usblp: do not set TASK_INTERRUPTIBLE before lock
[linux/fpc-iii.git] / drivers / block / pktcdvd.c
blobf5d0ea11d9fda8a4f1b8ad3f23d285bb7887250b
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
12 * Theory of operation:
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
45 *************************************************************************/
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/compat.h>
52 #include <linux/kthread.h>
53 #include <linux/errno.h>
54 #include <linux/spinlock.h>
55 #include <linux/file.h>
56 #include <linux/proc_fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/miscdevice.h>
59 #include <linux/freezer.h>
60 #include <linux/mutex.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_ioctl.h>
64 #include <scsi/scsi.h>
65 #include <linux/debugfs.h>
66 #include <linux/device.h>
68 #include <asm/uaccess.h>
70 #define DRIVER_NAME "pktcdvd"
72 #if PACKET_DEBUG
73 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
74 #else
75 #define DPRINTK(fmt, args...)
76 #endif
78 #if PACKET_DEBUG > 1
79 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
80 #else
81 #define VPRINTK(fmt, args...)
82 #endif
84 #define MAX_SPEED 0xffff
86 #define ZONE(sector, pd) (((sector) + (pd)->offset) & \
87 ~(sector_t)((pd)->settings.size - 1))
89 static DEFINE_MUTEX(pktcdvd_mutex);
90 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
91 static struct proc_dir_entry *pkt_proc;
92 static int pktdev_major;
93 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
94 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
95 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
96 static mempool_t *psd_pool;
98 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
99 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
101 /* forward declaration */
102 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
103 static int pkt_remove_dev(dev_t pkt_dev);
104 static int pkt_seq_show(struct seq_file *m, void *p);
109 * create and register a pktcdvd kernel object.
111 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
112 const char* name,
113 struct kobject* parent,
114 struct kobj_type* ktype)
116 struct pktcdvd_kobj *p;
117 int error;
119 p = kzalloc(sizeof(*p), GFP_KERNEL);
120 if (!p)
121 return NULL;
122 p->pd = pd;
123 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
124 if (error) {
125 kobject_put(&p->kobj);
126 return NULL;
128 kobject_uevent(&p->kobj, KOBJ_ADD);
129 return p;
132 * remove a pktcdvd kernel object.
134 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
136 if (p)
137 kobject_put(&p->kobj);
140 * default release function for pktcdvd kernel objects.
142 static void pkt_kobj_release(struct kobject *kobj)
144 kfree(to_pktcdvdkobj(kobj));
148 /**********************************************************
150 * sysfs interface for pktcdvd
151 * by (C) 2006 Thomas Maier <balagi@justmail.de>
153 **********************************************************/
155 #define DEF_ATTR(_obj,_name,_mode) \
156 static struct attribute _obj = { .name = _name, .mode = _mode }
158 /**********************************************************
159 /sys/class/pktcdvd/pktcdvd[0-7]/
160 stat/reset
161 stat/packets_started
162 stat/packets_finished
163 stat/kb_written
164 stat/kb_read
165 stat/kb_read_gather
166 write_queue/size
167 write_queue/congestion_off
168 write_queue/congestion_on
169 **********************************************************/
171 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
172 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
173 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
174 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
175 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
176 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
178 static struct attribute *kobj_pkt_attrs_stat[] = {
179 &kobj_pkt_attr_st1,
180 &kobj_pkt_attr_st2,
181 &kobj_pkt_attr_st3,
182 &kobj_pkt_attr_st4,
183 &kobj_pkt_attr_st5,
184 &kobj_pkt_attr_st6,
185 NULL
188 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
189 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
190 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
192 static struct attribute *kobj_pkt_attrs_wqueue[] = {
193 &kobj_pkt_attr_wq1,
194 &kobj_pkt_attr_wq2,
195 &kobj_pkt_attr_wq3,
196 NULL
199 static ssize_t kobj_pkt_show(struct kobject *kobj,
200 struct attribute *attr, char *data)
202 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
203 int n = 0;
204 int v;
205 if (strcmp(attr->name, "packets_started") == 0) {
206 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
208 } else if (strcmp(attr->name, "packets_finished") == 0) {
209 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
211 } else if (strcmp(attr->name, "kb_written") == 0) {
212 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
214 } else if (strcmp(attr->name, "kb_read") == 0) {
215 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
217 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
218 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
220 } else if (strcmp(attr->name, "size") == 0) {
221 spin_lock(&pd->lock);
222 v = pd->bio_queue_size;
223 spin_unlock(&pd->lock);
224 n = sprintf(data, "%d\n", v);
226 } else if (strcmp(attr->name, "congestion_off") == 0) {
227 spin_lock(&pd->lock);
228 v = pd->write_congestion_off;
229 spin_unlock(&pd->lock);
230 n = sprintf(data, "%d\n", v);
232 } else if (strcmp(attr->name, "congestion_on") == 0) {
233 spin_lock(&pd->lock);
234 v = pd->write_congestion_on;
235 spin_unlock(&pd->lock);
236 n = sprintf(data, "%d\n", v);
238 return n;
241 static void init_write_congestion_marks(int* lo, int* hi)
243 if (*hi > 0) {
244 *hi = max(*hi, 500);
245 *hi = min(*hi, 1000000);
246 if (*lo <= 0)
247 *lo = *hi - 100;
248 else {
249 *lo = min(*lo, *hi - 100);
250 *lo = max(*lo, 100);
252 } else {
253 *hi = -1;
254 *lo = -1;
258 static ssize_t kobj_pkt_store(struct kobject *kobj,
259 struct attribute *attr,
260 const char *data, size_t len)
262 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
263 int val;
265 if (strcmp(attr->name, "reset") == 0 && len > 0) {
266 pd->stats.pkt_started = 0;
267 pd->stats.pkt_ended = 0;
268 pd->stats.secs_w = 0;
269 pd->stats.secs_rg = 0;
270 pd->stats.secs_r = 0;
272 } else if (strcmp(attr->name, "congestion_off") == 0
273 && sscanf(data, "%d", &val) == 1) {
274 spin_lock(&pd->lock);
275 pd->write_congestion_off = val;
276 init_write_congestion_marks(&pd->write_congestion_off,
277 &pd->write_congestion_on);
278 spin_unlock(&pd->lock);
280 } else if (strcmp(attr->name, "congestion_on") == 0
281 && sscanf(data, "%d", &val) == 1) {
282 spin_lock(&pd->lock);
283 pd->write_congestion_on = val;
284 init_write_congestion_marks(&pd->write_congestion_off,
285 &pd->write_congestion_on);
286 spin_unlock(&pd->lock);
288 return len;
291 static const struct sysfs_ops kobj_pkt_ops = {
292 .show = kobj_pkt_show,
293 .store = kobj_pkt_store
295 static struct kobj_type kobj_pkt_type_stat = {
296 .release = pkt_kobj_release,
297 .sysfs_ops = &kobj_pkt_ops,
298 .default_attrs = kobj_pkt_attrs_stat
300 static struct kobj_type kobj_pkt_type_wqueue = {
301 .release = pkt_kobj_release,
302 .sysfs_ops = &kobj_pkt_ops,
303 .default_attrs = kobj_pkt_attrs_wqueue
306 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
308 if (class_pktcdvd) {
309 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
310 "%s", pd->name);
311 if (IS_ERR(pd->dev))
312 pd->dev = NULL;
314 if (pd->dev) {
315 pd->kobj_stat = pkt_kobj_create(pd, "stat",
316 &pd->dev->kobj,
317 &kobj_pkt_type_stat);
318 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
319 &pd->dev->kobj,
320 &kobj_pkt_type_wqueue);
324 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
326 pkt_kobj_remove(pd->kobj_stat);
327 pkt_kobj_remove(pd->kobj_wqueue);
328 if (class_pktcdvd)
329 device_unregister(pd->dev);
333 /********************************************************************
334 /sys/class/pktcdvd/
335 add map block device
336 remove unmap packet dev
337 device_map show mappings
338 *******************************************************************/
340 static void class_pktcdvd_release(struct class *cls)
342 kfree(cls);
344 static ssize_t class_pktcdvd_show_map(struct class *c,
345 struct class_attribute *attr,
346 char *data)
348 int n = 0;
349 int idx;
350 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
351 for (idx = 0; idx < MAX_WRITERS; idx++) {
352 struct pktcdvd_device *pd = pkt_devs[idx];
353 if (!pd)
354 continue;
355 n += sprintf(data+n, "%s %u:%u %u:%u\n",
356 pd->name,
357 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
358 MAJOR(pd->bdev->bd_dev),
359 MINOR(pd->bdev->bd_dev));
361 mutex_unlock(&ctl_mutex);
362 return n;
365 static ssize_t class_pktcdvd_store_add(struct class *c,
366 struct class_attribute *attr,
367 const char *buf,
368 size_t count)
370 unsigned int major, minor;
372 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
373 /* pkt_setup_dev() expects caller to hold reference to self */
374 if (!try_module_get(THIS_MODULE))
375 return -ENODEV;
377 pkt_setup_dev(MKDEV(major, minor), NULL);
379 module_put(THIS_MODULE);
381 return count;
384 return -EINVAL;
387 static ssize_t class_pktcdvd_store_remove(struct class *c,
388 struct class_attribute *attr,
389 const char *buf,
390 size_t count)
392 unsigned int major, minor;
393 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
394 pkt_remove_dev(MKDEV(major, minor));
395 return count;
397 return -EINVAL;
400 static struct class_attribute class_pktcdvd_attrs[] = {
401 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
402 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
403 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
404 __ATTR_NULL
408 static int pkt_sysfs_init(void)
410 int ret = 0;
413 * create control files in sysfs
414 * /sys/class/pktcdvd/...
