2 * Copyright (C) International Business Machines Corp., 2000-2004
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 * jfs_dtree.c: directory B+-tree manager
22 * B+-tree with variable length key directory:
24 * each directory page is structured as an array of 32-byte
25 * directory entry slots initialized as a freelist
26 * to avoid search/compaction of free space at insertion.
27 * when an entry is inserted, a number of slots are allocated
28 * from the freelist as required to store variable length data
29 * of the entry; when the entry is deleted, slots of the entry
30 * are returned to freelist.
32 * leaf entry stores full name as key and file serial number
33 * (aka inode number) as data.
34 * internal/router entry stores sufffix compressed name
35 * as key and simple extent descriptor as data.
37 * each directory page maintains a sorted entry index table
38 * which stores the start slot index of sorted entries
39 * to allow binary search on the table.
41 * directory starts as a root/leaf page in on-disk inode
43 * when it becomes full, it starts a leaf of a external extent
44 * of length of 1 block. each time the first leaf becomes full,
45 * it is extended rather than split (its size is doubled),
46 * until its length becoms 4 KBytes, from then the extent is split
47 * with new 4 Kbyte extent when it becomes full
48 * to reduce external fragmentation of small directories.
50 * blah, blah, blah, for linear scan of directory in pieces by
54 * case-insensitive directory file system
56 * names are stored in case-sensitive way in leaf entry.
57 * but stored, searched and compared in case-insensitive (uppercase) order
58 * (i.e., both search key and entry key are folded for search/compare):
59 * (note that case-sensitive order is BROKEN in storage, e.g.,
60 * sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
62 * entries which folds to the same key makes up a equivalent class
63 * whose members are stored as contiguous cluster (may cross page boundary)
64 * but whose order is arbitrary and acts as duplicate, e.g.,
67 * once match is found at leaf, requires scan forward/backward
68 * either for, in case-insensitive search, duplicate
69 * or for, in case-sensitive search, for exact match
71 * router entry must be created/stored in case-insensitive way
73 * (right most key of left page and left most key of right page
74 * are folded, and its suffix compression is propagated as router
76 * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
77 * should be made the router key for the split)
79 * case-insensitive search:
83 * case-insensitive search of B-tree:
84 * for internal entry, router key is already folded;
85 * for leaf entry, fold the entry key before comparison.
87 * if (leaf entry case-insensitive match found)
88 * if (next entry satisfies case-insensitive match)
90 * if (prev entry satisfies case-insensitive match)
97 * target directory inode lock is being held on entry/exit
98 * of all main directory service routines.
100 * log based recovery:
103 #include <linux/fs.h>
104 #include <linux/quotaops.h>
105 #include <linux/slab.h>
106 #include "jfs_incore.h"
107 #include "jfs_superblock.h"
108 #include "jfs_filsys.h"
109 #include "jfs_metapage.h"
110 #include "jfs_dmap.h"
111 #include "jfs_unicode.h"
112 #include "jfs_debug.h"
114 /* dtree split parameter */
119 struct component_name
*key
;
121 struct pxdlist
*pxdlist
;
124 #define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
126 /* get page buffer for specified block address */
127 #define DT_GETPAGE(IP, BN, MP, SIZE, P, RC) \
129 BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot); \
131 if (((P)->header.nextindex > \
132 (((BN) == 0) ? DTROOTMAXSLOT : (P)->header.maxslot)) || \
133 ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT))) { \
135 jfs_error((IP)->i_sb, \
136 "DT_GETPAGE: dtree page corrupt\n"); \
143 /* for consistency */
144 #define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
146 #define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
147 BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
152 static int dtSplitUp(tid_t tid
, struct inode
*ip
,
153 struct dtsplit
* split
, struct btstack
* btstack
);
155 static int dtSplitPage(tid_t tid
, struct inode
*ip
, struct dtsplit
* split
,
156 struct metapage
** rmpp
, dtpage_t
** rpp
, pxd_t
* rxdp
);
158 static int dtExtendPage(tid_t tid
, struct inode
*ip
,
159 struct dtsplit
* split
, struct btstack
* btstack
);
161 static int dtSplitRoot(tid_t tid
, struct inode
*ip
,
162 struct dtsplit
* split
, struct metapage
** rmpp
);
164 static int dtDeleteUp(tid_t tid
, struct inode
*ip
, struct metapage
* fmp
,
165 dtpage_t
* fp
, struct btstack
* btstack
);
167 static int dtRelink(tid_t tid
, struct inode
*ip
, dtpage_t
* p
);
169 static int dtReadFirst(struct inode
*ip
, struct btstack
* btstack
);
171 static int dtReadNext(struct inode
*ip
,
172 loff_t
* offset
, struct btstack
* btstack
);
174 static int dtCompare(struct component_name
* key
, dtpage_t
* p
, int si
);
176 static int ciCompare(struct component_name
* key
, dtpage_t
* p
, int si
,
179 static void dtGetKey(dtpage_t
* p
, int i
, struct component_name
* key
,
182 static int ciGetLeafPrefixKey(dtpage_t
* lp
, int li
, dtpage_t
* rp
,
183 int ri
, struct component_name
* key
, int flag
);
185 static void dtInsertEntry(dtpage_t
* p
, int index
, struct component_name
* key
,
186 ddata_t
* data
, struct dt_lock
**);
188 static void dtMoveEntry(dtpage_t
* sp
, int si
, dtpage_t
* dp
,
189 struct dt_lock
** sdtlock
, struct dt_lock
** ddtlock
,
192 static void dtDeleteEntry(dtpage_t
* p
, int fi
, struct dt_lock
** dtlock
);
194 static void dtTruncateEntry(dtpage_t
* p
, int ti
, struct dt_lock
** dtlock
);
196 static void dtLinelockFreelist(dtpage_t
* p
, int m
, struct dt_lock
** dtlock
);
198 #define ciToUpper(c) UniStrupr((c)->name)
203 * Reads a page of a directory's index table.
204 * Having metadata mapped into the directory inode's address space
205 * presents a multitude of problems. We avoid this by mapping to
206 * the absolute address space outside of the *_metapage routines
208 static struct metapage
*read_index_page(struct inode
*inode
, s64 blkno
)
215 rc
= xtLookup(inode
, blkno
, 1, &xflag
, &xaddr
, &xlen
, 1);
216 if (rc
|| (xaddr
== 0))
219 return read_metapage(inode
, xaddr
, PSIZE
, 1);
225 * Same as get_index_page(), but get's a new page without reading
227 static struct metapage
*get_index_page(struct inode
*inode
, s64 blkno
)
234 rc
= xtLookup(inode
, blkno
, 1, &xflag
, &xaddr
, &xlen
, 1);
235 if (rc
|| (xaddr
== 0))
238 return get_metapage(inode
, xaddr
, PSIZE
, 1);
244 * Returns dtree page containing directory table entry for specified
245 * index and pointer to its entry.
247 * mp must be released by caller.
249 static struct dir_table_slot
*find_index(struct inode
*ip
, u32 index
,
250 struct metapage
** mp
, s64
*lblock
)
252 struct jfs_inode_info
*jfs_ip
= JFS_IP(ip
);
256 struct dir_table_slot
*slot
;
257 static int maxWarnings
= 10;
261 jfs_warn("find_entry called with index = %d", index
);
267 if (index
>= jfs_ip
->next_index
) {
268 jfs_warn("find_entry called with index >= next_index");
272 if (jfs_dirtable_inline(ip
)) {
274 * Inline directory table
277 slot
= &jfs_ip
->i_dirtable
[index
- 2];
279 offset
= (index
- 2) * sizeof(struct dir_table_slot
);
280 page_offset
= offset
& (PSIZE
- 1);
281 blkno
= ((offset
+ 1) >> L2PSIZE
) <<
282 JFS_SBI(ip
->i_sb
)->l2nbperpage
;
284 if (*mp
&& (*lblock
!= blkno
)) {
285 release_metapage(*mp
);
290 *mp
= read_index_page(ip
, blkno
);
293 jfs_err("free_index: error reading directory table");
298 (struct dir_table_slot
*) ((char *) (*mp
)->data
+
304 static inline void lock_index(tid_t tid
, struct inode
*ip
, struct metapage
* mp
,
308 struct linelock
*llck
;
311 tlck
= txLock(tid
, ip
, mp
, tlckDATA
);
312 llck
= (struct linelock
*) tlck
->lock
;
314 if (llck
->index
>= llck
->maxcnt
)
315 llck
= txLinelock(llck
);
316 lv
= &llck
->lv
[llck
->index
];
319 * Linelock slot size is twice the size of directory table
320 * slot size. 512 entries per page.
322 lv
->offset
= ((index
- 2) & 511) >> 1;
330 * Adds an entry to the directory index table. This is used to provide
331 * each directory entry with a persistent index in which to resume
332 * directory traversals
334 static u32
add_index(tid_t tid
, struct inode
*ip
, s64 bn
, int slot
)
336 struct super_block
*sb
= ip
->i_sb
;
337 struct jfs_sb_info
*sbi
= JFS_SBI(sb
);
338 struct jfs_inode_info
*jfs_ip
= JFS_IP(ip
);
340 struct dir_table_slot
*dirtab_slot
;
342 struct linelock
*llck
;
350 ASSERT(DO_INDEX(ip
));
352 if (jfs_ip
->next_index
< 2) {
353 jfs_warn("add_index: next_index = %d. Resetting!",
355 jfs_ip
->next_index
= 2;
358 index
= jfs_ip
->next_index
++;
360 if (index
<= MAX_INLINE_DIRTABLE_ENTRY
) {
362 * i_size reflects size of index table, or 8 bytes per entry.
364 ip
->i_size
= (loff_t
) (index
- 1) << 3;
367 * dir table fits inline within inode
369 dirtab_slot
= &jfs_ip
->i_dirtable
[index
-2];
370 dirtab_slot
->flag
= DIR_INDEX_VALID
;
371 dirtab_slot
->slot
= slot
;
372 DTSaddress(dirtab_slot
, bn
);
374 set_cflag(COMMIT_Dirtable
, ip
);
378 if (index
== (MAX_INLINE_DIRTABLE_ENTRY
+ 1)) {
379 struct dir_table_slot temp_table
[12];
382 * It's time to move the inline table to an external
383 * page and begin to build the xtree
385 if (dquot_alloc_block(ip
, sbi
->nbperpage
))
387 if (dbAlloc(ip
, 0, sbi
->nbperpage
, &xaddr
)) {
388 dquot_free_block(ip
, sbi
->nbperpage
);
393 * Save the table, we're going to overwrite it with the
396 memcpy(temp_table
, &jfs_ip
->i_dirtable
, sizeof(temp_table
));
399 * Initialize empty x-tree
404 * Add the first block to the xtree
406 if (xtInsert(tid
, ip
, 0, 0, sbi
->nbperpage
, &xaddr
, 0)) {
407 /* This really shouldn't fail */
408 jfs_warn("add_index: xtInsert failed!");
409 memcpy(&jfs_ip
->i_dirtable
, temp_table
,
410 sizeof (temp_table
));
411 dbFree(ip
, xaddr
, sbi
->nbperpage
);
412 dquot_free_block(ip
, sbi
->nbperpage
);
417 mp
= get_index_page(ip
, 0);
419 jfs_err("add_index: get_metapage failed!");
420 xtTruncate(tid
, ip
, 0, COMMIT_PWMAP
);
421 memcpy(&jfs_ip
->i_dirtable
, temp_table
,
422 sizeof (temp_table
));
425 tlck
= txLock(tid
, ip
, mp
, tlckDATA
);
426 llck
= (struct linelock
*) & tlck
->lock
;
427 ASSERT(llck
->index
== 0);
431 lv
->length
= 6; /* tlckDATA slot size is 16 bytes */
434 memcpy(mp
->data
, temp_table
, sizeof(temp_table
));
436 mark_metapage_dirty(mp
);
437 release_metapage(mp
);
440 * Logging is now directed by xtree tlocks
442 clear_cflag(COMMIT_Dirtable
, ip
);
445 offset
= (index
- 2) * sizeof(struct dir_table_slot
);
446 page_offset
= offset
& (PSIZE
- 1);
447 blkno
= ((offset
+ 1) >> L2PSIZE
) << sbi
->l2nbperpage
;
448 if (page_offset
== 0) {
450 * This will be the beginning of a new page
453 if (xtInsert(tid
, ip
, 0, blkno
, sbi
->nbperpage
, &xaddr
, 0)) {
454 jfs_warn("add_index: xtInsert failed!");
459 if ((mp
= get_index_page(ip
, blkno
)))
460 memset(mp
->data
, 0, PSIZE
); /* Just looks better */
462 xtTruncate(tid
, ip
, offset
, COMMIT_PWMAP
);
464 mp
= read_index_page(ip
, blkno
);
467 jfs_err("add_index: get/read_metapage failed!");
471 lock_index(tid
, ip
, mp
, index
);
474 (struct dir_table_slot
*) ((char *) mp
->data
+ page_offset
);
475 dirtab_slot
->flag
= DIR_INDEX_VALID
;
476 dirtab_slot
->slot
= slot
;
477 DTSaddress(dirtab_slot
, bn
);
479 mark_metapage_dirty(mp
);
480 release_metapage(mp
);
486 jfs_ip
->next_index
--;
494 * Marks an entry to the directory index table as free.
