2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
127 #include <linux/filter.h>
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
137 static struct lock_class_key af_family_keys
[AF_MAX
];
138 static struct lock_class_key af_family_slock_keys
[AF_MAX
];
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
145 static const char *af_family_key_strings
[AF_MAX
+1] = {
146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
158 "sk_lock-AF_IEEE802154",
161 static const char *af_family_slock_key_strings
[AF_MAX
+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
174 "slock-AF_IEEE802154",
177 static const char *af_family_clock_key_strings
[AF_MAX
+1] = {
178 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
179 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
180 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
181 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
182 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
183 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
184 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
185 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
186 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
187 "clock-27" , "clock-28" , "clock-AF_CAN" ,
188 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
189 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
190 "clock-AF_IEEE802154",
195 * sk_callback_lock locking rules are per-address-family,
196 * so split the lock classes by using a per-AF key:
198 static struct lock_class_key af_callback_keys
[AF_MAX
];
200 /* Take into consideration the size of the struct sk_buff overhead in the
201 * determination of these values, since that is non-constant across
202 * platforms. This makes socket queueing behavior and performance
203 * not depend upon such differences.
205 #define _SK_MEM_PACKETS 256
206 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly
= SK_WMEM_MAX
;
212 __u32 sysctl_rmem_max __read_mostly
= SK_RMEM_MAX
;
213 __u32 sysctl_wmem_default __read_mostly
= SK_WMEM_MAX
;
214 __u32 sysctl_rmem_default __read_mostly
= SK_RMEM_MAX
;
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly
= sizeof(unsigned long)*(2*UIO_MAXIOV
+512);
218 EXPORT_SYMBOL(sysctl_optmem_max
);
220 static int sock_set_timeout(long *timeo_p
, char __user
*optval
, int optlen
)
224 if (optlen
< sizeof(tv
))
226 if (copy_from_user(&tv
, optval
, sizeof(tv
)))
228 if (tv
.tv_usec
< 0 || tv
.tv_usec
>= USEC_PER_SEC
)
232 static int warned __read_mostly
;
235 if (warned
< 10 && net_ratelimit()) {
237 printk(KERN_INFO
"sock_set_timeout: `%s' (pid %d) "
238 "tries to set negative timeout\n",
239 current
->comm
, task_pid_nr(current
));
243 *timeo_p
= MAX_SCHEDULE_TIMEOUT
;
244 if (tv
.tv_sec
== 0 && tv
.tv_usec
== 0)
246 if (tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/HZ
- 1))
247 *timeo_p
= tv
.tv_sec
*HZ
+ (tv
.tv_usec
+(1000000/HZ
-1))/(1000000/HZ
);
251 static void sock_warn_obsolete_bsdism(const char *name
)
254 static char warncomm
[TASK_COMM_LEN
];
255 if (strcmp(warncomm
, current
->comm
) && warned
< 5) {
256 strcpy(warncomm
, current
->comm
);
257 printk(KERN_WARNING
"process `%s' is using obsolete "
258 "%s SO_BSDCOMPAT\n", warncomm
, name
);
263 static void sock_disable_timestamp(struct sock
*sk
, int flag
)
265 if (sock_flag(sk
, flag
)) {
266 sock_reset_flag(sk
, flag
);
267 if (!sock_flag(sk
, SOCK_TIMESTAMP
) &&
268 !sock_flag(sk
, SOCK_TIMESTAMPING_RX_SOFTWARE
)) {
269 net_disable_timestamp();
275 int sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
280 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
281 number of warnings when compiling with -W --ANK
283 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
284 (unsigned)sk
->sk_rcvbuf
) {
289 err
= sk_filter(sk
, skb
);
293 if (!sk_rmem_schedule(sk
, skb
->truesize
)) {
299 skb_set_owner_r(skb
, sk
);
301 /* Cache the SKB length before we tack it onto the receive
302 * queue. Once it is added it no longer belongs to us and
303 * may be freed by other threads of control pulling packets
308 skb_queue_tail(&sk
->sk_receive_queue
, skb
);
310 if (!sock_flag(sk
, SOCK_DEAD
))
311 sk
->sk_data_ready(sk
, skb_len
);
315 EXPORT_SYMBOL(sock_queue_rcv_skb
);
317 int sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
, const int nested
)
319 int rc
= NET_RX_SUCCESS
;
321 if (sk_filter(sk
, skb
))
322 goto discard_and_relse
;
327 bh_lock_sock_nested(sk
);
330 if (!sock_owned_by_user(sk
)) {
332 * trylock + unlock semantics:
334 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 1, _RET_IP_
);
336 rc
= sk_backlog_rcv(sk
, skb
);
338 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
340 sk_add_backlog(sk
, skb
);
349 EXPORT_SYMBOL(sk_receive_skb
);
351 struct dst_entry
*__sk_dst_check(struct sock
*sk
, u32 cookie
)
353 struct dst_entry
*dst
= sk
->sk_dst_cache
;
355 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
356 sk
->sk_dst_cache
= NULL
;
363 EXPORT_SYMBOL(__sk_dst_check
);
365 struct dst_entry
*sk_dst_check(struct sock
*sk
, u32 cookie
)
367 struct dst_entry
*dst
= sk_dst_get(sk
);
369 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
377 EXPORT_SYMBOL(sk_dst_check
);
379 static int sock_bindtodevice(struct sock
*sk
, char __user
*optval
, int optlen
)
381 int ret
= -ENOPROTOOPT
;
382 #ifdef CONFIG_NETDEVICES
383 struct net
*net
= sock_net(sk
);
384 char devname
[IFNAMSIZ
];
389 if (!capable(CAP_NET_RAW
))
396 /* Bind this socket to a particular device like "eth0",
397 * as specified in the passed interface name. If the
398 * name is "" or the option length is zero the socket
401 if (optlen
> IFNAMSIZ
- 1)
402 optlen
= IFNAMSIZ
- 1;
403 memset(devname
, 0, sizeof(devname
));
406 if (copy_from_user(devname
, optval
, optlen
))
409 if (devname
[0] == '\0') {
412 struct net_device
*dev
= dev_get_by_name(net
, devname
);
418 index
= dev
->ifindex
;
423 sk
->sk_bound_dev_if
= index
;
435 static inline void sock_valbool_flag(struct sock
*sk
, int bit
, int valbool
)
438 sock_set_flag(sk
, bit
);
440 sock_reset_flag(sk
, bit
);
444 * This is meant for all protocols to use and covers goings on
445 * at the socket level. Everything here is generic.
448 int sock_setsockopt(struct socket
*sock
, int level
, int optname
,
449 char __user
*optval
, int optlen
)
451 struct sock
*sk
= sock
->sk
;
458 * Options without arguments
461 if (optname
== SO_BINDTODEVICE
)
462 return sock_bindtodevice(sk
, optval
, optlen
);
464 if (optlen
< sizeof(int))
467 if (get_user(val
, (int __user
*)optval
))
470 valbool
= val
? 1 : 0;
476 if (val
&& !capable(CAP_NET_ADMIN
))
479 sock_valbool_flag(sk
, SOCK_DBG
, valbool
);
482 sk
->sk_reuse
= valbool
;
489 sock_valbool_flag(sk
, SOCK_LOCALROUTE
, valbool
);
492 sock_valbool_flag(sk
, SOCK_BROADCAST
, valbool
);
495 /* Don't error on this BSD doesn't and if you think
496 about it this is right. Otherwise apps have to
497 play 'guess the biggest size' games. RCVBUF/SNDBUF
498 are treated in BSD as hints */
500 if (val
> sysctl_wmem_max
)
501 val
= sysctl_wmem_max
;
503 sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
;
504 if ((val
* 2) < SOCK_MIN_SNDBUF
)
505 sk
->sk_sndbuf
= SOCK_MIN_SNDBUF
;
507 sk
->sk_sndbuf
= val
* 2;
510 * Wake up sending tasks if we
513 sk
->sk_write_space(sk
);
517 if (!capable(CAP_NET_ADMIN
)) {
524 /* Don't error on this BSD doesn't and if you think
525 about it this is right. Otherwise apps have to
526 play 'guess the biggest size' games. RCVBUF/SNDBUF
527 are treated in BSD as hints */
529 if (val
> sysctl_rmem_max
)
530 val
= sysctl_rmem_max
;
532 sk
->sk_userlocks
|= SOCK_RCVBUF_LOCK
;
534 * We double it on the way in to account for
535 * "struct sk_buff" etc. overhead. Applications
536 * assume that the SO_RCVBUF setting they make will
537 * allow that much actual data to be received on that
540 * Applications are unaware that "struct sk_buff" and
541 * other overheads allocate from the receive buffer
542 * during socket buffer allocation.
