
881 dl_rq
->dl_nr_running
--;
882 sub_nr_running(rq_of_dl_rq(dl_rq
), 1);
884 dec_dl_deadline(dl_rq
, dl_se
->deadline
);
885 dec_dl_migration(dl_se
, dl_rq
);
888 static void __enqueue_dl_entity(struct sched_dl_entity
*dl_se
)
890 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
891 struct rb_node
**link
= &dl_rq
->rb_root
.rb_node
;
892 struct rb_node
*parent
= NULL
;
893 struct sched_dl_entity
*entry
;
896 BUG_ON(!RB_EMPTY_NODE(&dl_se
->rb_node
));
900 entry
= rb_entry(parent
, struct sched_dl_entity
, rb_node
);
901 if (dl_time_before(dl_se
->deadline
, entry
->deadline
))
902 link
= &parent
->rb_left
;
904 link
= &parent
->rb_right
;
910 dl_rq
->rb_leftmost
= &dl_se
->rb_node
;
912 rb_link_node(&dl_se
->rb_node
, parent
, link
);
913 rb_insert_color(&dl_se
->rb_node
, &dl_rq
->rb_root
);
915 inc_dl_tasks(dl_se
, dl_rq
);
918 static void __dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
920 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
922 if (RB_EMPTY_NODE(&dl_se
->rb_node
))
925 if (dl_rq
->rb_leftmost
== &dl_se
->rb_node
) {
926 struct rb_node
*next_node
;
928 next_node
= rb_next(&dl_se
->rb_node
);
929 dl_rq
->rb_leftmost
= next_node
;
932 rb_erase(&dl_se
->rb_node
, &dl_rq
->rb_root
);
933 RB_CLEAR_NODE(&dl_se
->rb_node
);
935 dec_dl_tasks(dl_se
, dl_rq
);
939 enqueue_dl_entity(struct sched_dl_entity
*dl_se
,
940 struct sched_dl_entity
*pi_se
, int flags
)
942 BUG_ON(on_dl_rq(dl_se
));
945 * If this is a wakeup or a new instance, the scheduling
946 * parameters of the task might need updating. Otherwise,
947 * we want a replenishment of its runtime.
949 if (flags
& ENQUEUE_WAKEUP
)
950 update_dl_entity(dl_se
, pi_se
);
951 else if (flags
& ENQUEUE_REPLENISH
)
952 replenish_dl_entity(dl_se
, pi_se
);
954 __enqueue_dl_entity(dl_se
);
957 static void dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
959 __dequeue_dl_entity(dl_se
);
962 static inline bool dl_is_constrained(struct sched_dl_entity
*dl_se
)
964 return dl_se
->dl_deadline
< dl_se
->dl_period
;
967 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
969 struct task_struct
*pi_task
= rt_mutex_get_top_task(p
);
970 struct sched_dl_entity
*pi_se
= &p
->dl
;
973 * Use the scheduling parameters of the top pi-waiter
974 * task if we have one and its (absolute) deadline is
975 * smaller than our one... OTW we keep our runtime and
978 if (pi_task
&& p
->dl
.dl_boosted
&& dl_prio(pi_task
->normal_prio
)) {
979 pi_se
= &pi_task
->dl
;
980 } else if (!dl_prio(p
->normal_prio
)) {
982 * Special case in which we have a !SCHED_DEADLINE task
983 * that is going to be deboosted, but exceedes its
984 * runtime while doing so. No point in replenishing
985 * it, as it's going to return back to its original
986 * scheduling class after this.
988 BUG_ON(!p
->dl
.dl_boosted
|| flags
!= ENQUEUE_REPLENISH
);
993 * Check if a constrained deadline task was activated
994 * after the deadline but before the next period.
995 * If that is the case, the task will be throttled and
996 * the replenishment timer will be set to the next period.
998 if (!p
->dl
.dl_throttled
&& dl_is_constrained(&p
->dl
))
999 dl_check_constrained_dl(&p
->dl
);
1002 * If p is throttled, we do nothing. In fact, if it exhausted
1003 * its budget it needs a replenishment and, since it now is on
1004 * its rq, the bandwidth timer callback (which clearly has not
1005 * run yet) will take care of this.
