3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
22 * Pavel Emelianov <xemul@openvz.org>
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
76 #include <linux/slab.h>
77 #include <linux/spinlock.h>
78 #include <linux/init.h>
79 #include <linux/proc_fs.h>
80 #include <linux/time.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/audit.h>
84 #include <linux/capability.h>
85 #include <linux/seq_file.h>
86 #include <linux/rwsem.h>
87 #include <linux/nsproxy.h>
88 #include <linux/ipc_namespace.h>
90 #include <asm/uaccess.h>
93 /* One semaphore structure for each semaphore in the system. */
95 int semval
; /* current value */
96 int sempid
; /* pid of last operation */
97 spinlock_t lock
; /* spinlock for fine-grained semtimedop */
98 struct list_head pending_alter
; /* pending single-sop operations */
99 /* that alter the semaphore */
100 struct list_head pending_const
; /* pending single-sop operations */
101 /* that do not alter the semaphore*/
102 time_t sem_otime
; /* candidate for sem_otime */
103 } ____cacheline_aligned_in_smp
;
105 /* One queue for each sleeping process in the system. */
107 struct list_head list
; /* queue of pending operations */
108 struct task_struct
*sleeper
; /* this process */
109 struct sem_undo
*undo
; /* undo structure */
110 int pid
; /* process id of requesting process */
111 int status
; /* completion status of operation */
112 struct sembuf
*sops
; /* array of pending operations */
113 int nsops
; /* number of operations */
114 int alter
; /* does *sops alter the array? */
117 /* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
121 struct list_head list_proc
; /* per-process list: *
122 * all undos from one process
124 struct rcu_head rcu
; /* rcu struct for sem_undo */
125 struct sem_undo_list
*ulp
; /* back ptr to sem_undo_list */
126 struct list_head list_id
; /* per semaphore array list:
127 * all undos for one array */
128 int semid
; /* semaphore set identifier */
129 short *semadj
; /* array of adjustments */
130 /* one per semaphore */
133 /* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
136 struct sem_undo_list
{
139 struct list_head list_proc
;
143 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
145 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
147 static int newary(struct ipc_namespace
*, struct ipc_params
*);
148 static void freeary(struct ipc_namespace
*, struct kern_ipc_perm
*);
149 #ifdef CONFIG_PROC_FS
150 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
153 #define SEMMSL_FAST 256 /* 512 bytes on stack */
154 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
159 * sem_array.complex_count,
160 * sem_array.pending{_alter,_cont},
161 * sem_array.sem_undo: global sem_lock() for read/write
162 * sem_undo.proc_next: only "current" is allowed to read/write that field.
164 * sem_array.sem_base[i].pending_{const,alter}:
165 * global or semaphore sem_lock() for read/write
168 #define sc_semmsl sem_ctls[0]
169 #define sc_semmns sem_ctls[1]
170 #define sc_semopm sem_ctls[2]
171 #define sc_semmni sem_ctls[3]
173 void sem_init_ns(struct ipc_namespace
*ns
)
175 ns
->sc_semmsl
= SEMMSL
;
176 ns
->sc_semmns
= SEMMNS
;
177 ns
->sc_semopm
= SEMOPM
;
178 ns
->sc_semmni
= SEMMNI
;
180 ipc_init_ids(&ns
->ids
[IPC_SEM_IDS
]);
184 void sem_exit_ns(struct ipc_namespace
*ns
)
186 free_ipcs(ns
, &sem_ids(ns
), freeary
);
187 idr_destroy(&ns
->ids
[IPC_SEM_IDS
].ipcs_idr
);
191 void __init
sem_init (void)
193 sem_init_ns(&init_ipc_ns
);
194 ipc_init_proc_interface("sysvipc/sem",
195 " key semid perms nsems uid gid cuid cgid otime ctime\n",
196 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
200 * unmerge_queues - unmerge queues, if possible.
201 * @sma: semaphore array
203 * The function unmerges the wait queues if complex_count is 0.
204 * It must be called prior to dropping the global semaphore array lock.
206 static void unmerge_queues(struct sem_array
*sma
)
208 struct sem_queue
*q
, *tq
;
210 /* complex operations still around? */
211 if (sma
->complex_count
)
214 * We will switch back to simple mode.
215 * Move all pending operation back into the per-semaphore
218 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
220 curr
= &sma
->sem_base
[q
->sops
[0].sem_num
];
222 list_add_tail(&q
->list
, &curr
->pending_alter
);
224 INIT_LIST_HEAD(&sma
->pending_alter
);
228 * merge_queues - Merge single semop queues into global queue
229 * @sma: semaphore array
231 * This function merges all per-semaphore queues into the global queue.
232 * It is necessary to achieve FIFO ordering for the pending single-sop
233 * operations when a multi-semop operation must sleep.
234 * Only the alter operations must be moved, the const operations can stay.
236 static void merge_queues(struct sem_array
*sma
)
239 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
240 struct sem
*sem
= sma
->sem_base
+ i
;
242 list_splice_init(&sem
->pending_alter
, &sma
->pending_alter
);
246 static void sem_rcu_free(struct rcu_head
*head
)
248 struct ipc_rcu
*p
= container_of(head
, struct ipc_rcu
, rcu
);
249 struct sem_array
*sma
= ipc_rcu_to_struct(p
);
251 security_sem_free(sma
);
256 * spin_unlock_wait() and !spin_is_locked() are not memory barriers, they
257 * are only control barriers.
258 * The code must pair with spin_unlock(&sem->lock) or
259 * spin_unlock(&sem_perm.lock), thus just the control barrier is insufficient.
261 * smp_rmb() is sufficient, as writes cannot pass the control barrier.
263 #define ipc_smp_acquire__after_spin_is_unlocked() smp_rmb()
266 * Wait until all currently ongoing simple ops have completed.
267 * Caller must own sem_perm.lock.
268 * New simple ops cannot start, because simple ops first check
269 * that sem_perm.lock is free.
270 * that a) sem_perm.lock is free and b) complex_count is 0.
272 static void sem_wait_array(struct sem_array
*sma
)
277 if (sma
->complex_count
) {
278 /* The thread that increased sma->complex_count waited on
279 * all sem->lock locks. Thus we don't need to wait again.
284 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
285 sem
= sma
->sem_base
+ i
;
286 spin_unlock_wait(&sem
->lock
);
288 ipc_smp_acquire__after_spin_is_unlocked();
292 * If the request contains only one semaphore operation, and there are
293 * no complex transactions pending, lock only the semaphore involved.
294 * Otherwise, lock the entire semaphore array, since we either have
295 * multiple semaphores in our own semops, or we need to look at
296 * semaphores from other pending complex operations.