544 * And after considering the possible alternatives,
545 * returning the value we actually used in getsockopt
546 * is the most desirable behavior.
548 if ((val
* 2) < SOCK_MIN_RCVBUF
)
549 sk
->sk_rcvbuf
= SOCK_MIN_RCVBUF
;
551 sk
->sk_rcvbuf
= val
* 2;
555 if (!capable(CAP_NET_ADMIN
)) {
563 if (sk
->sk_protocol
== IPPROTO_TCP
)
564 tcp_set_keepalive(sk
, valbool
);
566 sock_valbool_flag(sk
, SOCK_KEEPOPEN
, valbool
);
570 sock_valbool_flag(sk
, SOCK_URGINLINE
, valbool
);
574 sk
->sk_no_check
= valbool
;
578 if ((val
>= 0 && val
<= 6) || capable(CAP_NET_ADMIN
))
579 sk
->sk_priority
= val
;
585 if (optlen
< sizeof(ling
)) {
586 ret
= -EINVAL
; /* 1003.1g */
589 if (copy_from_user(&ling
, optval
, sizeof(ling
))) {
594 sock_reset_flag(sk
, SOCK_LINGER
);
596 #if (BITS_PER_LONG == 32)
597 if ((unsigned int)ling
.l_linger
>= MAX_SCHEDULE_TIMEOUT
/HZ
)
598 sk
->sk_lingertime
= MAX_SCHEDULE_TIMEOUT
;
601 sk
->sk_lingertime
= (unsigned int)ling
.l_linger
* HZ
;
602 sock_set_flag(sk
, SOCK_LINGER
);
607 sock_warn_obsolete_bsdism("setsockopt");
612 set_bit(SOCK_PASSCRED
, &sock
->flags
);
614 clear_bit(SOCK_PASSCRED
, &sock
->flags
);
620 if (optname
== SO_TIMESTAMP
)
621 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
623 sock_set_flag(sk
, SOCK_RCVTSTAMPNS
);
624 sock_set_flag(sk
, SOCK_RCVTSTAMP
);
625 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
627 sock_reset_flag(sk
, SOCK_RCVTSTAMP
);
628 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
632 case SO_TIMESTAMPING
:
633 if (val
& ~SOF_TIMESTAMPING_MASK
) {
637 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
,
638 val
& SOF_TIMESTAMPING_TX_HARDWARE
);
639 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
,
640 val
& SOF_TIMESTAMPING_TX_SOFTWARE
);
641 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_RX_HARDWARE
,
642 val
& SOF_TIMESTAMPING_RX_HARDWARE
);
643 if (val
& SOF_TIMESTAMPING_RX_SOFTWARE
)
644 sock_enable_timestamp(sk
,
645 SOCK_TIMESTAMPING_RX_SOFTWARE
);
647 sock_disable_timestamp(sk
,
648 SOCK_TIMESTAMPING_RX_SOFTWARE
);
649 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
,
650 val
& SOF_TIMESTAMPING_SOFTWARE
);
651 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
,
652 val
& SOF_TIMESTAMPING_SYS_HARDWARE
);
653 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
,
654 val
& SOF_TIMESTAMPING_RAW_HARDWARE
);
660 sk
->sk_rcvlowat
= val
? : 1;
664 ret
= sock_set_timeout(&sk
->sk_rcvtimeo
, optval
, optlen
);
668 ret
= sock_set_timeout(&sk
->sk_sndtimeo
, optval
, optlen
);
671 case SO_ATTACH_FILTER
:
673 if (optlen
== sizeof(struct sock_fprog
)) {
674 struct sock_fprog fprog
;
677 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
680 ret
= sk_attach_filter(&fprog
, sk
);
684 case SO_DETACH_FILTER
:
685 ret
= sk_detach_filter(sk
);
690 set_bit(SOCK_PASSSEC
, &sock
->flags
);
692 clear_bit(SOCK_PASSSEC
, &sock
->flags
);
695 if (!capable(CAP_NET_ADMIN
))
701 /* We implement the SO_SNDLOWAT etc to
702 not be settable (1003.1g 5.3) */
710 EXPORT_SYMBOL(sock_setsockopt
);
713 int sock_getsockopt(struct socket
*sock
, int level
, int optname
,
714 char __user
*optval
, int __user
*optlen
)
716 struct sock
*sk
= sock
->sk
;
724 unsigned int lv
= sizeof(int);
727 if (get_user(len
, optlen
))
732 memset(&v
, 0, sizeof(v
));
736 v
.val
= sock_flag(sk
, SOCK_DBG
);
740 v
.val
= sock_flag(sk
, SOCK_LOCALROUTE
);
744 v
.val
= !!sock_flag(sk
, SOCK_BROADCAST
);
748 v
.val
= sk
->sk_sndbuf
;
752 v
.val
= sk
->sk_rcvbuf
;
756 v
.val
= sk
->sk_reuse
;
760 v
.val
= !!sock_flag(sk
, SOCK_KEEPOPEN
);
768 v
.val
= -sock_error(sk
);
770 v
.val
= xchg(&sk
->sk_err_soft
, 0);
774 v
.val
= !!sock_flag(sk
, SOCK_URGINLINE
);
778 v
.val
= sk
->sk_no_check
;
782 v
.val
= sk
->sk_priority
;
787 v
.ling
.l_onoff
= !!sock_flag(sk
, SOCK_LINGER
);
788 v
.ling
.l_linger
= sk
->sk_lingertime
/ HZ
;
792 sock_warn_obsolete_bsdism("getsockopt");
796 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMP
) &&
797 !sock_flag(sk
, SOCK_RCVTSTAMPNS
);
801 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMPNS
);
804 case SO_TIMESTAMPING
:
806 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
))
807 v
.val
|= SOF_TIMESTAMPING_TX_HARDWARE
;
808 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
))
809 v
.val
|= SOF_TIMESTAMPING_TX_SOFTWARE
;
810 if (sock_flag(sk
, SOCK_TIMESTAMPING_RX_HARDWARE
))
811 v
.val
|= SOF_TIMESTAMPING_RX_HARDWARE
;
812 if (sock_flag(sk
, SOCK_TIMESTAMPING_RX_SOFTWARE
))
813 v
.val
|= SOF_TIMESTAMPING_RX_SOFTWARE
;
814 if (sock_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
))
815 v
.val
|= SOF_TIMESTAMPING_SOFTWARE
;
816 if (sock_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
))
817 v
.val
|= SOF_TIMESTAMPING_SYS_HARDWARE
;
818 if (sock_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
))
819 v
.val
|= SOF_TIMESTAMPING_RAW_HARDWARE
;
823 lv
= sizeof(struct timeval
);
824 if (sk
->sk_rcvtimeo
== MAX_SCHEDULE_TIMEOUT
) {
828 v
.tm
.tv_sec
= sk
->sk_rcvtimeo
/ HZ
;
829 v
.tm
.tv_usec
= ((sk
->sk_rcvtimeo
% HZ
) * 1000000) / HZ
;
834 lv
= sizeof(struct timeval
);
835 if (sk
->sk_sndtimeo
== MAX_SCHEDULE_TIMEOUT
) {
839 v
.tm
.tv_sec
= sk
->sk_sndtimeo
/ HZ
;
840 v
.tm
.tv_usec
= ((sk
->sk_sndtimeo
% HZ
) * 1000000) / HZ
;
845 v
.val
= sk
->sk_rcvlowat
;
853 v
.val
= test_bit(SOCK_PASSCRED
, &sock
->flags
) ? 1 : 0;
857 if (len
> sizeof(sk
->sk_peercred
))
858 len
= sizeof(sk
->sk_peercred
);
859 if (copy_to_user(optval
, &sk
->sk_peercred
, len
))
867 if (sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &lv
, 2))
871 if (copy_to_user(optval
, address
, len
))
876 /* Dubious BSD thing... Probably nobody even uses it, but
877 * the UNIX standard wants it for whatever reason... -DaveM
880 v
.val
= sk
->sk_state
== TCP_LISTEN
;
884 v
.val
= test_bit(SOCK_PASSSEC
, &sock
->flags
) ? 1 : 0;
888 return security_socket_getpeersec_stream(sock
, optval
, optlen
, len
);
900 if (copy_to_user(optval
, &v
, len
))
903 if (put_user(len
, optlen
))
909 * Initialize an sk_lock.