1007 if (p
->dl
.dl_throttled
&& !(flags
& ENQUEUE_REPLENISH
))
1010 enqueue_dl_entity(&p
->dl
, pi_se
, flags
);
1012 if (!task_current(rq
, p
) && p
->nr_cpus_allowed
> 1)
1013 enqueue_pushable_dl_task(rq
, p
);
1016 static void __dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
1018 dequeue_dl_entity(&p
->dl
);
1019 dequeue_pushable_dl_task(rq
, p
);
1022 static void dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
1025 __dequeue_task_dl(rq
, p
, flags
);
1029 * Yield task semantic for -deadline tasks is:
1031 * get off from the CPU until our next instance, with
1032 * a new runtime. This is of little use now, since we
1033 * don't have a bandwidth reclaiming mechanism. Anyway,
1034 * bandwidth reclaiming is planned for the future, and
1035 * yield_task_dl will indicate that some spare budget
1036 * is available for other task instances to use it.
1038 static void yield_task_dl(struct rq
*rq
)
1041 * We make the task go to sleep until its current deadline by
1042 * forcing its runtime to zero. This way, update_curr_dl() stops
1043 * it and the bandwidth timer will wake it up and will give it
1044 * new scheduling parameters (thanks to dl_yielded=1).
1046 rq
->curr
->dl
.dl_yielded
= 1;
1048 update_rq_clock(rq
);
1051 * Tell update_rq_clock() that we've just updated,
1052 * so we don't do microscopic update in schedule()
1053 * and double the fastpath cost.
1055 rq_clock_skip_update(rq
, true);
1060 static int find_later_rq(struct task_struct
*task
);
1063 select_task_rq_dl(struct task_struct
*p
, int cpu
, int sd_flag
, int flags
)
1065 struct task_struct
*curr
;
1068 if (sd_flag
!= SD_BALANCE_WAKE
)
1074 curr
= READ_ONCE(rq
->curr
); /* unlocked access */
1077 * If we are dealing with a -deadline task, we must
1078 * decide where to wake it up.
1079 * If it has a later deadline and the current task
1080 * on this rq can't move (provided the waking task
1081 * can!) we prefer to send it somewhere else. On the
1082 * other hand, if it has a shorter deadline, we
1083 * try to make it stay here, it might be important.
1085 if (unlikely(dl_task(curr
)) &&
1086 (curr
->nr_cpus_allowed
< 2 ||
1087 !dl_entity_preempt(&p
->dl
, &curr
->dl
)) &&
1088 (p
->nr_cpus_allowed
> 1)) {
1089 int target
= find_later_rq(p
);
1092 (dl_time_before(p
->dl
.deadline
,
1093 cpu_rq(target
)->dl
.earliest_dl
.curr
) ||
1094 (cpu_rq(target
)->dl
.dl_nr_running
== 0)))
1103 static void check_preempt_equal_dl(struct rq
*rq
, struct task_struct
*p
)
1106 * Current can't be migrated, useless to reschedule,
1107 * let's hope p can move out.
1109 if (rq
->curr
->nr_cpus_allowed
== 1 ||
1110 cpudl_find(&rq
->rd
->cpudl
, rq
->curr
, NULL
) == -1)
1114 * p is migratable, so let's not schedule it and
1115 * see if it is pushed or pulled somewhere else.
1117 if (p
->nr_cpus_allowed
!= 1 &&
1118 cpudl_find(&rq
->rd
->cpudl
, p
, NULL
) != -1)
1124 #endif /* CONFIG_SMP */
1127 * Only called when both the current and waking task are -deadline
1130 static void check_preempt_curr_dl(struct rq
*rq
, struct task_struct
*p
,
1133 if (dl_entity_preempt(&p
->dl
, &rq
->curr
->dl
)) {
1140 * In the unlikely case current and p have the same deadline
1141 * let us try to decide what's the best thing to do...