496 static void free_index(tid_t tid
, struct inode
*ip
, u32 index
, u32 next
)
498 struct dir_table_slot
*dirtab_slot
;
500 struct metapage
*mp
= NULL
;
502 dirtab_slot
= find_index(ip
, index
, &mp
, &lblock
);
507 dirtab_slot
->flag
= DIR_INDEX_FREE
;
508 dirtab_slot
->slot
= dirtab_slot
->addr1
= 0;
509 dirtab_slot
->addr2
= cpu_to_le32(next
);
512 lock_index(tid
, ip
, mp
, index
);
513 mark_metapage_dirty(mp
);
514 release_metapage(mp
);
516 set_cflag(COMMIT_Dirtable
, ip
);
522 * Changes an entry in the directory index table
524 static void modify_index(tid_t tid
, struct inode
*ip
, u32 index
, s64 bn
,
525 int slot
, struct metapage
** mp
, s64
*lblock
)
527 struct dir_table_slot
*dirtab_slot
;
529 dirtab_slot
= find_index(ip
, index
, mp
, lblock
);
534 DTSaddress(dirtab_slot
, bn
);
535 dirtab_slot
->slot
= slot
;
538 lock_index(tid
, ip
, *mp
, index
);
539 mark_metapage_dirty(*mp
);
541 set_cflag(COMMIT_Dirtable
, ip
);
547 * reads a directory table slot
549 static int read_index(struct inode
*ip
, u32 index
,
550 struct dir_table_slot
* dirtab_slot
)
553 struct metapage
*mp
= NULL
;
554 struct dir_table_slot
*slot
;
556 slot
= find_index(ip
, index
, &mp
, &lblock
);
561 memcpy(dirtab_slot
, slot
, sizeof(struct dir_table_slot
));
564 release_metapage(mp
);
573 * Search for the entry with specified key
577 * return: 0 - search result on stack, leaf page pinned;
580 int dtSearch(struct inode
*ip
, struct component_name
* key
, ino_t
* data
,
581 struct btstack
* btstack
, int flag
)
584 int cmp
= 1; /* init for empty page */
589 int base
, index
, lim
;
590 struct btframe
*btsp
;
592 int psize
= 288; /* initial in-line directory */
594 struct component_name ciKey
;
595 struct super_block
*sb
= ip
->i_sb
;
597 ciKey
.name
= kmalloc((JFS_NAME_MAX
+ 1) * sizeof(wchar_t), GFP_NOFS
);
604 /* uppercase search key for c-i directory */
605 UniStrcpy(ciKey
.name
, key
->name
);
606 ciKey
.namlen
= key
->namlen
;
608 /* only uppercase if case-insensitive support is on */
609 if ((JFS_SBI(sb
)->mntflag
& JFS_OS2
) == JFS_OS2
) {
612 BT_CLR(btstack
); /* reset stack */
614 /* init level count for max pages to split */
618 * search down tree from root:
620 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
621 * internal page, child page Pi contains entry with k, Ki <= K < Kj.
623 * if entry with search key K is not found
624 * internal page search find the entry with largest key Ki
625 * less than K which point to the child page to search;
626 * leaf page search find the entry with smallest key Kj
627 * greater than K so that the returned index is the position of
628 * the entry to be shifted right for insertion of new entry.
629 * for empty tree, search key is greater than any key of the tree.
631 * by convention, root bn = 0.
634 /* get/pin the page to search */
635 DT_GETPAGE(ip
, bn
, mp
, psize
, p
, rc
);
639 /* get sorted entry table of the page */
640 stbl
= DT_GETSTBL(p
);
643 * binary search with search key K on the current page.
645 for (base
= 0, lim
= p
->header
.nextindex
; lim
; lim
>>= 1) {
646 index
= base
+ (lim
>> 1);
648 if (p
->header
.flag
& BT_LEAF
) {
649 /* uppercase leaf name to compare */
651 ciCompare(&ciKey
, p
, stbl
[index
],
652 JFS_SBI(sb
)->mntflag
);
654 /* router key is in uppercase */
656 cmp
= dtCompare(&ciKey
, p
, stbl
[index
]);
664 /* search hit - leaf page:
665 * return the entry found
667 if (p
->header
.flag
& BT_LEAF
) {
668 inumber
= le32_to_cpu(
669 ((struct ldtentry
*) & p
->slot
[stbl
[index
]])->inumber
);
672 * search for JFS_LOOKUP
674 if (flag
== JFS_LOOKUP
) {
681 * search for JFS_CREATE
683 if (flag
== JFS_CREATE
) {
690 * search for JFS_REMOVE or JFS_RENAME
692 if ((flag
== JFS_REMOVE
||
693 flag
== JFS_RENAME
) &&
700 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
702 /* save search result */
713 /* search hit - internal page:
714 * descend/search its child page
728 * base is the smallest index with key (Kj) greater than
729 * search key (K) and may be zero or (maxindex + 1) index.
732 * search miss - leaf page
734 * return location of entry (base) where new entry with
735 * search key K is to be inserted.
737 if (p
->header
.flag
& BT_LEAF
) {
739 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
741 if (flag
== JFS_LOOKUP
|| flag
== JFS_REMOVE
||
742 flag
== JFS_RENAME
) {
748 * search for JFS_CREATE|JFS_FINDDIR:
763 * search miss - internal page
765 * if base is non-zero, decrement base by one to get the parent
766 * entry of the child page to search.
768 index
= base
? base
- 1 : base
;
771 * go down to child page
774 /* update max. number of pages to split */
775 if (BT_STACK_FULL(btstack
)) {
776 /* Something's corrupted, mark filesystem dirty so
777 * chkdsk will fix it.
779 jfs_error(sb
, "stack overrun!\n");
780 BT_STACK_DUMP(btstack
);
786 /* push (bn, index) of the parent page/entry */
787 BT_PUSH(btstack
, bn
, index
);
789 /* get the child page block number */
790 pxd
= (pxd_t
*) & p
->slot
[stbl
[index
]];
791 bn
= addressPXD(pxd
);
792 psize
= lengthPXD(pxd
) << JFS_SBI(ip
->i_sb
)->l2bsize
;
794 /* unpin the parent page */
814 * function: insert an entry to directory tree
818 * return: 0 - success;
821 int dtInsert(tid_t tid
, struct inode
*ip
,
822 struct component_name
* name
, ino_t
* fsn
, struct btstack
* btstack
)
825 struct metapage
*mp
; /* meta-page buffer */
826 dtpage_t
*p
; /* base B+-tree index page */
829 struct dtsplit split
; /* split information */
831 struct dt_lock
*dtlck
;
837 * retrieve search result
839 * dtSearch() returns (leaf page pinned, index at which to insert).
840 * n.b. dtSearch() may return index of (maxindex + 1) of
843 DT_GETSEARCH(ip
, btstack
->top
, bn
, mp
, p
, index
);
846 * insert entry for new key
849 if (JFS_IP(ip
)->next_index
== DIREND
) {
853 n
= NDTLEAF(name
->namlen
);
857 n
= NDTLEAF_LEGACY(name
->namlen
);
858 data
.leaf
.ip
= NULL
; /* signifies legacy directory format */
860 data
.leaf
.ino
= *fsn
;
863 * leaf page does not have enough room for new entry:
865 * extend/split the leaf page;
867 * dtSplitUp() will insert the entry and unpin the leaf page.
869 if (n
> p
->header
.freecnt
) {
875 rc
= dtSplitUp(tid
, ip
, &split
, btstack
);
880 * leaf page does have enough room for new entry:
882 * insert the new data entry into the leaf page;
884 BT_MARK_DIRTY(mp
, ip
);
886 * acquire a transaction lock on the leaf page
888 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckENTRY
);
889 dtlck
= (struct dt_lock
*) & tlck
->lock
;
890 ASSERT(dtlck
->index
== 0);
893 /* linelock header */
898 dtInsertEntry(p
, index
, name
, &data
, &dtlck
);
900 /* linelock stbl of non-root leaf page */
901 if (!(p
->header
.flag
& BT_ROOT
)) {
902 if (dtlck
->index
>= dtlck
->maxcnt
)
903 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
904 lv
= & dtlck
->lv
[dtlck
->index
];
905 n
= index
>> L2DTSLOTSIZE
;
906 lv
->offset
= p
->header
.stblindex
+ n
;
908 ((p
->header
.nextindex
- 1) >> L2DTSLOTSIZE
) - n
+ 1;
912 /* unpin the leaf page */
922 * function: propagate insertion bottom up;
926 * return: 0 - success;
928 * leaf page unpinned;
930 static int dtSplitUp(tid_t tid
,
931 struct inode
*ip
, struct dtsplit
* split
, struct btstack
* btstack
)
933 struct jfs_sb_info
*sbi
= JFS_SBI(ip
->i_sb
);
935 struct metapage
*smp
;
936 dtpage_t
*sp
; /* split page */
937 struct metapage
*rmp
;
938 dtpage_t
*rp
; /* new right page split from sp */
939 pxd_t rpxd
; /* new right page extent descriptor */
940 struct metapage
*lmp
;
941 dtpage_t
*lp
; /* left child page */
942 int skip
; /* index of entry of insertion */
943 struct btframe
*parent
; /* parent page entry on traverse stack */
946 struct pxdlist pxdlist
;
948 struct component_name key
= { 0, NULL
};
949 ddata_t
*data
= split
->data
;
951 struct dt_lock
*dtlck
;
954 int quota_allocation
= 0;
958 sp
= DT_PAGE(ip
, smp
);
960 key
.name
= kmalloc((JFS_NAME_MAX
+ 2) * sizeof(wchar_t), GFP_NOFS
);
970 * The split routines insert the new entry, and
971 * acquire txLock as appropriate.
974 * split root leaf page:
976 if (sp
->header
.flag
& BT_ROOT
) {
978 * allocate a single extent child page
981 n
= sbi
->bsize
>> L2DTSLOTSIZE
;
982 n
-= (n
+ 31) >> L2DTSLOTSIZE
; /* stbl size */
983 n
-= DTROOTMAXSLOT
- sp
->header
.freecnt
; /* header + entries */
984 if (n
<= split
->nslot
)
986 if ((rc
= dbAlloc(ip
, 0, (s64
) xlen
, &xaddr
))) {
993 pxd
= &pxdlist
.pxd
[0];
994 PXDaddress(pxd
, xaddr
);
995 PXDlength(pxd
, xlen
);
996 split
->pxdlist
= &pxdlist
;
997 rc
= dtSplitRoot(tid
, ip
, split
, &rmp
);
1000 dbFree(ip
, xaddr
, xlen
);
1007 ip
->i_size
= xlen
<< sbi
->l2bsize
;
1013 * extend first leaf page
1015 * extend the 1st extent if less than buffer page size
1016 * (dtExtendPage() reurns leaf page unpinned)
1018 pxd
= &sp
->header
.self
;
1019 xlen
= lengthPXD(pxd
);
1020 xsize
= xlen
<< sbi
->l2bsize
;
1021 if (xsize
< PSIZE
) {
1022 xaddr
= addressPXD(pxd
);
1023 n
= xsize
>> L2DTSLOTSIZE
;
1024 n
-= (n
+ 31) >> L2DTSLOTSIZE
; /* stbl size */
1025 if ((n
+ sp
->header
.freecnt
) <= split
->nslot
)
1026 n
= xlen
+ (xlen
<< 1);
1030 /* Allocate blocks to quota. */
1031 rc
= dquot_alloc_block(ip
, n
);
1034 quota_allocation
+= n
;
1036 if ((rc
= dbReAlloc(sbi
->ipbmap
, xaddr
, (s64
) xlen
,
1040 pxdlist
.maxnpxd
= 1;
1042 pxd
= &pxdlist
.pxd
[0];
1043 PXDaddress(pxd
, nxaddr
);
1044 PXDlength(pxd
, xlen
+ n
);
1045 split
->pxdlist
= &pxdlist
;
1046 if ((rc
= dtExtendPage(tid
, ip
, split
, btstack
))) {
1047 nxaddr
= addressPXD(pxd
);
1048 if (xaddr
!= nxaddr
) {
1049 /* free relocated extent */
1050 xlen
= lengthPXD(pxd
);
1051 dbFree(ip
, nxaddr
, (s64
) xlen
);
1053 /* free extended delta */
1054 xlen
= lengthPXD(pxd
) - n
;
1055 xaddr
= addressPXD(pxd
) + xlen
;
1056 dbFree(ip
, xaddr
, (s64
) n
);
1058 } else if (!DO_INDEX(ip
))
1059 ip
->i_size
= lengthPXD(pxd
) << sbi
->l2bsize
;
1068 * split leaf page <sp> into <sp> and a new right page <rp>.
1070 * return <rp> pinned and its extent descriptor <rpxd>
1073 * allocate new directory page extent and
1074 * new index page(s) to cover page split(s)
1076 * allocation hint: ?
1078 n
= btstack
->nsplit
;
1079 pxdlist
.maxnpxd
= pxdlist
.npxd
= 0;
1080 xlen
= sbi
->nbperpage
;
1081 for (pxd
= pxdlist
.pxd
; n
> 0; n
--, pxd
++) {
1082 if ((rc
= dbAlloc(ip
, 0, (s64
) xlen
, &xaddr
)) == 0) {
1083 PXDaddress(pxd
, xaddr
);
1084 PXDlength(pxd
, xlen
);
1091 /* undo allocation */
1095 split
->pxdlist
= &pxdlist
;
1096 if ((rc
= dtSplitPage(tid
, ip
, split
, &rmp
, &rp
, &rpxd
))) {
1099 /* undo allocation */
1104 ip
->i_size
+= PSIZE
;
1107 * propagate up the router entry for the leaf page just split
1109 * insert a router entry for the new page into the parent page,
1110 * propagate the insert/split up the tree by walking back the stack
1111 * of (bn of parent page, index of child page entry in parent page)
1112 * that were traversed during the search for the page that split.