416 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
417 if (!class_pktcdvd)
418 return -ENOMEM;
419 class_pktcdvd->name = DRIVER_NAME;
420 class_pktcdvd->owner = THIS_MODULE;
421 class_pktcdvd->class_release = class_pktcdvd_release;
422 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
423 ret = class_register(class_pktcdvd);
424 if (ret) {
425 kfree(class_pktcdvd);
426 class_pktcdvd = NULL;
427 printk(DRIVER_NAME": failed to create class pktcdvd\n");
428 return ret;
430 return 0;
433 static void pkt_sysfs_cleanup(void)
435 if (class_pktcdvd)
436 class_destroy(class_pktcdvd);
437 class_pktcdvd = NULL;
440 /********************************************************************
441 entries in debugfs
443 /sys/kernel/debug/pktcdvd[0-7]/
444 info
446 *******************************************************************/
448 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
450 return pkt_seq_show(m, p);
453 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
455 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
458 static const struct file_operations debug_fops = {
459 .open = pkt_debugfs_fops_open,
460 .read = seq_read,
461 .llseek = seq_lseek,
462 .release = single_release,
463 .owner = THIS_MODULE,
466 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
468 if (!pkt_debugfs_root)
469 return;
470 pd->dfs_f_info = NULL;
471 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
472 if (IS_ERR(pd->dfs_d_root)) {
473 pd->dfs_d_root = NULL;
474 return;
476 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
477 pd->dfs_d_root, pd, &debug_fops);
478 if (IS_ERR(pd->dfs_f_info)) {
479 pd->dfs_f_info = NULL;
480 return;
484 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
486 if (!pkt_debugfs_root)
487 return;
488 if (pd->dfs_f_info)
489 debugfs_remove(pd->dfs_f_info);
490 pd->dfs_f_info = NULL;
491 if (pd->dfs_d_root)
492 debugfs_remove(pd->dfs_d_root);
493 pd->dfs_d_root = NULL;
496 static void pkt_debugfs_init(void)
498 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
499 if (IS_ERR(pkt_debugfs_root)) {
500 pkt_debugfs_root = NULL;
501 return;
505 static void pkt_debugfs_cleanup(void)
507 if (!pkt_debugfs_root)
508 return;
509 debugfs_remove(pkt_debugfs_root);
510 pkt_debugfs_root = NULL;
513 /* ----------------------------------------------------------*/
516 static void pkt_bio_finished(struct pktcdvd_device *pd)
518 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
519 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
520 VPRINTK(DRIVER_NAME": queue empty\n");
521 atomic_set(&pd->iosched.attention, 1);
522 wake_up(&pd->wqueue);
527 * Allocate a packet_data struct
529 static struct packet_data *pkt_alloc_packet_data(int frames)
531 int i;
532 struct packet_data *pkt;
534 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
535 if (!pkt)
536 goto no_pkt;
538 pkt->frames = frames;
539 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
540 if (!pkt->w_bio)
541 goto no_bio;
543 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
544 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
545 if (!pkt->pages[i])
546 goto no_page;
549 spin_lock_init(&pkt->lock);
550 bio_list_init(&pkt->orig_bios);
552 for (i = 0; i < frames; i++) {
553 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
554 if (!bio)
555 goto no_rd_bio;
557 pkt->r_bios[i] = bio;
560 return pkt;
562 no_rd_bio:
563 for (i = 0; i < frames; i++) {
564 struct bio *bio = pkt->r_bios[i];
565 if (bio)
566 bio_put(bio);
569 no_page:
570 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
571 if (pkt->pages[i])
572 __free_page(pkt->pages[i]);
573 bio_put(pkt->w_bio);
574 no_bio:
575 kfree(pkt);
576 no_pkt:
577 return NULL;
581 * Free a packet_data struct
583 static void pkt_free_packet_data(struct packet_data *pkt)
585 int i;
587 for (i = 0; i < pkt->frames; i++) {
588 struct bio *bio = pkt->r_bios[i];
589 if (bio)
590 bio_put(bio);
592 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
593 __free_page(pkt->pages[i]);
594 bio_put(pkt->w_bio);
595 kfree(pkt);
598 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
600 struct packet_data *pkt, *next;
602 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
604 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
605 pkt_free_packet_data(pkt);
607 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
610 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
612 struct packet_data *pkt;
614 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
616 while (nr_packets > 0) {
617 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
618 if (!pkt) {
619 pkt_shrink_pktlist(pd);
620 return 0;
622 pkt->id = nr_packets;
623 pkt->pd = pd;
624 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
625 nr_packets--;
627 return 1;
630 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
632 struct rb_node *n = rb_next(&node->rb_node);
633 if (!n)
634 return NULL;
635 return rb_entry(n, struct pkt_rb_node, rb_node);
638 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
640 rb_erase(&node->rb_node, &pd->bio_queue);
641 mempool_free(node, pd->rb_pool);
642 pd->bio_queue_size--;
643 BUG_ON(pd->bio_queue_size < 0);
647 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
649 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
651 struct rb_node *n = pd->bio_queue.rb_node;
652 struct rb_node *next;
653 struct pkt_rb_node *tmp;
655 if (!n) {
656 BUG_ON(pd->bio_queue_size > 0);
657 return NULL;
660 for (;;) {
661 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
662 if (s <= tmp->bio->bi_sector)
663 next = n->rb_left;
664 else
665 next = n->rb_right;
666 if (!next)
667 break;
668 n = next;
671 if (s > tmp->bio->bi_sector) {
672 tmp = pkt_rbtree_next(tmp);
673 if (!tmp)
674 return NULL;
676 BUG_ON(s > tmp->bio->bi_sector);
677 return tmp;
681 * Insert a node into the pd->bio_queue rb tree.
683 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
685 struct rb_node **p = &pd->bio_queue.rb_node;
686 struct rb_node *parent = NULL;
687 sector_t s = node->bio->bi_sector;
688 struct pkt_rb_node *tmp;
690 while (*p) {
691 parent = *p;
692 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
693 if (s < tmp->bio->bi_sector)
694 p = &(*p)->rb_left;
695 else
696 p = &(*p)->rb_right;
698 rb_link_node(&node->rb_node, parent, p);
699 rb_insert_color(&node->rb_node, &pd->bio_queue);
700 pd->bio_queue_size++;
704 * Send a packet_command to the underlying block device and
705 * wait for completion.
707 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
709 struct request_queue *q = bdev_get_queue(pd->bdev);
710 struct request *rq;
711 int ret = 0;
713 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
714 WRITE : READ, __GFP_WAIT);
716 if (cgc->buflen) {
717 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
718 goto out;
721 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
722 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
724 rq->timeout = 60*HZ;
725 rq->cmd_type = REQ_TYPE_BLOCK_PC;
726 if (cgc->quiet)
727 rq->cmd_flags |= REQ_QUIET;
729 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
730 if (rq->errors)
731 ret = -EIO;
732 out:
733 blk_put_request(rq);
734 return ret;
738 * A generic sense dump / resolve mechanism should be implemented across
739 * all ATAPI + SCSI devices.
741 static void pkt_dump_sense(struct packet_command *cgc)
743 static char *info[9] = { "No sense", "Recovered error", "Not ready",
744 "Medium error", "Hardware error", "Illegal request",
745 "Unit attention", "Data protect", "Blank check" };
746 int i;
747 struct request_sense *sense = cgc->sense;
749 printk(DRIVER_NAME":");
750 for (i = 0; i < CDROM_PACKET_SIZE; i++)
751 printk(" %02x", cgc->cmd[i]);
752 printk(" - ");
754 if (sense == NULL) {
755 printk("no sense\n");
756 return;
759 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
761 if (sense->sense_key > 8) {
762 printk(" (INVALID)\n");
763 return;
766 printk(" (%s)\n", info[sense->sense_key]);
770 * flush the drive cache to media
772 static int pkt_flush_cache(struct pktcdvd_device *pd)
774 struct packet_command cgc;
776 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
777 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
778 cgc.quiet = 1;
781 * the IMMED bit -- we default to not setting it, although that
782 * would allow a much faster close, this is safer
784 #if 0
785 cgc.cmd[1] = 1 << 1;
786 #endif
787 return pkt_generic_packet(pd, &cgc);
791 * speed is given as the normal factor, e.g. 4 for 4x
793 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
794 unsigned write_speed, unsigned read_speed)
796 struct packet_command cgc;
797 struct request_sense sense;
798 int ret;
800 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
801 cgc.sense = &sense;
802 cgc.cmd[0] = GPCMD_SET_SPEED;
803 cgc.cmd[2] = (read_speed >> 8) & 0xff;
804 cgc.cmd[3] = read_speed & 0xff;
805 cgc.cmd[4] = (write_speed >> 8) & 0xff;
806 cgc.cmd[5] = write_speed & 0xff;
808 if ((ret = pkt_generic_packet(pd, &cgc)))
809 pkt_dump_sense(&cgc);
811 return ret;
815 * Queue a bio for processing by the low-level CD device. Must be called
816 * from process context.