1143 if ((p
->dl
.deadline
== rq
->curr
->dl
.deadline
) &&
1144 !test_tsk_need_resched(rq
->curr
))
1145 check_preempt_equal_dl(rq
, p
);
1146 #endif /* CONFIG_SMP */
1149 #ifdef CONFIG_SCHED_HRTICK
1150 static void start_hrtick_dl(struct rq
*rq
, struct task_struct
*p
)
1152 hrtick_start(rq
, p
->dl
.runtime
);
1154 #else /* !CONFIG_SCHED_HRTICK */
1155 static void start_hrtick_dl(struct rq
*rq
, struct task_struct
*p
)
1160 static struct sched_dl_entity
*pick_next_dl_entity(struct rq
*rq
,
1161 struct dl_rq
*dl_rq
)
1163 struct rb_node
*left
= dl_rq
->rb_leftmost
;
1168 return rb_entry(left
, struct sched_dl_entity
, rb_node
);
1171 struct task_struct
*
1172 pick_next_task_dl(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
1174 struct sched_dl_entity
*dl_se
;
1175 struct task_struct
*p
;
1176 struct dl_rq
*dl_rq
;
1180 if (need_pull_dl_task(rq
, prev
)) {
1182 * This is OK, because current is on_cpu, which avoids it being
1183 * picked for load-balance and preemption/IRQs are still
1184 * disabled avoiding further scheduler activity on it and we're
1185 * being very careful to re-start the picking loop.
1187 rq_unpin_lock(rq
, rf
);
1189 rq_repin_lock(rq
, rf
);
1191 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1192 * means a stop task can slip in, in which case we need to
1193 * re-start task selection.
1195 if (rq
->stop
&& task_on_rq_queued(rq
->stop
))
1200 * When prev is DL, we may throttle it in put_prev_task().
1201 * So, we update time before we check for dl_nr_running.
1203 if (prev
->sched_class
== &dl_sched_class
)
1206 if (unlikely(!dl_rq
->dl_nr_running
))
1209 put_prev_task(rq
, prev
);
1211 dl_se
= pick_next_dl_entity(rq
, dl_rq
);
1214 p
= dl_task_of(dl_se
);
1215 p
->se
.exec_start
= rq_clock_task(rq
);
1217 /* Running task will never be pushed. */
1218 dequeue_pushable_dl_task(rq
, p
);
1220 if (hrtick_enabled(rq
))
1221 start_hrtick_dl(rq
, p
);
1223 queue_push_tasks(rq
);
1228 static void put_prev_task_dl(struct rq
*rq
, struct task_struct
*p
)
1232 if (on_dl_rq(&p
->dl
) && p
->nr_cpus_allowed
> 1)
1233 enqueue_pushable_dl_task(rq
, p
);
1236 static void task_tick_dl(struct rq
*rq
, struct task_struct
*p
, int queued
)
1241 * Even when we have runtime, update_curr_dl() might have resulted in us
1242 * not being the leftmost task anymore. In that case NEED_RESCHED will
1243 * be set and schedule() will start a new hrtick for the next task.
1245 if (hrtick_enabled(rq
) && queued
&& p
->dl
.runtime
> 0 &&
1246 is_leftmost(p
, &rq
->dl
))
1247 start_hrtick_dl(rq
, p
);
1250 static void task_fork_dl(struct task_struct
*p
)
1253 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1258 static void task_dead_dl(struct task_struct
*p
)
1260 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
1263 * Since we are TASK_DEAD we won't slip out of the domain!