1114 * the propagation of insert/split up the tree stops if the root
1115 * splits or the page inserted into doesn't have to split to hold
1118 * the parent entry for the split page remains the same, and
1119 * a new entry is inserted at its right with the first key and
1120 * block number of the new right page.
1122 * There are a maximum of 4 pages pinned at any time:
1123 * two children, left parent and right parent (when the parent splits).
1124 * keep the child pages pinned while working on the parent.
1125 * make sure that all pins are released at exit.
1127 while ((parent
= BT_POP(btstack
)) != NULL
) {
1128 /* parent page specified by stack frame <parent> */
1130 /* keep current child pages (<lp>, <rp>) pinned */
1135 * insert router entry in parent for new right child page <rp>
1137 /* get the parent page <sp> */
1138 DT_GETPAGE(ip
, parent
->bn
, smp
, PSIZE
, sp
, rc
);
1146 * The new key entry goes ONE AFTER the index of parent entry,
1147 * because the split was to the right.
1149 skip
= parent
->index
+ 1;
1152 * compute the key for the router entry
1154 * key suffix compression:
1155 * for internal pages that have leaf pages as children,
1156 * retain only what's needed to distinguish between
1157 * the new entry and the entry on the page to its left.
1158 * If the keys compare equal, retain the entire key.
1160 * note that compression is performed only at computing
1161 * router key at the lowest internal level.
1162 * further compression of the key between pairs of higher
1163 * level internal pages loses too much information and
1164 * the search may fail.
1165 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1166 * results in two adjacent parent entries (a)(xx).
1167 * if split occurs between these two entries, and
1168 * if compression is applied, the router key of parent entry
1169 * of right page (x) will divert search for x into right
1170 * subtree and miss x in the left subtree.)
1172 * the entire key must be retained for the next-to-leftmost
1173 * internal key at any level of the tree, or search may fail
1176 switch (rp
->header
.flag
& BT_TYPE
) {
1179 * compute the length of prefix for suffix compression
1180 * between last entry of left page and first entry
1183 if ((sp
->header
.flag
& BT_ROOT
&& skip
> 1) ||
1184 sp
->header
.prev
!= 0 || skip
> 1) {
1185 /* compute uppercase router prefix key */
1186 rc
= ciGetLeafPrefixKey(lp
,
1187 lp
->header
.nextindex
-1,
1197 /* next to leftmost entry of
1198 lowest internal level */
1200 /* compute uppercase router key */
1201 dtGetKey(rp
, 0, &key
, sbi
->mntflag
);
1202 key
.name
[key
.namlen
] = 0;
1204 if ((sbi
->mntflag
& JFS_OS2
) == JFS_OS2
)
1208 n
= NDTINTERNAL(key
.namlen
);
1212 dtGetKey(rp
, 0, &key
, sbi
->mntflag
);
1213 n
= NDTINTERNAL(key
.namlen
);
1217 jfs_err("dtSplitUp(): UFO!");
1221 /* unpin left child page */
1225 * compute the data for the router entry
1227 data
->xd
= rpxd
; /* child page xd */
1230 * parent page is full - split the parent page
1232 if (n
> sp
->header
.freecnt
) {
1233 /* init for parent page split */
1235 split
->index
= skip
; /* index at insert */
1238 /* split->data = data; */
1240 /* unpin right child page */
1243 /* The split routines insert the new entry,
1244 * acquire txLock as appropriate.
1245 * return <rp> pinned and its block number <rbn>.
1247 rc
= (sp
->header
.flag
& BT_ROOT
) ?
1248 dtSplitRoot(tid
, ip
, split
, &rmp
) :
1249 dtSplitPage(tid
, ip
, split
, &rmp
, &rp
, &rpxd
);
1255 /* smp and rmp are pinned */
1258 * parent page is not full - insert router entry in parent page
1261 BT_MARK_DIRTY(smp
, ip
);
1263 * acquire a transaction lock on the parent page
1265 tlck
= txLock(tid
, ip
, smp
, tlckDTREE
| tlckENTRY
);
1266 dtlck
= (struct dt_lock
*) & tlck
->lock
;
1267 ASSERT(dtlck
->index
== 0);
1268 lv
= & dtlck
->lv
[0];
1270 /* linelock header */
1275 /* linelock stbl of non-root parent page */
1276 if (!(sp
->header
.flag
& BT_ROOT
)) {
1278 n
= skip
>> L2DTSLOTSIZE
;
1279 lv
->offset
= sp
->header
.stblindex
+ n
;
1281 ((sp
->header
.nextindex
-
1282 1) >> L2DTSLOTSIZE
) - n
+ 1;
1286 dtInsertEntry(sp
, skip
, &key
, data
, &dtlck
);
1288 /* exit propagate up */
1293 /* unpin current split and its right page */
1298 * free remaining extents allocated for split
1302 pxd
= &pxdlist
.pxd
[n
];
1303 for (; n
< pxdlist
.maxnpxd
; n
++, pxd
++)
1304 dbFree(ip
, addressPXD(pxd
), (s64
) lengthPXD(pxd
));
1309 /* Rollback quota allocation */
1310 if (rc
&& quota_allocation
)
1311 dquot_free_block(ip
, quota_allocation
);
1322 * function: Split a non-root page of a btree.
1326 * return: 0 - success;
1328 * return split and new page pinned;
1330 static int dtSplitPage(tid_t tid
, struct inode
*ip
, struct dtsplit
* split
,
1331 struct metapage
** rmpp
, dtpage_t
** rpp
, pxd_t
* rpxdp
)
1334 struct metapage
*smp
;
1336 struct metapage
*rmp
;
1337 dtpage_t
*rp
; /* new right page allocated */
1338 s64 rbn
; /* new right page block number */
1339 struct metapage
*mp
;
1342 struct pxdlist
*pxdlist
;
1344 int skip
, nextindex
, half
, left
, nxt
, off
, si
;
1345 struct ldtentry
*ldtentry
;
1346 struct idtentry
*idtentry
;
1351 struct dt_lock
*sdtlck
, *rdtlck
;
1353 struct dt_lock
*dtlck
;
1354 struct lv
*slv
, *rlv
, *lv
;
1356 /* get split page */
1358 sp
= DT_PAGE(ip
, smp
);
1361 * allocate the new right page for the split
1363 pxdlist
= split
->pxdlist
;
1364 pxd
= &pxdlist
->pxd
[pxdlist
->npxd
];
1366 rbn
= addressPXD(pxd
);
1367 rmp
= get_metapage(ip
, rbn
, PSIZE
, 1);
1371 /* Allocate blocks to quota. */
1372 rc
= dquot_alloc_block(ip
, lengthPXD(pxd
));
1374 release_metapage(rmp
);
1378 jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip
, smp
, rmp
);
1380 BT_MARK_DIRTY(rmp
, ip
);
1382 * acquire a transaction lock on the new right page
1384 tlck
= txLock(tid
, ip
, rmp
, tlckDTREE
| tlckNEW
);
1385 rdtlck
= (struct dt_lock
*) & tlck
->lock
;
1387 rp
= (dtpage_t
*) rmp
->data
;
1389 rp
->header
.self
= *pxd
;
1391 BT_MARK_DIRTY(smp
, ip
);
1393 * acquire a transaction lock on the split page
1397 tlck
= txLock(tid
, ip
, smp
, tlckDTREE
| tlckENTRY
);
1398 sdtlck
= (struct dt_lock
*) & tlck
->lock
;
1400 /* linelock header of split page */
1401 ASSERT(sdtlck
->index
== 0);
1402 slv
= & sdtlck
->lv
[0];
1408 * initialize/update sibling pointers between sp and rp
1410 nextbn
= le64_to_cpu(sp
->header
.next
);
1411 rp
->header
.next
= cpu_to_le64(nextbn
);
1412 rp
->header
.prev
= cpu_to_le64(addressPXD(&sp
->header
.self
));
1413 sp
->header
.next
= cpu_to_le64(rbn
);
1416 * initialize new right page
1418 rp
->header
.flag
= sp
->header
.flag
;
1420 /* compute sorted entry table at start of extent data area */
1421 rp
->header
.nextindex
= 0;
1422 rp
->header
.stblindex
= 1;
1424 n
= PSIZE
>> L2DTSLOTSIZE
;
1425 rp
->header
.maxslot
= n
;
1426 stblsize
= (n
+ 31) >> L2DTSLOTSIZE
; /* in unit of slot */
1429 fsi
= rp
->header
.stblindex
+ stblsize
;
1430 rp
->header
.freelist
= fsi
;
1431 rp
->header
.freecnt
= rp
->header
.maxslot
- fsi
;
1434 * sequential append at tail: append without split
1436 * If splitting the last page on a level because of appending
1437 * a entry to it (skip is maxentry), it's likely that the access is
1438 * sequential. Adding an empty page on the side of the level is less
1439 * work and can push the fill factor much higher than normal.
1440 * If we're wrong it's no big deal, we'll just do the split the right
1442 * (It may look like it's equally easy to do a similar hack for
1443 * reverse sorted data, that is, split the tree left,
1444 * but it's not. Be my guest.)
1446 if (nextbn
== 0 && split
->index
== sp
->header
.nextindex
) {
1447 /* linelock header + stbl (first slot) of new page */
1448 rlv
= & rdtlck
->lv
[rdtlck
->index
];
1454 * initialize freelist of new right page
1457 for (fsi
++; fsi
< rp
->header
.maxslot
; f
++, fsi
++)
1461 /* insert entry at the first entry of the new right page */
1462 dtInsertEntry(rp
, 0, split
->key
, split
->data
, &rdtlck
);
1468 * non-sequential insert (at possibly middle page)
1472 * update prev pointer of previous right sibling page;
1475 DT_GETPAGE(ip
, nextbn
, mp
, PSIZE
, p
, rc
);
1477 discard_metapage(rmp
);
1481 BT_MARK_DIRTY(mp
, ip
);
1483 * acquire a transaction lock on the next page
1485 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckRELINK
);
1486 jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1488 dtlck
= (struct dt_lock
*) & tlck
->lock
;
1490 /* linelock header of previous right sibling page */
1491 lv
= & dtlck
->lv
[dtlck
->index
];
1496 p
->header
.prev
= cpu_to_le64(rbn
);
1502 * split the data between the split and right pages.
