perf auxtrace: Define auxtrace record alignment
[linux/fpc-iii.git] / mm / memory_hotplug.c
blob1ad28323fb9faceabb98cfc9f1b3834b365919bb
1 /*
2 * linux/mm/memory_hotplug.c
4 * Copyright (C)
5 */
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/compaction.h>
37 #include <linux/rmap.h>
39 #include <asm/tlbflush.h>
41 #include "internal.h"
44 * online_page_callback contains pointer to current page onlining function.
45 * Initially it is generic_online_page(). If it is required it could be
46 * changed by calling set_online_page_callback() for callback registration
47 * and restore_online_page_callback() for generic callback restore.
50 static void generic_online_page(struct page *page);
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
57 void get_online_mems(void)
59 percpu_down_read(&mem_hotplug_lock);
62 void put_online_mems(void)
64 percpu_up_read(&mem_hotplug_lock);
67 bool movable_node_enabled = false;
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 bool memhp_auto_online;
71 #else
72 bool memhp_auto_online = true;
73 #endif
74 EXPORT_SYMBOL_GPL(memhp_auto_online);
76 static int __init setup_memhp_default_state(char *str)
78 if (!strcmp(str, "online"))
79 memhp_auto_online = true;
80 else if (!strcmp(str, "offline"))
81 memhp_auto_online = false;
83 return 1;
85 __setup("memhp_default_state=", setup_memhp_default_state);
87 void mem_hotplug_begin(void)
89 cpus_read_lock();
90 percpu_down_write(&mem_hotplug_lock);
93 void mem_hotplug_done(void)
95 percpu_up_write(&mem_hotplug_lock);
96 cpus_read_unlock();
99 /* add this memory to iomem resource */
100 static struct resource *register_memory_resource(u64 start, u64 size)
102 struct resource *res, *conflict;
103 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
104 if (!res)
105 return ERR_PTR(-ENOMEM);
107 res->name = "System RAM";
108 res->start = start;
109 res->end = start + size - 1;
110 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
111 conflict = request_resource_conflict(&iomem_resource, res);
112 if (conflict) {
113 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
114 pr_debug("Device unaddressable memory block "
115 "memory hotplug at %#010llx !\n",
116 (unsigned long long)start);
118 pr_debug("System RAM resource %pR cannot be added\n", res);
119 kfree(res);
120 return ERR_PTR(-EEXIST);
122 return res;
125 static void release_memory_resource(struct resource *res)
127 if (!res)
128 return;
129 release_resource(res);
130 kfree(res);
131 return;
134 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
135 void get_page_bootmem(unsigned long info, struct page *page,
136 unsigned long type)
138 page->freelist = (void *)type;
139 SetPagePrivate(page);
140 set_page_private(page, info);
141 page_ref_inc(page);
144 void put_page_bootmem(struct page *page)
146 unsigned long type;
148 type = (unsigned long) page->freelist;
149 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
150 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
152 if (page_ref_dec_return(page) == 1) {
153 page->freelist = NULL;
154 ClearPagePrivate(page);
155 set_page_private(page, 0);
156 INIT_LIST_HEAD(&page->lru);
157 free_reserved_page(page);
161 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
162 #ifndef CONFIG_SPARSEMEM_VMEMMAP
163 static void register_page_bootmem_info_section(unsigned long start_pfn)
165 unsigned long *usemap, mapsize, section_nr, i;
166 struct mem_section *ms;
167 struct page *page, *memmap;
169 section_nr = pfn_to_section_nr(start_pfn);
170 ms = __nr_to_section(section_nr);
172 /* Get section's memmap address */
173 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
176 * Get page for the memmap's phys address
177 * XXX: need more consideration for sparse_vmemmap...
179 page = virt_to_page(memmap);
180 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
181 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
183 /* remember memmap's page */
184 for (i = 0; i < mapsize; i++, page++)
185 get_page_bootmem(section_nr, page, SECTION_INFO);
187 usemap = ms->pageblock_flags;
188 page = virt_to_page(usemap);
190 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
192 for (i = 0; i < mapsize; i++, page++)
193 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
196 #else /* CONFIG_SPARSEMEM_VMEMMAP */
197 static void register_page_bootmem_info_section(unsigned long start_pfn)
199 unsigned long *usemap, mapsize, section_nr, i;
200 struct mem_section *ms;
201 struct page *page, *memmap;
203 section_nr = pfn_to_section_nr(start_pfn);
204 ms = __nr_to_section(section_nr);
206 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
208 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
210 usemap = ms->pageblock_flags;
211 page = virt_to_page(usemap);
213 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
215 for (i = 0; i < mapsize; i++, page++)
216 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
218 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
220 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
222 unsigned long i, pfn, end_pfn, nr_pages;
223 int node = pgdat->node_id;
224 struct page *page;
226 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
227 page = virt_to_page(pgdat);
229 for (i = 0; i < nr_pages; i++, page++)
230 get_page_bootmem(node, page, NODE_INFO);
232 pfn = pgdat->node_start_pfn;
233 end_pfn = pgdat_end_pfn(pgdat);
235 /* register section info */
236 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
238 * Some platforms can assign the same pfn to multiple nodes - on
239 * node0 as well as nodeN. To avoid registering a pfn against
240 * multiple nodes we check that this pfn does not already
241 * reside in some other nodes.
243 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
244 register_page_bootmem_info_section(pfn);
247 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
249 static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
250 struct vmem_altmap *altmap, bool want_memblock)
252 int ret;
254 if (pfn_valid(phys_start_pfn))
255 return -EEXIST;
257 ret = sparse_add_one_section(nid, phys_start_pfn, altmap);
258 if (ret < 0)
259 return ret;
261 if (!want_memblock)
262 return 0;
264 return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
268 * Reasonably generic function for adding memory. It is
269 * expected that archs that support memory hotplug will
270 * call this function after deciding the zone to which to
271 * add the new pages.