818 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
820 spin_lock(&pd->iosched.lock);
821 if (bio_data_dir(bio) == READ)
822 bio_list_add(&pd->iosched.read_queue, bio);
823 else
824 bio_list_add(&pd->iosched.write_queue, bio);
825 spin_unlock(&pd->iosched.lock);
827 atomic_set(&pd->iosched.attention, 1);
828 wake_up(&pd->wqueue);
832 * Process the queued read/write requests. This function handles special
833 * requirements for CDRW drives:
834 * - A cache flush command must be inserted before a read request if the
835 * previous request was a write.
836 * - Switching between reading and writing is slow, so don't do it more often
837 * than necessary.
838 * - Optimize for throughput at the expense of latency. This means that streaming
839 * writes will never be interrupted by a read, but if the drive has to seek
840 * before the next write, switch to reading instead if there are any pending
841 * read requests.
842 * - Set the read speed according to current usage pattern. When only reading
843 * from the device, it's best to use the highest possible read speed, but
844 * when switching often between reading and writing, it's better to have the
845 * same read and write speeds.
847 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
850 if (atomic_read(&pd->iosched.attention) == 0)
851 return;
852 atomic_set(&pd->iosched.attention, 0);
854 for (;;) {
855 struct bio *bio;
856 int reads_queued, writes_queued;
858 spin_lock(&pd->iosched.lock);
859 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
860 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
861 spin_unlock(&pd->iosched.lock);
863 if (!reads_queued && !writes_queued)
864 break;
866 if (pd->iosched.writing) {
867 int need_write_seek = 1;
868 spin_lock(&pd->iosched.lock);
869 bio = bio_list_peek(&pd->iosched.write_queue);
870 spin_unlock(&pd->iosched.lock);
871 if (bio && (bio->bi_sector == pd->iosched.last_write))
872 need_write_seek = 0;
873 if (need_write_seek && reads_queued) {
874 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
875 VPRINTK(DRIVER_NAME": write, waiting\n");
876 break;
878 pkt_flush_cache(pd);
879 pd->iosched.writing = 0;
881 } else {
882 if (!reads_queued && writes_queued) {
883 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
884 VPRINTK(DRIVER_NAME": read, waiting\n");
885 break;
887 pd->iosched.writing = 1;
891 spin_lock(&pd->iosched.lock);
892 if (pd->iosched.writing)
893 bio = bio_list_pop(&pd->iosched.write_queue);
894 else
895 bio = bio_list_pop(&pd->iosched.read_queue);
896 spin_unlock(&pd->iosched.lock);
898 if (!bio)
899 continue;
901 if (bio_data_dir(bio) == READ)
902 pd->iosched.successive_reads += bio->bi_size >> 10;
903 else {
904 pd->iosched.successive_reads = 0;
905 pd->iosched.last_write = bio_end_sector(bio);
907 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
908 if (pd->read_speed == pd->write_speed) {
909 pd->read_speed = MAX_SPEED;
910 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
912 } else {
913 if (pd->read_speed != pd->write_speed) {
914 pd->read_speed = pd->write_speed;
915 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
919 atomic_inc(&pd->cdrw.pending_bios);
920 generic_make_request(bio);
925 * Special care is needed if the underlying block device has a small
926 * max_phys_segments value.
928 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
930 if ((pd->settings.size << 9) / CD_FRAMESIZE
931 <= queue_max_segments(q)) {
933 * The cdrom device can handle one segment/frame
935 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
936 return 0;
937 } else if ((pd->settings.size << 9) / PAGE_SIZE
938 <= queue_max_segments(q)) {
940 * We can handle this case at the expense of some extra memory
941 * copies during write operations
943 set_bit(PACKET_MERGE_SEGS, &pd->flags);
944 return 0;
945 } else {
946 printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
947 return -EIO;
952 * Copy all data for this packet to pkt->pages[], so that
953 * a) The number of required segments for the write bio is minimized, which
954 * is necessary for some scsi controllers.
955 * b) The data can be used as cache to avoid read requests if we receive a
956 * new write request for the same zone.
958 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
960 int f, p, offs;
962 /* Copy all data to pkt->pages[] */
963 p = 0;
964 offs = 0;
965 for (f = 0; f < pkt->frames; f++) {
966 if (bvec[f].bv_page != pkt->pages[p]) {
967 void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset;
968 void *vto = page_address(pkt->pages[p]) + offs;
969 memcpy(vto, vfrom, CD_FRAMESIZE);
970 kunmap_atomic(vfrom);
971 bvec[f].bv_page = pkt->pages[p];
972 bvec[f].bv_offset = offs;
973 } else {
974 BUG_ON(bvec[f].bv_offset != offs);
976 offs += CD_FRAMESIZE;
977 if (offs >= PAGE_SIZE) {
978 offs = 0;
979 p++;
984 static void pkt_end_io_read(struct bio *bio, int err)
986 struct packet_data *pkt = bio->bi_private;
987 struct pktcdvd_device *pd = pkt->pd;
988 BUG_ON(!pd);
990 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
991 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
993 if (err)
994 atomic_inc(&pkt->io_errors);
995 if (atomic_dec_and_test(&pkt->io_wait)) {
996 atomic_inc(&pkt->run_sm);
997 wake_up(&pd->wqueue);
999 pkt_bio_finished(pd);
1002 static void pkt_end_io_packet_write(struct bio *bio, int err)
1004 struct packet_data *pkt = bio->bi_private;
1005 struct pktcdvd_device *pd = pkt->pd;
1006 BUG_ON(!pd);
1008 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1010 pd->stats.pkt_ended++;
1012 pkt_bio_finished(pd);
1013 atomic_dec(&pkt->io_wait);
1014 atomic_inc(&pkt->run_sm);
1015 wake_up(&pd->wqueue);
1019 * Schedule reads for the holes in a packet
1021 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1023 int frames_read = 0;
1024 struct bio *bio;
1025 int f;
1026 char written[PACKET_MAX_SIZE];
1028 BUG_ON(bio_list_empty(&pkt->orig_bios));
1030 atomic_set(&pkt->io_wait, 0);
1031 atomic_set(&pkt->io_errors, 0);
1034 * Figure out which frames we need to read before we can write.
1036 memset(written, 0, sizeof(written));
1037 spin_lock(&pkt->lock);
1038 bio_list_for_each(bio, &pkt->orig_bios) {
1039 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1040 int num_frames = bio->bi_size / CD_FRAMESIZE;
1041 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1042 BUG_ON(first_frame < 0);
1043 BUG_ON(first_frame + num_frames > pkt->frames);
1044 for (f = first_frame; f < first_frame + num_frames; f++)
1045 written[f] = 1;
1047 spin_unlock(&pkt->lock);
1049 if (pkt->cache_valid) {
1050 VPRINTK("pkt_gather_data: zone %llx cached\n",
1051 (unsigned long long)pkt->sector);
1052 goto out_account;
1056 * Schedule reads for missing parts of the packet.
1058 for (f = 0; f < pkt->frames; f++) {
1059 int p, offset;
1061 if (written[f])
1062 continue;
1064 bio = pkt->r_bios[f];
1065 bio_reset(bio);
1066 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1067 bio->bi_bdev = pd->bdev;
1068 bio->bi_end_io = pkt_end_io_read;
1069 bio->bi_private = pkt;
1071 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1072 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1073 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1074 f, pkt->pages[p], offset);
1075 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1076 BUG();
1078 atomic_inc(&pkt->io_wait);
1079 bio->bi_rw = READ;
1080 pkt_queue_bio(pd, bio);
1081 frames_read++;
1084 out_account:
1085 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1086 frames_read, (unsigned long long)pkt->sector);
1087 pd->stats.pkt_started++;
1088 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1092 * Find a packet matching zone, or the least recently used packet if
1093 * there is no match.
1095 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1097 struct packet_data *pkt;
1099 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1100 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1101 list_del_init(&pkt->list);
1102 if (pkt->sector != zone)
1103 pkt->cache_valid = 0;
1104 return pkt;
1107 BUG();
1108 return NULL;
1111 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1113 if (pkt->cache_valid) {
1114 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1115 } else {
1116 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1121 * recover a failed write, query for relocation if possible
1123 * returns 1 if recovery is possible, or 0 if not
1126 static int pkt_start_recovery(struct packet_data *pkt)
1129 * FIXME. We need help from the file system to implement
1130 * recovery handling.
1132 return 0;
1133 #if 0
1134 struct request *rq = pkt->rq;
1135 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1136 struct block_device *pkt_bdev;
1137 struct super_block *sb = NULL;
1138 unsigned long old_block, new_block;
1139 sector_t new_sector;
1141 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1142 if (pkt_bdev) {
1143 sb = get_super(pkt_bdev);
1144 bdput(pkt_bdev);
1147 if (!sb)
1148 return 0;
1150 if (!sb->s_op->relocate_blocks)
1151 goto out;
1153 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1154 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1155 goto out;
1157 new_sector = new_block * (CD_FRAMESIZE >> 9);
1158 pkt->sector = new_sector;
1160 bio_reset(pkt->bio);
1161 pkt->bio->bi_bdev = pd->bdev;
1162 pkt->bio->bi_rw = REQ_WRITE;
1163 pkt->bio->bi_sector = new_sector;
1164 pkt->bio->bi_size = pkt->frames * CD_FRAMESIZE;
1165 pkt->bio->bi_vcnt = pkt->frames;
1167 pkt->bio->bi_end_io = pkt_end_io_packet_write;
1168 pkt->bio->bi_private = pkt;
1170 drop_super(sb);
1171 return 1;
1173 out:
1174 drop_super(sb);
1175 return 0;
1176 #endif
1179 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1181 #if PACKET_DEBUG > 1
1182 static const char *state_name[] = {
1183 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1185 enum packet_data_state old_state = pkt->state;
1186 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1187 state_name[old_state], state_name[state]);
1188 #endif
1189 pkt->state = state;
1193 * Scan the work queue to see if we can start a new packet.