298 static inline int sem_lock(struct sem_array
*sma
, struct sembuf
*sops
,
304 /* Complex operation - acquire a full lock */
305 ipc_lock_object(&sma
->sem_perm
);
307 /* And wait until all simple ops that are processed
308 * right now have dropped their locks.
315 * Only one semaphore affected - try to optimize locking.
317 * - optimized locking is possible if no complex operation
318 * is either enqueued or processed right now.
319 * - The test for enqueued complex ops is simple:
320 * sma->complex_count != 0
321 * - Testing for complex ops that are processed right now is
322 * a bit more difficult. Complex ops acquire the full lock
323 * and first wait that the running simple ops have completed.
325 * Thus: If we own a simple lock and the global lock is free
326 * and complex_count is now 0, then it will stay 0 and
327 * thus just locking sem->lock is sufficient.
329 sem
= sma
->sem_base
+ sops
->sem_num
;
331 if (sma
->complex_count
== 0) {
333 * It appears that no complex operation is around.
334 * Acquire the per-semaphore lock.
336 spin_lock(&sem
->lock
);
338 /* Then check that the global lock is free */
339 if (!spin_is_locked(&sma
->sem_perm
.lock
)) {
341 * We need a memory barrier with acquire semantics,
342 * otherwise we can race with another thread that does:
344 * spin_unlock(sem_perm.lock);
346 ipc_smp_acquire__after_spin_is_unlocked();
348 /* Now repeat the test of complex_count:
349 * It can't change anymore until we drop sem->lock.
350 * Thus: if is now 0, then it will stay 0.
352 if (sma
->complex_count
== 0) {
353 /* fast path successful! */
354 return sops
->sem_num
;
357 spin_unlock(&sem
->lock
);
360 /* slow path: acquire the full lock */
361 ipc_lock_object(&sma
->sem_perm
);
363 if (sma
->complex_count
== 0) {
365 * There is no complex operation, thus we can switch
366 * back to the fast path.
368 spin_lock(&sem
->lock
);
369 ipc_unlock_object(&sma
->sem_perm
);
370 return sops
->sem_num
;
372 /* Not a false alarm, thus complete the sequence for a
380 static inline void sem_unlock(struct sem_array
*sma
, int locknum
)
384 ipc_unlock_object(&sma
->sem_perm
);
386 struct sem
*sem
= sma
->sem_base
+ locknum
;
387 spin_unlock(&sem
->lock
);
392 * sem_lock_(check_) routines are called in the paths where the rwsem
395 * The caller holds the RCU read lock.
397 static inline struct sem_array
*sem_obtain_lock(struct ipc_namespace
*ns
,
398 int id
, struct sembuf
*sops
, int nsops
, int *locknum
)
400 struct kern_ipc_perm
*ipcp
;
401 struct sem_array
*sma
;
403 ipcp
= ipc_obtain_object(&sem_ids(ns
), id
);
405 return ERR_CAST(ipcp
);
407 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
408 *locknum
= sem_lock(sma
, sops
, nsops
);
410 /* ipc_rmid() may have already freed the ID while sem_lock
411 * was spinning: verify that the structure is still valid
414 return container_of(ipcp
, struct sem_array
, sem_perm
);
416 sem_unlock(sma
, *locknum
);
417 return ERR_PTR(-EINVAL
);
420 static inline struct sem_array
*sem_obtain_object(struct ipc_namespace
*ns
, int id
)
422 struct kern_ipc_perm
*ipcp
= ipc_obtain_object(&sem_ids(ns
), id
);
425 return ERR_CAST(ipcp
);
427 return container_of(ipcp
, struct sem_array
, sem_perm
);
430 static inline struct sem_array
*sem_obtain_object_check(struct ipc_namespace
*ns
,
433 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_check(&sem_ids(ns
), id
);
436 return ERR_CAST(ipcp
);
438 return container_of(ipcp
, struct sem_array
, sem_perm
);
441 static inline void sem_lock_and_putref(struct sem_array
*sma
)
443 sem_lock(sma
, NULL
, -1);
444 ipc_rcu_putref(sma
, ipc_rcu_free
);
447 static inline void sem_rmid(struct ipc_namespace
*ns
, struct sem_array
*s
)
449 ipc_rmid(&sem_ids(ns
), &s
->sem_perm
);
453 * Lockless wakeup algorithm:
454 * Without the check/retry algorithm a lockless wakeup is possible:
455 * - queue.status is initialized to -EINTR before blocking.
456 * - wakeup is performed by
457 * * unlinking the queue entry from the pending list
458 * * setting queue.status to IN_WAKEUP
459 * This is the notification for the blocked thread that a
460 * result value is imminent.
461 * * call wake_up_process
462 * * set queue.status to the final value.
463 * - the previously blocked thread checks queue.status:
464 * * if it's IN_WAKEUP, then it must wait until the value changes
465 * * if it's not -EINTR, then the operation was completed by
466 * update_queue. semtimedop can return queue.status without
467 * performing any operation on the sem array.
468 * * otherwise it must acquire the spinlock and check what's up.
470 * The two-stage algorithm is necessary to protect against the following
472 * - if queue.status is set after wake_up_process, then the woken up idle
473 * thread could race forward and try (and fail) to acquire sma->lock
474 * before update_queue had a chance to set queue.status
475 * - if queue.status is written before wake_up_process and if the
476 * blocked process is woken up by a signal between writing
477 * queue.status and the wake_up_process, then the woken up
478 * process could return from semtimedop and die by calling
479 * sys_exit before wake_up_process is called. Then wake_up_process
480 * will oops, because the task structure is already invalid.
481 * (yes, this happened on s390 with sysv msg).
487 * newary - Create a new semaphore set
489 * @params: ptr to the structure that contains key, semflg and nsems
491 * Called with sem_ids.rwsem held (as a writer)
494 static int newary(struct ipc_namespace
*ns
, struct ipc_params
*params
)
498 struct sem_array
*sma
;
500 key_t key
= params
->key
;
501 int nsems
= params
->u
.nsems
;
502 int semflg
= params
->flg
;
507 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
510 size
= sizeof (*sma
) + nsems
* sizeof (struct sem
);
511 sma
= ipc_rcu_alloc(size
);
515 memset (sma
, 0, size
);
517 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
518 sma
->sem_perm
.key
= key
;
520 sma
->sem_perm
.security
= NULL
;
521 retval
= security_sem_alloc(sma
);
523 ipc_rcu_putref(sma
, ipc_rcu_free
);
527 id
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
529 ipc_rcu_putref(sma
, sem_rcu_free
);
532 ns
->used_sems
+= nsems
;
534 sma
->sem_base
= (struct sem
*) &sma
[1];
536 for (i
= 0; i
< nsems
; i
++) {
537 INIT_LIST_HEAD(&sma
->sem_base
[i
].pending_alter
);
538 INIT_LIST_HEAD(&sma
->sem_base
[i
].pending_const
);
539 spin_lock_init(&sma
->sem_base
[i
].lock
);
542 sma
->complex_count
= 0;
543 INIT_LIST_HEAD(&sma
->pending_alter
);
544 INIT_LIST_HEAD(&sma
->pending_const
);
545 INIT_LIST_HEAD(&sma
->list_id
);
546 sma
->sem_nsems
= nsems
;
547 sma
->sem_ctime
= get_seconds();
551 return sma
->sem_perm
.id
;
556 * Called with sem_ids.rwsem and ipcp locked.