273 int __ref __add_pages(int nid, unsigned long phys_start_pfn,
274 unsigned long nr_pages, struct vmem_altmap *altmap,
275 bool want_memblock)
277 unsigned long i;
278 int err = 0;
279 int start_sec, end_sec;
281 /* during initialize mem_map, align hot-added range to section */
282 start_sec = pfn_to_section_nr(phys_start_pfn);
283 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
285 if (altmap) {
287 * Validate altmap is within bounds of the total request
289 if (altmap->base_pfn != phys_start_pfn
290 || vmem_altmap_offset(altmap) > nr_pages) {
291 pr_warn_once("memory add fail, invalid altmap\n");
292 err = -EINVAL;
293 goto out;
295 altmap->alloc = 0;
298 for (i = start_sec; i <= end_sec; i++) {
299 err = __add_section(nid, section_nr_to_pfn(i), altmap,
300 want_memblock);
303 * EEXIST is finally dealt with by ioresource collision
304 * check. see add_memory() => register_memory_resource()
305 * Warning will be printed if there is collision.
307 if (err && (err != -EEXIST))
308 break;
309 err = 0;
310 cond_resched();
312 vmemmap_populate_print_last();
313 out:
314 return err;
317 #ifdef CONFIG_MEMORY_HOTREMOVE
318 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
319 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
320 unsigned long start_pfn,
321 unsigned long end_pfn)
323 struct mem_section *ms;
325 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
326 ms = __pfn_to_section(start_pfn);
328 if (unlikely(!valid_section(ms)))
329 continue;
331 if (unlikely(pfn_to_nid(start_pfn) != nid))
332 continue;
334 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
335 continue;
337 return start_pfn;
340 return 0;
343 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
344 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
345 unsigned long start_pfn,
346 unsigned long end_pfn)
348 struct mem_section *ms;
349 unsigned long pfn;
351 /* pfn is the end pfn of a memory section. */
352 pfn = end_pfn - 1;
353 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
354 ms = __pfn_to_section(pfn);
356 if (unlikely(!valid_section(ms)))
357 continue;
359 if (unlikely(pfn_to_nid(pfn) != nid))
360 continue;
362 if (zone && zone != page_zone(pfn_to_page(pfn)))
363 continue;
365 return pfn;
368 return 0;
371 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
372 unsigned long end_pfn)
374 unsigned long zone_start_pfn = zone->zone_start_pfn;
375 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
376 unsigned long zone_end_pfn = z;
377 unsigned long pfn;
378 struct mem_section *ms;
379 int nid = zone_to_nid(zone);
381 zone_span_writelock(zone);
382 if (zone_start_pfn == start_pfn) {
384 * If the section is smallest section in the zone, it need
385 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
386 * In this case, we find second smallest valid mem_section
387 * for shrinking zone.
389 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
390 zone_end_pfn);
391 if (pfn) {
392 zone->zone_start_pfn = pfn;
393 zone->spanned_pages = zone_end_pfn - pfn;
395 } else if (zone_end_pfn == end_pfn) {
397 * If the section is biggest section in the zone, it need
398 * shrink zone->spanned_pages.
399 * In this case, we find second biggest valid mem_section for
400 * shrinking zone.
402 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
403 start_pfn);
404 if (pfn)
405 zone->spanned_pages = pfn - zone_start_pfn + 1;
409 * The section is not biggest or smallest mem_section in the zone, it
410 * only creates a hole in the zone. So in this case, we need not
411 * change the zone. But perhaps, the zone has only hole data. Thus
412 * it check the zone has only hole or not.
414 pfn = zone_start_pfn;
415 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
416 ms = __pfn_to_section(pfn);
418 if (unlikely(!valid_section(ms)))
419 continue;
421 if (page_zone(pfn_to_page(pfn)) != zone)
422 continue;
424 /* If the section is current section, it continues the loop */
425 if (start_pfn == pfn)
426 continue;
428 /* If we find valid section, we have nothing to do */
429 zone_span_writeunlock(zone);
430 return;
433 /* The zone has no valid section */
434 zone->zone_start_pfn = 0;
435 zone->spanned_pages = 0;
436 zone_span_writeunlock(zone);
439 static void shrink_pgdat_span(struct pglist_data *pgdat,
440 unsigned long start_pfn, unsigned long end_pfn)
442 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
443 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
444 unsigned long pgdat_end_pfn = p;
445 unsigned long pfn;
446 struct mem_section *ms;
447 int nid = pgdat->node_id;
449 if (pgdat_start_pfn == start_pfn) {
451 * If the section is smallest section in the pgdat, it need
452 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
453 * In this case, we find second smallest valid mem_section
454 * for shrinking zone.
456 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
457 pgdat_end_pfn);
458 if (pfn) {
459 pgdat->node_start_pfn = pfn;
460 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
462 } else if (pgdat_end_pfn == end_pfn) {
464 * If the section is biggest section in the pgdat, it need
465 * shrink pgdat->node_spanned_pages.
466 * In this case, we find second biggest valid mem_section for
467 * shrinking zone.
469 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
470 start_pfn);
471 if (pfn)
472 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
476 * If the section is not biggest or smallest mem_section in the pgdat,
477 * it only creates a hole in the pgdat. So in this case, we need not
478 * change the pgdat.
479 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
480 * has only hole or not.