1504 skip
= split
->index
;
1505 half
= (PSIZE
>> L2DTSLOTSIZE
) >> 1; /* swag */
1509 * compute fill factor for split pages
1511 * <nxt> traces the next entry to move to rp
1512 * <off> traces the next entry to stay in sp
1514 stbl
= (u8
*) & sp
->slot
[sp
->header
.stblindex
];
1515 nextindex
= sp
->header
.nextindex
;
1516 for (nxt
= off
= 0; nxt
< nextindex
; ++off
) {
1518 /* check for fill factor with new entry size */
1522 switch (sp
->header
.flag
& BT_TYPE
) {
1524 ldtentry
= (struct ldtentry
*) & sp
->slot
[si
];
1526 n
= NDTLEAF(ldtentry
->namlen
);
1528 n
= NDTLEAF_LEGACY(ldtentry
->
1533 idtentry
= (struct idtentry
*) & sp
->slot
[si
];
1534 n
= NDTINTERNAL(idtentry
->namlen
);
1541 ++nxt
; /* advance to next entry to move in sp */
1549 /* <nxt> poins to the 1st entry to move */
1552 * move entries to right page
1554 * dtMoveEntry() initializes rp and reserves entry for insertion
1556 * split page moved out entries are linelocked;
1557 * new/right page moved in entries are linelocked;
1559 /* linelock header + stbl of new right page */
1560 rlv
= & rdtlck
->lv
[rdtlck
->index
];
1565 dtMoveEntry(sp
, nxt
, rp
, &sdtlck
, &rdtlck
, DO_INDEX(ip
));
1567 sp
->header
.nextindex
= nxt
;
1570 * finalize freelist of new right page
1572 fsi
= rp
->header
.freelist
;
1574 for (fsi
++; fsi
< rp
->header
.maxslot
; f
++, fsi
++)
1579 * Update directory index table for entries now in right page
1581 if ((rp
->header
.flag
& BT_LEAF
) && DO_INDEX(ip
)) {
1585 stbl
= DT_GETSTBL(rp
);
1586 for (n
= 0; n
< rp
->header
.nextindex
; n
++) {
1587 ldtentry
= (struct ldtentry
*) & rp
->slot
[stbl
[n
]];
1588 modify_index(tid
, ip
, le32_to_cpu(ldtentry
->index
),
1589 rbn
, n
, &mp
, &lblock
);
1592 release_metapage(mp
);
1596 * the skipped index was on the left page,
1599 /* insert the new entry in the split page */
1600 dtInsertEntry(sp
, skip
, split
->key
, split
->data
, &sdtlck
);
1602 /* linelock stbl of split page */
1603 if (sdtlck
->index
>= sdtlck
->maxcnt
)
1604 sdtlck
= (struct dt_lock
*) txLinelock(sdtlck
);
1605 slv
= & sdtlck
->lv
[sdtlck
->index
];
1606 n
= skip
>> L2DTSLOTSIZE
;
1607 slv
->offset
= sp
->header
.stblindex
+ n
;
1609 ((sp
->header
.nextindex
- 1) >> L2DTSLOTSIZE
) - n
+ 1;
1613 * the skipped index was on the right page,
1616 /* adjust the skip index to reflect the new position */
1619 /* insert the new entry in the right page */
1620 dtInsertEntry(rp
, skip
, split
->key
, split
->data
, &rdtlck
);
1634 * function: extend 1st/only directory leaf page
1638 * return: 0 - success;
1640 * return extended page pinned;
1642 static int dtExtendPage(tid_t tid
,
1643 struct inode
*ip
, struct dtsplit
* split
, struct btstack
* btstack
)
1645 struct super_block
*sb
= ip
->i_sb
;
1647 struct metapage
*smp
, *pmp
, *mp
;
1649 struct pxdlist
*pxdlist
;
1652 int newstblindex
, newstblsize
;
1653 int oldstblindex
, oldstblsize
;
1656 struct btframe
*parent
;
1658 struct dt_lock
*dtlck
;
1661 struct pxd_lock
*pxdlock
;
1664 struct ldtentry
*ldtentry
;
1667 /* get page to extend */
1669 sp
= DT_PAGE(ip
, smp
);
1671 /* get parent/root page */
1672 parent
= BT_POP(btstack
);
1673 DT_GETPAGE(ip
, parent
->bn
, pmp
, PSIZE
, pp
, rc
);
1680 pxdlist
= split
->pxdlist
;
1681 pxd
= &pxdlist
->pxd
[pxdlist
->npxd
];
1684 xaddr
= addressPXD(pxd
);
1685 tpxd
= &sp
->header
.self
;
1686 txaddr
= addressPXD(tpxd
);
1687 /* in-place extension */
1688 if (xaddr
== txaddr
) {
1695 /* save moved extent descriptor for later free */
1696 tlck
= txMaplock(tid
, ip
, tlckDTREE
| tlckRELOCATE
);
1697 pxdlock
= (struct pxd_lock
*) & tlck
->lock
;
1698 pxdlock
->flag
= mlckFREEPXD
;
1699 pxdlock
->pxd
= sp
->header
.self
;
1703 * Update directory index table to reflect new page address
1709 stbl
= DT_GETSTBL(sp
);
1710 for (n
= 0; n
< sp
->header
.nextindex
; n
++) {
1712 (struct ldtentry
*) & sp
->slot
[stbl
[n
]];
1713 modify_index(tid
, ip
,
1714 le32_to_cpu(ldtentry
->index
),
1715 xaddr
, n
, &mp
, &lblock
);
1718 release_metapage(mp
);
1725 sp
->header
.self
= *pxd
;
1727 jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip
, smp
, sp
);
1729 BT_MARK_DIRTY(smp
, ip
);
1731 * acquire a transaction lock on the extended/leaf page
1733 tlck
= txLock(tid
, ip
, smp
, tlckDTREE
| type
);
1734 dtlck
= (struct dt_lock
*) & tlck
->lock
;
1735 lv
= & dtlck
->lv
[0];
1737 /* update buffer extent descriptor of extended page */
1738 xlen
= lengthPXD(pxd
);
1739 xsize
= xlen
<< JFS_SBI(sb
)->l2bsize
;
1742 * copy old stbl to new stbl at start of extended area
1744 oldstblindex
= sp
->header
.stblindex
;
1745 oldstblsize
= (sp
->header
.maxslot
+ 31) >> L2DTSLOTSIZE
;
1746 newstblindex
= sp
->header
.maxslot
;
1747 n
= xsize
>> L2DTSLOTSIZE
;
1748 newstblsize
= (n
+ 31) >> L2DTSLOTSIZE
;
1749 memcpy(&sp
->slot
[newstblindex
], &sp
->slot
[oldstblindex
],
1750 sp
->header
.nextindex
);
1753 * in-line extension: linelock old area of extended page
1755 if (type
== tlckEXTEND
) {
1756 /* linelock header */
1762 /* linelock new stbl of extended page */
1763 lv
->offset
= newstblindex
;
1764 lv
->length
= newstblsize
;
1767 * relocation: linelock whole relocated area
1771 lv
->length
= sp
->header
.maxslot
+ newstblsize
;
1776 sp
->header
.maxslot
= n
;
1777 sp
->header
.stblindex
= newstblindex
;
1778 /* sp->header.nextindex remains the same */
1781 * add old stbl region at head of freelist
1785 last
= sp
->header
.freelist
;
1786 for (n
= 0; n
< oldstblsize
; n
++, fsi
++, f
++) {
1790 sp
->header
.freelist
= last
;
1791 sp
->header
.freecnt
+= oldstblsize
;
1794 * append free region of newly extended area at tail of freelist
1796 /* init free region of newly extended area */
1797 fsi
= n
= newstblindex
+ newstblsize
;
1799 for (fsi
++; fsi
< sp
->header
.maxslot
; f
++, fsi
++)
1803 /* append new free region at tail of old freelist */
1804 fsi
= sp
->header
.freelist
;
1806 sp
->header
.freelist
= n
;
1811 } while (fsi
!= -1);
1816 sp
->header
.freecnt
+= sp
->header
.maxslot
- n
;
1819 * insert the new entry
1821 dtInsertEntry(sp
, split
->index
, split
->key
, split
->data
, &dtlck
);
1823 BT_MARK_DIRTY(pmp
, ip
);
1825 * linelock any freeslots residing in old extent
1827 if (type
== tlckEXTEND
) {
1828 n
= sp
->header
.maxslot
>> 2;
1829 if (sp
->header
.freelist
< n
)
1830 dtLinelockFreelist(sp
, n
, &dtlck
);
1834 * update parent entry on the parent/root page
1837 * acquire a transaction lock on the parent/root page
1839 tlck
= txLock(tid
, ip
, pmp
, tlckDTREE
| tlckENTRY
);
1840 dtlck
= (struct dt_lock
*) & tlck
->lock
;
1841 lv
= & dtlck
->lv
[dtlck
->index
];
1843 /* linelock parent entry - 1st slot */
1848 /* update the parent pxd for page extension */
1849 tpxd
= (pxd_t
*) & pp
->slot
[1];
1861 * split the full root page into
1862 * original/root/split page and new right page
1863 * i.e., root remains fixed in tree anchor (inode) and
1864 * the root is copied to a single new right child page
1865 * since root page << non-root page, and
1866 * the split root page contains a single entry for the
1867 * new right child page.
1871 * return: 0 - success;
1873 * return new page pinned;
1875 static int dtSplitRoot(tid_t tid
,
1876 struct inode
*ip
, struct dtsplit
* split
, struct metapage
** rmpp
)
1878 struct super_block
*sb
= ip
->i_sb
;
1879 struct metapage
*smp
;
1881 struct metapage
*rmp
;
1888 int fsi
, stblsize
, n
;
1891 struct pxdlist
*pxdlist
;
1893 struct dt_lock
*dtlck
;
1898 /* get split root page */
1900 sp
= &JFS_IP(ip
)->i_dtroot
;
1903 * allocate/initialize a single (right) child page
1905 * N.B. at first split, a one (or two) block to fit new entry
1906 * is allocated; at subsequent split, a full page is allocated;
1908 pxdlist
= split
->pxdlist
;
1909 pxd
= &pxdlist
->pxd
[pxdlist
->npxd
];
1911 rbn
= addressPXD(pxd
);
1912 xlen
= lengthPXD(pxd
);
1913 xsize
= xlen
<< JFS_SBI(sb
)->l2bsize
;
1914 rmp
= get_metapage(ip
, rbn
, xsize
, 1);
1920 /* Allocate blocks to quota. */
1921 rc
= dquot_alloc_block(ip
, lengthPXD(pxd
));
1923 release_metapage(rmp
);
1927 BT_MARK_DIRTY(rmp
, ip
);
1929 * acquire a transaction lock on the new right page
1931 tlck
= txLock(tid
, ip
, rmp
, tlckDTREE
| tlckNEW
);
1932 dtlck
= (struct dt_lock
*) & tlck
->lock
;
1935 (sp
->header
.flag
& BT_LEAF
) ? BT_LEAF
: BT_INTERNAL
;
1936 rp
->header
.self
= *pxd
;
1938 /* initialize sibling pointers */
1939 rp
->header
.next
= 0;
1940 rp
->header
.prev
= 0;
1943 * move in-line root page into new right page extent
1945 /* linelock header + copied entries + new stbl (1st slot) in new page */
1946 ASSERT(dtlck
->index
== 0);
1947 lv
= & dtlck
->lv
[0];
1949 lv
->length
= 10; /* 1 + 8 + 1 */
1952 n
= xsize
>> L2DTSLOTSIZE
;
1953 rp
->header
.maxslot
= n
;
1954 stblsize
= (n
+ 31) >> L2DTSLOTSIZE
;
1956 /* copy old stbl to new stbl at start of extended area */
1957 rp
->header
.stblindex
= DTROOTMAXSLOT
;
1958 stbl
= (s8
*) & rp
->slot
[DTROOTMAXSLOT
];
1959 memcpy(stbl
, sp
->header
.stbl
, sp
->header
.nextindex
);
1960 rp
->header
.nextindex
= sp
->header
.nextindex
;
1962 /* copy old data area to start of new data area */
1963 memcpy(&rp
->slot
[1], &sp
->slot
[1], IDATASIZE
);
1966 * append free region of newly extended area at tail of freelist
1968 /* init free region of newly extended area */
1969 fsi
= n
= DTROOTMAXSLOT
+ stblsize
;
1971 for (fsi
++; fsi
< rp
->header
.maxslot
; f
++, fsi
++)
1975 /* append new free region at tail of old freelist */
1976 fsi
= sp
->header
.freelist
;
1978 rp
->header
.freelist
= n
;
1980 rp
->header
.freelist
= fsi
;
1985 } while (fsi
!= -1);
1990 rp
->header
.freecnt
= sp
->header
.freecnt
+ rp
->header
.maxslot
- n
;
1993 * Update directory index table for entries now in right page
1995 if ((rp
->header
.flag
& BT_LEAF
) && DO_INDEX(ip
)) {
1997 struct metapage
*mp
= NULL
;
1998 struct ldtentry
*ldtentry
;
2000 stbl
= DT_GETSTBL(rp
);
2001 for (n
= 0; n
< rp
->header
.nextindex
; n
++) {
2002 ldtentry
= (struct ldtentry
*) & rp
->slot
[stbl
[n
]];
2003 modify_index(tid
, ip
, le32_to_cpu(ldtentry
->index
),
2004 rbn
, n
, &mp
, &lblock
);
2007 release_metapage(mp
);
2010 * insert the new entry into the new right/child page
2011 * (skip index in the new right page will not change)
2013 dtInsertEntry(rp
, split
->index
, split
->key
, split
->data
, &dtlck
);
2016 * reset parent/root page
2018 * set the 1st entry offset to 0, which force the left-most key
2019 * at any level of the tree to be less than any search key.
2021 * The btree comparison code guarantees that the left-most key on any
2022 * level of the tree is never used, so it doesn't need to be filled in.
2024 BT_MARK_DIRTY(smp
, ip
);
2026 * acquire a transaction lock on the root page (in-memory inode)
2028 tlck
= txLock(tid
, ip
, smp
, tlckDTREE
| tlckNEW
| tlckBTROOT
);
2029 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2032 ASSERT(dtlck
->index
== 0);
2033 lv
= & dtlck
->lv
[0];
2035 lv
->length
= DTROOTMAXSLOT
;
2038 /* update page header of root */
2039 if (sp
->header
.flag
& BT_LEAF
) {
2040 sp
->header
.flag
&= ~BT_LEAF
;
2041 sp
->header
.flag
|= BT_INTERNAL
;
2044 /* init the first entry */
2045 s
= (struct idtentry
*) & sp
->slot
[DTENTRYSTART
];
2051 stbl
= sp
->header
.stbl
;
2052 stbl
[0] = DTENTRYSTART
;
2053 sp
->header
.nextindex
= 1;
2056 fsi
= DTENTRYSTART
+ 1;
2059 /* init free region of remaining area */
2060 for (fsi
++; fsi
< DTROOTMAXSLOT
; f
++, fsi
++)
2064 sp
->header
.freelist
= DTENTRYSTART
+ 1;
2065 sp
->header
.freecnt
= DTROOTMAXSLOT
- (DTENTRYSTART
+ 1);
2076 * function: delete the entry(s) referenced by a key.
2082 int dtDelete(tid_t tid
,
2083 struct inode
*ip
, struct component_name
* key
, ino_t
* ino
, int flag
)
2087 struct metapage
*mp
, *imp
;
2090 struct btstack btstack
;
2091 struct dt_lock
*dtlck
;
2095 struct ldtentry
*ldtentry
;
2097 u32 table_index
, next_index
;
2098 struct metapage
*nmp
;
2102 * search for the entry to delete:
2104 * dtSearch() returns (leaf page pinned, index at which to delete).