558 static inline int sem_security(struct kern_ipc_perm
*ipcp
, int semflg
)
560 struct sem_array
*sma
;
562 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
563 return security_sem_associate(sma
, semflg
);
567 * Called with sem_ids.rwsem and ipcp locked.
569 static inline int sem_more_checks(struct kern_ipc_perm
*ipcp
,
570 struct ipc_params
*params
)
572 struct sem_array
*sma
;
574 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
575 if (params
->u
.nsems
> sma
->sem_nsems
)
581 SYSCALL_DEFINE3(semget
, key_t
, key
, int, nsems
, int, semflg
)
583 struct ipc_namespace
*ns
;
584 struct ipc_ops sem_ops
;
585 struct ipc_params sem_params
;
587 ns
= current
->nsproxy
->ipc_ns
;
589 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
592 sem_ops
.getnew
= newary
;
593 sem_ops
.associate
= sem_security
;
594 sem_ops
.more_checks
= sem_more_checks
;
596 sem_params
.key
= key
;
597 sem_params
.flg
= semflg
;
598 sem_params
.u
.nsems
= nsems
;
600 return ipcget(ns
, &sem_ids(ns
), &sem_ops
, &sem_params
);
603 /** perform_atomic_semop - Perform (if possible) a semaphore operation
604 * @sma: semaphore array
605 * @sops: array with operations that should be checked
606 * @nsems: number of sops
608 * @pid: pid that did the change
610 * Returns 0 if the operation was possible.
611 * Returns 1 if the operation is impossible, the caller must sleep.
612 * Negative values are error codes.
615 static int perform_atomic_semop(struct sem_array
*sma
, struct sembuf
*sops
,
616 int nsops
, struct sem_undo
*un
, int pid
)
622 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
623 curr
= sma
->sem_base
+ sop
->sem_num
;
624 sem_op
= sop
->sem_op
;
625 result
= curr
->semval
;
627 if (!sem_op
&& result
)
635 if (sop
->sem_flg
& SEM_UNDO
) {
636 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
638 * Exceeding the undo range is an error.
640 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
643 curr
->semval
= result
;
647 while (sop
>= sops
) {
648 sma
->sem_base
[sop
->sem_num
].sempid
= pid
;
649 if (sop
->sem_flg
& SEM_UNDO
)
650 un
->semadj
[sop
->sem_num
] -= sop
->sem_op
;
661 if (sop
->sem_flg
& IPC_NOWAIT
)
668 while (sop
>= sops
) {
669 sma
->sem_base
[sop
->sem_num
].semval
-= sop
->sem_op
;
676 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
677 * @q: queue entry that must be signaled
678 * @error: Error value for the signal
680 * Prepare the wake-up of the queue entry q.
682 static void wake_up_sem_queue_prepare(struct list_head
*pt
,
683 struct sem_queue
*q
, int error
)
685 if (list_empty(pt
)) {
687 * Hold preempt off so that we don't get preempted and have the
688 * wakee busy-wait until we're scheduled back on.
692 q
->status
= IN_WAKEUP
;
695 list_add_tail(&q
->list
, pt
);
699 * wake_up_sem_queue_do(pt) - do the actual wake-up
700 * @pt: list of tasks to be woken up
702 * Do the actual wake-up.
703 * The function is called without any locks held, thus the semaphore array
704 * could be destroyed already and the tasks can disappear as soon as the
705 * status is set to the actual return code.
707 static void wake_up_sem_queue_do(struct list_head
*pt
)
709 struct sem_queue
*q
, *t
;
712 did_something
= !list_empty(pt
);
713 list_for_each_entry_safe(q
, t
, pt
, list
) {
714 wake_up_process(q
->sleeper
);
715 /* q can disappear immediately after writing q->status. */
723 static void unlink_queue(struct sem_array
*sma
, struct sem_queue
*q
)
727 sma
->complex_count
--;
730 /** check_restart(sma, q)
731 * @sma: semaphore array
732 * @q: the operation that just completed
734 * update_queue is O(N^2) when it restarts scanning the whole queue of
735 * waiting operations. Therefore this function checks if the restart is
736 * really necessary. It is called after a previously waiting operation
737 * modified the array.
738 * Note that wait-for-zero operations are handled without restart.
740 static int check_restart(struct sem_array
*sma
, struct sem_queue
*q
)
742 /* pending complex alter operations are too difficult to analyse */
743 if (!list_empty(&sma
->pending_alter
))
746 /* we were a sleeping complex operation. Too difficult */
750 /* It is impossible that someone waits for the new value:
751 * - complex operations always restart.
752 * - wait-for-zero are handled seperately.
753 * - q is a previously sleeping simple operation that
754 * altered the array. It must be a decrement, because
755 * simple increments never sleep.
756 * - If there are older (higher priority) decrements
757 * in the queue, then they have observed the original
758 * semval value and couldn't proceed. The operation
759 * decremented to value - thus they won't proceed either.
765 * wake_const_ops(sma, semnum, pt) - Wake up non-alter tasks
766 * @sma: semaphore array.
767 * @semnum: semaphore that was modified.
768 * @pt: list head for the tasks that must be woken up.
770 * wake_const_ops must be called after a semaphore in a semaphore array
771 * was set to 0. If complex const operations are pending, wake_const_ops must
772 * be called with semnum = -1, as well as with the number of each modified
774 * The tasks that must be woken up are added to @pt. The return code
775 * is stored in q->pid.
776 * The function returns 1 if at least one operation was completed successfully.
778 static int wake_const_ops(struct sem_array
*sma
, int semnum
,
779 struct list_head
*pt
)
782 struct list_head
*walk
;
783 struct list_head
*pending_list
;
784 int semop_completed
= 0;
787 pending_list
= &sma
->pending_const
;
789 pending_list
= &sma
->sem_base
[semnum
].pending_const
;
791 walk
= pending_list
->next
;
792 while (walk
!= pending_list
) {
795 q
= container_of(walk
, struct sem_queue
, list
);
798 error
= perform_atomic_semop(sma
, q
->sops
, q
->nsops
,
802 /* operation completed, remove from queue & wakeup */
804 unlink_queue(sma
, q
);
806 wake_up_sem_queue_prepare(pt
, q
, error
);
811 return semop_completed
;
815 * do_smart_wakeup_zero(sma, sops, nsops, pt) - wakeup all wait for zero tasks
816 * @sma: semaphore array
817 * @sops: operations that were performed
818 * @nsops: number of operations
819 * @pt: list head of the tasks that must be woken up.