911 * (We also register the sk_lock with the lock validator.)
913 static inline void sock_lock_init(struct sock
*sk
)
915 sock_lock_init_class_and_name(sk
,
916 af_family_slock_key_strings
[sk
->sk_family
],
917 af_family_slock_keys
+ sk
->sk_family
,
918 af_family_key_strings
[sk
->sk_family
],
919 af_family_keys
+ sk
->sk_family
);
923 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
924 * even temporarly, because of RCU lookups. sk_node should also be left as is.
926 static void sock_copy(struct sock
*nsk
, const struct sock
*osk
)
928 #ifdef CONFIG_SECURITY_NETWORK
929 void *sptr
= nsk
->sk_security
;
931 BUILD_BUG_ON(offsetof(struct sock
, sk_copy_start
) !=
932 sizeof(osk
->sk_node
) + sizeof(osk
->sk_refcnt
));
933 memcpy(&nsk
->sk_copy_start
, &osk
->sk_copy_start
,
934 osk
->sk_prot
->obj_size
- offsetof(struct sock
, sk_copy_start
));
935 #ifdef CONFIG_SECURITY_NETWORK
936 nsk
->sk_security
= sptr
;
937 security_sk_clone(osk
, nsk
);
941 static struct sock
*sk_prot_alloc(struct proto
*prot
, gfp_t priority
,
945 struct kmem_cache
*slab
;
949 sk
= kmem_cache_alloc(slab
, priority
& ~__GFP_ZERO
);
952 if (priority
& __GFP_ZERO
) {
954 * caches using SLAB_DESTROY_BY_RCU should let
955 * sk_node.next un-modified. Special care is taken
956 * when initializing object to zero.
958 if (offsetof(struct sock
, sk_node
.next
) != 0)
959 memset(sk
, 0, offsetof(struct sock
, sk_node
.next
));
960 memset(&sk
->sk_node
.pprev
, 0,
961 prot
->obj_size
- offsetof(struct sock
,
966 sk
= kmalloc(prot
->obj_size
, priority
);
969 kmemcheck_annotate_bitfield(sk
, flags
);
971 if (security_sk_alloc(sk
, family
, priority
))
974 if (!try_module_get(prot
->owner
))
981 security_sk_free(sk
);
984 kmem_cache_free(slab
, sk
);
990 static void sk_prot_free(struct proto
*prot
, struct sock
*sk
)
992 struct kmem_cache
*slab
;
993 struct module
*owner
;
998 security_sk_free(sk
);
1000 kmem_cache_free(slab
, sk
);
1007 * sk_alloc - All socket objects are allocated here
1008 * @net: the applicable net namespace
1009 * @family: protocol family
1010 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1011 * @prot: struct proto associated with this new sock instance
1013 struct sock
*sk_alloc(struct net
*net
, int family
, gfp_t priority
,
1018 sk
= sk_prot_alloc(prot
, priority
| __GFP_ZERO
, family
);
1020 sk
->sk_family
= family
;
1022 * See comment in struct sock definition to understand
1023 * why we need sk_prot_creator -acme
1025 sk
->sk_prot
= sk
->sk_prot_creator
= prot
;
1027 sock_net_set(sk
, get_net(net
));
1028 atomic_set(&sk
->sk_wmem_alloc
, 1);
1033 EXPORT_SYMBOL(sk_alloc
);
1035 static void __sk_free(struct sock
*sk
)
1037 struct sk_filter
*filter
;
1039 if (sk
->sk_destruct
)
1040 sk
->sk_destruct(sk
);
1042 filter
= rcu_dereference(sk
->sk_filter
);
1044 sk_filter_uncharge(sk
, filter
);
1045 rcu_assign_pointer(sk
->sk_filter
, NULL
);
1048 sock_disable_timestamp(sk
, SOCK_TIMESTAMP
);
1049 sock_disable_timestamp(sk
, SOCK_TIMESTAMPING_RX_SOFTWARE
);
1051 if (atomic_read(&sk
->sk_omem_alloc
))
1052 printk(KERN_DEBUG
"%s: optmem leakage (%d bytes) detected.\n",
1053 __func__
, atomic_read(&sk
->sk_omem_alloc
));
1055 put_net(sock_net(sk
));
1056 sk_prot_free(sk
->sk_prot_creator
, sk
);
1059 void sk_free(struct sock
*sk
)
1062 * We substract one from sk_wmem_alloc and can know if
1063 * some packets are still in some tx queue.
1064 * If not null, sock_wfree() will call __sk_free(sk) later
1066 if (atomic_dec_and_test(&sk
->sk_wmem_alloc
))
1069 EXPORT_SYMBOL(sk_free
);
1072 * Last sock_put should drop referrence to sk->sk_net. It has already
1073 * been dropped in sk_change_net. Taking referrence to stopping namespace
1075 * Take referrence to a socket to remove it from hash _alive_ and after that
1076 * destroy it in the context of init_net.