1194 * returns non-zero if any work was done.
1196 static int pkt_handle_queue(struct pktcdvd_device *pd)
1198 struct packet_data *pkt, *p;
1199 struct bio *bio = NULL;
1200 sector_t zone = 0; /* Suppress gcc warning */
1201 struct pkt_rb_node *node, *first_node;
1202 struct rb_node *n;
1203 int wakeup;
1205 VPRINTK("handle_queue\n");
1207 atomic_set(&pd->scan_queue, 0);
1209 if (list_empty(&pd->cdrw.pkt_free_list)) {
1210 VPRINTK("handle_queue: no pkt\n");
1211 return 0;
1215 * Try to find a zone we are not already working on.
1217 spin_lock(&pd->lock);
1218 first_node = pkt_rbtree_find(pd, pd->current_sector);
1219 if (!first_node) {
1220 n = rb_first(&pd->bio_queue);
1221 if (n)
1222 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1224 node = first_node;
1225 while (node) {
1226 bio = node->bio;
1227 zone = ZONE(bio->bi_sector, pd);
1228 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1229 if (p->sector == zone) {
1230 bio = NULL;
1231 goto try_next_bio;
1234 break;
1235 try_next_bio:
1236 node = pkt_rbtree_next(node);
1237 if (!node) {
1238 n = rb_first(&pd->bio_queue);
1239 if (n)
1240 node = rb_entry(n, struct pkt_rb_node, rb_node);
1242 if (node == first_node)
1243 node = NULL;
1245 spin_unlock(&pd->lock);
1246 if (!bio) {
1247 VPRINTK("handle_queue: no bio\n");
1248 return 0;
1251 pkt = pkt_get_packet_data(pd, zone);
1253 pd->current_sector = zone + pd->settings.size;
1254 pkt->sector = zone;
1255 BUG_ON(pkt->frames != pd->settings.size >> 2);
1256 pkt->write_size = 0;
1259 * Scan work queue for bios in the same zone and link them
1260 * to this packet.
1262 spin_lock(&pd->lock);
1263 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1264 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1265 bio = node->bio;
1266 VPRINTK("pkt_handle_queue: found zone=%llx\n",
1267 (unsigned long long)ZONE(bio->bi_sector, pd));
1268 if (ZONE(bio->bi_sector, pd) != zone)
1269 break;
1270 pkt_rbtree_erase(pd, node);
1271 spin_lock(&pkt->lock);
1272 bio_list_add(&pkt->orig_bios, bio);
1273 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1274 spin_unlock(&pkt->lock);
1276 /* check write congestion marks, and if bio_queue_size is
1277 below, wake up any waiters */
1278 wakeup = (pd->write_congestion_on > 0
1279 && pd->bio_queue_size <= pd->write_congestion_off);
1280 spin_unlock(&pd->lock);
1281 if (wakeup) {
1282 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1283 BLK_RW_ASYNC);
1286 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1287 pkt_set_state(pkt, PACKET_WAITING_STATE);
1288 atomic_set(&pkt->run_sm, 1);
1290 spin_lock(&pd->cdrw.active_list_lock);
1291 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1292 spin_unlock(&pd->cdrw.active_list_lock);
1294 return 1;
1298 * Assemble a bio to write one packet and queue the bio for processing
1299 * by the underlying block device.
1301 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1303 int f;
1304 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1306 bio_reset(pkt->w_bio);
1307 pkt->w_bio->bi_sector = pkt->sector;
1308 pkt->w_bio->bi_bdev = pd->bdev;
1309 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1310 pkt->w_bio->bi_private = pkt;
1312 /* XXX: locking? */
1313 for (f = 0; f < pkt->frames; f++) {
1314 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1315 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1316 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1317 BUG();
1319 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1322 * Fill-in bvec with data from orig_bios.
1324 spin_lock(&pkt->lock);
1325 bio_copy_data(pkt->w_bio, pkt->orig_bios.head);
1327 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1328 spin_unlock(&pkt->lock);
1330 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1331 pkt->write_size, (unsigned long long)pkt->sector);
1333 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1334 pkt_make_local_copy(pkt, bvec);
1335 pkt->cache_valid = 1;
1336 } else {
1337 pkt->cache_valid = 0;
1340 /* Start the write request */
1341 atomic_set(&pkt->io_wait, 1);
1342 pkt->w_bio->bi_rw = WRITE;
1343 pkt_queue_bio(pd, pkt->w_bio);
1346 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1348 struct bio *bio;
1350 if (!uptodate)
1351 pkt->cache_valid = 0;
1353 /* Finish all bios corresponding to this packet */
1354 while ((bio = bio_list_pop(&pkt->orig_bios)))
1355 bio_endio(bio, uptodate ? 0 : -EIO);
1358 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1360 int uptodate;
1362 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1364 for (;;) {
1365 switch (pkt->state) {
1366 case PACKET_WAITING_STATE:
1367 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1368 return;
1370 pkt->sleep_time = 0;
1371 pkt_gather_data(pd, pkt);
1372 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1373 break;
1375 case PACKET_READ_WAIT_STATE:
1376 if (atomic_read(&pkt->io_wait) > 0)
1377 return;
1379 if (atomic_read(&pkt->io_errors) > 0) {
1380 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1381 } else {
1382 pkt_start_write(pd, pkt);
1384 break;
1386 case PACKET_WRITE_WAIT_STATE:
1387 if (atomic_read(&pkt->io_wait) > 0)
1388 return;
1390 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1391 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1392 } else {
1393 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1395 break;
1397 case PACKET_RECOVERY_STATE:
1398 if (pkt_start_recovery(pkt)) {
1399 pkt_start_write(pd, pkt);
1400 } else {
1401 VPRINTK("No recovery possible\n");
1402 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1404 break;
1406 case PACKET_FINISHED_STATE:
1407 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1408 pkt_finish_packet(pkt, uptodate);
1409 return;
1411 default:
1412 BUG();
1413 break;
1418 static void pkt_handle_packets(struct pktcdvd_device *pd)
1420 struct packet_data *pkt, *next;
1422 VPRINTK("pkt_handle_packets\n");
1425 * Run state machine for active packets
1427 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1428 if (atomic_read(&pkt->run_sm) > 0) {
1429 atomic_set(&pkt->run_sm, 0);
1430 pkt_run_state_machine(pd, pkt);
1435 * Move no longer active packets to the free list
1437 spin_lock(&pd->cdrw.active_list_lock);
1438 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1439 if (pkt->state == PACKET_FINISHED_STATE) {
1440 list_del(&pkt->list);
1441 pkt_put_packet_data(pd, pkt);
1442 pkt_set_state(pkt, PACKET_IDLE_STATE);
1443 atomic_set(&pd->scan_queue, 1);
1446 spin_unlock(&pd->cdrw.active_list_lock);
1449 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1451 struct packet_data *pkt;
1452 int i;
1454 for (i = 0; i < PACKET_NUM_STATES; i++)
1455 states[i] = 0;
1457 spin_lock(&pd->cdrw.active_list_lock);
1458 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1459 states[pkt->state]++;
1461 spin_unlock(&pd->cdrw.active_list_lock);
1465 * kcdrwd is woken up when writes have been queued for one of our
1466 * registered devices
1468 static int kcdrwd(void *foobar)
1470 struct pktcdvd_device *pd = foobar;
1471 struct packet_data *pkt;
1472 long min_sleep_time, residue;
1474 set_user_nice(current, -20);
1475 set_freezable();
1477 for (;;) {
1478 DECLARE_WAITQUEUE(wait, current);
1481 * Wait until there is something to do
1483 add_wait_queue(&pd->wqueue, &wait);
1484 for (;;) {
1485 set_current_state(TASK_INTERRUPTIBLE);
1487 /* Check if we need to run pkt_handle_queue */
1488 if (atomic_read(&pd->scan_queue) > 0)
1489 goto work_to_do;
1491 /* Check if we need to run the state machine for some packet */
1492 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1493 if (atomic_read(&pkt->run_sm) > 0)
1494 goto work_to_do;
1497 /* Check if we need to process the iosched queues */
1498 if (atomic_read(&pd->iosched.attention) != 0)
1499 goto work_to_do;
1501 /* Otherwise, go to sleep */
1502 if (PACKET_DEBUG > 1) {
1503 int states[PACKET_NUM_STATES];
1504 pkt_count_states(pd, states);
1505 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1506 states[0], states[1], states[2], states[3],
1507 states[4], states[5]);
1510 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1511 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1512 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1513 min_sleep_time = pkt->sleep_time;
1516 VPRINTK("kcdrwd: sleeping\n");
1517 residue = schedule_timeout(min_sleep_time);
1518 VPRINTK("kcdrwd: wake up\n");
1520 /* make swsusp happy with our thread */
1521 try_to_freeze();
1523 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1524 if (!pkt->sleep_time)
1525 continue;
1526 pkt->sleep_time -= min_sleep_time - residue;
1527 if (pkt->sleep_time <= 0) {
1528 pkt->sleep_time = 0;
1529 atomic_inc(&pkt->run_sm);
1533 if (kthread_should_stop())
1534 break;
1536 work_to_do:
1537 set_current_state(TASK_RUNNING);
1538 remove_wait_queue(&pd->wqueue, &wait);
1540 if (kthread_should_stop())
1541 break;
1544 * if pkt_handle_queue returns true, we can queue
1545 * another request.