2106 if ((rc
= dtSearch(ip
, key
, ino
, &btstack
, flag
)))
2109 /* retrieve search result */
2110 DT_GETSEARCH(ip
, btstack
.top
, bn
, mp
, p
, index
);
2113 * We need to find put the index of the next entry into the
2114 * directory index table in order to resume a readdir from this
2118 stbl
= DT_GETSTBL(p
);
2119 ldtentry
= (struct ldtentry
*) & p
->slot
[stbl
[index
]];
2120 table_index
= le32_to_cpu(ldtentry
->index
);
2121 if (index
== (p
->header
.nextindex
- 1)) {
2123 * Last entry in this leaf page
2125 if ((p
->header
.flag
& BT_ROOT
)
2126 || (p
->header
.next
== 0))
2129 /* Read next leaf page */
2130 DT_GETPAGE(ip
, le64_to_cpu(p
->header
.next
),
2131 nmp
, PSIZE
, np
, rc
);
2135 stbl
= DT_GETSTBL(np
);
2137 (struct ldtentry
*) & np
->
2140 le32_to_cpu(ldtentry
->index
);
2146 (struct ldtentry
*) & p
->slot
[stbl
[index
+ 1]];
2147 next_index
= le32_to_cpu(ldtentry
->index
);
2149 free_index(tid
, ip
, table_index
, next_index
);
2152 * the leaf page becomes empty, delete the page
2154 if (p
->header
.nextindex
== 1) {
2155 /* delete empty page */
2156 rc
= dtDeleteUp(tid
, ip
, mp
, p
, &btstack
);
2159 * the leaf page has other entries remaining:
2161 * delete the entry from the leaf page.
2164 BT_MARK_DIRTY(mp
, ip
);
2166 * acquire a transaction lock on the leaf page
2168 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckENTRY
);
2169 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2172 * Do not assume that dtlck->index will be zero. During a
2173 * rename within a directory, this transaction may have
2174 * modified this page already when adding the new entry.
2177 /* linelock header */
2178 if (dtlck
->index
>= dtlck
->maxcnt
)
2179 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2180 lv
= & dtlck
->lv
[dtlck
->index
];
2185 /* linelock stbl of non-root leaf page */
2186 if (!(p
->header
.flag
& BT_ROOT
)) {
2187 if (dtlck
->index
>= dtlck
->maxcnt
)
2188 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2189 lv
= & dtlck
->lv
[dtlck
->index
];
2190 i
= index
>> L2DTSLOTSIZE
;
2191 lv
->offset
= p
->header
.stblindex
+ i
;
2193 ((p
->header
.nextindex
- 1) >> L2DTSLOTSIZE
) -
2198 /* free the leaf entry */
2199 dtDeleteEntry(p
, index
, &dtlck
);
2202 * Update directory index table for entries moved in stbl
2204 if (DO_INDEX(ip
) && index
< p
->header
.nextindex
) {
2208 stbl
= DT_GETSTBL(p
);
2209 for (i
= index
; i
< p
->header
.nextindex
; i
++) {
2211 (struct ldtentry
*) & p
->slot
[stbl
[i
]];
2212 modify_index(tid
, ip
,
2213 le32_to_cpu(ldtentry
->index
),
2214 bn
, i
, &imp
, &lblock
);
2217 release_metapage(imp
);
2231 * free empty pages as propagating deletion up the tree
2237 static int dtDeleteUp(tid_t tid
, struct inode
*ip
,
2238 struct metapage
* fmp
, dtpage_t
* fp
, struct btstack
* btstack
)
2241 struct metapage
*mp
;
2243 int index
, nextindex
;
2245 struct btframe
*parent
;
2246 struct dt_lock
*dtlck
;
2249 struct pxd_lock
*pxdlock
;
2253 * keep the root leaf page which has become empty
2255 if (BT_IS_ROOT(fmp
)) {
2259 * dtInitRoot() acquires txlock on the root
2261 dtInitRoot(tid
, ip
, PARENT(ip
));
2269 * free the non-root leaf page
2272 * acquire a transaction lock on the page
2274 * write FREEXTENT|NOREDOPAGE log record
2275 * N.B. linelock is overlaid as freed extent descriptor, and
2276 * the buffer page is freed;
2278 tlck
= txMaplock(tid
, ip
, tlckDTREE
| tlckFREE
);
2279 pxdlock
= (struct pxd_lock
*) & tlck
->lock
;
2280 pxdlock
->flag
= mlckFREEPXD
;
2281 pxdlock
->pxd
= fp
->header
.self
;
2284 /* update sibling pointers */
2285 if ((rc
= dtRelink(tid
, ip
, fp
))) {
2290 xlen
= lengthPXD(&fp
->header
.self
);
2292 /* Free quota allocation. */
2293 dquot_free_block(ip
, xlen
);
2295 /* free/invalidate its buffer page */
2296 discard_metapage(fmp
);
2299 * propagate page deletion up the directory tree
2301 * If the delete from the parent page makes it empty,
2302 * continue all the way up the tree.
2303 * stop if the root page is reached (which is never deleted) or
2304 * if the entry deletion does not empty the page.
2306 while ((parent
= BT_POP(btstack
)) != NULL
) {
2307 /* pin the parent page <sp> */
2308 DT_GETPAGE(ip
, parent
->bn
, mp
, PSIZE
, p
, rc
);
2313 * free the extent of the child page deleted
2315 index
= parent
->index
;
2318 * delete the entry for the child page from parent
2320 nextindex
= p
->header
.nextindex
;
2323 * the parent has the single entry being deleted:
2325 * free the parent page which has become empty.
2327 if (nextindex
== 1) {
2329 * keep the root internal page which has become empty
2331 if (p
->header
.flag
& BT_ROOT
) {
2335 * dtInitRoot() acquires txlock on the root
2337 dtInitRoot(tid
, ip
, PARENT(ip
));
2344 * free the parent page
2348 * acquire a transaction lock on the page
2350 * write FREEXTENT|NOREDOPAGE log record
2354 tlckDTREE
| tlckFREE
);
2355 pxdlock
= (struct pxd_lock
*) & tlck
->lock
;
2356 pxdlock
->flag
= mlckFREEPXD
;
2357 pxdlock
->pxd
= p
->header
.self
;
2360 /* update sibling pointers */
2361 if ((rc
= dtRelink(tid
, ip
, p
))) {
2366 xlen
= lengthPXD(&p
->header
.self
);
2368 /* Free quota allocation */
2369 dquot_free_block(ip
, xlen
);
2371 /* free/invalidate its buffer page */
2372 discard_metapage(mp
);
2380 * the parent has other entries remaining:
2382 * delete the router entry from the parent page.
2384 BT_MARK_DIRTY(mp
, ip
);
2386 * acquire a transaction lock on the page
2388 * action: router entry deletion
2390 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckENTRY
);
2391 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2393 /* linelock header */
2394 if (dtlck
->index
>= dtlck
->maxcnt
)
2395 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2396 lv
= & dtlck
->lv
[dtlck
->index
];
2401 /* linelock stbl of non-root leaf page */
2402 if (!(p
->header
.flag
& BT_ROOT
)) {
2403 if (dtlck
->index
< dtlck
->maxcnt
)
2406 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2407 lv
= & dtlck
->lv
[0];
2409 i
= index
>> L2DTSLOTSIZE
;
2410 lv
->offset
= p
->header
.stblindex
+ i
;
2412 ((p
->header
.nextindex
- 1) >> L2DTSLOTSIZE
) -
2417 /* free the router entry */
2418 dtDeleteEntry(p
, index
, &dtlck
);
2420 /* reset key of new leftmost entry of level (for consistency) */
2422 ((p
->header
.flag
& BT_ROOT
) || p
->header
.prev
== 0))
2423 dtTruncateEntry(p
, 0, &dtlck
);
2425 /* unpin the parent page */
2428 /* exit propagation up */
2433 ip
->i_size
-= PSIZE
;
2440 * NAME: dtRelocate()
2442 * FUNCTION: relocate dtpage (internal or leaf) of directory;
2443 * This function is mainly used by defragfs utility.
2445 int dtRelocate(tid_t tid
, struct inode
*ip
, s64 lmxaddr
, pxd_t
* opxd
,
2449 struct metapage
*mp
, *pmp
, *lmp
, *rmp
;
2450 dtpage_t
*p
, *pp
, *rp
= 0, *lp
= 0;
2453 struct btstack btstack
;
2455 s64 oxaddr
, nextbn
, prevbn
;
2458 struct dt_lock
*dtlck
;
2459 struct pxd_lock
*pxdlock
;
2463 oxaddr
= addressPXD(opxd
);
2464 xlen
= lengthPXD(opxd
);
2466 jfs_info("dtRelocate: lmxaddr:%Ld xaddr:%Ld:%Ld xlen:%d",
2467 (long long)lmxaddr
, (long long)oxaddr
, (long long)nxaddr
,
2471 * 1. get the internal parent dtpage covering
2472 * router entry for the tartget page to be relocated;
2474 rc
= dtSearchNode(ip
, lmxaddr
, opxd
, &btstack
);
2478 /* retrieve search result */
2479 DT_GETSEARCH(ip
, btstack
.top
, bn
, pmp
, pp
, index
);
2480 jfs_info("dtRelocate: parent router entry validated.");
2483 * 2. relocate the target dtpage
2485 /* read in the target page from src extent */
2486 DT_GETPAGE(ip
, oxaddr
, mp
, PSIZE
, p
, rc
);
2488 /* release the pinned parent page */
2494 * read in sibling pages if any to update sibling pointers;
2497 if (p
->header
.next
) {
2498 nextbn
= le64_to_cpu(p
->header
.next
);
2499 DT_GETPAGE(ip
, nextbn
, rmp
, PSIZE
, rp
, rc
);
2508 if (p
->header
.prev
) {
2509 prevbn
= le64_to_cpu(p
->header
.prev
);
2510 DT_GETPAGE(ip
, prevbn
, lmp
, PSIZE
, lp
, rc
);
2520 /* at this point, all xtpages to be updated are in memory */
2523 * update sibling pointers of sibling dtpages if any;
2526 tlck
= txLock(tid
, ip
, lmp
, tlckDTREE
| tlckRELINK
);
2527 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2528 /* linelock header */
2529 ASSERT(dtlck
->index
== 0);
2530 lv
= & dtlck
->lv
[0];
2535 lp
->header
.next
= cpu_to_le64(nxaddr
);
2540 tlck
= txLock(tid
, ip
, rmp
, tlckDTREE
| tlckRELINK
);
2541 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2542 /* linelock header */
2543 ASSERT(dtlck
->index
== 0);
2544 lv
= & dtlck
->lv
[0];
2549 rp
->header
.prev
= cpu_to_le64(nxaddr
);
2554 * update the target dtpage to be relocated
2556 * write LOG_REDOPAGE of LOG_NEW type for dst page
2557 * for the whole target page (logredo() will apply
2558 * after image and update bmap for allocation of the
2559 * dst extent), and update bmap for allocation of
2562 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckNEW
);
2563 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2564 /* linelock header */
2565 ASSERT(dtlck
->index
== 0);
2566 lv
= & dtlck
->lv
[0];
2568 /* update the self address in the dtpage header */
2569 pxd
= &p
->header
.self
;
2570 PXDaddress(pxd
, nxaddr
);
2572 /* the dst page is the same as the src page, i.e.,
2573 * linelock for afterimage of the whole page;
2576 lv
->length
= p
->header
.maxslot
;
2579 /* update the buffer extent descriptor of the dtpage */
2580 xsize
= xlen
<< JFS_SBI(ip
->i_sb
)->l2bsize
;
2582 /* unpin the relocated page */
2584 jfs_info("dtRelocate: target dtpage relocated.");
2586 /* the moved extent is dtpage, then a LOG_NOREDOPAGE log rec
2587 * needs to be written (in logredo(), the LOG_NOREDOPAGE log rec
2588 * will also force a bmap update ).
2592 * 3. acquire maplock for the source extent to be freed;
2594 /* for dtpage relocation, write a LOG_NOREDOPAGE record
2595 * for the source dtpage (logredo() will init NoRedoPage
2596 * filter and will also update bmap for free of the source
2597 * dtpage), and upadte bmap for free of the source dtpage;
2599 tlck
= txMaplock(tid
, ip
, tlckDTREE
| tlckFREE
);
2600 pxdlock
= (struct pxd_lock
*) & tlck
->lock
;
2601 pxdlock
->flag
= mlckFREEPXD
;
2602 PXDaddress(&pxdlock
->pxd
, oxaddr
);
2603 PXDlength(&pxdlock
->pxd
, xlen
);
2607 * 4. update the parent router entry for relocation;
2609 * acquire tlck for the parent entry covering the target dtpage;
2610 * write LOG_REDOPAGE to apply after image only;
2612 jfs_info("dtRelocate: update parent router entry.");
2613 tlck
= txLock(tid
, ip
, pmp
, tlckDTREE
| tlckENTRY
);
2614 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2615 lv
= & dtlck
->lv
[dtlck
->index
];
2617 /* update the PXD with the new address */
2618 stbl
= DT_GETSTBL(pp
);
2619 pxd
= (pxd_t
*) & pp
->slot
[stbl
[index
]];
2620 PXDaddress(pxd
, nxaddr
);
2621 lv
->offset
= stbl
[index
];
2625 /* unpin the parent dtpage */
2632 * NAME: dtSearchNode()
2634 * FUNCTION: Search for an dtpage containing a specified address
2635 * This function is mainly used by defragfs utility.
2637 * NOTE: Search result on stack, the found page is pinned at exit.
2638 * The result page must be an internal dtpage.
2639 * lmxaddr give the address of the left most page of the
2640 * dtree level, in which the required dtpage resides.
2642 static int dtSearchNode(struct inode
*ip
, s64 lmxaddr
, pxd_t
* kpxd
,
2643 struct btstack
* btstack
)
2647 struct metapage
*mp
;
2649 int psize
= 288; /* initial in-line directory */
2653 struct btframe
*btsp
;
2655 BT_CLR(btstack
); /* reset stack */
2658 * descend tree to the level with specified leftmost page
2660 * by convention, root bn = 0.