482 pfn = pgdat_start_pfn;
483 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
484 ms = __pfn_to_section(pfn);
486 if (unlikely(!valid_section(ms)))
487 continue;
489 if (pfn_to_nid(pfn) != nid)
490 continue;
492 /* If the section is current section, it continues the loop */
493 if (start_pfn == pfn)
494 continue;
496 /* If we find valid section, we have nothing to do */
497 return;
500 /* The pgdat has no valid section */
501 pgdat->node_start_pfn = 0;
502 pgdat->node_spanned_pages = 0;
505 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
507 struct pglist_data *pgdat = zone->zone_pgdat;
508 int nr_pages = PAGES_PER_SECTION;
509 unsigned long flags;
511 pgdat_resize_lock(zone->zone_pgdat, &flags);
512 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
513 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
514 pgdat_resize_unlock(zone->zone_pgdat, &flags);
517 static int __remove_section(struct zone *zone, struct mem_section *ms,
518 unsigned long map_offset, struct vmem_altmap *altmap)
520 unsigned long start_pfn;
521 int scn_nr;
522 int ret = -EINVAL;
524 if (!valid_section(ms))
525 return ret;
527 ret = unregister_memory_section(ms);
528 if (ret)
529 return ret;
531 scn_nr = __section_nr(ms);
532 start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
533 __remove_zone(zone, start_pfn);
535 sparse_remove_one_section(zone, ms, map_offset, altmap);
536 return 0;
540 * __remove_pages() - remove sections of pages from a zone
541 * @zone: zone from which pages need to be removed
542 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
543 * @nr_pages: number of pages to remove (must be multiple of section size)
544 * @altmap: alternative device page map or %NULL if default memmap is used
546 * Generic helper function to remove section mappings and sysfs entries
547 * for the section of the memory we are removing. Caller needs to make
548 * sure that pages are marked reserved and zones are adjust properly by
549 * calling offline_pages().
551 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
552 unsigned long nr_pages, struct vmem_altmap *altmap)
554 unsigned long i;
555 unsigned long map_offset = 0;
556 int sections_to_remove, ret = 0;
558 /* In the ZONE_DEVICE case device driver owns the memory region */
559 if (is_dev_zone(zone)) {
560 if (altmap)
561 map_offset = vmem_altmap_offset(altmap);
562 } else {
563 resource_size_t start, size;
565 start = phys_start_pfn << PAGE_SHIFT;
566 size = nr_pages * PAGE_SIZE;
568 ret = release_mem_region_adjustable(&iomem_resource, start,
569 size);
570 if (ret) {
571 resource_size_t endres = start + size - 1;
573 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
574 &start, &endres, ret);
578 clear_zone_contiguous(zone);
581 * We can only remove entire sections
583 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
584 BUG_ON(nr_pages % PAGES_PER_SECTION);
586 sections_to_remove = nr_pages / PAGES_PER_SECTION;
587 for (i = 0; i < sections_to_remove; i++) {
588 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
590 cond_resched();
591 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset,
592 altmap);
593 map_offset = 0;
594 if (ret)
595 break;
598 set_zone_contiguous(zone);
600 return ret;
602 #endif /* CONFIG_MEMORY_HOTREMOVE */
604 int set_online_page_callback(online_page_callback_t callback)
606 int rc = -EINVAL;
608 get_online_mems();
609 mutex_lock(&online_page_callback_lock);
611 if (online_page_callback == generic_online_page) {
612 online_page_callback = callback;
613 rc = 0;
616 mutex_unlock(&online_page_callback_lock);
617 put_online_mems();
619 return rc;
621 EXPORT_SYMBOL_GPL(set_online_page_callback);
623 int restore_online_page_callback(online_page_callback_t callback)
625 int rc = -EINVAL;
627 get_online_mems();
628 mutex_lock(&online_page_callback_lock);
630 if (online_page_callback == callback) {
631 online_page_callback = generic_online_page;
632 rc = 0;
635 mutex_unlock(&online_page_callback_lock);
636 put_online_mems();
638 return rc;
640 EXPORT_SYMBOL_GPL(restore_online_page_callback);
642 void __online_page_set_limits(struct page *page)
645 EXPORT_SYMBOL_GPL(__online_page_set_limits);
647 void __online_page_increment_counters(struct page *page)
649 adjust_managed_page_count(page, 1);
651 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
653 void __online_page_free(struct page *page)
655 __free_reserved_page(page);
657 EXPORT_SYMBOL_GPL(__online_page_free);
659 static void generic_online_page(struct page *page)
661 __online_page_set_limits(page);
662 __online_page_increment_counters(page);
663 __online_page_free(page);
666 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
667 void *arg)
669 unsigned long i;
670 unsigned long onlined_pages = *(unsigned long *)arg;
671 struct page *page;
673 if (PageReserved(pfn_to_page(start_pfn)))
674 for (i = 0; i < nr_pages; i++) {
675 page = pfn_to_page(start_pfn + i);
676 (*online_page_callback)(page);
677 onlined_pages++;
680 online_mem_sections(start_pfn, start_pfn + nr_pages);
682 *(unsigned long *)arg = onlined_pages;
683 return 0;
686 /* check which state of node_states will be changed when online memory */
687 static void node_states_check_changes_online(unsigned long nr_pages,
688 struct zone *zone, struct memory_notify *arg)
690 int nid = zone_to_nid(zone);
692 arg->status_change_nid = -1;
693 arg->status_change_nid_normal = -1;
694 arg->status_change_nid_high = -1;
696 if (!node_state(nid, N_MEMORY))
697 arg->status_change_nid = nid;
698 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
699 arg->status_change_nid_normal = nid;
700 #ifdef CONFIG_HIGHMEM
701 if (zone_idx(zone) <= N_HIGH_MEMORY && !node_state(nid, N_HIGH_MEMORY))
702 arg->status_change_nid_high = nid;
703 #endif
706 static void node_states_set_node(int node, struct memory_notify *arg)
708 if (arg->status_change_nid_normal >= 0)
709 node_set_state(node, N_NORMAL_MEMORY);
711 if (arg->status_change_nid_high >= 0)
712 node_set_state(node, N_HIGH_MEMORY);
714 if (arg->status_change_nid >= 0)
715 node_set_state(node, N_MEMORY);
718 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
719 unsigned long nr_pages)
721 unsigned long old_end_pfn = zone_end_pfn(zone);
723 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
724 zone->zone_start_pfn = start_pfn;
726 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
729 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
730 unsigned long nr_pages)
732 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
734 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
735 pgdat->node_start_pfn = start_pfn;
737 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
740 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
741 unsigned long nr_pages, struct vmem_altmap *altmap)
743 struct pglist_data *pgdat = zone->zone_pgdat;
744 int nid = pgdat->node_id;
745 unsigned long flags;
747 clear_zone_contiguous(zone);
749 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
750 pgdat_resize_lock(pgdat, &flags);
751 zone_span_writelock(zone);
752 if (zone_is_empty(zone))
753 init_currently_empty_zone(zone, start_pfn, nr_pages);
754 resize_zone_range(zone, start_pfn, nr_pages);
755 zone_span_writeunlock(zone);
756 resize_pgdat_range(pgdat, start_pfn, nr_pages);
757 pgdat_resize_unlock(pgdat, &flags);
760 * TODO now we have a visible range of pages which are not associated
761 * with their zone properly. Not nice but set_pfnblock_flags_mask
762 * expects the zone spans the pfn range. All the pages in the range
763 * are reserved so nobody should be touching them so we should be safe
765 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
766 MEMMAP_HOTPLUG, altmap);
768 set_zone_contiguous(zone);
772 * Returns a default kernel memory zone for the given pfn range.