1547 while (pkt_handle_queue(pd))
1551 * Handle packet state machine
1553 pkt_handle_packets(pd);
1556 * Handle iosched queues
1558 pkt_iosched_process_queue(pd);
1561 return 0;
1564 static void pkt_print_settings(struct pktcdvd_device *pd)
1566 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1567 printk("%u blocks, ", pd->settings.size >> 2);
1568 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1571 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1573 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1575 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1576 cgc->cmd[2] = page_code | (page_control << 6);
1577 cgc->cmd[7] = cgc->buflen >> 8;
1578 cgc->cmd[8] = cgc->buflen & 0xff;
1579 cgc->data_direction = CGC_DATA_READ;
1580 return pkt_generic_packet(pd, cgc);
1583 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1585 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1586 memset(cgc->buffer, 0, 2);
1587 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1588 cgc->cmd[1] = 0x10; /* PF */
1589 cgc->cmd[7] = cgc->buflen >> 8;
1590 cgc->cmd[8] = cgc->buflen & 0xff;
1591 cgc->data_direction = CGC_DATA_WRITE;
1592 return pkt_generic_packet(pd, cgc);
1595 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1597 struct packet_command cgc;
1598 int ret;
1600 /* set up command and get the disc info */
1601 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1602 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1603 cgc.cmd[8] = cgc.buflen = 2;
1604 cgc.quiet = 1;
1606 if ((ret = pkt_generic_packet(pd, &cgc)))
1607 return ret;
1609 /* not all drives have the same disc_info length, so requeue
1610 * packet with the length the drive tells us it can supply
1612 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1613 sizeof(di->disc_information_length);
1615 if (cgc.buflen > sizeof(disc_information))
1616 cgc.buflen = sizeof(disc_information);
1618 cgc.cmd[8] = cgc.buflen;
1619 return pkt_generic_packet(pd, &cgc);
1622 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1624 struct packet_command cgc;
1625 int ret;
1627 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1628 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1629 cgc.cmd[1] = type & 3;
1630 cgc.cmd[4] = (track & 0xff00) >> 8;
1631 cgc.cmd[5] = track & 0xff;
1632 cgc.cmd[8] = 8;
1633 cgc.quiet = 1;
1635 if ((ret = pkt_generic_packet(pd, &cgc)))
1636 return ret;
1638 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1639 sizeof(ti->track_information_length);
1641 if (cgc.buflen > sizeof(track_information))
1642 cgc.buflen = sizeof(track_information);
1644 cgc.cmd[8] = cgc.buflen;
1645 return pkt_generic_packet(pd, &cgc);
1648 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1649 long *last_written)
1651 disc_information di;
1652 track_information ti;
1653 __u32 last_track;
1654 int ret = -1;
1656 if ((ret = pkt_get_disc_info(pd, &di)))
1657 return ret;
1659 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1660 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1661 return ret;
1663 /* if this track is blank, try the previous. */
1664 if (ti.blank) {
1665 last_track--;
1666 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1667 return ret;
1670 /* if last recorded field is valid, return it. */
1671 if (ti.lra_v) {
1672 *last_written = be32_to_cpu(ti.last_rec_address);
1673 } else {
1674 /* make it up instead */
1675 *last_written = be32_to_cpu(ti.track_start) +
1676 be32_to_cpu(ti.track_size);
1677 if (ti.free_blocks)
1678 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1680 return 0;
1684 * write mode select package based on pd->settings
1686 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1688 struct packet_command cgc;
1689 struct request_sense sense;
1690 write_param_page *wp;
1691 char buffer[128];
1692 int ret, size;
1694 /* doesn't apply to DVD+RW or DVD-RAM */
1695 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1696 return 0;
1698 memset(buffer, 0, sizeof(buffer));
1699 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1700 cgc.sense = &sense;
1701 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1702 pkt_dump_sense(&cgc);
1703 return ret;
1706 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1707 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1708 if (size > sizeof(buffer))
1709 size = sizeof(buffer);
1712 * now get it all
1714 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1715 cgc.sense = &sense;
1716 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1717 pkt_dump_sense(&cgc);
1718 return ret;
1722 * write page is offset header + block descriptor length
1724 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1726 wp->fp = pd->settings.fp;
1727 wp->track_mode = pd->settings.track_mode;
1728 wp->write_type = pd->settings.write_type;
1729 wp->data_block_type = pd->settings.block_mode;
1731 wp->multi_session = 0;
1733 #ifdef PACKET_USE_LS
1734 wp->link_size = 7;
1735 wp->ls_v = 1;
1736 #endif
1738 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1739 wp->session_format = 0;
1740 wp->subhdr2 = 0x20;
1741 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1742 wp->session_format = 0x20;
1743 wp->subhdr2 = 8;
1744 #if 0
1745 wp->mcn[0] = 0x80;
1746 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1747 #endif
1748 } else {
1750 * paranoia
1752 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1753 return 1;
1755 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1757 cgc.buflen = cgc.cmd[8] = size;
1758 if ((ret = pkt_mode_select(pd, &cgc))) {
1759 pkt_dump_sense(&cgc);
1760 return ret;
1763 pkt_print_settings(pd);
1764 return 0;
1768 * 1 -- we can write to this track, 0 -- we can't
1770 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1772 switch (pd->mmc3_profile) {
1773 case 0x1a: /* DVD+RW */
1774 case 0x12: /* DVD-RAM */
1775 /* The track is always writable on DVD+RW/DVD-RAM */
1776 return 1;
1777 default:
1778 break;
1781 if (!ti->packet || !ti->fp)
1782 return 0;
1785 * "good" settings as per Mt Fuji.
1787 if (ti->rt == 0 && ti->blank == 0)
1788 return 1;
1790 if (ti->rt == 0 && ti->blank == 1)
1791 return 1;
1793 if (ti->rt == 1 && ti->blank == 0)
1794 return 1;
1796 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1797 return 0;
1801 * 1 -- we can write to this disc, 0 -- we can't
1803 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1805 switch (pd->mmc3_profile) {
1806 case 0x0a: /* CD-RW */
1807 case 0xffff: /* MMC3 not supported */
1808 break;
1809 case 0x1a: /* DVD+RW */
1810 case 0x13: /* DVD-RW */
1811 case 0x12: /* DVD-RAM */
1812 return 1;
1813 default:
1814 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1815 return 0;
1819 * for disc type 0xff we should probably reserve a new track.
1820 * but i'm not sure, should we leave this to user apps? probably.
1822 if (di->disc_type == 0xff) {
1823 printk(DRIVER_NAME": Unknown disc. No track?\n");
1824 return 0;
1827 if (di->disc_type != 0x20 && di->disc_type != 0) {
1828 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1829 return 0;
1832 if (di->erasable == 0) {
1833 printk(DRIVER_NAME": Disc not erasable\n");
1834 return 0;
1837 if (di->border_status == PACKET_SESSION_RESERVED) {
1838 printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1839 return 0;
1842 return 1;
1845 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1847 struct packet_command cgc;
1848 unsigned char buf[12];
1849 disc_information di;
1850 track_information ti;
1851 int ret, track;
1853 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1854 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1855 cgc.cmd[8] = 8;
1856 ret = pkt_generic_packet(pd, &cgc);
1857 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1859 memset(&di, 0, sizeof(disc_information));
1860 memset(&ti, 0, sizeof(track_information));
1862 if ((ret = pkt_get_disc_info(pd, &di))) {
1863 printk("failed get_disc\n");
1864 return ret;
1867 if (!pkt_writable_disc(pd, &di))
1868 return -EROFS;
1870 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1872 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1873 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1874 printk(DRIVER_NAME": failed get_track\n");
1875 return ret;
1878 if (!pkt_writable_track(pd, &ti)) {
1879 printk(DRIVER_NAME": can't write to this track\n");
1880 return -EROFS;
1884 * we keep packet size in 512 byte units, makes it easier to
1885 * deal with request calculations.
1887 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1888 if (pd->settings.size == 0) {
1889 printk(DRIVER_NAME": detected zero packet size!\n");
1890 return -ENXIO;
1892 if (pd->settings.size > PACKET_MAX_SECTORS) {
1893 printk(DRIVER_NAME": packet size is too big\n");
1894 return -EROFS;
1896 pd->settings.fp = ti.fp;
1897 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1899 if (ti.nwa_v) {
1900 pd->nwa = be32_to_cpu(ti.next_writable);
1901 set_bit(PACKET_NWA_VALID, &pd->flags);
1905 * in theory we could use lra on -RW media as well and just zero
1906 * blocks that haven't been written yet, but in practice that
1907 * is just a no-go. we'll use that for -R, naturally.