821 * do_smart_wakeup_zero() checks all required queue for wait-for-zero
822 * operations, based on the actual changes that were performed on the
824 * The function returns 1 if at least one operation was completed successfully.
826 static int do_smart_wakeup_zero(struct sem_array
*sma
, struct sembuf
*sops
,
827 int nsops
, struct list_head
*pt
)
830 int semop_completed
= 0;
833 /* first: the per-semaphore queues, if known */
835 for (i
= 0; i
< nsops
; i
++) {
836 int num
= sops
[i
].sem_num
;
838 if (sma
->sem_base
[num
].semval
== 0) {
840 semop_completed
|= wake_const_ops(sma
, num
, pt
);
845 * No sops means modified semaphores not known.
846 * Assume all were changed.
848 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
849 if (sma
->sem_base
[i
].semval
== 0) {
851 semop_completed
|= wake_const_ops(sma
, i
, pt
);
856 * If one of the modified semaphores got 0,
857 * then check the global queue, too.
860 semop_completed
|= wake_const_ops(sma
, -1, pt
);
862 return semop_completed
;
867 * update_queue(sma, semnum): Look for tasks that can be completed.
868 * @sma: semaphore array.
869 * @semnum: semaphore that was modified.
870 * @pt: list head for the tasks that must be woken up.
872 * update_queue must be called after a semaphore in a semaphore array
873 * was modified. If multiple semaphores were modified, update_queue must
874 * be called with semnum = -1, as well as with the number of each modified
876 * The tasks that must be woken up are added to @pt. The return code
877 * is stored in q->pid.
878 * The function internally checks if const operations can now succeed.
880 * The function return 1 if at least one semop was completed successfully.
882 static int update_queue(struct sem_array
*sma
, int semnum
, struct list_head
*pt
)
885 struct list_head
*walk
;
886 struct list_head
*pending_list
;
887 int semop_completed
= 0;
890 pending_list
= &sma
->pending_alter
;
892 pending_list
= &sma
->sem_base
[semnum
].pending_alter
;
895 walk
= pending_list
->next
;
896 while (walk
!= pending_list
) {
899 q
= container_of(walk
, struct sem_queue
, list
);
902 /* If we are scanning the single sop, per-semaphore list of
903 * one semaphore and that semaphore is 0, then it is not
904 * necessary to scan further: simple increments
905 * that affect only one entry succeed immediately and cannot
906 * be in the per semaphore pending queue, and decrements
907 * cannot be successful if the value is already 0.
909 if (semnum
!= -1 && sma
->sem_base
[semnum
].semval
== 0)
912 error
= perform_atomic_semop(sma
, q
->sops
, q
->nsops
,
915 /* Does q->sleeper still need to sleep? */
919 unlink_queue(sma
, q
);
925 do_smart_wakeup_zero(sma
, q
->sops
, q
->nsops
, pt
);
926 restart
= check_restart(sma
, q
);
929 wake_up_sem_queue_prepare(pt
, q
, error
);
933 return semop_completed
;
937 * set_semotime(sma, sops) - set sem_otime
938 * @sma: semaphore array
939 * @sops: operations that modified the array, may be NULL
941 * sem_otime is replicated to avoid cache line trashing.
942 * This function sets one instance to the current time.
944 static void set_semotime(struct sem_array
*sma
, struct sembuf
*sops
)
947 sma
->sem_base
[0].sem_otime
= get_seconds();
949 sma
->sem_base
[sops
[0].sem_num
].sem_otime
=
955 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
956 * @sma: semaphore array
957 * @sops: operations that were performed
958 * @nsops: number of operations
959 * @otime: force setting otime
960 * @pt: list head of the tasks that must be woken up.
962 * do_smart_update() does the required calls to update_queue and wakeup_zero,
963 * based on the actual changes that were performed on the semaphore array.
964 * Note that the function does not do the actual wake-up: the caller is
965 * responsible for calling wake_up_sem_queue_do(@pt).
966 * It is safe to perform this call after dropping all locks.
968 static void do_smart_update(struct sem_array
*sma
, struct sembuf
*sops
, int nsops
,
969 int otime
, struct list_head
*pt
)
973 otime
|= do_smart_wakeup_zero(sma
, sops
, nsops
, pt
);
975 if (!list_empty(&sma
->pending_alter
)) {
976 /* semaphore array uses the global queue - just process it. */
977 otime
|= update_queue(sma
, -1, pt
);
981 * No sops, thus the modified semaphores are not
984 for (i
= 0; i
< sma
->sem_nsems
; i
++)
985 otime
|= update_queue(sma
, i
, pt
);
988 * Check the semaphores that were increased:
989 * - No complex ops, thus all sleeping ops are
991 * - if we decreased the value, then any sleeping
992 * semaphore ops wont be able to run: If the
993 * previous value was too small, then the new
994 * value will be too small, too.
996 for (i
= 0; i
< nsops
; i
++) {
997 if (sops
[i
].sem_op
> 0) {
998 otime
|= update_queue(sma
,
999 sops
[i
].sem_num
, pt
);
1005 set_semotime(sma
, sops
);
1008 /* The following counts are associated to each semaphore:
1009 * semncnt number of tasks waiting on semval being nonzero
1010 * semzcnt number of tasks waiting on semval being zero
1011 * This model assumes that a task waits on exactly one semaphore.
1012 * Since semaphore operations are to be performed atomically, tasks actually
1013 * wait on a whole sequence of semaphores simultaneously.
1014 * The counts we return here are a rough approximation, but still
1015 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
1017 static int count_semncnt (struct sem_array
* sma
, ushort semnum
)
1020 struct sem_queue
* q
;
1023 list_for_each_entry(q
, &sma
->sem_base
[semnum
].pending_alter
, list
) {
1024 struct sembuf
* sops
= q
->sops
;
1025 BUG_ON(sops
->sem_num
!= semnum
);
1026 if ((sops
->sem_op
< 0) && !(sops
->sem_flg
& IPC_NOWAIT
))
1030 list_for_each_entry(q
, &sma
->pending_alter
, list
) {
1031 struct sembuf
* sops
= q
->sops
;
1032 int nsops
= q
->nsops
;
1034 for (i
= 0; i
< nsops
; i
++)
1035 if (sops
[i
].sem_num
== semnum
1036 && (sops
[i
].sem_op
< 0)
1037 && !(sops
[i
].sem_flg
& IPC_NOWAIT
))
1043 static int count_semzcnt (struct sem_array
* sma
, ushort semnum
)
1046 struct sem_queue
* q
;
1049 list_for_each_entry(q
, &sma
->sem_base
[semnum
].pending_const
, list
) {
1050 struct sembuf
* sops
= q
->sops
;
1051 BUG_ON(sops
->sem_num
!= semnum
);
1052 if ((sops
->sem_op
== 0) && !(sops
->sem_flg
& IPC_NOWAIT
))
1056 list_for_each_entry(q
, &sma
->pending_const
, list
) {
1057 struct sembuf
* sops
= q
->sops
;
1058 int nsops
= q
->nsops
;
1060 for (i
= 0; i
< nsops
; i
++)
1061 if (sops
[i
].sem_num
== semnum
1062 && (sops
[i
].sem_op
== 0)
1063 && !(sops
[i
].sem_flg
& IPC_NOWAIT
))
1069 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1070 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1071 * remains locked on exit.