773 * If no kernel zone covers this pfn range it will automatically go
774 * to the ZONE_NORMAL.
776 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
777 unsigned long nr_pages)
779 struct pglist_data *pgdat = NODE_DATA(nid);
780 int zid;
782 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
783 struct zone *zone = &pgdat->node_zones[zid];
785 if (zone_intersects(zone, start_pfn, nr_pages))
786 return zone;
789 return &pgdat->node_zones[ZONE_NORMAL];
792 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
793 unsigned long nr_pages)
795 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
796 nr_pages);
797 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
798 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
799 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
802 * We inherit the existing zone in a simple case where zones do not
803 * overlap in the given range
805 if (in_kernel ^ in_movable)
806 return (in_kernel) ? kernel_zone : movable_zone;
809 * If the range doesn't belong to any zone or two zones overlap in the
810 * given range then we use movable zone only if movable_node is
811 * enabled because we always online to a kernel zone by default.
813 return movable_node_enabled ? movable_zone : kernel_zone;
816 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
817 unsigned long nr_pages)
819 if (online_type == MMOP_ONLINE_KERNEL)
820 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
822 if (online_type == MMOP_ONLINE_MOVABLE)
823 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
825 return default_zone_for_pfn(nid, start_pfn, nr_pages);
829 * Associates the given pfn range with the given node and the zone appropriate
830 * for the given online type.
832 static struct zone * __meminit move_pfn_range(int online_type, int nid,
833 unsigned long start_pfn, unsigned long nr_pages)
835 struct zone *zone;
837 zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
838 move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
839 return zone;
842 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
844 unsigned long flags;
845 unsigned long onlined_pages = 0;
846 struct zone *zone;
847 int need_zonelists_rebuild = 0;
848 int nid;
849 int ret;
850 struct memory_notify arg;
851 struct memory_block *mem;
853 mem_hotplug_begin();
856 * We can't use pfn_to_nid() because nid might be stored in struct page
857 * which is not yet initialized. Instead, we find nid from memory block.
859 mem = find_memory_block(__pfn_to_section(pfn));
860 nid = mem->nid;
862 /* associate pfn range with the zone */
863 zone = move_pfn_range(online_type, nid, pfn, nr_pages);
865 arg.start_pfn = pfn;
866 arg.nr_pages = nr_pages;
867 node_states_check_changes_online(nr_pages, zone, &arg);
869 ret = memory_notify(MEM_GOING_ONLINE, &arg);
870 ret = notifier_to_errno(ret);
871 if (ret)
872 goto failed_addition;
875 * If this zone is not populated, then it is not in zonelist.
876 * This means the page allocator ignores this zone.
877 * So, zonelist must be updated after online.
879 if (!populated_zone(zone)) {
880 need_zonelists_rebuild = 1;
881 setup_zone_pageset(zone);
884 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
885 online_pages_range);
886 if (ret) {
887 if (need_zonelists_rebuild)
888 zone_pcp_reset(zone);
889 goto failed_addition;
892 zone->present_pages += onlined_pages;
894 pgdat_resize_lock(zone->zone_pgdat, &flags);
895 zone->zone_pgdat->node_present_pages += onlined_pages;
896 pgdat_resize_unlock(zone->zone_pgdat, &flags);
898 if (onlined_pages) {
899 node_states_set_node(nid, &arg);
900 if (need_zonelists_rebuild)
901 build_all_zonelists(NULL);
902 else
903 zone_pcp_update(zone);
906 init_per_zone_wmark_min();
908 if (onlined_pages) {
909 kswapd_run(nid);
910 kcompactd_run(nid);
913 vm_total_pages = nr_free_pagecache_pages();
915 writeback_set_ratelimit();
917 if (onlined_pages)
918 memory_notify(MEM_ONLINE, &arg);
919 mem_hotplug_done();
920 return 0;
922 failed_addition:
923 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
924 (unsigned long long) pfn << PAGE_SHIFT,
925 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
926 memory_notify(MEM_CANCEL_ONLINE, &arg);
927 mem_hotplug_done();
928 return ret;
930 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
932 static void reset_node_present_pages(pg_data_t *pgdat)
934 struct zone *z;
936 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
937 z->present_pages = 0;
939 pgdat->node_present_pages = 0;
942 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
943 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
945 struct pglist_data *pgdat;
946 unsigned long start_pfn = PFN_DOWN(start);
948 pgdat = NODE_DATA(nid);
949 if (!pgdat) {
950 pgdat = arch_alloc_nodedata(nid);
951 if (!pgdat)
952 return NULL;
954 arch_refresh_nodedata(nid, pgdat);
955 } else {
957 * Reset the nr_zones, order and classzone_idx before reuse.
958 * Note that kswapd will init kswapd_classzone_idx properly
959 * when it starts in the near future.
961 pgdat->nr_zones = 0;
962 pgdat->kswapd_order = 0;
963 pgdat->kswapd_classzone_idx = 0;
966 /* we can use NODE_DATA(nid) from here */
968 pgdat->node_id = nid;
969 pgdat->node_start_pfn = start_pfn;
971 /* init node's zones as empty zones, we don't have any present pages.*/
972 free_area_init_core_hotplug(nid);
973 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
976 * The node we allocated has no zone fallback lists. For avoiding
977 * to access not-initialized zonelist, build here.