2663 /* get/pin the page to search */
2664 DT_GETPAGE(ip
, bn
, mp
, psize
, p
, rc
);
2668 /* does the xaddr of leftmost page of the levevl
2669 * matches levevl search key ?
2671 if (p
->header
.flag
& BT_ROOT
) {
2674 } else if (addressPXD(&p
->header
.self
) == lmxaddr
)
2678 * descend down to leftmost child page
2680 if (p
->header
.flag
& BT_LEAF
) {
2685 /* get the leftmost entry */
2686 stbl
= DT_GETSTBL(p
);
2687 pxd
= (pxd_t
*) & p
->slot
[stbl
[0]];
2689 /* get the child page block address */
2690 bn
= addressPXD(pxd
);
2691 psize
= lengthPXD(pxd
) << JFS_SBI(ip
->i_sb
)->l2bsize
;
2692 /* unpin the parent page */
2697 * search each page at the current levevl
2700 stbl
= DT_GETSTBL(p
);
2701 for (i
= 0; i
< p
->header
.nextindex
; i
++) {
2702 pxd
= (pxd_t
*) & p
->slot
[stbl
[i
]];
2704 /* found the specified router entry */
2705 if (addressPXD(pxd
) == addressPXD(kpxd
) &&
2706 lengthPXD(pxd
) == lengthPXD(kpxd
)) {
2707 btsp
= btstack
->top
;
2716 /* get the right sibling page if any */
2718 bn
= le64_to_cpu(p
->header
.next
);
2724 /* unpin current page */
2727 /* get the right sibling page */
2728 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
2734 #endif /* _NOTYET */
2740 * link around a freed page.
2743 * fp: page to be freed
2747 static int dtRelink(tid_t tid
, struct inode
*ip
, dtpage_t
* p
)
2750 struct metapage
*mp
;
2753 struct dt_lock
*dtlck
;
2756 nextbn
= le64_to_cpu(p
->header
.next
);
2757 prevbn
= le64_to_cpu(p
->header
.prev
);
2759 /* update prev pointer of the next page */
2761 DT_GETPAGE(ip
, nextbn
, mp
, PSIZE
, p
, rc
);
2765 BT_MARK_DIRTY(mp
, ip
);
2767 * acquire a transaction lock on the next page
2769 * action: update prev pointer;
2771 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckRELINK
);
2772 jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2774 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2776 /* linelock header */
2777 if (dtlck
->index
>= dtlck
->maxcnt
)
2778 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2779 lv
= & dtlck
->lv
[dtlck
->index
];
2784 p
->header
.prev
= cpu_to_le64(prevbn
);
2788 /* update next pointer of the previous page */
2790 DT_GETPAGE(ip
, prevbn
, mp
, PSIZE
, p
, rc
);
2794 BT_MARK_DIRTY(mp
, ip
);
2796 * acquire a transaction lock on the prev page
2798 * action: update next pointer;
2800 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckRELINK
);
2801 jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2803 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2805 /* linelock header */
2806 if (dtlck
->index
>= dtlck
->maxcnt
)
2807 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2808 lv
= & dtlck
->lv
[dtlck
->index
];
2813 p
->header
.next
= cpu_to_le64(nextbn
);
2824 * initialize directory root (inline in inode)
2826 void dtInitRoot(tid_t tid
, struct inode
*ip
, u32 idotdot
)
2828 struct jfs_inode_info
*jfs_ip
= JFS_IP(ip
);
2833 struct dt_lock
*dtlck
;
2838 * If this was previously an non-empty directory, we need to remove
2839 * the old directory table.
2842 if (!jfs_dirtable_inline(ip
)) {
2843 struct tblock
*tblk
= tid_to_tblock(tid
);
2845 * We're playing games with the tid's xflag. If
2846 * we're removing a regular file, the file's xtree
2847 * is committed with COMMIT_PMAP, but we always
2848 * commit the directories xtree with COMMIT_PWMAP.
2850 xflag_save
= tblk
->xflag
;
2853 * xtTruncate isn't guaranteed to fully truncate
2854 * the xtree. The caller needs to check i_size
2855 * after committing the transaction to see if
2856 * additional truncation is needed. The
2857 * COMMIT_Stale flag tells caller that we
2858 * initiated the truncation.
2860 xtTruncate(tid
, ip
, 0, COMMIT_PWMAP
);
2861 set_cflag(COMMIT_Stale
, ip
);
2863 tblk
->xflag
= xflag_save
;
2867 jfs_ip
->next_index
= 2;
2869 ip
->i_size
= IDATASIZE
;
2872 * acquire a transaction lock on the root
2874 * action: directory initialization;
2876 tlck
= txLock(tid
, ip
, (struct metapage
*) & jfs_ip
->bxflag
,
2877 tlckDTREE
| tlckENTRY
| tlckBTROOT
);
2878 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2881 ASSERT(dtlck
->index
== 0);
2882 lv
= & dtlck
->lv
[0];
2884 lv
->length
= DTROOTMAXSLOT
;
2887 p
= &jfs_ip
->i_dtroot
;
2889 p
->header
.flag
= DXD_INDEX
| BT_ROOT
| BT_LEAF
;
2891 p
->header
.nextindex
= 0;
2897 /* init data area of root */
2898 for (fsi
++; fsi
< DTROOTMAXSLOT
; f
++, fsi
++)
2902 p
->header
.freelist
= 1;
2903 p
->header
.freecnt
= 8;
2905 /* init '..' entry */
2906 p
->header
.idotdot
= cpu_to_le32(idotdot
);
2912 * add_missing_indices()
2914 * function: Fix dtree page in which one or more entries has an invalid index.
2915 * fsck.jfs should really fix this, but it currently does not.
2916 * Called from jfs_readdir when bad index is detected.
2918 static void add_missing_indices(struct inode
*inode
, s64 bn
)
2921 struct dt_lock
*dtlck
;
2925 struct metapage
*mp
;
2932 tid
= txBegin(inode
->i_sb
, 0);
2934 DT_GETPAGE(inode
, bn
, mp
, PSIZE
, p
, rc
);
2937 printk(KERN_ERR
"DT_GETPAGE failed!\n");
2940 BT_MARK_DIRTY(mp
, inode
);
2942 ASSERT(p
->header
.flag
& BT_LEAF
);
2944 tlck
= txLock(tid
, inode
, mp
, tlckDTREE
| tlckENTRY
);
2946 tlck
->type
|= tlckBTROOT
;
2948 dtlck
= (struct dt_lock
*) &tlck
->lock
;
2950 stbl
= DT_GETSTBL(p
);
2951 for (i
= 0; i
< p
->header
.nextindex
; i
++) {
2952 d
= (struct ldtentry
*) &p
->slot
[stbl
[i
]];
2953 index
= le32_to_cpu(d
->index
);
2954 if ((index
< 2) || (index
>= JFS_IP(inode
)->next_index
)) {
2955 d
->index
= cpu_to_le32(add_index(tid
, inode
, bn
, i
));
2956 if (dtlck
->index
>= dtlck
->maxcnt
)
2957 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2958 lv
= &dtlck
->lv
[dtlck
->index
];
2959 lv
->offset
= stbl
[i
];
2966 (void) txCommit(tid
, 1, &inode
, 0);
2972 * Buffer to hold directory entry info while traversing a dtree page
2973 * before being fed to the filldir function
2983 * function to determine next variable-sized jfs_dirent in buffer
2985 static inline struct jfs_dirent
*next_jfs_dirent(struct jfs_dirent
*dirent
)
2987 return (struct jfs_dirent
*)
2989 ((sizeof (struct jfs_dirent
) + dirent
->name_len
+ 1 +
2990 sizeof (loff_t
) - 1) &
2991 ~(sizeof (loff_t
) - 1)));
2997 * function: read directory entries sequentially
2998 * from the specified entry offset
3002 * return: offset = (pn, index) of start entry
3003 * of next jfs_readdir()/dtRead()
3005 int jfs_readdir(struct file
*file
, struct dir_context
*ctx
)
3007 struct inode
*ip
= file_inode(file
);
3008 struct nls_table
*codepage
= JFS_SBI(ip
->i_sb
)->nls_tab
;
3010 loff_t dtpos
; /* legacy OS/2 style position */
3015 } *dtoffset
= (struct dtoffset
*) &dtpos
;
3017 struct metapage
*mp
;
3021 struct btstack btstack
;
3025 int d_namleft
, len
, outlen
;
3026 unsigned long dirent_buf
;
3030 uint loop_count
= 0;
3031 struct jfs_dirent
*jfs_dirent
;
3033 int overflow
, fix_page
, page_fixed
= 0;
3034 static int unique_pos
= 2; /* If we can't fix broken index */
3036 if (ctx
->pos
== DIREND
)
3041 * persistent index is stored in directory entries.
3042 * Special cases: 0 = .
3044 * -1 = End of directory
3048 dir_index
= (u32
) ctx
->pos
;
3051 * NFSv4 reserves cookies 1 and 2 for . and .. so the value
3052 * we return to the vfs is one greater than the one we use
3058 if (dir_index
> 1) {
3059 struct dir_table_slot dirtab_slot
;
3062 (dir_index
>= JFS_IP(ip
)->next_index
)) {
3063 /* Stale position. Directory has shrunk */
3068 rc
= read_index(ip
, dir_index
, &dirtab_slot
);
3073 if (dirtab_slot
.flag
== DIR_INDEX_FREE
) {
3074 if (loop_count
++ > JFS_IP(ip
)->next_index
) {
3075 jfs_err("jfs_readdir detected "
3080 dir_index
= le32_to_cpu(dirtab_slot
.addr2
);
3081 if (dir_index
== -1) {
3087 bn
= addressDTS(&dirtab_slot
);
3088 index
= dirtab_slot
.slot
;
3089 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
3094 if (p
->header
.flag
& BT_INTERNAL
) {
3095 jfs_err("jfs_readdir: bad index table");
3101 if (dir_index
== 0) {
3106 if (!dir_emit(ctx
, ".", 1, ip
->i_ino
, DT_DIR
))
3113 if (!dir_emit(ctx
, "..", 2, PARENT(ip
), DT_DIR
))
3117 * Find first entry of left-most leaf
3124 if ((rc
= dtReadFirst(ip
, &btstack
)))
3127 DT_GETSEARCH(ip
, btstack
.top
, bn
, mp
, p
, index
);
3131 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
3133 * pn = 0; index = 1: First entry "."
3134 * pn = 0; index = 2: Second entry ".."
3135 * pn > 0: Real entries, pn=1 -> leftmost page
3136 * pn = index = -1: No more entries
3140 /* build "." entry */
3142 if (!dir_emit(ctx
, ".", 1, ip
->i_ino
, DT_DIR
))
3144 dtoffset
->index
= 2;
3148 if (dtoffset
->pn
== 0) {
3149 if (dtoffset
->index
== 2) {
3150 /* build ".." entry */
3151 if (!dir_emit(ctx
, "..", 2, PARENT(ip
), DT_DIR
))
3154 jfs_err("jfs_readdir called with "
3158 dtoffset
->index
= 0;
3167 if ((rc
= dtReadNext(ip
, &ctx
->pos
, &btstack
))) {
3168 jfs_err("jfs_readdir: unexpected rc = %d "
3169 "from dtReadNext", rc
);
3173 /* get start leaf page and index */
3174 DT_GETSEARCH(ip
, btstack
.top
, bn
, mp
, p
, index
);
3176 /* offset beyond directory eof ? */
3183 dirent_buf
= __get_free_page(GFP_KERNEL
);
3184 if (dirent_buf
== 0) {
3186 jfs_warn("jfs_readdir: __get_free_page failed!");
3192 jfs_dirent
= (struct jfs_dirent
*) dirent_buf
;
3194 overflow
= fix_page
= 0;
3196 stbl
= DT_GETSTBL(p
);
3198 for (i
= index
; i
< p
->header
.nextindex
; i
++) {
3199 d
= (struct ldtentry
*) & p
->slot
[stbl
[i
]];
3201 if (((long) jfs_dirent
+ d
->namlen
+ 1) >
3202 (dirent_buf
+ PAGE_SIZE
)) {
3203 /* DBCS codepages could overrun dirent_buf */
3209 d_namleft
= d
->namlen
;
3210 name_ptr
= jfs_dirent
->name
;
3211 jfs_dirent
->ino
= le32_to_cpu(d
->inumber
);
3214 len
= min(d_namleft
, DTLHDRDATALEN
);
3215 jfs_dirent
->position
= le32_to_cpu(d
->index
);
3217 * d->index should always be valid, but it
3218 * isn't. fsck.jfs doesn't create the
3219 * directory index for the lost+found
3220 * directory. Rather than let it go,
3221 * we can try to fix it.
3223 if ((jfs_dirent
->position
< 2) ||
3224 (jfs_dirent
->position
>=
3225 JFS_IP(ip
)->next_index
)) {
3226 if (!page_fixed
&& !isReadOnly(ip
)) {
3229 * setting overflow and setting
3230 * index to i will cause the
3231 * same page to be processed
3232 * again starting here
3238 jfs_dirent
->position
= unique_pos
++;
3241 * We add 1 to the index because we may
3242 * use a value of 2 internally, and NFSv4
3243 * doesn't like that.