1265 raw_spin_lock_irq(&dl_b
->lock
);
1266 /* XXX we should retain the bw until 0-lag */
1267 dl_b
->total_bw
-= p
->dl
.dl_bw
;
1268 raw_spin_unlock_irq(&dl_b
->lock
);
1271 static void set_curr_task_dl(struct rq
*rq
)
1273 struct task_struct
*p
= rq
->curr
;
1275 p
->se
.exec_start
= rq_clock_task(rq
);
1277 /* You can't push away the running task */
1278 dequeue_pushable_dl_task(rq
, p
);
1283 /* Only try algorithms three times */
1284 #define DL_MAX_TRIES 3
1286 static int pick_dl_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1288 if (!task_running(rq
, p
) &&
1289 cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
1295 * Return the earliest pushable rq's task, which is suitable to be executed
1296 * on the CPU, NULL otherwise:
1298 static struct task_struct
*pick_earliest_pushable_dl_task(struct rq
*rq
, int cpu
)
1300 struct rb_node
*next_node
= rq
->dl
.pushable_dl_tasks_leftmost
;
1301 struct task_struct
*p
= NULL
;
1303 if (!has_pushable_dl_tasks(rq
))
1308 p
= rb_entry(next_node
, struct task_struct
, pushable_dl_tasks
);
1310 if (pick_dl_task(rq
, p
, cpu
))
1313 next_node
= rb_next(next_node
);
1320 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask_dl
);
1322 static int find_later_rq(struct task_struct
*task
)
1324 struct sched_domain
*sd
;
1325 struct cpumask
*later_mask
= this_cpu_cpumask_var_ptr(local_cpu_mask_dl
);
1326 int this_cpu
= smp_processor_id();
1327 int best_cpu
, cpu
= task_cpu(task
);
1329 /* Make sure the mask is initialized first */
1330 if (unlikely(!later_mask
))
1333 if (task
->nr_cpus_allowed
== 1)
1337 * We have to consider system topology and task affinity
1338 * first, then we can look for a suitable cpu.
1340 best_cpu
= cpudl_find(&task_rq(task
)->rd
->cpudl
,
1346 * If we are here, some target has been found,
1347 * the most suitable of which is cached in best_cpu.
1348 * This is, among the runqueues where the current tasks
1349 * have later deadlines than the task's one, the rq
1350 * with the latest possible one.
1352 * Now we check how well this matches with task's
1353 * affinity and system topology.
1355 * The last cpu where the task run is our first
1356 * guess, since it is most likely cache-hot there.
1358 if (cpumask_test_cpu(cpu
, later_mask
))
1361 * Check if this_cpu is to be skipped (i.e., it is
1362 * not in the mask) or not.
1364 if (!cpumask_test_cpu(this_cpu
, later_mask
))
1368 for_each_domain(cpu
, sd
) {
1369 if (sd
->flags
& SD_WAKE_AFFINE
) {
1372 * If possible, preempting this_cpu is
1373 * cheaper than migrating.
1375 if (this_cpu
!= -1 &&
1376 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1382 * Last chance: if best_cpu is valid and is
1383 * in the mask, that becomes our choice.
1385 if (best_cpu
< nr_cpu_ids
&&
1386 cpumask_test_cpu(best_cpu
, sched_domain_span(sd
))) {
1395 * At this point, all our guesses failed, we just return
1396 * 'something', and let the caller sort the things out.
1401 cpu
= cpumask_any(later_mask
);
1402 if (cpu
< nr_cpu_ids
)
1408 /* Locks the rq it finds */
1409 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
)
1411 struct rq
*later_rq
= NULL
;
1415 for (tries
= 0; tries
< DL_MAX_TRIES
; tries
++) {
1416 cpu
= find_later_rq(task
);
1418 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1421 later_rq
= cpu_rq(cpu
);
1423 if (later_rq
->dl
.dl_nr_running
&&
1424 !dl_time_before(task
->dl
.deadline
,
1425 later_rq
->dl
.earliest_dl
.curr
)) {
1427 * Target rq has tasks of equal or earlier deadline,
1428 * retrying does not release any lock and is unlikely
1429 * to yield a different result.
1435 /* Retry if something changed. */
1436 if (double_lock_balance(rq
, later_rq
)) {
1437 if (unlikely(task_rq(task
) != rq
||
1438 !cpumask_test_cpu(later_rq
->cpu
, &task
->cpus_allowed
) ||
1439 task_running(rq
, task
) ||
1441 !task_on_rq_queued(task
))) {
1442 double_unlock_balance(rq
, later_rq
);
1449 * If the rq we found has no -deadline task, or
1450 * its earliest one has a later deadline than our
1451 * task, the rq is a good one.