979 build_all_zonelists(pgdat);
982 * When memory is hot-added, all the memory is in offline state. So
983 * clear all zones' present_pages because they will be updated in
984 * online_pages() and offline_pages().
986 reset_node_managed_pages(pgdat);
987 reset_node_present_pages(pgdat);
989 return pgdat;
992 static void rollback_node_hotadd(int nid)
994 pg_data_t *pgdat = NODE_DATA(nid);
996 arch_refresh_nodedata(nid, NULL);
997 free_percpu(pgdat->per_cpu_nodestats);
998 arch_free_nodedata(pgdat);
999 return;
1004 * try_online_node - online a node if offlined
1005 * @nid: the node ID
1006 * @start: start addr of the node
1007 * @set_node_online: Whether we want to online the node
1008 * called by cpu_up() to online a node without onlined memory.
1010 * Returns:
1011 * 1 -> a new node has been allocated
1012 * 0 -> the node is already online
1013 * -ENOMEM -> the node could not be allocated
1015 static int __try_online_node(int nid, u64 start, bool set_node_online)
1017 pg_data_t *pgdat;
1018 int ret = 1;
1020 if (node_online(nid))
1021 return 0;
1023 pgdat = hotadd_new_pgdat(nid, start);
1024 if (!pgdat) {
1025 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1026 ret = -ENOMEM;
1027 goto out;
1030 if (set_node_online) {
1031 node_set_online(nid);
1032 ret = register_one_node(nid);
1033 BUG_ON(ret);
1035 out:
1036 return ret;
1040 * Users of this function always want to online/register the node
1042 int try_online_node(int nid)
1044 int ret;
1046 mem_hotplug_begin();
1047 ret = __try_online_node(nid, 0, true);
1048 mem_hotplug_done();
1049 return ret;
1052 static int check_hotplug_memory_range(u64 start, u64 size)
1054 unsigned long block_sz = memory_block_size_bytes();
1055 u64 block_nr_pages = block_sz >> PAGE_SHIFT;
1056 u64 nr_pages = size >> PAGE_SHIFT;
1057 u64 start_pfn = PFN_DOWN(start);
1059 /* memory range must be block size aligned */
1060 if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
1061 !IS_ALIGNED(nr_pages, block_nr_pages)) {
1062 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1063 block_sz, start, size);
1064 return -EINVAL;
1067 return 0;
1070 static int online_memory_block(struct memory_block *mem, void *arg)
1072 return device_online(&mem->dev);
1076 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1077 * and online/offline operations (triggered e.g. by sysfs).
1079 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1081 int __ref add_memory_resource(int nid, struct resource *res)
1083 u64 start, size;
1084 bool new_node = false;
1085 int ret;
1087 start = res->start;
1088 size = resource_size(res);
1090 ret = check_hotplug_memory_range(start, size);
1091 if (ret)
1092 return ret;
1094 mem_hotplug_begin();
1097 * Add new range to memblock so that when hotadd_new_pgdat() is called
1098 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1099 * this new range and calculate total pages correctly. The range will
1100 * be removed at hot-remove time.
1102 memblock_add_node(start, size, nid);
1104 ret = __try_online_node(nid, start, false);
1105 if (ret < 0)
1106 goto error;
1107 new_node = ret;
1109 /* call arch's memory hotadd */
1110 ret = arch_add_memory(nid, start, size, NULL, true);
1111 if (ret < 0)
1112 goto error;
1114 if (new_node) {
1115 /* If sysfs file of new node can't be created, cpu on the node
1116 * can't be hot-added. There is no rollback way now.
1117 * So, check by BUG_ON() to catch it reluctantly..
1118 * We online node here. We can't roll back from here.
1120 node_set_online(nid);
1121 ret = __register_one_node(nid);
1122 BUG_ON(ret);
1125 /* link memory sections under this node.*/
1126 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1127 BUG_ON(ret);
1129 /* create new memmap entry */
1130 firmware_map_add_hotplug(start, start + size, "System RAM");
1132 /* device_online() will take the lock when calling online_pages() */
1133 mem_hotplug_done();
1135 /* online pages if requested */
1136 if (memhp_auto_online)
1137 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1138 NULL, online_memory_block);
1140 return ret;
1141 error:
1142 /* rollback pgdat allocation and others */
1143 if (new_node)
1144 rollback_node_hotadd(nid);
1145 memblock_remove(start, size);
1146 mem_hotplug_done();
1147 return ret;
1150 /* requires device_hotplug_lock, see add_memory_resource() */
1151 int __ref __add_memory(int nid, u64 start, u64 size)
1153 struct resource *res;
1154 int ret;
1156 res = register_memory_resource(start, size);
1157 if (IS_ERR(res))
1158 return PTR_ERR(res);
1160 ret = add_memory_resource(nid, res);
1161 if (ret < 0)
1162 release_memory_resource(res);
1163 return ret;
1166 int add_memory(int nid, u64 start, u64 size)
1168 int rc;
1170 lock_device_hotplug();
1171 rc = __add_memory(nid, start, size);
1172 unlock_device_hotplug();
1174 return rc;
1176 EXPORT_SYMBOL_GPL(add_memory);
1178 #ifdef CONFIG_MEMORY_HOTREMOVE
1180 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1181 * set and the size of the free page is given by page_order(). Using this,
1182 * the function determines if the pageblock contains only free pages.