1078 void sk_release_kernel(struct sock
*sk
)
1080 if (sk
== NULL
|| sk
->sk_socket
== NULL
)
1084 sock_release(sk
->sk_socket
);
1085 release_net(sock_net(sk
));
1086 sock_net_set(sk
, get_net(&init_net
));
1089 EXPORT_SYMBOL(sk_release_kernel
);
1091 struct sock
*sk_clone(const struct sock
*sk
, const gfp_t priority
)
1095 newsk
= sk_prot_alloc(sk
->sk_prot
, priority
, sk
->sk_family
);
1096 if (newsk
!= NULL
) {
1097 struct sk_filter
*filter
;
1099 sock_copy(newsk
, sk
);
1102 get_net(sock_net(newsk
));
1103 sk_node_init(&newsk
->sk_node
);
1104 sock_lock_init(newsk
);
1105 bh_lock_sock(newsk
);
1106 newsk
->sk_backlog
.head
= newsk
->sk_backlog
.tail
= NULL
;
1108 atomic_set(&newsk
->sk_rmem_alloc
, 0);
1110 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1112 atomic_set(&newsk
->sk_wmem_alloc
, 1);
1113 atomic_set(&newsk
->sk_omem_alloc
, 0);
1114 skb_queue_head_init(&newsk
->sk_receive_queue
);
1115 skb_queue_head_init(&newsk
->sk_write_queue
);
1116 #ifdef CONFIG_NET_DMA
1117 skb_queue_head_init(&newsk
->sk_async_wait_queue
);
1120 rwlock_init(&newsk
->sk_dst_lock
);
1121 rwlock_init(&newsk
->sk_callback_lock
);
1122 lockdep_set_class_and_name(&newsk
->sk_callback_lock
,
1123 af_callback_keys
+ newsk
->sk_family
,
1124 af_family_clock_key_strings
[newsk
->sk_family
]);
1126 newsk
->sk_dst_cache
= NULL
;
1127 newsk
->sk_wmem_queued
= 0;
1128 newsk
->sk_forward_alloc
= 0;
1129 newsk
->sk_send_head
= NULL
;
1130 newsk
->sk_userlocks
= sk
->sk_userlocks
& ~SOCK_BINDPORT_LOCK
;
1132 sock_reset_flag(newsk
, SOCK_DONE
);
1133 skb_queue_head_init(&newsk
->sk_error_queue
);
1135 filter
= newsk
->sk_filter
;
1137 sk_filter_charge(newsk
, filter
);
1139 if (unlikely(xfrm_sk_clone_policy(newsk
))) {
1140 /* It is still raw copy of parent, so invalidate
1141 * destructor and make plain sk_free() */
1142 newsk
->sk_destruct
= NULL
;
1149 newsk
->sk_priority
= 0;
1151 * Before updating sk_refcnt, we must commit prior changes to memory
1152 * (Documentation/RCU/rculist_nulls.txt for details)
1155 atomic_set(&newsk
->sk_refcnt
, 2);
1158 * Increment the counter in the same struct proto as the master
1159 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1160 * is the same as sk->sk_prot->socks, as this field was copied
1163 * This _changes_ the previous behaviour, where
1164 * tcp_create_openreq_child always was incrementing the
1165 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1166 * to be taken into account in all callers. -acme
1168 sk_refcnt_debug_inc(newsk
);
1169 sk_set_socket(newsk
, NULL
);
1170 newsk
->sk_sleep
= NULL
;
1172 if (newsk
->sk_prot
->sockets_allocated
)
1173 percpu_counter_inc(newsk
->sk_prot
->sockets_allocated
);
1178 EXPORT_SYMBOL_GPL(sk_clone
);
1180 void sk_setup_caps(struct sock
*sk
, struct dst_entry
*dst
)
1182 __sk_dst_set(sk
, dst
);
1183 sk
->sk_route_caps
= dst
->dev
->features
;
1184 if (sk
->sk_route_caps
& NETIF_F_GSO
)
1185 sk
->sk_route_caps
|= NETIF_F_GSO_SOFTWARE
;
1186 if (sk_can_gso(sk
)) {
1187 if (dst
->header_len
) {
1188 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
1190 sk
->sk_route_caps
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
1191 sk
->sk_gso_max_size
= dst
->dev
->gso_max_size
;
1195 EXPORT_SYMBOL_GPL(sk_setup_caps
);
1197 void __init
sk_init(void)
1199 if (totalram_pages
<= 4096) {
1200 sysctl_wmem_max
= 32767;
1201 sysctl_rmem_max
= 32767;
1202 sysctl_wmem_default
= 32767;
1203 sysctl_rmem_default
= 32767;
1204 } else if (totalram_pages
>= 131072) {
1205 sysctl_wmem_max
= 131071;
1206 sysctl_rmem_max
= 131071;
1211 * Simple resource managers for sockets.
1216 * Write buffer destructor automatically called from kfree_skb.
1218 void sock_wfree(struct sk_buff
*skb
)
1220 struct sock
*sk
= skb
->sk
;
1221 unsigned int len
= skb
->truesize
;
1223 if (!sock_flag(sk
, SOCK_USE_WRITE_QUEUE
)) {
1225 * Keep a reference on sk_wmem_alloc, this will be released
1226 * after sk_write_space() call
1228 atomic_sub(len
- 1, &sk
->sk_wmem_alloc
);
1229 sk
->sk_write_space(sk
);
1233 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1234 * could not do because of in-flight packets
1236 if (atomic_sub_and_test(len
, &sk
->sk_wmem_alloc
))
1239 EXPORT_SYMBOL(sock_wfree
);
1242 * Read buffer destructor automatically called from kfree_skb.
1244 void sock_rfree(struct sk_buff
*skb
)
1246 struct sock
*sk
= skb
->sk
;
1248 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
1249 sk_mem_uncharge(skb
->sk
, skb
->truesize
);
1251 EXPORT_SYMBOL(sock_rfree
);
1254 int sock_i_uid(struct sock
*sk
)
1258 read_lock(&sk
->sk_callback_lock
);
1259 uid
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_uid
: 0;
1260 read_unlock(&sk
->sk_callback_lock
);
1263 EXPORT_SYMBOL(sock_i_uid
);
1265 unsigned long sock_i_ino(struct sock
*sk
)
1269 read_lock(&sk
->sk_callback_lock
);
1270 ino
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_ino
: 0;
1271 read_unlock(&sk
->sk_callback_lock
);
1274 EXPORT_SYMBOL(sock_i_ino
);
1277 * Allocate a skb from the socket's send buffer.
1279 struct sk_buff
*sock_wmalloc(struct sock
*sk
, unsigned long size
, int force
,
1282 if (force
|| atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1283 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1285 skb_set_owner_w(skb
, sk
);
1291 EXPORT_SYMBOL(sock_wmalloc
);
1294 * Allocate a skb from the socket's receive buffer.
1296 struct sk_buff
*sock_rmalloc(struct sock
*sk
, unsigned long size
, int force
,
1299 if (force
|| atomic_read(&sk
->sk_rmem_alloc
) < sk
->sk_rcvbuf
) {
1300 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1302 skb_set_owner_r(skb
, sk
);
1310 * Allocate a memory block from the socket's option memory buffer.
1312 void *sock_kmalloc(struct sock
*sk
, int size
, gfp_t priority
)
1314 if ((unsigned)size
<= sysctl_optmem_max
&&
1315 atomic_read(&sk
->sk_omem_alloc
) + size
< sysctl_optmem_max
) {
1317 /* First do the add, to avoid the race if kmalloc
1320 atomic_add(size
, &sk
->sk_omem_alloc
);
1321 mem
= kmalloc(size
, priority
);
1324 atomic_sub(size
, &sk
->sk_omem_alloc
);
1328 EXPORT_SYMBOL(sock_kmalloc
);
1331 * Free an option memory block.
1333 void sock_kfree_s(struct sock
*sk
, void *mem
, int size
)
1336 atomic_sub(size
, &sk
->sk_omem_alloc
);
1338 EXPORT_SYMBOL(sock_kfree_s
);
1340 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1341 I think, these locks should be removed for datagram sockets.
1343 static long sock_wait_for_wmem(struct sock
*sk
, long timeo
)
1347 clear_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
1351 if (signal_pending(current
))
1353 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1354 prepare_to_wait(sk
->sk_sleep
, &wait
, TASK_INTERRUPTIBLE
);
1355 if (atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
)
1357 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1361 timeo
= schedule_timeout(timeo
);
1363 finish_wait(sk
->sk_sleep
, &wait
);
1369 * Generic send/receive buffer handlers
1372 struct sk_buff
*sock_alloc_send_pskb(struct sock
*sk
, unsigned long header_len
,
1373 unsigned long data_len
, int noblock
,
1376 struct sk_buff
*skb
;
1381 gfp_mask
= sk
->sk_allocation
;
1382 if (gfp_mask
& __GFP_WAIT
)
1383 gfp_mask
|= __GFP_REPEAT
;
1385 timeo
= sock_sndtimeo(sk
, noblock
);
1387 err
= sock_error(sk
);
1392 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1395 if (atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1396 skb
= alloc_skb(header_len
, gfp_mask
);
1401 /* No pages, we're done... */
1405 npages
= (data_len
+ (PAGE_SIZE
- 1)) >> PAGE_SHIFT
;
1406 skb
->truesize
+= data_len
;
1407 skb_shinfo(skb
)->nr_frags
= npages
;
1408 for (i
= 0; i
< npages
; i
++) {
1412 page
= alloc_pages(sk
->sk_allocation
, 0);
1415 skb_shinfo(skb
)->nr_frags
= i
;
1420 frag
= &skb_shinfo(skb
)->frags
[i
];
1422 frag
->page_offset
= 0;
1423 frag
->size
= (data_len
>= PAGE_SIZE
?