3245 jfs_dirent
->position
++;
3247 jfs_dirent
->position
= dtpos
;
3248 len
= min(d_namleft
, DTLHDRDATALEN_LEGACY
);
3251 /* copy the name of head/only segment */
3252 outlen
= jfs_strfromUCS_le(name_ptr
, d
->name
, len
,
3254 jfs_dirent
->name_len
= outlen
;
3256 /* copy name in the additional segment(s) */
3259 t
= (struct dtslot
*) & p
->slot
[next
];
3263 if (d_namleft
== 0) {
3265 "JFS:Dtree error: ino = %ld, bn=%lld, index = %d\n",
3271 len
= min(d_namleft
, DTSLOTDATALEN
);
3272 outlen
= jfs_strfromUCS_le(name_ptr
, t
->name
,
3274 jfs_dirent
->name_len
+= outlen
;
3280 jfs_dirent
= next_jfs_dirent(jfs_dirent
);
3287 /* Point to next leaf page */
3288 if (p
->header
.flag
& BT_ROOT
)
3291 bn
= le64_to_cpu(p
->header
.next
);
3293 /* update offset (pn:index) for new page */
3296 dtoffset
->index
= 0;
3302 /* unpin previous leaf page */
3305 jfs_dirent
= (struct jfs_dirent
*) dirent_buf
;
3306 while (jfs_dirents
--) {
3307 ctx
->pos
= jfs_dirent
->position
;
3308 if (!dir_emit(ctx
, jfs_dirent
->name
,
3309 jfs_dirent
->name_len
,
3310 jfs_dirent
->ino
, DT_UNKNOWN
))
3312 jfs_dirent
= next_jfs_dirent(jfs_dirent
);
3316 add_missing_indices(ip
, bn
);
3320 if (!overflow
&& (bn
== 0)) {
3325 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
3327 free_page(dirent_buf
);
3333 free_page(dirent_buf
);
3342 * function: get the leftmost page of the directory
3344 static int dtReadFirst(struct inode
*ip
, struct btstack
* btstack
)
3348 int psize
= 288; /* initial in-line directory */
3349 struct metapage
*mp
;
3352 struct btframe
*btsp
;
3355 BT_CLR(btstack
); /* reset stack */
3358 * descend leftmost path of the tree
3360 * by convention, root bn = 0.
3363 DT_GETPAGE(ip
, bn
, mp
, psize
, p
, rc
);
3368 * leftmost leaf page
3370 if (p
->header
.flag
& BT_LEAF
) {
3371 /* return leftmost entry */
3372 btsp
= btstack
->top
;
3381 * descend down to leftmost child page
3383 if (BT_STACK_FULL(btstack
)) {
3385 jfs_error(ip
->i_sb
, "btstack overrun\n");
3386 BT_STACK_DUMP(btstack
);
3389 /* push (bn, index) of the parent page/entry */
3390 BT_PUSH(btstack
, bn
, 0);
3392 /* get the leftmost entry */
3393 stbl
= DT_GETSTBL(p
);
3394 xd
= (pxd_t
*) & p
->slot
[stbl
[0]];
3396 /* get the child page block address */
3397 bn
= addressPXD(xd
);
3398 psize
= lengthPXD(xd
) << JFS_SBI(ip
->i_sb
)->l2bsize
;
3400 /* unpin the parent page */
3409 * function: get the page of the specified offset (pn:index)
3411 * return: if (offset > eof), bn = -1;
3413 * note: if index > nextindex of the target leaf page,
3414 * start with 1st entry of next leaf page;
3416 static int dtReadNext(struct inode
*ip
, loff_t
* offset
,
3417 struct btstack
* btstack
)
3424 } *dtoffset
= (struct dtoffset
*) offset
;
3426 struct metapage
*mp
;
3431 struct btframe
*btsp
, *parent
;
3435 * get leftmost leaf page pinned
3437 if ((rc
= dtReadFirst(ip
, btstack
)))
3441 DT_GETSEARCH(ip
, btstack
->top
, bn
, mp
, p
, index
);
3443 /* get the start offset (pn:index) */
3444 pn
= dtoffset
->pn
- 1; /* Now pn = 0 represents leftmost leaf */
3445 index
= dtoffset
->index
;
3447 /* start at leftmost page ? */
3449 /* offset beyond eof ? */
3450 if (index
< p
->header
.nextindex
)
3453 if (p
->header
.flag
& BT_ROOT
) {
3458 /* start with 1st entry of next leaf page */
3460 dtoffset
->index
= index
= 0;
3464 /* start at non-leftmost page: scan parent pages for large pn */
3465 if (p
->header
.flag
& BT_ROOT
) {
3470 /* start after next leaf page ? */
3474 /* get leaf page pn = 1 */
3476 bn
= le64_to_cpu(p
->header
.next
);
3478 /* unpin leaf page */
3481 /* offset beyond eof ? */
3490 * scan last internal page level to get target leaf page
3493 /* unpin leftmost leaf page */
3496 /* get left most parent page */
3497 btsp
= btstack
->top
;
3500 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
3504 /* scan parent pages at last internal page level */
3505 while (pn
>= p
->header
.nextindex
) {
3506 pn
-= p
->header
.nextindex
;
3508 /* get next parent page address */
3509 bn
= le64_to_cpu(p
->header
.next
);
3511 /* unpin current parent page */
3514 /* offset beyond eof ? */
3520 /* get next parent page */
3521 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
3525 /* update parent page stack frame */
3529 /* get leaf page address */
3530 stbl
= DT_GETSTBL(p
);
3531 xd
= (pxd_t
*) & p
->slot
[stbl
[pn
]];
3532 bn
= addressPXD(xd
);
3534 /* unpin parent page */
3538 * get target leaf page
3541 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
3546 * leaf page has been completed:
3547 * start with 1st entry of next leaf page
3549 if (index
>= p
->header
.nextindex
) {
3550 bn
= le64_to_cpu(p
->header
.next
);
3552 /* unpin leaf page */
3555 /* offset beyond eof ? */
3561 /* get next leaf page */
3562 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
3566 /* start with 1st entry of next leaf page */
3568 dtoffset
->index
= 0;
3572 /* return target leaf page pinned */
3573 btsp
= btstack
->top
;
3575 btsp
->index
= dtoffset
->index
;
3585 * function: compare search key with an internal entry
3588 * < 0 if k is < record
3589 * = 0 if k is = record
3590 * > 0 if k is > record
3592 static int dtCompare(struct component_name
* key
, /* search key */
3593 dtpage_t
* p
, /* directory page */
3595 { /* entry slot index */
3598 int klen
, namlen
, len
, rc
;
3599 struct idtentry
*ih
;
3603 * force the left-most key on internal pages, at any level of
3604 * the tree, to be less than any search key.
3605 * this obviates having to update the leftmost key on an internal
3606 * page when the user inserts a new key in the tree smaller than
3607 * anything that has been stored.
3609 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3610 * at any internal page at any level of the tree,
3611 * it descends to child of the entry anyway -
3612 * ? make the entry as min size dummy entry)
3614 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3621 ih
= (struct idtentry
*) & p
->slot
[si
];
3624 namlen
= ih
->namlen
;
3625 len
= min(namlen
, DTIHDRDATALEN
);
3627 /* compare with head/only segment */
3628 len
= min(klen
, len
);
3629 if ((rc
= UniStrncmp_le(kname
, name
, len
)))
3635 /* compare with additional segment(s) */
3637 while (klen
> 0 && namlen
> 0) {
3638 /* compare with next name segment */
3639 t
= (struct dtslot
*) & p
->slot
[si
];
3640 len
= min(namlen
, DTSLOTDATALEN
);
3641 len
= min(klen
, len
);
3643 if ((rc
= UniStrncmp_le(kname
, name
, len
)))
3652 return (klen
- namlen
);
3661 * function: compare search key with an (leaf/internal) entry
3664 * < 0 if k is < record
3665 * = 0 if k is = record
3666 * > 0 if k is > record
3668 static int ciCompare(struct component_name
* key
, /* search key */
3669 dtpage_t
* p
, /* directory page */
3670 int si
, /* entry slot index */
3675 int klen
, namlen
, len
, rc
;
3676 struct ldtentry
*lh
;
3677 struct idtentry
*ih
;
3682 * force the left-most key on internal pages, at any level of
3683 * the tree, to be less than any search key.
3684 * this obviates having to update the leftmost key on an internal
3685 * page when the user inserts a new key in the tree smaller than
3686 * anything that has been stored.
3688 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3689 * at any internal page at any level of the tree,
3690 * it descends to child of the entry anyway -
3691 * ? make the entry as min size dummy entry)
3693 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3703 if (p
->header
.flag
& BT_LEAF
) {
3704 lh
= (struct ldtentry
*) & p
->slot
[si
];
3707 namlen
= lh
->namlen
;
3708 if (flag
& JFS_DIR_INDEX
)
3709 len
= min(namlen
, DTLHDRDATALEN
);
3711 len
= min(namlen
, DTLHDRDATALEN_LEGACY
);
3714 * internal page entry
3717 ih
= (struct idtentry
*) & p
->slot
[si
];
3720 namlen
= ih
->namlen
;
3721 len
= min(namlen
, DTIHDRDATALEN
);
3724 /* compare with head/only segment */
3725 len
= min(klen
, len
);
3726 for (i
= 0; i
< len
; i
++, kname
++, name
++) {
3727 /* only uppercase if case-insensitive support is on */
3728 if ((flag
& JFS_OS2
) == JFS_OS2
)
3729 x
= UniToupper(le16_to_cpu(*name
));
3731 x
= le16_to_cpu(*name
);
3732 if ((rc
= *kname
- x
))
3739 /* compare with additional segment(s) */
3740 while (klen
> 0 && namlen
> 0) {
3741 /* compare with next name segment */
3742 t
= (struct dtslot
*) & p
->slot
[si
];
3743 len
= min(namlen
, DTSLOTDATALEN
);
3744 len
= min(klen
, len
);
3746 for (i
= 0; i
< len
; i
++, kname
++, name
++) {
3747 /* only uppercase if case-insensitive support is on */
3748 if ((flag
& JFS_OS2
) == JFS_OS2
)
3749 x
= UniToupper(le16_to_cpu(*name
));
3751 x
= le16_to_cpu(*name
);
3753 if ((rc
= *kname
- x
))
3762 return (klen
- namlen
);
3767 * ciGetLeafPrefixKey()
3769 * function: compute prefix of suffix compression
3770 * from two adjacent leaf entries
3771 * across page boundary
3773 * return: non-zero on error
3776 static int ciGetLeafPrefixKey(dtpage_t
* lp
, int li
, dtpage_t
* rp
,
3777 int ri
, struct component_name
* key
, int flag
)
3780 wchar_t *pl
, *pr
, *kname
;
3781 struct component_name lkey
;
3782 struct component_name rkey
;
3784 lkey
.name
= kmalloc((JFS_NAME_MAX
+ 1) * sizeof(wchar_t),
3786 if (lkey
.name
== NULL
)
3789 rkey
.name
= kmalloc((JFS_NAME_MAX
+ 1) * sizeof(wchar_t),
3791 if (rkey
.name
== NULL
) {
3796 /* get left and right key */
3797 dtGetKey(lp
, li
, &lkey
, flag
);
3798 lkey
.name
[lkey
.namlen
] = 0;
3800 if ((flag
& JFS_OS2
) == JFS_OS2
)
3803 dtGetKey(rp
, ri
, &rkey
, flag
);
3804 rkey
.name
[rkey
.namlen
] = 0;
3807 if ((flag
& JFS_OS2
) == JFS_OS2
)
3810 /* compute prefix */
3813 namlen
= min(lkey
.namlen
, rkey
.namlen
);
3814 for (pl
= lkey
.name
, pr
= rkey
.name
;
3815 namlen
; pl
++, pr
++, namlen
--, klen
++, kname
++) {
3818 key
->namlen
= klen
+ 1;
3823 /* l->namlen <= r->namlen since l <= r */
3824 if (lkey
.namlen
< rkey
.namlen
) {
3826 key
->namlen
= klen
+ 1;
3827 } else /* l->namelen == r->namelen */
3841 * function: get key of the entry
3843 static void dtGetKey(dtpage_t
* p
, int i
, /* entry index */
3844 struct component_name
* key
, int flag
)
3848 struct ldtentry
*lh
;
3849 struct idtentry
*ih
;
3856 stbl
= DT_GETSTBL(p
);
3858 if (p
->header
.flag
& BT_LEAF
) {
3859 lh
= (struct ldtentry
*) & p
->slot
[si
];
3861 namlen
= lh
->namlen
;
3863 if (flag
& JFS_DIR_INDEX
)
3864 len
= min(namlen
, DTLHDRDATALEN
);
3866 len
= min(namlen
, DTLHDRDATALEN_LEGACY
);
3868 ih
= (struct idtentry
*) & p
->slot
[si
];
3870 namlen
= ih
->namlen
;
3872 len
= min(namlen
, DTIHDRDATALEN
);
3875 key
->namlen
= namlen
;
3879 * move head/only segment
3881 UniStrncpy_from_le(kname
, name
, len
);
3884 * move additional segment(s)
3887 /* get next segment */
3891 len
= min(namlen
, DTSLOTDATALEN
);
3892 UniStrncpy_from_le(kname
, t
->name
, len
);
3902 * function: allocate free slot(s) and
3903 * write a leaf/internal entry
3905 * return: entry slot index
3907 static void dtInsertEntry(dtpage_t
* p
, int index
, struct component_name
* key
,
3908 ddata_t