1183 * Due to buddy contraints, a free page at least the size of a pageblock will
1184 * be located at the start of the pageblock
1186 static inline int pageblock_free(struct page *page)
1188 return PageBuddy(page) && page_order(page) >= pageblock_order;
1191 /* Return the pfn of the start of the next active pageblock after a given pfn */
1192 static unsigned long next_active_pageblock(unsigned long pfn)
1194 struct page *page = pfn_to_page(pfn);
1196 /* Ensure the starting page is pageblock-aligned */
1197 BUG_ON(pfn & (pageblock_nr_pages - 1));
1199 /* If the entire pageblock is free, move to the end of free page */
1200 if (pageblock_free(page)) {
1201 int order;
1202 /* be careful. we don't have locks, page_order can be changed.*/
1203 order = page_order(page);
1204 if ((order < MAX_ORDER) && (order >= pageblock_order))
1205 return pfn + (1 << order);
1208 return pfn + pageblock_nr_pages;
1211 static bool is_pageblock_removable_nolock(unsigned long pfn)
1213 struct page *page = pfn_to_page(pfn);
1214 struct zone *zone;
1217 * We have to be careful here because we are iterating over memory
1218 * sections which are not zone aware so we might end up outside of
1219 * the zone but still within the section.
1220 * We have to take care about the node as well. If the node is offline
1221 * its NODE_DATA will be NULL - see page_zone.
1223 if (!node_online(page_to_nid(page)))
1224 return false;
1226 zone = page_zone(page);
1227 pfn = page_to_pfn(page);
1228 if (!zone_spans_pfn(zone, pfn))
1229 return false;
1231 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
1234 /* Checks if this range of memory is likely to be hot-removable. */
1235 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1237 unsigned long end_pfn, pfn;
1239 end_pfn = min(start_pfn + nr_pages,
1240 zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1242 /* Check the starting page of each pageblock within the range */
1243 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1244 if (!is_pageblock_removable_nolock(pfn))
1245 return false;
1246 cond_resched();
1249 /* All pageblocks in the memory block are likely to be hot-removable */
1250 return true;
1254 * Confirm all pages in a range [start, end) belong to the same zone.
1255 * When true, return its valid [start, end).
1257 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1258 unsigned long *valid_start, unsigned long *valid_end)
1260 unsigned long pfn, sec_end_pfn;
1261 unsigned long start, end;
1262 struct zone *zone = NULL;
1263 struct page *page;
1264 int i;
1265 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1266 pfn < end_pfn;
1267 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1268 /* Make sure the memory section is present first */
1269 if (!present_section_nr(pfn_to_section_nr(pfn)))
1270 continue;
1271 for (; pfn < sec_end_pfn && pfn < end_pfn;
1272 pfn += MAX_ORDER_NR_PAGES) {
1273 i = 0;
1274 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1275 while ((i < MAX_ORDER_NR_PAGES) &&
1276 !pfn_valid_within(pfn + i))
1277 i++;
1278 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1279 continue;
1280 /* Check if we got outside of the zone */
1281 if (zone && !zone_spans_pfn(zone, pfn + i))
1282 return 0;
1283 page = pfn_to_page(pfn + i);
1284 if (zone && page_zone(page) != zone)
1285 return 0;
1286 if (!zone)
1287 start = pfn + i;
1288 zone = page_zone(page);
1289 end = pfn + MAX_ORDER_NR_PAGES;
1293 if (zone) {
1294 *valid_start = start;
1295 *valid_end = min(end, end_pfn);
1296 return 1;
1297 } else {
1298 return 0;
1303 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1304 * non-lru movable pages and hugepages). We scan pfn because it's much
1305 * easier than scanning over linked list. This function returns the pfn
1306 * of the first found movable page if it's found, otherwise 0.
1308 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1310 unsigned long pfn;
1312 for (pfn = start; pfn < end; pfn++) {
1313 struct page *page, *head;
1314 unsigned long skip;
1316 if (!pfn_valid(pfn))
1317 continue;
1318 page = pfn_to_page(pfn);
1319 if (PageLRU(page))
1320 return pfn;
1321 if (__PageMovable(page))
1322 return pfn;
1324 if (!PageHuge(page))
1325 continue;
1326 head = compound_head(page);
1327 if (hugepage_migration_supported(page_hstate(head)) &&
1328 page_huge_active(head))
1329 return pfn;
1330 skip = (1 << compound_order(head)) - (page - head);
1331 pfn += skip - 1;
1333 return 0;
1336 static struct page *new_node_page(struct page *page, unsigned long private)
1338 int nid = page_to_nid(page);
1339 nodemask_t nmask = node_states[N_MEMORY];
1342 * try to allocate from a different node but reuse this node if there
1343 * are no other online nodes to be used (e.g. we are offlining a part
1344 * of the only existing node)
1346 node_clear(nid, nmask);
1347 if (nodes_empty(nmask))
1348 node_set(nid, nmask);
1350 return new_page_nodemask(page, nid, &nmask);
1353 static int
1354 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1356 unsigned long pfn;
1357 struct page *page;
1358 int ret = 0;
1359 LIST_HEAD(source);
1361 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1362 if (!pfn_valid(pfn))
1363 continue;
1364 page = pfn_to_page(pfn);
1366 if (PageHuge(page)) {
1367 struct page *head = compound_head(page);
1368 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1369 if (compound_order(head) > PFN_SECTION_SHIFT) {
1370 ret = -EBUSY;
1371 break;
1373 isolate_huge_page(page, &source);
1374 continue;
1375 } else if (PageTransHuge(page))
1376 pfn = page_to_pfn(compound_head(page))
1377 + hpage_nr_pages(page) - 1;
1380 * HWPoison pages have elevated reference counts so the migration would
1381 * fail on them. It also doesn't make any sense to migrate them in the
1382 * first place. Still try to unmap such a page in case it is still mapped
1383 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1384 * the unmap as the catch all safety net).
1386 if (PageHWPoison(page)) {
1387 if (WARN_ON(PageLRU(page)))
1388 isolate_lru_page(page);
1389 if (page_mapped(page))
1390 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1391 continue;
1394 if (!get_page_unless_zero(page))
1395 continue;
1397 * We can skip free pages. And we can deal with pages on
1398 * LRU and non-lru movable pages.