1909 if (ti.lra_v) {
1910 pd->lra = be32_to_cpu(ti.last_rec_address);
1911 set_bit(PACKET_LRA_VALID, &pd->flags);
1912 } else {
1913 pd->lra = 0xffffffff;
1914 set_bit(PACKET_LRA_VALID, &pd->flags);
1918 * fine for now
1920 pd->settings.link_loss = 7;
1921 pd->settings.write_type = 0; /* packet */
1922 pd->settings.track_mode = ti.track_mode;
1925 * mode1 or mode2 disc
1927 switch (ti.data_mode) {
1928 case PACKET_MODE1:
1929 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1930 break;
1931 case PACKET_MODE2:
1932 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1933 break;
1934 default:
1935 printk(DRIVER_NAME": unknown data mode\n");
1936 return -EROFS;
1938 return 0;
1942 * enable/disable write caching on drive
1944 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1945 int set)
1947 struct packet_command cgc;
1948 struct request_sense sense;
1949 unsigned char buf[64];
1950 int ret;
1952 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1953 cgc.sense = &sense;
1954 cgc.buflen = pd->mode_offset + 12;
1957 * caching mode page might not be there, so quiet this command
1959 cgc.quiet = 1;
1961 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1962 return ret;
1964 buf[pd->mode_offset + 10] |= (!!set << 2);
1966 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1967 ret = pkt_mode_select(pd, &cgc);
1968 if (ret) {
1969 printk(DRIVER_NAME": write caching control failed\n");
1970 pkt_dump_sense(&cgc);
1971 } else if (!ret && set)
1972 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
1973 return ret;
1976 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1978 struct packet_command cgc;
1980 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1981 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1982 cgc.cmd[4] = lockflag ? 1 : 0;
1983 return pkt_generic_packet(pd, &cgc);
1987 * Returns drive maximum write speed
1989 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1990 unsigned *write_speed)
1992 struct packet_command cgc;
1993 struct request_sense sense;
1994 unsigned char buf[256+18];
1995 unsigned char *cap_buf;
1996 int ret, offset;
1998 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1999 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2000 cgc.sense = &sense;
2002 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2003 if (ret) {
2004 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2005 sizeof(struct mode_page_header);
2006 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2007 if (ret) {
2008 pkt_dump_sense(&cgc);
2009 return ret;
2013 offset = 20; /* Obsoleted field, used by older drives */
2014 if (cap_buf[1] >= 28)
2015 offset = 28; /* Current write speed selected */
2016 if (cap_buf[1] >= 30) {
2017 /* If the drive reports at least one "Logical Unit Write
2018 * Speed Performance Descriptor Block", use the information
2019 * in the first block. (contains the highest speed)
2021 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2022 if (num_spdb > 0)
2023 offset = 34;
2026 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2027 return 0;
2030 /* These tables from cdrecord - I don't have orange book */
2031 /* standard speed CD-RW (1-4x) */
2032 static char clv_to_speed[16] = {
2033 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2034 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2036 /* high speed CD-RW (-10x) */
2037 static char hs_clv_to_speed[16] = {
2038 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2039 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2041 /* ultra high speed CD-RW */
2042 static char us_clv_to_speed[16] = {
2043 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2044 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2048 * reads the maximum media speed from ATIP
2050 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2051 unsigned *speed)
2053 struct packet_command cgc;
2054 struct request_sense sense;
2055 unsigned char buf[64];
2056 unsigned int size, st, sp;
2057 int ret;
2059 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2060 cgc.sense = &sense;
2061 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2062 cgc.cmd[1] = 2;
2063 cgc.cmd[2] = 4; /* READ ATIP */
2064 cgc.cmd[8] = 2;
2065 ret = pkt_generic_packet(pd, &cgc);
2066 if (ret) {
2067 pkt_dump_sense(&cgc);
2068 return ret;
2070 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2071 if (size > sizeof(buf))
2072 size = sizeof(buf);
2074 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2075 cgc.sense = &sense;
2076 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2077 cgc.cmd[1] = 2;
2078 cgc.cmd[2] = 4;
2079 cgc.cmd[8] = size;
2080 ret = pkt_generic_packet(pd, &cgc);
2081 if (ret) {
2082 pkt_dump_sense(&cgc);
2083 return ret;
2086 if (!(buf[6] & 0x40)) {
2087 printk(DRIVER_NAME": Disc type is not CD-RW\n");
2088 return 1;
2090 if (!(buf[6] & 0x4)) {
2091 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2092 return 1;
2095 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2097 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2099 /* Info from cdrecord */
2100 switch (st) {
2101 case 0: /* standard speed */
2102 *speed = clv_to_speed[sp];
2103 break;
2104 case 1: /* high speed */
2105 *speed = hs_clv_to_speed[sp];
2106 break;
2107 case 2: /* ultra high speed */
2108 *speed = us_clv_to_speed[sp];
2109 break;
2110 default:
2111 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2112 return 1;
2114 if (*speed) {
2115 printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2116 return 0;
2117 } else {
2118 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2119 return 1;
2123 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2125 struct packet_command cgc;
2126 struct request_sense sense;
2127 int ret;
2129 VPRINTK(DRIVER_NAME": Performing OPC\n");
2131 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2132 cgc.sense = &sense;
2133 cgc.timeout = 60*HZ;
2134 cgc.cmd[0] = GPCMD_SEND_OPC;
2135 cgc.cmd[1] = 1;
2136 if ((ret = pkt_generic_packet(pd, &cgc)))
2137 pkt_dump_sense(&cgc);
2138 return ret;
2141 static int pkt_open_write(struct pktcdvd_device *pd)
2143 int ret;
2144 unsigned int write_speed, media_write_speed, read_speed;
2146 if ((ret = pkt_probe_settings(pd))) {
2147 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2148 return ret;
2151 if ((ret = pkt_set_write_settings(pd))) {
2152 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2153 return -EIO;
2156 pkt_write_caching(pd, USE_WCACHING);
2158 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2159 write_speed = 16 * 177;
2160 switch (pd->mmc3_profile) {
2161 case 0x13: /* DVD-RW */
2162 case 0x1a: /* DVD+RW */
2163 case 0x12: /* DVD-RAM */
2164 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2165 break;
2166 default:
2167 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2168 media_write_speed = 16;
2169 write_speed = min(write_speed, media_write_speed * 177);
2170 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2171 break;
2173 read_speed = write_speed;
2175 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2176 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2177 return -EIO;
2179 pd->write_speed = write_speed;
2180 pd->read_speed = read_speed;
2182 if ((ret = pkt_perform_opc(pd))) {
2183 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2186 return 0;
2190 * called at open time.
2192 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2194 int ret;
2195 long lba;
2196 struct request_queue *q;
2199 * We need to re-open the cdrom device without O_NONBLOCK to be able
2200 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2201 * so bdget() can't fail.
2203 bdget(pd->bdev->bd_dev);
2204 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2205 goto out;
2207 if ((ret = pkt_get_last_written(pd, &lba))) {
2208 printk(DRIVER_NAME": pkt_get_last_written failed\n");
2209 goto out_putdev;
2212 set_capacity(pd->disk, lba << 2);
2213 set_capacity(pd->bdev->bd_disk, lba << 2);
2214 bd_set_size(pd->bdev, (loff_t)lba << 11);
2216 q = bdev_get_queue(pd->bdev);
2217 if (write) {
2218 if ((ret = pkt_open_write(pd)))
2219 goto out_putdev;
2221 * Some CDRW drives can not handle writes larger than one packet,
2222 * even if the size is a multiple of the packet size.
2224 spin_lock_irq(q->queue_lock);
2225 blk_queue_max_hw_sectors(q, pd->settings.size);
2226 spin_unlock_irq(q->queue_lock);
2227 set_bit(PACKET_WRITABLE, &pd->flags);
2228 } else {
2229 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2230 clear_bit(PACKET_WRITABLE, &pd->flags);
2233 if ((ret = pkt_set_segment_merging(pd, q)))
2234 goto out_putdev;
2236 if (write) {
2237 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2238 printk(DRIVER_NAME": not enough memory for buffers\n");
2239 ret = -ENOMEM;
2240 goto out_putdev;
2242 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2245 return 0;
2247 out_putdev:
2248 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2249 out:
2250 return ret;
2254 * called when the device is closed. makes sure that the device flushes
2255 * the internal cache before we close.
2257 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2259 if (flush && pkt_flush_cache(pd))
2260 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2262 pkt_lock_door(pd, 0);
2264 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2265 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2267 pkt_shrink_pktlist(pd);
2270 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2272 if (dev_minor >= MAX_WRITERS)
2273 return NULL;
2274 return pkt_devs[dev_minor];
2277 static int pkt_open(struct block_device *bdev, fmode_t mode)
2279 struct pktcdvd_device *pd = NULL;
2280 int ret;
2282 VPRINTK(DRIVER_NAME": entering open\n");
2284 mutex_lock(&pktcdvd_mutex);
2285 mutex_lock(&ctl_mutex);
2286 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2287 if (!pd) {
2288 ret = -ENODEV;
2289 goto out;
2291 BUG_ON(pd->refcnt < 0);
2293 pd->refcnt++;
2294 if (pd->refcnt > 1) {
2295 if ((mode & FMODE_WRITE) &&
2296 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2297 ret = -EBUSY;
2298 goto out_dec;
2300 } else {
2301 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2302 if (ret)
2303 goto out_dec;
2305 * needed here as well, since ext2 (among others) may change
2306 * the blocksize at mount time
2308 set_blocksize(bdev, CD_FRAMESIZE);
2311 mutex_unlock(&ctl_mutex);
2312 mutex_unlock(&pktcdvd_mutex);
2313 return 0;
2315 out_dec:
2316 pd->refcnt--;
2317 out:
2318 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2319 mutex_unlock(&ctl_mutex);
2320 mutex_unlock(&pktcdvd_mutex);
2321 return ret;
2324 static void pkt_close(struct gendisk *disk, fmode_t mode)
2326 struct pktcdvd_device *pd = disk->private_data;
2328 mutex_lock(&pktcdvd_mutex);
2329 mutex_lock(&ctl_mutex);
2330 pd->refcnt--;
2331 BUG_ON(pd->refcnt < 0);
2332 if (pd->refcnt == 0) {
2333 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2334 pkt_release_dev(pd, flush);
2336 mutex_unlock(&ctl_mutex);
2337 mutex_unlock(&pktcdvd_mutex);
2341 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2343 struct packet_stacked_data *psd = bio->bi_private;
2344 struct pktcdvd_device *pd = psd->pd;
2346 bio_put(bio);
2347 bio_endio(psd->bio, err);
2348 mempool_free(psd, psd_pool);
2349 pkt_bio_finished(pd);
2352 static void pkt_make_request(struct request_queue *q, struct bio *bio)
2354 struct pktcdvd_device *pd;
2355 char b[BDEVNAME_SIZE];
2356 sector_t zone;
2357 struct packet_data *pkt;
2358 int was_empty, blocked_bio;
2359 struct pkt_rb_node *node;
2361 pd = q->queuedata;
2362 if (!pd) {
2363 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2364 goto end_io;
2368 * Clone READ bios so we can have our own bi_end_io callback.