1426 data_len
-= PAGE_SIZE
;
1429 /* Full success... */
1435 set_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
1436 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1440 if (signal_pending(current
))
1442 timeo
= sock_wait_for_wmem(sk
, timeo
);
1445 skb_set_owner_w(skb
, sk
);
1449 err
= sock_intr_errno(timeo
);
1454 EXPORT_SYMBOL(sock_alloc_send_pskb
);
1456 struct sk_buff
*sock_alloc_send_skb(struct sock
*sk
, unsigned long size
,
1457 int noblock
, int *errcode
)
1459 return sock_alloc_send_pskb(sk
, size
, 0, noblock
, errcode
);
1461 EXPORT_SYMBOL(sock_alloc_send_skb
);
1463 static void __lock_sock(struct sock
*sk
)
1468 prepare_to_wait_exclusive(&sk
->sk_lock
.wq
, &wait
,
1469 TASK_UNINTERRUPTIBLE
);
1470 spin_unlock_bh(&sk
->sk_lock
.slock
);
1472 spin_lock_bh(&sk
->sk_lock
.slock
);
1473 if (!sock_owned_by_user(sk
))
1476 finish_wait(&sk
->sk_lock
.wq
, &wait
);
1479 static void __release_sock(struct sock
*sk
)
1481 struct sk_buff
*skb
= sk
->sk_backlog
.head
;
1484 sk
->sk_backlog
.head
= sk
->sk_backlog
.tail
= NULL
;
1488 struct sk_buff
*next
= skb
->next
;
1491 sk_backlog_rcv(sk
, skb
);
1494 * We are in process context here with softirqs
1495 * disabled, use cond_resched_softirq() to preempt.
1496 * This is safe to do because we've taken the backlog
1499 cond_resched_softirq();
1502 } while (skb
!= NULL
);
1505 } while ((skb
= sk
->sk_backlog
.head
) != NULL
);
1509 * sk_wait_data - wait for data to arrive at sk_receive_queue
1510 * @sk: sock to wait on
1511 * @timeo: for how long
1513 * Now socket state including sk->sk_err is changed only under lock,
1514 * hence we may omit checks after joining wait queue.
1515 * We check receive queue before schedule() only as optimization;
1516 * it is very likely that release_sock() added new data.
1518 int sk_wait_data(struct sock
*sk
, long *timeo
)
1523 prepare_to_wait(sk
->sk_sleep
, &wait
, TASK_INTERRUPTIBLE
);
1524 set_bit(SOCK_ASYNC_WAITDATA
, &sk
->sk_socket
->flags
);
1525 rc
= sk_wait_event(sk
, timeo
, !skb_queue_empty(&sk
->sk_receive_queue
));
1526 clear_bit(SOCK_ASYNC_WAITDATA
, &sk
->sk_socket
->flags
);
1527 finish_wait(sk
->sk_sleep
, &wait
);
1530 EXPORT_SYMBOL(sk_wait_data
);
1533 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1535 * @size: memory size to allocate
1536 * @kind: allocation type
1538 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1539 * rmem allocation. This function assumes that protocols which have
1540 * memory_pressure use sk_wmem_queued as write buffer accounting.
1542 int __sk_mem_schedule(struct sock
*sk
, int size
, int kind
)
1544 struct proto
*prot
= sk
->sk_prot
;
1545 int amt
= sk_mem_pages(size
);
1548 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
1549 allocated
= atomic_add_return(amt
, prot
->memory_allocated
);
1552 if (allocated
<= prot
->sysctl_mem
[0]) {
1553 if (prot
->memory_pressure
&& *prot
->memory_pressure
)
1554 *prot
->memory_pressure
= 0;
1558 /* Under pressure. */
1559 if (allocated
> prot
->sysctl_mem
[1])
1560 if (prot
->enter_memory_pressure
)
1561 prot
->enter_memory_pressure(sk
);
1563 /* Over hard limit. */
1564 if (allocated
> prot
->sysctl_mem
[2])
1565 goto suppress_allocation
;
1567 /* guarantee minimum buffer size under pressure */
1568 if (kind
== SK_MEM_RECV
) {
1569 if (atomic_read(&sk
->sk_rmem_alloc
) < prot
->sysctl_rmem
[0])
1571 } else { /* SK_MEM_SEND */
1572 if (sk
->sk_type
== SOCK_STREAM
) {
1573 if (sk
->sk_wmem_queued
< prot
->sysctl_wmem
[0])
1575 } else if (atomic_read(&sk
->sk_wmem_alloc
) <
1576 prot
->sysctl_wmem
[0])
1580 if (prot
->memory_pressure
) {
1583 if (!*prot
->memory_pressure
)
1585 alloc
= percpu_counter_read_positive(prot
->sockets_allocated
);
1586 if (prot
->sysctl_mem
[2] > alloc
*
1587 sk_mem_pages(sk
->sk_wmem_queued
+
1588 atomic_read(&sk
->sk_rmem_alloc
) +
1589 sk
->sk_forward_alloc
))
1593 suppress_allocation
:
1595 if (kind
== SK_MEM_SEND
&& sk
->sk_type
== SOCK_STREAM
) {
1596 sk_stream_moderate_sndbuf(sk
);
1598 /* Fail only if socket is _under_ its sndbuf.
1599 * In this case we cannot block, so that we have to fail.
1601 if (sk
->sk_wmem_queued
+ size
>= sk
->sk_sndbuf
)
1605 /* Alas. Undo changes. */
1606 sk
->sk_forward_alloc
-= amt
* SK_MEM_QUANTUM
;
1607 atomic_sub(amt
, prot
->memory_allocated
);
1610 EXPORT_SYMBOL(__sk_mem_schedule
);
1613 * __sk_reclaim - reclaim memory_allocated
1616 void __sk_mem_reclaim(struct sock
*sk
)
1618 struct proto
*prot
= sk
->sk_prot
;
1620 atomic_sub(sk
->sk_forward_alloc
>> SK_MEM_QUANTUM_SHIFT
,
1621 prot
->memory_allocated
);
1622 sk
->sk_forward_alloc
&= SK_MEM_QUANTUM
- 1;
1624 if (prot
->memory_pressure
&& *prot
->memory_pressure
&&
1625 (atomic_read(prot
->memory_allocated
) < prot
->sysctl_mem
[0]))
1626 *prot
->memory_pressure
= 0;
1628 EXPORT_SYMBOL(__sk_mem_reclaim
);
1632 * Set of default routines for initialising struct proto_ops when
1633 * the protocol does not support a particular function. In certain
1634 * cases where it makes no sense for a protocol to have a "do nothing"
1635 * function, some default processing is provided.