1400 if (PageLRU(page))
1401 ret = isolate_lru_page(page);
1402 else
1403 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1404 if (!ret) { /* Success */
1405 list_add_tail(&page->lru, &source);
1406 if (!__PageMovable(page))
1407 inc_node_page_state(page, NR_ISOLATED_ANON +
1408 page_is_file_cache(page));
1410 } else {
1411 pr_warn("failed to isolate pfn %lx\n", pfn);
1412 dump_page(page, "isolation failed");
1414 put_page(page);
1416 if (!list_empty(&source)) {
1417 /* Allocate a new page from the nearest neighbor node */
1418 ret = migrate_pages(&source, new_node_page, NULL, 0,
1419 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1420 if (ret) {
1421 list_for_each_entry(page, &source, lru) {
1422 pr_warn("migrating pfn %lx failed ret:%d ",
1423 page_to_pfn(page), ret);
1424 dump_page(page, "migration failure");
1426 putback_movable_pages(&source);
1430 return ret;
1434 * remove from free_area[] and mark all as Reserved.
1436 static int
1437 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1438 void *data)
1440 __offline_isolated_pages(start, start + nr_pages);
1441 return 0;
1444 static void
1445 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1447 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1448 offline_isolated_pages_cb);
1452 * Check all pages in range, recoreded as memory resource, are isolated.
1454 static int
1455 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1456 void *data)
1458 int ret;
1459 long offlined = *(long *)data;
1460 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1461 offlined = nr_pages;
1462 if (!ret)
1463 *(long *)data += offlined;
1464 return ret;
1467 static long
1468 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1470 long offlined = 0;
1471 int ret;
1473 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1474 check_pages_isolated_cb);
1475 if (ret < 0)
1476 offlined = (long)ret;
1477 return offlined;
1480 static int __init cmdline_parse_movable_node(char *p)
1482 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1483 movable_node_enabled = true;
1484 #else
1485 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1486 #endif
1487 return 0;
1489 early_param("movable_node", cmdline_parse_movable_node);
1491 /* check which state of node_states will be changed when offline memory */
1492 static void node_states_check_changes_offline(unsigned long nr_pages,
1493 struct zone *zone, struct memory_notify *arg)
1495 struct pglist_data *pgdat = zone->zone_pgdat;
1496 unsigned long present_pages = 0;
1497 enum zone_type zt;
1499 arg->status_change_nid = -1;
1500 arg->status_change_nid_normal = -1;
1501 arg->status_change_nid_high = -1;
1504 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1505 * If the memory to be offline is within the range
1506 * [0..ZONE_NORMAL], and it is the last present memory there,
1507 * the zones in that range will become empty after the offlining,
1508 * thus we can determine that we need to clear the node from
1509 * node_states[N_NORMAL_MEMORY].
1511 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1512 present_pages += pgdat->node_zones[zt].present_pages;
1513 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1514 arg->status_change_nid_normal = zone_to_nid(zone);
1516 #ifdef CONFIG_HIGHMEM
1518 * node_states[N_HIGH_MEMORY] contains nodes which
1519 * have normal memory or high memory.
1520 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1521 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1522 * we determine that the zones in that range become empty,
1523 * we need to clear the node for N_HIGH_MEMORY.
1525 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1526 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1527 arg->status_change_nid_high = zone_to_nid(zone);
1528 #endif
1531 * We have accounted the pages from [0..ZONE_NORMAL), and
1532 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1533 * as well.
1534 * Here we count the possible pages from ZONE_MOVABLE.
1535 * If after having accounted all the pages, we see that the nr_pages
1536 * to be offlined is over or equal to the accounted pages,
1537 * we know that the node will become empty, and so, we can clear
1538 * it for N_MEMORY as well.
1540 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1542 if (nr_pages >= present_pages)
1543 arg->status_change_nid = zone_to_nid(zone);
1546 static void node_states_clear_node(int node, struct memory_notify *arg)
1548 if (arg->status_change_nid_normal >= 0)
1549 node_clear_state(node, N_NORMAL_MEMORY);
1551 if (arg->status_change_nid_high >= 0)
1552 node_clear_state(node, N_HIGH_MEMORY);
1554 if (arg->status_change_nid >= 0)
1555 node_clear_state(node, N_MEMORY);
1558 static int __ref __offline_pages(unsigned long start_pfn,
1559 unsigned long end_pfn)
1561 unsigned long pfn, nr_pages;
1562 long offlined_pages;
1563 int ret, node;
1564 unsigned long flags;
1565 unsigned long valid_start, valid_end;
1566 struct zone *zone;
1567 struct memory_notify arg;
1568 char *reason;
1570 mem_hotplug_begin();
1572 /* This makes hotplug much easier...and readable.
1573 we assume this for now. .*/
1574 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1575 &valid_end)) {
1576 ret = -EINVAL;
1577 reason = "multizone range";
1578 goto failed_removal;
1581 zone = page_zone(pfn_to_page(valid_start));
1582 node = zone_to_nid(zone);
1583 nr_pages = end_pfn - start_pfn;
1585 /* set above range as isolated */
1586 ret = start_isolate_page_range(start_pfn, end_pfn,
1587 MIGRATE_MOVABLE,
1588 SKIP_HWPOISON | REPORT_FAILURE);
1589 if (ret) {
1590 reason = "failure to isolate range";
1591 goto failed_removal;
1594 arg.start_pfn = start_pfn;
1595 arg.nr_pages = nr_pages;
1596 node_states_check_changes_offline(nr_pages, zone, &arg);
1598 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1599 ret = notifier_to_errno(ret);
1600 if (ret) {
1601 reason = "notifier failure";
1602 goto failed_removal_isolated;
1605 do {
1606 for (pfn = start_pfn; pfn;) {
1607 if (signal_pending(current)) {
1608 ret = -EINTR;
1609 reason = "signal backoff";
1610 goto failed_removal_isolated;
1613 cond_resched();
1614 lru_add_drain_all();
1615 drain_all_pages(zone);
1617 pfn = scan_movable_pages(pfn, end_pfn);
1618 if (pfn) {
1620 * TODO: fatal migration failures should bail
1621 * out
1623 do_migrate_range(pfn, end_pfn);
1628 * Dissolve free hugepages in the memory block before doing
1629 * offlining actually in order to make hugetlbfs's object
1630 * counting consistent.