1073 static void freeary(struct ipc_namespace
*ns
, struct kern_ipc_perm
*ipcp
)
1075 struct sem_undo
*un
, *tu
;
1076 struct sem_queue
*q
, *tq
;
1077 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1078 struct list_head tasks
;
1081 /* Free the existing undo structures for this semaphore set. */
1082 ipc_assert_locked_object(&sma
->sem_perm
);
1083 list_for_each_entry_safe(un
, tu
, &sma
->list_id
, list_id
) {
1084 list_del(&un
->list_id
);
1085 spin_lock(&un
->ulp
->lock
);
1087 list_del_rcu(&un
->list_proc
);
1088 spin_unlock(&un
->ulp
->lock
);
1092 /* Wake up all pending processes and let them fail with EIDRM. */
1093 INIT_LIST_HEAD(&tasks
);
1094 list_for_each_entry_safe(q
, tq
, &sma
->pending_const
, list
) {
1095 unlink_queue(sma
, q
);
1096 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1099 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
1100 unlink_queue(sma
, q
);
1101 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1103 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
1104 struct sem
*sem
= sma
->sem_base
+ i
;
1105 list_for_each_entry_safe(q
, tq
, &sem
->pending_const
, list
) {
1106 unlink_queue(sma
, q
);
1107 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1109 list_for_each_entry_safe(q
, tq
, &sem
->pending_alter
, list
) {
1110 unlink_queue(sma
, q
);
1111 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1115 /* Remove the semaphore set from the IDR */
1117 sem_unlock(sma
, -1);
1120 wake_up_sem_queue_do(&tasks
);
1121 ns
->used_sems
-= sma
->sem_nsems
;
1122 ipc_rcu_putref(sma
, sem_rcu_free
);
1125 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
1129 return copy_to_user(buf
, in
, sizeof(*in
));
1132 struct semid_ds out
;
1134 memset(&out
, 0, sizeof(out
));
1136 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
1138 out
.sem_otime
= in
->sem_otime
;
1139 out
.sem_ctime
= in
->sem_ctime
;
1140 out
.sem_nsems
= in
->sem_nsems
;
1142 return copy_to_user(buf
, &out
, sizeof(out
));
1149 static time_t get_semotime(struct sem_array
*sma
)
1154 res
= sma
->sem_base
[0].sem_otime
;
1155 for (i
= 1; i
< sma
->sem_nsems
; i
++) {
1156 time_t to
= sma
->sem_base
[i
].sem_otime
;
1164 static int semctl_nolock(struct ipc_namespace
*ns
, int semid
,
1165 int cmd
, int version
, void __user
*p
)
1168 struct sem_array
*sma
;
1174 struct seminfo seminfo
;
1177 err
= security_sem_semctl(NULL
, cmd
);
1181 memset(&seminfo
,0,sizeof(seminfo
));
1182 seminfo
.semmni
= ns
->sc_semmni
;
1183 seminfo
.semmns
= ns
->sc_semmns
;
1184 seminfo
.semmsl
= ns
->sc_semmsl
;
1185 seminfo
.semopm
= ns
->sc_semopm
;
1186 seminfo
.semvmx
= SEMVMX
;
1187 seminfo
.semmnu
= SEMMNU
;
1188 seminfo
.semmap
= SEMMAP
;
1189 seminfo
.semume
= SEMUME
;
1190 down_read(&sem_ids(ns
).rwsem
);
1191 if (cmd
== SEM_INFO
) {
1192 seminfo
.semusz
= sem_ids(ns
).in_use
;
1193 seminfo
.semaem
= ns
->used_sems
;
1195 seminfo
.semusz
= SEMUSZ
;
1196 seminfo
.semaem
= SEMAEM
;
1198 max_id
= ipc_get_maxid(&sem_ids(ns
));
1199 up_read(&sem_ids(ns
).rwsem
);
1200 if (copy_to_user(p
, &seminfo
, sizeof(struct seminfo
)))
1202 return (max_id
< 0) ? 0: max_id
;
1207 struct semid64_ds tbuf
;
1210 memset(&tbuf
, 0, sizeof(tbuf
));
1213 if (cmd
== SEM_STAT
) {
1214 sma
= sem_obtain_object(ns
, semid
);
1219 id
= sma
->sem_perm
.id
;
1221 sma
= sem_obtain_object_check(ns
, semid
);
1229 if (ipcperms(ns
, &sma
->sem_perm
, S_IRUGO
))
1232 err
= security_sem_semctl(sma
, cmd
);
1236 kernel_to_ipc64_perm(&sma
->sem_perm
, &tbuf
.sem_perm
);
1237 tbuf
.sem_otime
= get_semotime(sma
);
1238 tbuf
.sem_ctime
= sma
->sem_ctime
;
1239 tbuf
.sem_nsems
= sma
->sem_nsems
;
1241 if (copy_semid_to_user(p
, &tbuf
, version
))
1253 static int semctl_setval(struct ipc_namespace
*ns
, int semid
, int semnum
,
1256 struct sem_undo
*un
;
1257 struct sem_array
*sma
;
1260 struct list_head tasks
;
1262 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1263 /* big-endian 64bit */
1266 /* 32bit or little-endian 64bit */
1270 if (val
> SEMVMX
|| val
< 0)
1273 INIT_LIST_HEAD(&tasks
);
1276 sma
= sem_obtain_object_check(ns
, semid
);
1279 return PTR_ERR(sma
);
1282 if (semnum
< 0 || semnum
>= sma
->sem_nsems
) {
1288 if (ipcperms(ns
, &sma
->sem_perm
, S_IWUGO
)) {
1293 err
= security_sem_semctl(sma
, SETVAL
);
1299 sem_lock(sma
, NULL
, -1);
1301 if (sma
->sem_perm
.deleted
) {
1302 sem_unlock(sma
, -1);
1307 curr
= &sma
->sem_base
[semnum
];
1309 ipc_assert_locked_object(&sma
->sem_perm
);
1310 list_for_each_entry(un
, &sma
->list_id
, list_id
)
1311 un
->semadj
[semnum
] = 0;
1314 curr
->sempid
= task_tgid_vnr(current
);
1315 sma
->sem_ctime
= get_seconds();
1316 /* maybe some queued-up processes were waiting for this */
1317 do_smart_update(sma
, NULL
, 0, 0, &tasks
);
1318 sem_unlock(sma
, -1);
1320 wake_up_sem_queue_do(&tasks
);