2370 if (bio_data_dir(bio) == READ) {
2371 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2372 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2374 psd->pd = pd;
2375 psd->bio = bio;
2376 cloned_bio->bi_bdev = pd->bdev;
2377 cloned_bio->bi_private = psd;
2378 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2379 pd->stats.secs_r += bio_sectors(bio);
2380 pkt_queue_bio(pd, cloned_bio);
2381 return;
2384 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2385 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2386 pd->name, (unsigned long long)bio->bi_sector);
2387 goto end_io;
2390 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2391 printk(DRIVER_NAME": wrong bio size\n");
2392 goto end_io;
2395 blk_queue_bounce(q, &bio);
2397 zone = ZONE(bio->bi_sector, pd);
2398 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2399 (unsigned long long)bio->bi_sector,
2400 (unsigned long long)bio_end_sector(bio));
2402 /* Check if we have to split the bio */
2404 struct bio_pair *bp;
2405 sector_t last_zone;
2406 int first_sectors;
2408 last_zone = ZONE(bio_end_sector(bio) - 1, pd);
2409 if (last_zone != zone) {
2410 BUG_ON(last_zone != zone + pd->settings.size);
2411 first_sectors = last_zone - bio->bi_sector;
2412 bp = bio_split(bio, first_sectors);
2413 BUG_ON(!bp);
2414 pkt_make_request(q, &bp->bio1);
2415 pkt_make_request(q, &bp->bio2);
2416 bio_pair_release(bp);
2417 return;
2422 * If we find a matching packet in state WAITING or READ_WAIT, we can
2423 * just append this bio to that packet.
2425 spin_lock(&pd->cdrw.active_list_lock);
2426 blocked_bio = 0;
2427 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2428 if (pkt->sector == zone) {
2429 spin_lock(&pkt->lock);
2430 if ((pkt->state == PACKET_WAITING_STATE) ||
2431 (pkt->state == PACKET_READ_WAIT_STATE)) {
2432 bio_list_add(&pkt->orig_bios, bio);
2433 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2434 if ((pkt->write_size >= pkt->frames) &&
2435 (pkt->state == PACKET_WAITING_STATE)) {
2436 atomic_inc(&pkt->run_sm);
2437 wake_up(&pd->wqueue);
2439 spin_unlock(&pkt->lock);
2440 spin_unlock(&pd->cdrw.active_list_lock);
2441 return;
2442 } else {
2443 blocked_bio = 1;
2445 spin_unlock(&pkt->lock);
2448 spin_unlock(&pd->cdrw.active_list_lock);
2451 * Test if there is enough room left in the bio work queue
2452 * (queue size >= congestion on mark).
2453 * If not, wait till the work queue size is below the congestion off mark.
2455 spin_lock(&pd->lock);
2456 if (pd->write_congestion_on > 0
2457 && pd->bio_queue_size >= pd->write_congestion_on) {
2458 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2459 do {
2460 spin_unlock(&pd->lock);
2461 congestion_wait(BLK_RW_ASYNC, HZ);
2462 spin_lock(&pd->lock);
2463 } while(pd->bio_queue_size > pd->write_congestion_off);
2465 spin_unlock(&pd->lock);
2468 * No matching packet found. Store the bio in the work queue.
2470 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2471 node->bio = bio;
2472 spin_lock(&pd->lock);
2473 BUG_ON(pd->bio_queue_size < 0);
2474 was_empty = (pd->bio_queue_size == 0);
2475 pkt_rbtree_insert(pd, node);
2476 spin_unlock(&pd->lock);
2479 * Wake up the worker thread.
2481 atomic_set(&pd->scan_queue, 1);
2482 if (was_empty) {
2483 /* This wake_up is required for correct operation */
2484 wake_up(&pd->wqueue);
2485 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2487 * This wake up is not required for correct operation,
2488 * but improves performance in some cases.
2490 wake_up(&pd->wqueue);
2492 return;
2493 end_io:
2494 bio_io_error(bio);
2499 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2500 struct bio_vec *bvec)
2502 struct pktcdvd_device *pd = q->queuedata;
2503 sector_t zone = ZONE(bmd->bi_sector, pd);
2504 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2505 int remaining = (pd->settings.size << 9) - used;
2506 int remaining2;
2509 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2510 * boundary, pkt_make_request() will split the bio.
2512 remaining2 = PAGE_SIZE - bmd->bi_size;
2513 remaining = max(remaining, remaining2);
2515 BUG_ON(remaining < 0);
2516 return remaining;
2519 static void pkt_init_queue(struct pktcdvd_device *pd)
2521 struct request_queue *q = pd->disk->queue;
2523 blk_queue_make_request(q, pkt_make_request);
2524 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2525 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2526 blk_queue_merge_bvec(q, pkt_merge_bvec);
2527 q->queuedata = pd;
2530 static int pkt_seq_show(struct seq_file *m, void *p)
2532 struct pktcdvd_device *pd = m->private;
2533 char *msg;
2534 char bdev_buf[BDEVNAME_SIZE];
2535 int states[PACKET_NUM_STATES];
2537 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2538 bdevname(pd->bdev, bdev_buf));
2540 seq_printf(m, "\nSettings:\n");
2541 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2543 if (pd->settings.write_type == 0)
2544 msg = "Packet";
2545 else
2546 msg = "Unknown";
2547 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2549 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2550 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2552 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2554 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2555 msg = "Mode 1";
2556 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2557 msg = "Mode 2";
2558 else
2559 msg = "Unknown";
2560 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2562 seq_printf(m, "\nStatistics:\n");
2563 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2564 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2565 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2566 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2567 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2569 seq_printf(m, "\nMisc:\n");
2570 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2571 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2572 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2573 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2574 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2575 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2577 seq_printf(m, "\nQueue state:\n");
2578 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2579 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2580 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2582 pkt_count_states(pd, states);
2583 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2584 states[0], states[1], states[2], states[3], states[4], states[5]);
2586 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2587 pd->write_congestion_off,
2588 pd->write_congestion_on);
2589 return 0;
2592 static int pkt_seq_open(struct inode *inode, struct file *file)
2594 return single_open(file, pkt_seq_show, PDE_DATA(inode));
2597 static const struct file_operations pkt_proc_fops = {
2598 .open = pkt_seq_open,
2599 .read = seq_read,
2600 .llseek = seq_lseek,
2601 .release = single_release
2604 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2606 int i;
2607 int ret = 0;
2608 char b[BDEVNAME_SIZE];
2609 struct block_device *bdev;
2611 if (pd->pkt_dev == dev) {
2612 printk(DRIVER_NAME": Recursive setup not allowed\n");
2613 return -EBUSY;
2615 for (i = 0; i < MAX_WRITERS; i++) {
2616 struct pktcdvd_device *pd2 = pkt_devs[i];
2617 if (!pd2)
2618 continue;
2619 if (pd2->bdev->bd_dev == dev) {
2620 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2621 return -EBUSY;
2623 if (pd2->pkt_dev == dev) {
2624 printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2625 return -EBUSY;
2629 bdev = bdget(dev);
2630 if (!bdev)
2631 return -ENOMEM;
2632 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2633 if (ret)
2634 return ret;
2636 /* This is safe, since we have a reference from open(). */
2637 __module_get(THIS_MODULE);
2639 pd->bdev = bdev;
2640 set_blocksize(bdev, CD_FRAMESIZE);
2642 pkt_init_queue(pd);
2644 atomic_set(&pd->cdrw.pending_bios, 0);
2645 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2646 if (IS_ERR(pd->cdrw.thread)) {
2647 printk(DRIVER_NAME": can't start kernel thread\n");
2648 ret = -ENOMEM;
2649 goto out_mem;
2652 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2653 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2654 return 0;
2656 out_mem:
2657 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2658 /* This is safe: open() is still holding a reference. */
2659 module_put(THIS_MODULE);
2660 return ret;
2663 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2665 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2666 int ret;
2668 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2669 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2671 mutex_lock(&pktcdvd_mutex);
2672 switch (cmd) {
2673 case CDROMEJECT:
2675 * The door gets locked when the device is opened, so we
2676 * have to unlock it or else the eject command fails.