* data
, struct dt_lock
** dtlock
)
3910 struct dtslot
*h
, *t
;
3911 struct ldtentry
*lh
= NULL
;
3912 struct idtentry
*ih
= NULL
;
3913 int hsi
, fsi
, klen
, len
, nextindex
;
3918 struct dt_lock
*dtlck
= *dtlock
;
3922 struct metapage
*mp
= NULL
;
3927 /* allocate a free slot */
3928 hsi
= fsi
= p
->header
.freelist
;
3930 p
->header
.freelist
= h
->next
;
3931 --p
->header
.freecnt
;
3933 /* open new linelock */
3934 if (dtlck
->index
>= dtlck
->maxcnt
)
3935 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
3937 lv
= & dtlck
->lv
[dtlck
->index
];
3940 /* write head/only segment */
3941 if (p
->header
.flag
& BT_LEAF
) {
3942 lh
= (struct ldtentry
*) h
;
3944 lh
->inumber
= cpu_to_le32(data
->leaf
.ino
);
3947 if (data
->leaf
.ip
) {
3948 len
= min(klen
, DTLHDRDATALEN
);
3949 if (!(p
->header
.flag
& BT_ROOT
))
3950 bn
= addressPXD(&p
->header
.self
);
3951 lh
->index
= cpu_to_le32(add_index(data
->leaf
.tid
,
3955 len
= min(klen
, DTLHDRDATALEN_LEGACY
);
3957 ih
= (struct idtentry
*) h
;
3963 len
= min(klen
, DTIHDRDATALEN
);
3966 UniStrncpy_to_le(name
, kname
, len
);
3971 /* write additional segment(s) */
3976 fsi
= p
->header
.freelist
;
3978 p
->header
.freelist
= t
->next
;
3979 --p
->header
.freecnt
;
3981 /* is next slot contiguous ? */
3982 if (fsi
!= xsi
+ 1) {
3983 /* close current linelock */
3987 /* open new linelock */
3988 if (dtlck
->index
< dtlck
->maxcnt
)
3991 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
3992 lv
= & dtlck
->lv
[0];
4000 len
= min(klen
, DTSLOTDATALEN
);
4001 UniStrncpy_to_le(t
->name
, kname
, len
);
4008 /* close current linelock */
4014 /* terminate last/only segment */
4016 /* single segment entry */
4017 if (p
->header
.flag
& BT_LEAF
)
4022 /* multi-segment entry */
4025 /* if insert into middle, shift right succeeding entries in stbl */
4026 stbl
= DT_GETSTBL(p
);
4027 nextindex
= p
->header
.nextindex
;
4028 if (index
< nextindex
) {
4029 memmove(stbl
+ index
+ 1, stbl
+ index
, nextindex
- index
);
4031 if ((p
->header
.flag
& BT_LEAF
) && data
->leaf
.ip
) {
4035 * Need to update slot number for entries that moved
4039 for (n
= index
+ 1; n
<= nextindex
; n
++) {
4040 lh
= (struct ldtentry
*) & (p
->slot
[stbl
[n
]]);
4041 modify_index(data
->leaf
.tid
, data
->leaf
.ip
,
4042 le32_to_cpu(lh
->index
), bn
, n
,
4046 release_metapage(mp
);
4052 /* advance next available entry index of stbl */
4053 ++p
->header
.nextindex
;
4060 * function: move entries from split/left page to new/right page
4062 * nextindex of dst page and freelist/freecnt of both pages
4065 static void dtMoveEntry(dtpage_t
* sp
, int si
, dtpage_t
* dp
,
4066 struct dt_lock
** sdtlock
, struct dt_lock
** ddtlock
,
4069 int ssi
, next
; /* src slot index */
4070 int di
; /* dst entry index */
4071 int dsi
; /* dst slot index */
4072 s8
*sstbl
, *dstbl
; /* sorted entry table */
4074 struct ldtentry
*slh
, *dlh
= NULL
;
4075 struct idtentry
*sih
, *dih
= NULL
;
4076 struct dtslot
*h
, *s
, *d
;
4077 struct dt_lock
*sdtlck
= *sdtlock
, *ddtlck
= *ddtlock
;
4078 struct lv
*slv
, *dlv
;
4082 sstbl
= (s8
*) & sp
->slot
[sp
->header
.stblindex
];
4083 dstbl
= (s8
*) & dp
->slot
[dp
->header
.stblindex
];
4085 dsi
= dp
->header
.freelist
; /* first (whole page) free slot */
4086 sfsi
= sp
->header
.freelist
;
4088 /* linelock destination entry slot */
4089 dlv
= & ddtlck
->lv
[ddtlck
->index
];
4092 /* linelock source entry slot */
4093 slv
= & sdtlck
->lv
[sdtlck
->index
];
4094 slv
->offset
= sstbl
[si
];
4095 xssi
= slv
->offset
- 1;
4101 for (di
= 0; si
< sp
->header
.nextindex
; si
++, di
++) {
4105 /* is next slot contiguous ? */
4106 if (ssi
!= xssi
+ 1) {
4107 /* close current linelock */
4111 /* open new linelock */
4112 if (sdtlck
->index
< sdtlck
->maxcnt
)
4115 sdtlck
= (struct dt_lock
*) txLinelock(sdtlck
);
4116 slv
= & sdtlck
->lv
[0];
4124 * move head/only segment of an entry
4127 h
= d
= &dp
->slot
[dsi
];
4129 /* get src slot and move */
4131 if (sp
->header
.flag
& BT_LEAF
) {
4132 /* get source entry */
4133 slh
= (struct ldtentry
*) s
;
4134 dlh
= (struct ldtentry
*) h
;
4135 snamlen
= slh
->namlen
;
4138 len
= min(snamlen
, DTLHDRDATALEN
);
4139 dlh
->index
= slh
->index
; /* little-endian */
4141 len
= min(snamlen
, DTLHDRDATALEN_LEGACY
);
4143 memcpy(dlh
, slh
, 6 + len
* 2);
4147 /* update dst head/only segment next field */
4151 sih
= (struct idtentry
*) s
;
4152 snamlen
= sih
->namlen
;
4154 len
= min(snamlen
, DTIHDRDATALEN
);
4155 dih
= (struct idtentry
*) h
;
4156 memcpy(dih
, sih
, 10 + len
* 2);
4163 /* free src head/only segment */
4173 * move additional segment(s) of the entry
4176 while ((ssi
= next
) >= 0) {
4177 /* is next slot contiguous ? */
4178 if (ssi
!= xssi
+ 1) {
4179 /* close current linelock */
4183 /* open new linelock */
4184 if (sdtlck
->index
< sdtlck
->maxcnt
)
4190 slv
= & sdtlck
->lv
[0];
4197 /* get next source segment */
4200 /* get next destination free slot */
4203 len
= min(snamlen
, DTSLOTDATALEN
);
4204 UniStrncpy_le(d
->name
, s
->name
, len
);
4213 /* free source segment */
4222 /* terminate dst last/only segment */
4224 /* single segment entry */
4225 if (dp
->header
.flag
& BT_LEAF
)
4230 /* multi-segment entry */
4234 /* close current linelock */
4243 /* update source header */
4244 sp
->header
.freelist
= sfsi
;
4245 sp
->header
.freecnt
+= nd
;
4247 /* update destination header */
4248 dp
->header
.nextindex
= di
;
4250 dp
->header
.freelist
= dsi
;
4251 dp
->header
.freecnt
-= nd
;
4258 * function: free a (leaf/internal) entry
4260 * log freelist header, stbl, and each segment slot of entry
4261 * (even though last/only segment next field is modified,
4262 * physical image logging requires all segment slots of
4263 * the entry logged to avoid applying previous updates
4264 * to the same slots)
4266 static void dtDeleteEntry(dtpage_t
* p
, int fi
, struct dt_lock
** dtlock
)
4268 int fsi
; /* free entry slot index */
4272 struct dt_lock
*dtlck
= *dtlock
;
4276 /* get free entry slot index */
4277 stbl
= DT_GETSTBL(p
);
4280 /* open new linelock */
4281 if (dtlck
->index
>= dtlck
->maxcnt
)
4282 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
4283 lv
= & dtlck
->lv
[dtlck
->index
];
4287 /* get the head/only segment */
4289 if (p
->header
.flag
& BT_LEAF
)
4290 si
= ((struct ldtentry
*) t
)->next
;
4292 si
= ((struct idtentry
*) t
)->next
;
4299 /* find the last/only segment */
4301 /* is next slot contiguous ? */
4302 if (si
!= xsi
+ 1) {
4303 /* close current linelock */
4307 /* open new linelock */
4308 if (dtlck
->index
< dtlck
->maxcnt
)
4311 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
4312 lv
= & dtlck
->lv
[0];
4328 /* close current linelock */
4334 /* update freelist */
4335 t
->next
= p
->header
.freelist
;
4336 p
->header
.freelist
= fsi
;
4337 p
->header
.freecnt
+= freecnt
;
4339 /* if delete from middle,
4340 * shift left the succedding entries in the stbl
4342 si
= p
->header
.nextindex
;
4344 memmove(&stbl
[fi
], &stbl
[fi
+ 1], si
- fi
- 1);
4346 p
->header
.nextindex
--;
4353 * function: truncate a (leaf/internal) entry
4355 * log freelist header, stbl, and each segment slot of entry
4356 * (even though last/only segment next field is modified,
4357 * physical image logging requires all segment slots of
4358 * the entry logged to avoid applying previous updates
4359 * to the same slots)
4361 static void dtTruncateEntry(dtpage_t
* p
, int ti
, struct dt_lock
** dtlock
)
4363 int tsi
; /* truncate entry slot index */
4367 struct dt_lock
*dtlck
= *dtlock
;
4371 /* get free entry slot index */
4372 stbl
= DT_GETSTBL(p
);
4375 /* open new linelock */
4376 if (dtlck
->index
>= dtlck
->maxcnt
)
4377 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
4378 lv
= & dtlck
->lv
[dtlck
->index
];
4382 /* get the head/only segment */
4384 ASSERT(p
->header
.flag
& BT_INTERNAL
);
4385 ((struct idtentry
*) t
)->namlen
= 0;
4386 si
= ((struct idtentry
*) t
)->next
;
4387 ((struct idtentry
*) t
)->next
= -1;
4394 /* find the last/only segment */
4396 /* is next slot contiguous ? */
4397 if (si
!= xsi
+ 1) {
4398 /* close current linelock */
4402 /* open new linelock */
4403 if (dtlck
->index
< dtlck
->maxcnt
)
4406 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
4407 lv
= & dtlck
->lv
[0];
4423 /* close current linelock */
4429 /* update freelist */
4432 t
->next
= p
->header
.freelist
;
4433 p
->header
.freelist
= fsi
;
4434 p
->header
.freecnt
+= freecnt
;
4439 * dtLinelockFreelist()
4441 static void dtLinelockFreelist(dtpage_t
* p
, /* directory page */
4442 int m
, /* max slot index */
4443 struct dt_lock
** dtlock
)
4445 int fsi
; /* free entry slot index */
4448 struct dt_lock
*dtlck
= *dtlock
;
4452 /* get free entry slot index */
4453 fsi
= p
->header
.freelist
;
4455 /* open new linelock */
4456 if (dtlck
->index
>= dtlck
->maxcnt
)
4457 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
4458 lv
= & dtlck
->lv
[dtlck
->index
];
4468 /* find the last/only segment */
4469 while (si
< m
&& si
>= 0) {
4470 /* is next slot contiguous ? */
4471 if (si
!= xsi
+ 1) {
4472 /* close current linelock */
4476 /* open new linelock */
4477 if (dtlck
->index
< dtlck
->maxcnt
)
4480 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
4481 lv
= & dtlck
->lv
[0];
4495 /* close current linelock */
4506 * FUNCTION: Modify the inode number part of a directory entry
4509 * tid - Transaction id
4510 * ip - Inode of parent directory
4511 * key - Name of entry to be modified
4512 * orig_ino - Original inode number expected in entry
4513 * new_ino - New inode number to put into entry
4517 * -ESTALE - If entry found does not match orig_ino passed in
4518 * -ENOENT - If no entry can be found to match key
4519 * 0 - If successfully modified entry
4521 int dtModify(tid_t tid
, struct inode
*ip
,
4522 struct component_name
* key
, ino_t
* orig_ino
, ino_t new_ino
, int flag
)
4526 struct metapage
*mp
;
4529 struct btstack btstack
;
4531 struct dt_lock
*dtlck
;
4534 int entry_si
; /* entry slot index */
4535 struct ldtentry
*entry
;
4538 * search for the entry to modify:
4540 * dtSearch() returns (leaf page pinned, index at which to modify).
4542 if ((rc
= dtSearch(ip
, key
, orig_ino
, &btstack
, flag
)))
4545 /* retrieve search result */
4546 DT_GETSEARCH(ip
, btstack
.top
, bn
, mp
, p
, index
);
4548 BT_MARK_DIRTY(mp
, ip
);
4550 * acquire a transaction lock on the leaf page of named entry
4552 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckENTRY
);
4553 dtlck
= (struct dt_lock
*) & tlck
->lock
;
4555 /* get slot index of the entry */
4556 stbl
= DT_GETSTBL(p
);
4557 entry_si
= stbl
[index
];
4559 /* linelock entry */
4560 ASSERT(dtlck
->index
== 0);
4561 lv
= & dtlck
->lv
[0];
4562 lv
->offset
= entry_si
;
4566 /* get the head/only segment */
4567 entry
= (struct ldtentry
*) & p
->slot
[entry_si
];
4569 /* substitute the inode number of the entry */
4570 entry
->inumber
= cpu_to_le32(new_ino
);
4572 /* unpin the leaf page */