1638 int sock_no_bind(struct socket
*sock
, struct sockaddr
*saddr
, int len
)
1642 EXPORT_SYMBOL(sock_no_bind
);
1644 int sock_no_connect(struct socket
*sock
, struct sockaddr
*saddr
,
1649 EXPORT_SYMBOL(sock_no_connect
);
1651 int sock_no_socketpair(struct socket
*sock1
, struct socket
*sock2
)
1655 EXPORT_SYMBOL(sock_no_socketpair
);
1657 int sock_no_accept(struct socket
*sock
, struct socket
*newsock
, int flags
)
1661 EXPORT_SYMBOL(sock_no_accept
);
1663 int sock_no_getname(struct socket
*sock
, struct sockaddr
*saddr
,
1668 EXPORT_SYMBOL(sock_no_getname
);
1670 unsigned int sock_no_poll(struct file
*file
, struct socket
*sock
, poll_table
*pt
)
1674 EXPORT_SYMBOL(sock_no_poll
);
1676 int sock_no_ioctl(struct socket
*sock
, unsigned int cmd
, unsigned long arg
)
1680 EXPORT_SYMBOL(sock_no_ioctl
);
1682 int sock_no_listen(struct socket
*sock
, int backlog
)
1686 EXPORT_SYMBOL(sock_no_listen
);
1688 int sock_no_shutdown(struct socket
*sock
, int how
)
1692 EXPORT_SYMBOL(sock_no_shutdown
);
1694 int sock_no_setsockopt(struct socket
*sock
, int level
, int optname
,
1695 char __user
*optval
, int optlen
)
1699 EXPORT_SYMBOL(sock_no_setsockopt
);
1701 int sock_no_getsockopt(struct socket
*sock
, int level
, int optname
,
1702 char __user
*optval
, int __user
*optlen
)
1706 EXPORT_SYMBOL(sock_no_getsockopt
);
1708 int sock_no_sendmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*m
,
1713 EXPORT_SYMBOL(sock_no_sendmsg
);
1715 int sock_no_recvmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*m
,
1716 size_t len
, int flags
)
1720 EXPORT_SYMBOL(sock_no_recvmsg
);
1722 int sock_no_mmap(struct file
*file
, struct socket
*sock
, struct vm_area_struct
*vma
)
1724 /* Mirror missing mmap method error code */
1727 EXPORT_SYMBOL(sock_no_mmap
);
1729 ssize_t
sock_no_sendpage(struct socket
*sock
, struct page
*page
, int offset
, size_t size
, int flags
)
1732 struct msghdr msg
= {.msg_flags
= flags
};
1734 char *kaddr
= kmap(page
);
1735 iov
.iov_base
= kaddr
+ offset
;
1737 res
= kernel_sendmsg(sock
, &msg
, &iov
, 1, size
);
1741 EXPORT_SYMBOL(sock_no_sendpage
);
1744 * Default Socket Callbacks
1747 static void sock_def_wakeup(struct sock
*sk
)
1749 read_lock(&sk
->sk_callback_lock
);
1750 if (sk_has_sleeper(sk
))
1751 wake_up_interruptible_all(sk
->sk_sleep
);
1752 read_unlock(&sk
->sk_callback_lock
);
1755 static void sock_def_error_report(struct sock
*sk
)
1757 read_lock(&sk
->sk_callback_lock
);
1758 if (sk_has_sleeper(sk
))
1759 wake_up_interruptible_poll(sk
->sk_sleep
, POLLERR
);
1760 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_ERR
);
1761 read_unlock(&sk
->sk_callback_lock
);
1764 static void sock_def_readable(struct sock
*sk
, int len
)
1766 read_lock(&sk
->sk_callback_lock
);
1767 if (sk_has_sleeper(sk
))
1768 wake_up_interruptible_sync_poll(sk
->sk_sleep
, POLLIN
|
1769 POLLRDNORM
| POLLRDBAND
);
1770 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
1771 read_unlock(&sk
->sk_callback_lock
);
1774 static void sock_def_write_space(struct sock
*sk
)
1776 read_lock(&sk
->sk_callback_lock
);
1778 /* Do not wake up a writer until he can make "significant"
1781 if ((atomic_read(&sk
->sk_wmem_alloc
) << 1) <= sk
->sk_sndbuf
) {
1782 if (sk_has_sleeper(sk
))
1783 wake_up_interruptible_sync_poll(sk
->sk_sleep
, POLLOUT
|
1784 POLLWRNORM
| POLLWRBAND
);
1786 /* Should agree with poll, otherwise some programs break */
1787 if (sock_writeable(sk
))
1788 sk_wake_async(sk
, SOCK_WAKE_SPACE
, POLL_OUT
);
1791 read_unlock(&sk
->sk_callback_lock
);
1794 static void sock_def_destruct(struct sock
*sk
)
1796 kfree(sk
->sk_protinfo
);
1799 void sk_send_sigurg(struct sock
*sk
)
1801 if (sk
->sk_socket
&& sk
->sk_socket
->file
)
1802 if (send_sigurg(&sk
->sk_socket
->file
->f_owner
))
1803 sk_wake_async(sk
, SOCK_WAKE_URG
, POLL_PRI
);
1805 EXPORT_SYMBOL(sk_send_sigurg
);
1807 void sk_reset_timer(struct sock
*sk
, struct timer_list
* timer
,
1808 unsigned long expires
)
1810 if (!mod_timer(timer
, expires
))
1813 EXPORT_SYMBOL(sk_reset_timer
);
1815 void sk_stop_timer(struct sock
*sk
, struct timer_list
* timer
)
1817 if (timer_pending(timer
) && del_timer(timer
))
1820 EXPORT_SYMBOL(sk_stop_timer
);
1822 void sock_init_data(struct socket
*sock
, struct sock
*sk
)
1824 skb_queue_head_init(&sk
->sk_receive_queue
);
1825 skb_queue_head_init(&sk
->sk_write_queue
);
1826 skb_queue_head_init(&sk
->sk_error_queue
);
1827 #ifdef CONFIG_NET_DMA
1828 skb_queue_head_init(&sk
->sk_async_wait_queue
);
1831 sk
->sk_send_head
= NULL
;
1833 init_timer(&sk
->sk_timer
);
1835 sk
->sk_allocation
= GFP_KERNEL
;
1836 sk
->sk_rcvbuf
= sysctl_rmem_default
;
1837 sk
->sk_sndbuf
= sysctl_wmem_default
;
1838 sk
->sk_state
= TCP_CLOSE
;
1839 sk_set_socket(sk
, sock
);
1841 sock_set_flag(sk
, SOCK_ZAPPED
);
1844 sk
->sk_type
= sock
->type
;
1845 sk
->sk_sleep
= &sock
->wait
;
1848 sk
->sk_sleep
= NULL
;
1850 rwlock_init(&sk
->sk_dst_lock
);
1851 rwlock_init(&sk
->sk_callback_lock
);
1852 lockdep_set_class_and_name(&sk
->sk_callback_lock
,
1853 af_callback_keys
+ sk
->sk_family
,
1854 af_family_clock_key_strings
[sk
->sk_family
]);
1856 sk
->sk_state_change
= sock_def_wakeup
;
1857 sk
->sk_data_ready
= sock_def_readable
;
1858 sk
->sk_write_space
= sock_def_write_space
;
1859 sk
->sk_error_report
= sock_def_error_report
;
1860 sk
->sk_destruct
= sock_def_destruct
;
1862 sk
->sk_sndmsg_page
= NULL
;
1863 sk
->sk_sndmsg_off
= 0;
1865 sk
->sk_peercred
.pid
= 0;
1866 sk
->sk_peercred
.uid
= -1;
1867 sk
->sk_peercred
.gid
= -1;
1868 sk
->sk_write_pending
= 0;
1869 sk
->sk_rcvlowat
= 1;
1870 sk
->sk_rcvtimeo
= MAX_SCHEDULE_TIMEOUT
;
1871 sk
->sk_sndtimeo
= MAX_SCHEDULE_TIMEOUT
;
1873 sk
->sk_stamp
= ktime_set(-1L, 0);
1876 * Before updating sk_refcnt, we must commit prior changes to memory
1877 * (Documentation/RCU/rculist_nulls.txt for details)
1880 atomic_set(&sk
->sk_refcnt
, 1);
1881 atomic_set(&sk
->sk_drops
, 0);
1883 EXPORT_SYMBOL(sock_init_data
);
1885 void lock_sock_nested(struct sock
*sk
, int subclass
)
1888 spin_lock_bh(&sk
->sk_lock
.slock
);
1889 if (sk
->sk_lock
.owned
)
1891 sk
->sk_lock
.owned
= 1;
1892 spin_unlock(&sk
->sk_lock
.slock
);
1894 * The sk_lock has mutex_lock() semantics here:
1896 mutex_acquire(&sk
->sk_lock
.dep_map
, subclass
, 0, _RET_IP_
);
1899 EXPORT_SYMBOL(lock_sock_nested
);
1901 void release_sock(struct sock
*sk
)
1904 * The sk_lock has mutex_unlock() semantics:
1906 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
1908 spin_lock_bh(&sk
->sk_lock
.slock
);
1909 if (sk
->sk_backlog
.tail
)
1911 sk
->sk_lock
.owned
= 0;
1912 if (waitqueue_active(&sk
->sk_lock
.wq
))
1913 wake_up(&sk
->sk_lock
.wq
);
1914 spin_unlock_bh(&sk
->sk_lock
.slock
);
1916 EXPORT_SYMBOL(release_sock
);
1918 int sock_get_timestamp(struct sock
*sk
, struct timeval __user
*userstamp
)
1921 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
1922 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
1923 tv
= ktime_to_timeval(sk
->sk_stamp
);
1924 if (tv
.tv_sec
== -1)
1926 if (tv
.tv_sec
== 0) {
1927 sk
->sk_stamp
= ktime_get_real();
1928 tv
= ktime_to_timeval(sk
->sk_stamp
);
1930 return copy_to_user(userstamp
, &tv
, sizeof(tv
)) ? -EFAULT
: 0;
1932 EXPORT_SYMBOL(sock_get_timestamp
);
1934 int sock_get_timestampns(struct sock
*sk
, struct timespec __user
*userstamp
)
1937 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
1938 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
1939 ts
= ktime_to_timespec(sk
->sk_stamp
);
1940 if (ts
.tv_sec
== -1)
1942 if (ts
.tv_sec
== 0) {
1943 sk
->sk_stamp
= ktime_get_real();
1944 ts
= ktime_to_timespec(sk
->sk_stamp
);
1946 return copy_to_user(userstamp
, &ts
, sizeof(ts
)) ? -EFAULT
: 0;
1948 EXPORT_SYMBOL(sock_get_timestampns
);
1950 void sock_enable_timestamp(struct sock
*sk
, int flag
)
1952 if (!sock_flag(sk
, flag
)) {
1953 sock_set_flag(sk
, flag
);
1955 * we just set one of the two flags which require net
1956 * time stamping, but time stamping might have been on
1957 * already because of the other one
1960 flag
== SOCK_TIMESTAMP
?