1324 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
1325 int cmd
, void __user
*p
)
1327 struct sem_array
*sma
;
1330 ushort fast_sem_io
[SEMMSL_FAST
];
1331 ushort
* sem_io
= fast_sem_io
;
1332 struct list_head tasks
;
1334 INIT_LIST_HEAD(&tasks
);
1337 sma
= sem_obtain_object_check(ns
, semid
);
1340 return PTR_ERR(sma
);
1343 nsems
= sma
->sem_nsems
;
1346 if (ipcperms(ns
, &sma
->sem_perm
, cmd
== SETALL
? S_IWUGO
: S_IRUGO
))
1347 goto out_rcu_wakeup
;
1349 err
= security_sem_semctl(sma
, cmd
);
1351 goto out_rcu_wakeup
;
1357 ushort __user
*array
= p
;
1360 sem_lock(sma
, NULL
, -1);
1361 if (sma
->sem_perm
.deleted
) {
1365 if(nsems
> SEMMSL_FAST
) {
1366 if (!ipc_rcu_getref(sma
)) {
1370 sem_unlock(sma
, -1);
1372 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
1373 if(sem_io
== NULL
) {
1374 ipc_rcu_putref(sma
, ipc_rcu_free
);
1379 sem_lock_and_putref(sma
);
1380 if (sma
->sem_perm
.deleted
) {
1385 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1386 sem_io
[i
] = sma
->sem_base
[i
].semval
;
1387 sem_unlock(sma
, -1);
1390 if(copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
1397 struct sem_undo
*un
;
1399 if (!ipc_rcu_getref(sma
)) {
1401 goto out_rcu_wakeup
;
1405 if(nsems
> SEMMSL_FAST
) {
1406 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
1407 if(sem_io
== NULL
) {
1408 ipc_rcu_putref(sma
, ipc_rcu_free
);
1413 if (copy_from_user (sem_io
, p
, nsems
*sizeof(ushort
))) {
1414 ipc_rcu_putref(sma
, ipc_rcu_free
);
1419 for (i
= 0; i
< nsems
; i
++) {
1420 if (sem_io
[i
] > SEMVMX
) {
1421 ipc_rcu_putref(sma
, ipc_rcu_free
);
1427 sem_lock_and_putref(sma
);
1428 if (sma
->sem_perm
.deleted
) {
1433 for (i
= 0; i
< nsems
; i
++)
1434 sma
->sem_base
[i
].semval
= sem_io
[i
];
1436 ipc_assert_locked_object(&sma
->sem_perm
);
1437 list_for_each_entry(un
, &sma
->list_id
, list_id
) {
1438 for (i
= 0; i
< nsems
; i
++)
1441 sma
->sem_ctime
= get_seconds();
1442 /* maybe some queued-up processes were waiting for this */
1443 do_smart_update(sma
, NULL
, 0, 0, &tasks
);
1447 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1450 if (semnum
< 0 || semnum
>= nsems
)
1451 goto out_rcu_wakeup
;
1453 sem_lock(sma
, NULL
, -1);
1454 if (sma
->sem_perm
.deleted
) {
1458 curr
= &sma
->sem_base
[semnum
];
1468 err
= count_semncnt(sma
,semnum
);
1471 err
= count_semzcnt(sma
,semnum
);
1476 sem_unlock(sma
, -1);
1479 wake_up_sem_queue_do(&tasks
);
1481 if(sem_io
!= fast_sem_io
)
1482 ipc_free(sem_io
, sizeof(ushort
)*nsems
);
1486 static inline unsigned long
1487 copy_semid_from_user(struct semid64_ds
*out
, void __user
*buf
, int version
)
1491 if (copy_from_user(out
, buf
, sizeof(*out
)))
1496 struct semid_ds tbuf_old
;
1498 if(copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
1501 out
->sem_perm
.uid
= tbuf_old
.sem_perm
.uid
;
1502 out
->sem_perm
.gid
= tbuf_old
.sem_perm
.gid
;
1503 out
->sem_perm
.mode
= tbuf_old
.sem_perm
.mode
;
1513 * This function handles some semctl commands which require the rwsem
1514 * to be held in write mode.
1515 * NOTE: no locks must be held, the rwsem is taken inside this function.
1517 static int semctl_down(struct ipc_namespace
*ns
, int semid
,
1518 int cmd
, int version
, void __user
*p
)
1520 struct sem_array
*sma
;
1522 struct semid64_ds semid64
;
1523 struct kern_ipc_perm
*ipcp
;
1525 if(cmd
== IPC_SET
) {
1526 if (copy_semid_from_user(&semid64
, p
, version
))
1530 down_write(&sem_ids(ns
).rwsem
);
1533 ipcp
= ipcctl_pre_down_nolock(ns
, &sem_ids(ns
), semid
, cmd
,
1534 &semid64
.sem_perm
, 0);
1536 err
= PTR_ERR(ipcp
);
1540 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1542 err
= security_sem_semctl(sma
, cmd
);
1548 sem_lock(sma
, NULL
, -1);
1549 /* freeary unlocks the ipc object and rcu */
1553 sem_lock(sma
, NULL
, -1);
1554 err
= ipc_update_perm(&semid64
.sem_perm
, ipcp
);
1557 sma
->sem_ctime
= get_seconds();
1565 sem_unlock(sma
, -1);
1569 up_write(&sem_ids(ns
).rwsem
);
1573 SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, unsigned long, arg
)
1576 struct ipc_namespace
*ns
;
1577 void __user
*p
= (void __user
*)arg
;
1582 version
= ipc_parse_version(&cmd
);
1583 ns
= current
->nsproxy
->ipc_ns
;
1590 return semctl_nolock(ns
, semid
, cmd
, version
, p
);
1597 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1599 return semctl_setval(ns
, semid
, semnum
, arg
);
1602 return semctl_down(ns
, semid
, cmd
, version
, p
);
1608 /* If the task doesn't already have a undo_list, then allocate one
1609 * here. We guarantee there is only one thread using this undo list,
1610 * and current is THE ONE
1612 * If this allocation and assignment succeeds, but later
1613 * portions of this code fail, there is no need to free the sem_undo_list.
1614 * Just let it stay associated with the task, and it'll be freed later
1617 * This can block, so callers must hold no locks.