1632 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1633 if (ret) {
1634 reason = "failure to dissolve huge pages";
1635 goto failed_removal_isolated;
1637 /* check again */
1638 offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1639 } while (offlined_pages < 0);
1641 pr_info("Offlined Pages %ld\n", offlined_pages);
1642 /* Ok, all of our target is isolated.
1643 We cannot do rollback at this point. */
1644 offline_isolated_pages(start_pfn, end_pfn);
1645 /* reset pagetype flags and makes migrate type to be MOVABLE */
1646 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1647 /* removal success */
1648 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1649 zone->present_pages -= offlined_pages;
1651 pgdat_resize_lock(zone->zone_pgdat, &flags);
1652 zone->zone_pgdat->node_present_pages -= offlined_pages;
1653 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1655 init_per_zone_wmark_min();
1657 if (!populated_zone(zone)) {
1658 zone_pcp_reset(zone);
1659 build_all_zonelists(NULL);
1660 } else
1661 zone_pcp_update(zone);
1663 node_states_clear_node(node, &arg);
1664 if (arg.status_change_nid >= 0) {
1665 kswapd_stop(node);
1666 kcompactd_stop(node);
1669 vm_total_pages = nr_free_pagecache_pages();
1670 writeback_set_ratelimit();
1672 memory_notify(MEM_OFFLINE, &arg);
1673 mem_hotplug_done();
1674 return 0;
1676 failed_removal_isolated:
1677 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1678 failed_removal:
1679 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1680 (unsigned long long) start_pfn << PAGE_SHIFT,
1681 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1682 reason);
1683 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1684 /* pushback to free area */
1685 mem_hotplug_done();
1686 return ret;
1689 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1691 return __offline_pages(start_pfn, start_pfn + nr_pages);
1693 #endif /* CONFIG_MEMORY_HOTREMOVE */
1696 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1697 * @start_pfn: start pfn of the memory range
1698 * @end_pfn: end pfn of the memory range
1699 * @arg: argument passed to func
1700 * @func: callback for each memory section walked
1702 * This function walks through all present mem sections in range
1703 * [start_pfn, end_pfn) and call func on each mem section.
1705 * Returns the return value of func.
1707 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1708 void *arg, int (*func)(struct memory_block *, void *))
1710 struct memory_block *mem = NULL;
1711 struct mem_section *section;
1712 unsigned long pfn, section_nr;
1713 int ret;
1715 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1716 section_nr = pfn_to_section_nr(pfn);
1717 if (!present_section_nr(section_nr))
1718 continue;
1720 section = __nr_to_section(section_nr);
1721 /* same memblock? */
1722 if (mem)
1723 if ((section_nr >= mem->start_section_nr) &&
1724 (section_nr <= mem->end_section_nr))
1725 continue;
1727 mem = find_memory_block_hinted(section, mem);
1728 if (!mem)
1729 continue;
1731 ret = func(mem, arg);
1732 if (ret) {
1733 kobject_put(&mem->dev.kobj);
1734 return ret;
1738 if (mem)
1739 kobject_put(&mem->dev.kobj);
1741 return 0;
1744 #ifdef CONFIG_MEMORY_HOTREMOVE
1745 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1747 int ret = !is_memblock_offlined(mem);
1749 if (unlikely(ret)) {
1750 phys_addr_t beginpa, endpa;
1752 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1753 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1754 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1755 &beginpa, &endpa);
1758 return ret;
1761 static int check_cpu_on_node(pg_data_t *pgdat)
1763 int cpu;
1765 for_each_present_cpu(cpu) {
1766 if (cpu_to_node(cpu) == pgdat->node_id)
1768 * the cpu on this node isn't removed, and we can't
1769 * offline this node.
1771 return -EBUSY;
1774 return 0;
1778 * try_offline_node
1779 * @nid: the node ID
1781 * Offline a node if all memory sections and cpus of the node are removed.
1783 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1784 * and online/offline operations before this call.
1786 void try_offline_node(int nid)
1788 pg_data_t *pgdat = NODE_DATA(nid);
1789 unsigned long start_pfn = pgdat->node_start_pfn;
1790 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1791 unsigned long pfn;
1793 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1794 unsigned long section_nr = pfn_to_section_nr(pfn);
1796 if (!present_section_nr(section_nr))
1797 continue;
1799 if (pfn_to_nid(pfn) != nid)
1800 continue;
1803 * some memory sections of this node are not removed, and we
1804 * can't offline node now.
1806 return;
1809 if (check_cpu_on_node(pgdat))
1810 return;
1813 * all memory/cpu of this node are removed, we can offline this
1814 * node now.
1816 node_set_offline(nid);
1817 unregister_one_node(nid);
1819 EXPORT_SYMBOL(try_offline_node);
1822 * remove_memory
1823 * @nid: the node ID
1824 * @start: physical address of the region to remove
1825 * @size: size of the region to remove
1827 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1828 * and online/offline operations before this call, as required by
1829 * try_offline_node().
1831 void __ref __remove_memory(int nid, u64 start, u64 size)
1833 int ret;
1835 BUG_ON(check_hotplug_memory_range(start, size));
1837 mem_hotplug_begin();
1840 * All memory blocks must be offlined before removing memory. Check
1841 * whether all memory blocks in question are offline and trigger a BUG()
1842 * if this is not the case.
1844 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1845 check_memblock_offlined_cb);
1846 if (ret)
1847 BUG();
1849 /* remove memmap entry */
1850 firmware_map_remove(start, start + size, "System RAM");
1851 memblock_free(start, size);
1852 memblock_remove(start, size);
1854 arch_remove_memory(nid, start, size, NULL);
1856 try_offline_node(nid);
1858 mem_hotplug_done();
1861 void remove_memory(int nid, u64 start, u64 size)
1863 lock_device_hotplug();
1864 __remove_memory(nid, start, size);
1865 unlock_device_hotplug();
1867 EXPORT_SYMBOL_GPL(remove_memory);
1868 #endif /* CONFIG_MEMORY_HOTREMOVE */