1961 SOCK_TIMESTAMPING_RX_SOFTWARE
:
1963 net_enable_timestamp();
1968 * Get a socket option on an socket.
1970 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1971 * asynchronous errors should be reported by getsockopt. We assume
1972 * this means if you specify SO_ERROR (otherwise whats the point of it).
1974 int sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
1975 char __user
*optval
, int __user
*optlen
)
1977 struct sock
*sk
= sock
->sk
;
1979 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
1981 EXPORT_SYMBOL(sock_common_getsockopt
);
1983 #ifdef CONFIG_COMPAT
1984 int compat_sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
1985 char __user
*optval
, int __user
*optlen
)
1987 struct sock
*sk
= sock
->sk
;
1989 if (sk
->sk_prot
->compat_getsockopt
!= NULL
)
1990 return sk
->sk_prot
->compat_getsockopt(sk
, level
, optname
,
1992 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
1994 EXPORT_SYMBOL(compat_sock_common_getsockopt
);
1997 int sock_common_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
1998 struct msghdr
*msg
, size_t size
, int flags
)
2000 struct sock
*sk
= sock
->sk
;
2004 err
= sk
->sk_prot
->recvmsg(iocb
, sk
, msg
, size
, flags
& MSG_DONTWAIT
,
2005 flags
& ~MSG_DONTWAIT
, &addr_len
);
2007 msg
->msg_namelen
= addr_len
;
2010 EXPORT_SYMBOL(sock_common_recvmsg
);
2013 * Set socket options on an inet socket.
2015 int sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2016 char __user
*optval
, int optlen
)
2018 struct sock
*sk
= sock
->sk
;
2020 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2022 EXPORT_SYMBOL(sock_common_setsockopt
);
2024 #ifdef CONFIG_COMPAT
2025 int compat_sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2026 char __user
*optval
, int optlen
)
2028 struct sock
*sk
= sock
->sk
;
2030 if (sk
->sk_prot
->compat_setsockopt
!= NULL
)
2031 return sk
->sk_prot
->compat_setsockopt(sk
, level
, optname
,
2033 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2035 EXPORT_SYMBOL(compat_sock_common_setsockopt
);
2038 void sk_common_release(struct sock
*sk
)
2040 if (sk
->sk_prot
->destroy
)
2041 sk
->sk_prot
->destroy(sk
);
2044 * Observation: when sock_common_release is called, processes have
2045 * no access to socket. But net still has.
2046 * Step one, detach it from networking:
2048 * A. Remove from hash tables.
2051 sk
->sk_prot
->unhash(sk
);
2054 * In this point socket cannot receive new packets, but it is possible
2055 * that some packets are in flight because some CPU runs receiver and
2056 * did hash table lookup before we unhashed socket. They will achieve
2057 * receive queue and will be purged by socket destructor.
2059 * Also we still have packets pending on receive queue and probably,
2060 * our own packets waiting in device queues. sock_destroy will drain
2061 * receive queue, but transmitted packets will delay socket destruction
2062 * until the last reference will be released.
2067 xfrm_sk_free_policy(sk
);
2069 sk_refcnt_debug_release(sk
);
2072 EXPORT_SYMBOL(sk_common_release
);
2074 static DEFINE_RWLOCK(proto_list_lock
);
2075 static LIST_HEAD(proto_list
);
2077 #ifdef CONFIG_PROC_FS
2078 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2080 int val
[PROTO_INUSE_NR
];
2083 static DECLARE_BITMAP(proto_inuse_idx
, PROTO_INUSE_NR
);
2085 #ifdef CONFIG_NET_NS
2086 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2088 int cpu
= smp_processor_id();
2089 per_cpu_ptr(net
->core
.inuse
, cpu
)->val
[prot
->inuse_idx
] += val
;
2091 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2093 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2095 int cpu
, idx
= prot
->inuse_idx
;
2098 for_each_possible_cpu(cpu
)
2099 res
+= per_cpu_ptr(net
->core
.inuse
, cpu
)->val
[idx
];
2101 return res
>= 0 ? res
: 0;
2103 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2105 static int sock_inuse_init_net(struct net
*net
)
2107 net
->core
.inuse
= alloc_percpu(struct prot_inuse
);
2108 return net
->core
.inuse
? 0 : -ENOMEM
;
2111 static void sock_inuse_exit_net(struct net
*net
)
2113 free_percpu(net
->core
.inuse
);
2116 static struct pernet_operations net_inuse_ops
= {
2117 .init
= sock_inuse_init_net
,
2118 .exit
= sock_inuse_exit_net
,
2121 static __init
int net_inuse_init(void)
2123 if (register_pernet_subsys(&net_inuse_ops
))
2124 panic("Cannot initialize net inuse counters");
2129 core_initcall(net_inuse_init
);
2131 static DEFINE_PER_CPU(struct prot_inuse
, prot_inuse
);
2133 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2135 __get_cpu_var(prot_inuse
).val
[prot
->inuse_idx
] += val
;
2137 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2139 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2141 int cpu
, idx
= prot
->inuse_idx
;
2144 for_each_possible_cpu(cpu
)
2145 res
+= per_cpu(prot_inuse
, cpu
).val
[idx
];
2147 return res
>= 0 ? res
: 0;
2149 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2152 static void assign_proto_idx(struct proto
*prot
)
2154 prot
->inuse_idx
= find_first_zero_bit(proto_inuse_idx
, PROTO_INUSE_NR
);
2156 if (unlikely(prot
->inuse_idx
== PROTO_INUSE_NR
- 1)) {
2157 printk(KERN_ERR
"PROTO_INUSE_NR exhausted\n");
2161 set_bit(prot
->inuse_idx
, proto_inuse_idx
);
2164 static void release_proto_idx(struct proto
*prot
)
2166 if (prot
->inuse_idx
!= PROTO_INUSE_NR
- 1)
2167 clear_bit(prot
->inuse_idx
, proto_inuse_idx
);
2170 static inline void assign_proto_idx(struct proto
*prot
)
2174 static inline void release_proto_idx(struct proto
*prot
)
2179 int proto_register(struct proto
*prot
, int alloc_slab
)
2182 prot
->slab
= kmem_cache_create(prot
->name
, prot
->obj_size
, 0,
2183 SLAB_HWCACHE_ALIGN
| prot
->slab_flags
,
2186 if (prot
->slab
== NULL
) {
2187 printk(KERN_CRIT
"%s: Can't create sock SLAB cache!\n",
2192 if (prot
->rsk_prot
!= NULL
) {
2193 static const char mask
[] = "request_sock_%s";