1453 if (!later_rq
->dl
.dl_nr_running
||
1454 dl_time_before(task
->dl
.deadline
,
1455 later_rq
->dl
.earliest_dl
.curr
))
1458 /* Otherwise we try again. */
1459 double_unlock_balance(rq
, later_rq
);
1466 static struct task_struct
*pick_next_pushable_dl_task(struct rq
*rq
)
1468 struct task_struct
*p
;
1470 if (!has_pushable_dl_tasks(rq
))
1473 p
= rb_entry(rq
->dl
.pushable_dl_tasks_leftmost
,
1474 struct task_struct
, pushable_dl_tasks
);
1476 BUG_ON(rq
->cpu
!= task_cpu(p
));
1477 BUG_ON(task_current(rq
, p
));
1478 BUG_ON(p
->nr_cpus_allowed
<= 1);
1480 BUG_ON(!task_on_rq_queued(p
));
1481 BUG_ON(!dl_task(p
));
1487 * See if the non running -deadline tasks on this rq
1488 * can be sent to some other CPU where they can preempt
1489 * and start executing.
1491 static int push_dl_task(struct rq
*rq
)
1493 struct task_struct
*next_task
;
1494 struct rq
*later_rq
;
1497 if (!rq
->dl
.overloaded
)
1500 next_task
= pick_next_pushable_dl_task(rq
);
1505 if (unlikely(next_task
== rq
->curr
)) {
1511 * If next_task preempts rq->curr, and rq->curr
1512 * can move away, it makes sense to just reschedule
1513 * without going further in pushing next_task.
1515 if (dl_task(rq
->curr
) &&
1516 dl_time_before(next_task
->dl
.deadline
, rq
->curr
->dl
.deadline
) &&
1517 rq
->curr
->nr_cpus_allowed
> 1) {
1522 /* We might release rq lock */
1523 get_task_struct(next_task
);
1525 /* Will lock the rq it'll find */
1526 later_rq
= find_lock_later_rq(next_task
, rq
);
1528 struct task_struct
*task
;
1531 * We must check all this again, since
1532 * find_lock_later_rq releases rq->lock and it is
1533 * then possible that next_task has migrated.
1535 task
= pick_next_pushable_dl_task(rq
);
1536 if (task_cpu(next_task
) == rq
->cpu
&& task
== next_task
) {
1538 * The task is still there. We don't try
1539 * again, some other cpu will pull it when ready.
1548 put_task_struct(next_task
);
1553 deactivate_task(rq
, next_task
, 0);
1554 set_task_cpu(next_task
, later_rq
->cpu
);
1555 activate_task(later_rq
, next_task
, 0);
1558 resched_curr(later_rq
);
1560 double_unlock_balance(rq
, later_rq
);
1563 put_task_struct(next_task
);
1568 static void push_dl_tasks(struct rq
*rq
)
1570 /* push_dl_task() will return true if it moved a -deadline task */
1571 while (push_dl_task(rq
))
1575 static void pull_dl_task(struct rq
*this_rq
)
1577 int this_cpu
= this_rq
->cpu
, cpu
;
1578 struct task_struct
*p
;
1579 bool resched
= false;
1581 u64 dmin
= LONG_MAX
;
1583 if (likely(!dl_overloaded(this_rq
)))
1587 * Match the barrier from dl_set_overloaded; this guarantees that if we
1588 * see overloaded we must also see the dlo_mask bit.
1592 for_each_cpu(cpu
, this_rq
->rd
->dlo_mask
) {
1593 if (this_cpu
== cpu
)
1596 src_rq
= cpu_rq(cpu
);
1599 * It looks racy, abd it is! However, as in sched_rt.c,
1600 * we are fine with this.
1602 if (this_rq
->dl
.dl_nr_running
&&
1603 dl_time_before(this_rq
->dl
.earliest_dl
.curr
,
1604 src_rq
->dl
.earliest_dl
.next
))
1607 /* Might drop this_rq->lock */
1608 double_lock_balance(this_rq
, src_rq
);
1611 * If there are no more pullable tasks on the
1612 * rq, we're done with it.