1619 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1621 struct sem_undo_list
*undo_list
;
1623 undo_list
= current
->sysvsem
.undo_list
;
1625 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL
);
1626 if (undo_list
== NULL
)
1628 spin_lock_init(&undo_list
->lock
);
1629 atomic_set(&undo_list
->refcnt
, 1);
1630 INIT_LIST_HEAD(&undo_list
->list_proc
);
1632 current
->sysvsem
.undo_list
= undo_list
;
1634 *undo_listp
= undo_list
;
1638 static struct sem_undo
*__lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1640 struct sem_undo
*un
;
1642 list_for_each_entry_rcu(un
, &ulp
->list_proc
, list_proc
) {
1643 if (un
->semid
== semid
)
1649 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1651 struct sem_undo
*un
;
1653 assert_spin_locked(&ulp
->lock
);
1655 un
= __lookup_undo(ulp
, semid
);
1657 list_del_rcu(&un
->list_proc
);
1658 list_add_rcu(&un
->list_proc
, &ulp
->list_proc
);
1664 * find_alloc_undo - Lookup (and if not present create) undo array
1666 * @semid: semaphore array id
1668 * The function looks up (and if not present creates) the undo structure.
1669 * The size of the undo structure depends on the size of the semaphore
1670 * array, thus the alloc path is not that straightforward.
1671 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1672 * performs a rcu_read_lock().
1674 static struct sem_undo
*find_alloc_undo(struct ipc_namespace
*ns
, int semid
)
1676 struct sem_array
*sma
;
1677 struct sem_undo_list
*ulp
;
1678 struct sem_undo
*un
, *new;
1681 error
= get_undo_list(&ulp
);
1683 return ERR_PTR(error
);
1686 spin_lock(&ulp
->lock
);
1687 un
= lookup_undo(ulp
, semid
);
1688 spin_unlock(&ulp
->lock
);
1689 if (likely(un
!=NULL
))
1692 /* no undo structure around - allocate one. */
1693 /* step 1: figure out the size of the semaphore array */
1694 sma
= sem_obtain_object_check(ns
, semid
);
1697 return ERR_CAST(sma
);
1700 nsems
= sma
->sem_nsems
;
1701 if (!ipc_rcu_getref(sma
)) {
1703 un
= ERR_PTR(-EIDRM
);
1708 /* step 2: allocate new undo structure */
1709 new = kzalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1711 ipc_rcu_putref(sma
, ipc_rcu_free
);
1712 return ERR_PTR(-ENOMEM
);
1715 /* step 3: Acquire the lock on semaphore array */
1717 sem_lock_and_putref(sma
);
1718 if (sma
->sem_perm
.deleted
) {
1719 sem_unlock(sma
, -1);
1722 un
= ERR_PTR(-EIDRM
);
1725 spin_lock(&ulp
->lock
);
1728 * step 4: check for races: did someone else allocate the undo struct?
1730 un
= lookup_undo(ulp
, semid
);
1735 /* step 5: initialize & link new undo structure */
1736 new->semadj
= (short *) &new[1];
1739 assert_spin_locked(&ulp
->lock
);
1740 list_add_rcu(&new->list_proc
, &ulp
->list_proc
);
1741 ipc_assert_locked_object(&sma
->sem_perm
);
1742 list_add(&new->list_id
, &sma
->list_id
);
1746 spin_unlock(&ulp
->lock
);
1747 sem_unlock(sma
, -1);
1754 * get_queue_result - Retrieve the result code from sem_queue
1755 * @q: Pointer to queue structure
1757 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1758 * q->status, then we must loop until the value is replaced with the final
1759 * value: This may happen if a task is woken up by an unrelated event (e.g.
1760 * signal) and in parallel the task is woken up by another task because it got
1761 * the requested semaphores.
1763 * The function can be called with or without holding the semaphore spinlock.
1765 static int get_queue_result(struct sem_queue
*q
)
1770 while (unlikely(error
== IN_WAKEUP
)) {
1778 SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsops
,
1779 unsigned, nsops
, const struct timespec __user
*, timeout
)
1781 int error
= -EINVAL
;
1782 struct sem_array
*sma
;
1783 struct sembuf fast_sops
[SEMOPM_FAST
];
1784 struct sembuf
* sops
= fast_sops
, *sop
;
1785 struct sem_undo
*un
;
1786 int undos
= 0, alter
= 0, max
, locknum
;
1787 struct sem_queue queue
;
1788 unsigned long jiffies_left
= 0;
1789 struct ipc_namespace
*ns
;
1790 struct list_head tasks
;
1792 ns
= current
->nsproxy
->ipc_ns
;
1794 if (nsops
< 1 || semid
< 0)
1796 if (nsops
> ns
->sc_semopm
)
1798 if(nsops
> SEMOPM_FAST
) {
1799 sops
= kmalloc(sizeof(*sops
)*nsops
,GFP_KERNEL
);
1803 if (copy_from_user (sops
, tsops
, nsops
* sizeof(*tsops
))) {
1808 struct timespec _timeout
;
1809 if (copy_from_user(&_timeout
, timeout
, sizeof(*timeout
))) {
1813 if (_timeout
.tv_sec
< 0 || _timeout
.tv_nsec
< 0 ||
1814 _timeout
.tv_nsec
>= 1000000000L) {
1818 jiffies_left
= timespec_to_jiffies(&_timeout
);
1821 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
1822 if (sop
->sem_num
>= max
)
1824 if (sop
->sem_flg
& SEM_UNDO
)
1826 if (sop
->sem_op
!= 0)
1830 INIT_LIST_HEAD(&tasks
);
1833 /* On success, find_alloc_undo takes the rcu_read_lock */
1834 un
= find_alloc_undo(ns
, semid
);
1836 error
= PTR_ERR(un
);
1844 sma
= sem_obtain_object_check(ns
, semid
);
1847 error
= PTR_ERR(sma
);
1852 if (max
>= sma
->sem_nsems
)
1853 goto out_rcu_wakeup
;
1856 if (ipcperms(ns
, &sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
))
1857 goto out_rcu_wakeup
;
1859 error
= security_sem_semop(sma
, sops
, nsops
, alter
);
1861 goto out_rcu_wakeup
;
1864 locknum
= sem_lock(sma
, sops
, nsops
);
1865 if (sma
->sem_perm
.deleted
)
1866 goto out_unlock_free
;
1868 * semid identifiers are not unique - find_alloc_undo may have
1869 * allocated an undo structure, it was invalidated by an RMID
1870 * and now a new array with received the same id. Check and fail.
1871 * This case can be detected checking un->semid. The existence of
1872 * "un" itself is guaranteed by rcu.
1874 if (un
&& un
->semid
== -1)
1875 goto out_unlock_free
;
1877 error
= perform_atomic_semop(sma
, sops
, nsops
, un
,
1878 task_tgid_vnr(current
));
1880 /* If the operation was successful, then do
1881 * the required updates.