2195 prot
->rsk_prot
->slab_name
= kmalloc(strlen(prot
->name
) + sizeof(mask
) - 1, GFP_KERNEL
);
2196 if (prot
->rsk_prot
->slab_name
== NULL
)
2197 goto out_free_sock_slab
;
2199 sprintf(prot
->rsk_prot
->slab_name
, mask
, prot
->name
);
2200 prot
->rsk_prot
->slab
= kmem_cache_create(prot
->rsk_prot
->slab_name
,
2201 prot
->rsk_prot
->obj_size
, 0,
2202 SLAB_HWCACHE_ALIGN
, NULL
);
2204 if (prot
->rsk_prot
->slab
== NULL
) {
2205 printk(KERN_CRIT
"%s: Can't create request sock SLAB cache!\n",
2207 goto out_free_request_sock_slab_name
;
2211 if (prot
->twsk_prot
!= NULL
) {
2212 static const char mask
[] = "tw_sock_%s";
2214 prot
->twsk_prot
->twsk_slab_name
= kmalloc(strlen(prot
->name
) + sizeof(mask
) - 1, GFP_KERNEL
);
2216 if (prot
->twsk_prot
->twsk_slab_name
== NULL
)
2217 goto out_free_request_sock_slab
;
2219 sprintf(prot
->twsk_prot
->twsk_slab_name
, mask
, prot
->name
);
2220 prot
->twsk_prot
->twsk_slab
=
2221 kmem_cache_create(prot
->twsk_prot
->twsk_slab_name
,
2222 prot
->twsk_prot
->twsk_obj_size
,
2224 SLAB_HWCACHE_ALIGN
|
2227 if (prot
->twsk_prot
->twsk_slab
== NULL
)
2228 goto out_free_timewait_sock_slab_name
;
2232 write_lock(&proto_list_lock
);
2233 list_add(&prot
->node
, &proto_list
);
2234 assign_proto_idx(prot
);
2235 write_unlock(&proto_list_lock
);
2238 out_free_timewait_sock_slab_name
:
2239 kfree(prot
->twsk_prot
->twsk_slab_name
);
2240 out_free_request_sock_slab
:
2241 if (prot
->rsk_prot
&& prot
->rsk_prot
->slab
) {
2242 kmem_cache_destroy(prot
->rsk_prot
->slab
);
2243 prot
->rsk_prot
->slab
= NULL
;
2245 out_free_request_sock_slab_name
:
2246 kfree(prot
->rsk_prot
->slab_name
);
2248 kmem_cache_destroy(prot
->slab
);
2253 EXPORT_SYMBOL(proto_register
);
2255 void proto_unregister(struct proto
*prot
)
2257 write_lock(&proto_list_lock
);
2258 release_proto_idx(prot
);
2259 list_del(&prot
->node
);
2260 write_unlock(&proto_list_lock
);
2262 if (prot
->slab
!= NULL
) {
2263 kmem_cache_destroy(prot
->slab
);
2267 if (prot
->rsk_prot
!= NULL
&& prot
->rsk_prot
->slab
!= NULL
) {
2268 kmem_cache_destroy(prot
->rsk_prot
->slab
);
2269 kfree(prot
->rsk_prot
->slab_name
);
2270 prot
->rsk_prot
->slab
= NULL
;
2273 if (prot
->twsk_prot
!= NULL
&& prot
->twsk_prot
->twsk_slab
!= NULL
) {
2274 kmem_cache_destroy(prot
->twsk_prot
->twsk_slab
);
2275 kfree(prot
->twsk_prot
->twsk_slab_name
);
2276 prot
->twsk_prot
->twsk_slab
= NULL
;
2279 EXPORT_SYMBOL(proto_unregister
);
2281 #ifdef CONFIG_PROC_FS
2282 static void *proto_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2283 __acquires(proto_list_lock
)
2285 read_lock(&proto_list_lock
);
2286 return seq_list_start_head(&proto_list
, *pos
);
2289 static void *proto_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2291 return seq_list_next(v
, &proto_list
, pos
);
2294 static void proto_seq_stop(struct seq_file
*seq
, void *v
)
2295 __releases(proto_list_lock
)
2297 read_unlock(&proto_list_lock
);
2300 static char proto_method_implemented(const void *method
)
2302 return method
== NULL
? 'n' : 'y';
2305 static void proto_seq_printf(struct seq_file
*seq
, struct proto
*proto
)
2307 seq_printf(seq
, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2308 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2311 sock_prot_inuse_get(seq_file_net(seq
), proto
),
2312 proto
->memory_allocated
!= NULL
? atomic_read(proto
->memory_allocated
) : -1,
2313 proto
->memory_pressure
!= NULL
? *proto
->memory_pressure
? "yes" : "no" : "NI",
2315 proto
->slab
== NULL
? "no" : "yes",
2316 module_name(proto
->owner
),
2317 proto_method_implemented(proto
->close
),
2318 proto_method_implemented(proto
->connect
),
2319 proto_method_implemented(proto
->disconnect
),
2320 proto_method_implemented(proto
->accept
),
2321 proto_method_implemented(proto
->ioctl
),
2322 proto_method_implemented(proto
->init
),
2323 proto_method_implemented(proto
->destroy
),
2324 proto_method_implemented(proto
->shutdown
),
2325 proto_method_implemented(proto
->setsockopt
),
2326 proto_method_implemented(proto
->getsockopt
),
2327 proto_method_implemented(proto
->sendmsg
),
2328 proto_method_implemented(proto
->recvmsg
),
2329 proto_method_implemented(proto
->sendpage
),
2330 proto_method_implemented(proto
->bind
),
2331 proto_method_implemented(proto
->backlog_rcv
),
2332 proto_method_implemented(proto
->hash
),
2333 proto_method_implemented(proto
->unhash
),
2334 proto_method_implemented(proto
->get_port
),
2335 proto_method_implemented(proto
->enter_memory_pressure
));
2338 static int proto_seq_show(struct seq_file
*seq
, void *v
)
2340 if (v
== &proto_list
)
2341 seq_printf(seq
, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2350 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2352 proto_seq_printf(seq
, list_entry(v
, struct proto
, node
));
2356 static const struct seq_operations proto_seq_ops
= {
2357 .start
= proto_seq_start
,
2358 .next
= proto_seq_next
,
2359 .stop
= proto_seq_stop
,
2360 .show
= proto_seq_show
,
2363 static int proto_seq_open(struct inode
*inode
, struct file
*file
)
2365 return seq_open_net(inode
, file
, &proto_seq_ops
,
2366 sizeof(struct seq_net_private
));
2369 static const struct file_operations proto_seq_fops
= {
2370 .owner
= THIS_MODULE
,
2371 .open
= proto_seq_open
,
2373 .llseek
= seq_lseek
,
2374 .release
= seq_release_net
,
2377 static __net_init
int proto_init_net(struct net
*net
)
2379 if (!proc_net_fops_create(net
, "protocols", S_IRUGO
, &proto_seq_fops
))
2385 static __net_exit
void proto_exit_net(struct net
*net
)
2387 proc_net_remove(net
, "protocols");
2391 static __net_initdata
struct pernet_operations proto_net_ops
= {
2392 .init
= proto_init_net
,
2393 .exit
= proto_exit_net
,
2396 static int __init
proto_init(void)
2398 return register_pernet_subsys(&proto_net_ops
);
2401 subsys_initcall(proto_init
);
2403 #endif /* PROC_FS */