1614 if (src_rq
->dl
.dl_nr_running
<= 1)
1617 p
= pick_earliest_pushable_dl_task(src_rq
, this_cpu
);
1620 * We found a task to be pulled if:
1621 * - it preempts our current (if there's one),
1622 * - it will preempt the last one we pulled (if any).
1624 if (p
&& dl_time_before(p
->dl
.deadline
, dmin
) &&
1625 (!this_rq
->dl
.dl_nr_running
||
1626 dl_time_before(p
->dl
.deadline
,
1627 this_rq
->dl
.earliest_dl
.curr
))) {
1628 WARN_ON(p
== src_rq
->curr
);
1629 WARN_ON(!task_on_rq_queued(p
));
1632 * Then we pull iff p has actually an earlier
1633 * deadline than the current task of its runqueue.
1635 if (dl_time_before(p
->dl
.deadline
,
1636 src_rq
->curr
->dl
.deadline
))
1641 deactivate_task(src_rq
, p
, 0);
1642 set_task_cpu(p
, this_cpu
);
1643 activate_task(this_rq
, p
, 0);
1644 dmin
= p
->dl
.deadline
;
1646 /* Is there any other task even earlier? */
1649 double_unlock_balance(this_rq
, src_rq
);
1653 resched_curr(this_rq
);
1657 * Since the task is not running and a reschedule is not going to happen
1658 * anytime soon on its runqueue, we try pushing it away now.
1660 static void task_woken_dl(struct rq
*rq
, struct task_struct
*p
)
1662 if (!task_running(rq
, p
) &&
1663 !test_tsk_need_resched(rq
->curr
) &&
1664 p
->nr_cpus_allowed
> 1 &&
1665 dl_task(rq
->curr
) &&
1666 (rq
->curr
->nr_cpus_allowed
< 2 ||
1667 !dl_entity_preempt(&p
->dl
, &rq
->curr
->dl
))) {
1672 static void set_cpus_allowed_dl(struct task_struct
*p
,
1673 const struct cpumask
*new_mask
)
1675 struct root_domain
*src_rd
;
1678 BUG_ON(!dl_task(p
));
1683 * Migrating a SCHED_DEADLINE task between exclusive
1684 * cpusets (different root_domains) entails a bandwidth
1685 * update. We already made space for us in the destination
1686 * domain (see cpuset_can_attach()).
1688 if (!cpumask_intersects(src_rd
->span
, new_mask
)) {
1689 struct dl_bw
*src_dl_b
;
1691 src_dl_b
= dl_bw_of(cpu_of(rq
));
1693 * We now free resources of the root_domain we are migrating
1694 * off. In the worst case, sched_setattr() may temporary fail
1695 * until we complete the update.
1697 raw_spin_lock(&src_dl_b
->lock
);
1698 __dl_clear(src_dl_b
, p
->dl
.dl_bw
);
1699 raw_spin_unlock(&src_dl_b
->lock
);
1702 set_cpus_allowed_common(p
, new_mask
);
1705 /* Assumes rq->lock is held */
1706 static void rq_online_dl(struct rq
*rq
)
1708 if (rq
->dl
.overloaded
)
1709 dl_set_overload(rq
);
1711 cpudl_set_freecpu(&rq
->rd
->cpudl
, rq
->cpu
);
1712 if (rq
->dl
.dl_nr_running
> 0)
1713 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, rq
->dl
.earliest_dl
.curr
);
1716 /* Assumes rq->lock is held */
1717 static void rq_offline_dl(struct rq
*rq
)
1719 if (rq
->dl
.overloaded
)
1720 dl_clear_overload(rq
);
1722 cpudl_clear(&rq
->rd
->cpudl
, rq
->cpu
);
1723 cpudl_clear_freecpu(&rq
->rd
->cpudl
, rq
->cpu
);
1726 void __init
init_sched_dl_class(void)
1730 for_each_possible_cpu(i
)
1731 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl
, i
),
1732 GFP_KERNEL
, cpu_to_node(i
));
1735 #endif /* CONFIG_SMP */
1737 static void switched_from_dl(struct rq
*rq
, struct task_struct
*p
)
1740 * Start the deadline timer; if we switch back to dl before this we'll
1741 * continue consuming our current CBS slice. If we stay outside of
1742 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1745 if (!start_dl_timer(p
))
1746 __dl_clear_params(p
);
1749 * Since this might be the only -deadline task on the rq,
1750 * this is the right place to try to pull some other one
1751 * from an overloaded cpu, if any.