2678 if (pd->refcnt == 1)
2679 pkt_lock_door(pd, 0);
2680 /* fallthru */
2682 * forward selected CDROM ioctls to CD-ROM, for UDF
2684 case CDROMMULTISESSION:
2685 case CDROMREADTOCENTRY:
2686 case CDROM_LAST_WRITTEN:
2687 case CDROM_SEND_PACKET:
2688 case SCSI_IOCTL_SEND_COMMAND:
2689 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2690 break;
2692 default:
2693 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2694 ret = -ENOTTY;
2696 mutex_unlock(&pktcdvd_mutex);
2698 return ret;
2701 static unsigned int pkt_check_events(struct gendisk *disk,
2702 unsigned int clearing)
2704 struct pktcdvd_device *pd = disk->private_data;
2705 struct gendisk *attached_disk;
2707 if (!pd)
2708 return 0;
2709 if (!pd->bdev)
2710 return 0;
2711 attached_disk = pd->bdev->bd_disk;
2712 if (!attached_disk || !attached_disk->fops->check_events)
2713 return 0;
2714 return attached_disk->fops->check_events(attached_disk, clearing);
2717 static const struct block_device_operations pktcdvd_ops = {
2718 .owner = THIS_MODULE,
2719 .open = pkt_open,
2720 .release = pkt_close,
2721 .ioctl = pkt_ioctl,
2722 .check_events = pkt_check_events,
2725 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2727 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2731 * Set up mapping from pktcdvd device to CD-ROM device.
2733 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2735 int idx;
2736 int ret = -ENOMEM;
2737 struct pktcdvd_device *pd;
2738 struct gendisk *disk;
2740 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2742 for (idx = 0; idx < MAX_WRITERS; idx++)
2743 if (!pkt_devs[idx])
2744 break;
2745 if (idx == MAX_WRITERS) {
2746 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2747 ret = -EBUSY;
2748 goto out_mutex;
2751 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2752 if (!pd)
2753 goto out_mutex;
2755 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2756 sizeof(struct pkt_rb_node));
2757 if (!pd->rb_pool)
2758 goto out_mem;
2760 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2761 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2762 spin_lock_init(&pd->cdrw.active_list_lock);
2764 spin_lock_init(&pd->lock);
2765 spin_lock_init(&pd->iosched.lock);
2766 bio_list_init(&pd->iosched.read_queue);
2767 bio_list_init(&pd->iosched.write_queue);
2768 sprintf(pd->name, DRIVER_NAME"%d", idx);
2769 init_waitqueue_head(&pd->wqueue);
2770 pd->bio_queue = RB_ROOT;
2772 pd->write_congestion_on = write_congestion_on;
2773 pd->write_congestion_off = write_congestion_off;
2775 disk = alloc_disk(1);
2776 if (!disk)
2777 goto out_mem;
2778 pd->disk = disk;
2779 disk->major = pktdev_major;
2780 disk->first_minor = idx;
2781 disk->fops = &pktcdvd_ops;
2782 disk->flags = GENHD_FL_REMOVABLE;
2783 strcpy(disk->disk_name, pd->name);
2784 disk->devnode = pktcdvd_devnode;
2785 disk->private_data = pd;
2786 disk->queue = blk_alloc_queue(GFP_KERNEL);
2787 if (!disk->queue)
2788 goto out_mem2;
2790 pd->pkt_dev = MKDEV(pktdev_major, idx);
2791 ret = pkt_new_dev(pd, dev);
2792 if (ret)
2793 goto out_new_dev;
2795 /* inherit events of the host device */
2796 disk->events = pd->bdev->bd_disk->events;
2797 disk->async_events = pd->bdev->bd_disk->async_events;
2799 add_disk(disk);
2801 pkt_sysfs_dev_new(pd);
2802 pkt_debugfs_dev_new(pd);
2804 pkt_devs[idx] = pd;
2805 if (pkt_dev)
2806 *pkt_dev = pd->pkt_dev;
2808 mutex_unlock(&ctl_mutex);
2809 return 0;
2811 out_new_dev:
2812 blk_cleanup_queue(disk->queue);
2813 out_mem2:
2814 put_disk(disk);
2815 out_mem:
2816 if (pd->rb_pool)
2817 mempool_destroy(pd->rb_pool);
2818 kfree(pd);
2819 out_mutex:
2820 mutex_unlock(&ctl_mutex);
2821 printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2822 return ret;
2826 * Tear down mapping from pktcdvd device to CD-ROM device.
2828 static int pkt_remove_dev(dev_t pkt_dev)
2830 struct pktcdvd_device *pd;
2831 int idx;
2832 int ret = 0;
2834 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2836 for (idx = 0; idx < MAX_WRITERS; idx++) {
2837 pd = pkt_devs[idx];
2838 if (pd && (pd->pkt_dev == pkt_dev))
2839 break;
2841 if (idx == MAX_WRITERS) {
2842 DPRINTK(DRIVER_NAME": dev not setup\n");
2843 ret = -ENXIO;
2844 goto out;
2847 if (pd->refcnt > 0) {
2848 ret = -EBUSY;
2849 goto out;
2851 if (!IS_ERR(pd->cdrw.thread))
2852 kthread_stop(pd->cdrw.thread);
2854 pkt_devs[idx] = NULL;
2856 pkt_debugfs_dev_remove(pd);
2857 pkt_sysfs_dev_remove(pd);
2859 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2861 remove_proc_entry(pd->name, pkt_proc);
2862 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2864 del_gendisk(pd->disk);
2865 blk_cleanup_queue(pd->disk->queue);
2866 put_disk(pd->disk);
2868 mempool_destroy(pd->rb_pool);
2869 kfree(pd);
2871 /* This is safe: open() is still holding a reference. */
2872 module_put(THIS_MODULE);
2874 out:
2875 mutex_unlock(&ctl_mutex);
2876 return ret;
2879 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2881 struct pktcdvd_device *pd;
2883 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2885 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2886 if (pd) {
2887 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2888 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2889 } else {
2890 ctrl_cmd->dev = 0;
2891 ctrl_cmd->pkt_dev = 0;
2893 ctrl_cmd->num_devices = MAX_WRITERS;
2895 mutex_unlock(&ctl_mutex);
2898 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2900 void __user *argp = (void __user *)arg;
2901 struct pkt_ctrl_command ctrl_cmd;
2902 int ret = 0;
2903 dev_t pkt_dev = 0;
2905 if (cmd != PACKET_CTRL_CMD)
2906 return -ENOTTY;
2908 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2909 return -EFAULT;
2911 switch (ctrl_cmd.command) {
2912 case PKT_CTRL_CMD_SETUP:
2913 if (!capable(CAP_SYS_ADMIN))
2914 return -EPERM;
2915 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2916 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2917 break;
2918 case PKT_CTRL_CMD_TEARDOWN:
2919 if (!capable(CAP_SYS_ADMIN))
2920 return -EPERM;
2921 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2922 break;
2923 case PKT_CTRL_CMD_STATUS:
2924 pkt_get_status(&ctrl_cmd);
2925 break;
2926 default:
2927 return -ENOTTY;
2930 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2931 return -EFAULT;
2932 return ret;
2935 #ifdef CONFIG_COMPAT
2936 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2938 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2940 #endif
2942 static const struct file_operations pkt_ctl_fops = {
2943 .open = nonseekable_open,
2944 .unlocked_ioctl = pkt_ctl_ioctl,
2945 #ifdef CONFIG_COMPAT
2946 .compat_ioctl = pkt_ctl_compat_ioctl,
2947 #endif
2948 .owner = THIS_MODULE,
2949 .llseek = no_llseek,
2952 static struct miscdevice pkt_misc = {
2953 .minor = MISC_DYNAMIC_MINOR,
2954 .name = DRIVER_NAME,
2955 .nodename = "pktcdvd/control",
2956 .fops = &pkt_ctl_fops
2959 static int __init pkt_init(void)
2961 int ret;
2963 mutex_init(&ctl_mutex);
2965 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2966 sizeof(struct packet_stacked_data));
2967 if (!psd_pool)
2968 return -ENOMEM;
2970 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2971 if (ret < 0) {
2972 printk(DRIVER_NAME": Unable to register block device\n");
2973 goto out2;
2975 if (!pktdev_major)
2976 pktdev_major = ret;
2978 ret = pkt_sysfs_init();
2979 if (ret)
2980 goto out;
2982 pkt_debugfs_init();
2984 ret = misc_register(&pkt_misc);
2985 if (ret) {
2986 printk(DRIVER_NAME": Unable to register misc device\n");
2987 goto out_misc;
2990 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2992 return 0;
2994 out_misc:
2995 pkt_debugfs_cleanup();
2996 pkt_sysfs_cleanup();
2997 out:
2998 unregister_blkdev(pktdev_major, DRIVER_NAME);
2999 out2:
3000 mempool_destroy(psd_pool);
3001 return ret;
3004 static void __exit pkt_exit(void)
3006 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3007 misc_deregister(&pkt_misc);
3009 pkt_debugfs_cleanup();
3010 pkt_sysfs_cleanup();
3012 unregister_blkdev(pktdev_major, DRIVER_NAME);
3013 mempool_destroy(psd_pool);
3016 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3017 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3018 MODULE_LICENSE("GPL");
3020 module_init(pkt_init);
3021 module_exit(pkt_exit);