1753 if (!task_on_rq_queued(p
) || rq
->dl
.dl_nr_running
)
1756 queue_pull_task(rq
);
1760 * When switching to -deadline, we may overload the rq, then
1761 * we try to push someone off, if possible.
1763 static void switched_to_dl(struct rq
*rq
, struct task_struct
*p
)
1766 /* If p is not queued we will update its parameters at next wakeup. */
1767 if (!task_on_rq_queued(p
))
1771 * If p is boosted we already updated its params in
1772 * rt_mutex_setprio()->enqueue_task(..., ENQUEUE_REPLENISH),
1773 * p's deadline being now already after rq_clock(rq).
1775 if (dl_time_before(p
->dl
.deadline
, rq_clock(rq
)))
1776 setup_new_dl_entity(&p
->dl
);
1778 if (rq
->curr
!= p
) {
1780 if (p
->nr_cpus_allowed
> 1 && rq
->dl
.overloaded
)
1781 queue_push_tasks(rq
);
1783 if (dl_task(rq
->curr
))
1784 check_preempt_curr_dl(rq
, p
, 0);
1791 * If the scheduling parameters of a -deadline task changed,
1792 * a push or pull operation might be needed.
1794 static void prio_changed_dl(struct rq
*rq
, struct task_struct
*p
,
1797 if (task_on_rq_queued(p
) || rq
->curr
== p
) {
1800 * This might be too much, but unfortunately
1801 * we don't have the old deadline value, and
1802 * we can't argue if the task is increasing
1803 * or lowering its prio, so...
1805 if (!rq
->dl
.overloaded
)
1806 queue_pull_task(rq
);
1809 * If we now have a earlier deadline task than p,
1810 * then reschedule, provided p is still on this
1813 if (dl_time_before(rq
->dl
.earliest_dl
.curr
, p
->dl
.deadline
))
1817 * Again, we don't know if p has a earlier
1818 * or later deadline, so let's blindly set a
1819 * (maybe not needed) rescheduling point.
1822 #endif /* CONFIG_SMP */
1826 const struct sched_class dl_sched_class
= {
1827 .next
= &rt_sched_class
,
1828 .enqueue_task
= enqueue_task_dl
,
1829 .dequeue_task
= dequeue_task_dl
,
1830 .yield_task
= yield_task_dl
,
1832 .check_preempt_curr
= check_preempt_curr_dl
,
1834 .pick_next_task
= pick_next_task_dl
,
1835 .put_prev_task
= put_prev_task_dl
,
1838 .select_task_rq
= select_task_rq_dl
,
1839 .set_cpus_allowed
= set_cpus_allowed_dl
,
1840 .rq_online
= rq_online_dl
,
1841 .rq_offline
= rq_offline_dl
,
1842 .task_woken
= task_woken_dl
,
1845 .set_curr_task
= set_curr_task_dl
,
1846 .task_tick
= task_tick_dl
,
1847 .task_fork
= task_fork_dl
,
1848 .task_dead
= task_dead_dl
,
1850 .prio_changed
= prio_changed_dl
,
1851 .switched_from
= switched_from_dl
,
1852 .switched_to
= switched_to_dl
,
1854 .update_curr
= update_curr_dl
,
1857 #ifdef CONFIG_SCHED_DEBUG
1858 extern void print_dl_rq(struct seq_file
*m
, int cpu
, struct dl_rq
*dl_rq
);
1860 void print_dl_stats(struct seq_file
*m
, int cpu
)
1862 print_dl_rq(m
, cpu
, &cpu_rq(cpu
)->dl
);
1864 #endif /* CONFIG_SCHED_DEBUG */