1884 do_smart_update(sma
, sops
, nsops
, 1, &tasks
);
1886 set_semotime(sma
, sops
);
1889 goto out_unlock_free
;
1891 /* We need to sleep on this operation, so we put the current
1892 * task into the pending queue and go to sleep.
1896 queue
.nsops
= nsops
;
1898 queue
.pid
= task_tgid_vnr(current
);
1899 queue
.alter
= alter
;
1903 curr
= &sma
->sem_base
[sops
->sem_num
];
1906 if (sma
->complex_count
) {
1907 list_add_tail(&queue
.list
,
1908 &sma
->pending_alter
);
1911 list_add_tail(&queue
.list
,
1912 &curr
->pending_alter
);
1915 list_add_tail(&queue
.list
, &curr
->pending_const
);
1918 if (!sma
->complex_count
)
1922 list_add_tail(&queue
.list
, &sma
->pending_alter
);
1924 list_add_tail(&queue
.list
, &sma
->pending_const
);
1926 sma
->complex_count
++;
1929 queue
.status
= -EINTR
;
1930 queue
.sleeper
= current
;
1933 current
->state
= TASK_INTERRUPTIBLE
;
1934 sem_unlock(sma
, locknum
);
1938 jiffies_left
= schedule_timeout(jiffies_left
);
1942 error
= get_queue_result(&queue
);
1944 if (error
!= -EINTR
) {
1945 /* fast path: update_queue already obtained all requested
1947 * Perform a smp_mb(): User space could assume that semop()
1948 * is a memory barrier: Without the mb(), the cpu could
1949 * speculatively read in user space stale data that was
1950 * overwritten by the previous owner of the semaphore.
1958 sma
= sem_obtain_lock(ns
, semid
, sops
, nsops
, &locknum
);
1961 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1963 error
= get_queue_result(&queue
);
1966 * Array removed? If yes, leave without sem_unlock().
1975 * If queue.status != -EINTR we are woken up by another process.
1976 * Leave without unlink_queue(), but with sem_unlock().
1979 if (error
!= -EINTR
) {
1980 goto out_unlock_free
;
1984 * If an interrupt occurred we have to clean up the queue
1986 if (timeout
&& jiffies_left
== 0)
1990 * If the wakeup was spurious, just retry
1992 if (error
== -EINTR
&& !signal_pending(current
))
1995 unlink_queue(sma
, &queue
);
1998 sem_unlock(sma
, locknum
);
2001 wake_up_sem_queue_do(&tasks
);
2003 if(sops
!= fast_sops
)
2008 SYSCALL_DEFINE3(semop
, int, semid
, struct sembuf __user
*, tsops
,
2011 return sys_semtimedop(semid
, tsops
, nsops
, NULL
);
2014 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2015 * parent and child tasks.
2018 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
2020 struct sem_undo_list
*undo_list
;
2023 if (clone_flags
& CLONE_SYSVSEM
) {
2024 error
= get_undo_list(&undo_list
);
2027 atomic_inc(&undo_list
->refcnt
);
2028 tsk
->sysvsem
.undo_list
= undo_list
;
2030 tsk
->sysvsem
.undo_list
= NULL
;
2036 * add semadj values to semaphores, free undo structures.
2037 * undo structures are not freed when semaphore arrays are destroyed
2038 * so some of them may be out of date.
2039 * IMPLEMENTATION NOTE: There is some confusion over whether the
2040 * set of adjustments that needs to be done should be done in an atomic
2041 * manner or not. That is, if we are attempting to decrement the semval
2042 * should we queue up and wait until we can do so legally?
2043 * The original implementation attempted to do this (queue and wait).
2044 * The current implementation does not do so. The POSIX standard
2045 * and SVID should be consulted to determine what behavior is mandated.
2047 void exit_sem(struct task_struct
*tsk
)
2049 struct sem_undo_list
*ulp
;
2051 ulp
= tsk
->sysvsem
.undo_list
;
2054 tsk
->sysvsem
.undo_list
= NULL
;
2056 if (!atomic_dec_and_test(&ulp
->refcnt
))
2060 struct sem_array
*sma
;
2061 struct sem_undo
*un
;
2062 struct list_head tasks
;
2066 un
= list_entry_rcu(ulp
->list_proc
.next
,
2067 struct sem_undo
, list_proc
);
2068 if (&un
->list_proc
== &ulp
->list_proc
) {
2070 * We must wait for freeary() before freeing this ulp,
2071 * in case we raced with last sem_undo. There is a small
2072 * possibility where we exit while freeary() didn't
2073 * finish unlocking sem_undo_list.
2075 spin_unlock_wait(&ulp
->lock
);
2079 spin_lock(&ulp
->lock
);
2081 spin_unlock(&ulp
->lock
);
2083 /* exit_sem raced with IPC_RMID, nothing to do */
2089 sma
= sem_obtain_object_check(tsk
->nsproxy
->ipc_ns
, semid
);
2090 /* exit_sem raced with IPC_RMID, nothing to do */
2096 sem_lock(sma
, NULL
, -1);
2097 /* exit_sem raced with IPC_RMID, nothing to do */
2098 if (sma
->sem_perm
.deleted
) {
2099 sem_unlock(sma
, -1);
2103 un
= __lookup_undo(ulp
, semid
);
2105 /* exit_sem raced with IPC_RMID+semget() that created
2106 * exactly the same semid. Nothing to do.
2108 sem_unlock(sma
, -1);
2113 /* remove un from the linked lists */
2114 ipc_assert_locked_object(&sma
->sem_perm
);
2115 list_del(&un
->list_id
);
2117 spin_lock(&ulp
->lock
);
2118 list_del_rcu(&un
->list_proc
);
2119 spin_unlock(&ulp
->lock
);
2121 /* perform adjustments registered in un */
2122 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
2123 struct sem
* semaphore
= &sma
->sem_base
[i
];
2124 if (un
->semadj
[i
]) {
2125 semaphore
->semval
+= un
->semadj
[i
];
2127 * Range checks of the new semaphore value,
2128 * not defined by sus:
2129 * - Some unices ignore the undo entirely
2130 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2131 * - some cap the value (e.g. FreeBSD caps
2132 * at 0, but doesn't enforce SEMVMX)
2134 * Linux caps the semaphore value, both at 0
2137 * Manfred <manfred@colorfullife.com>
2139 if (semaphore
->semval
< 0)
2140 semaphore
->semval
= 0;
2141 if (semaphore
->semval
> SEMVMX
)
2142 semaphore
->semval
= SEMVMX
;
2143 semaphore
->sempid
= task_tgid_vnr(current
);
2146 /* maybe some queued-up processes were waiting for this */
2147 INIT_LIST_HEAD(&tasks
);
2148 do_smart_update(sma
, NULL
, 0, 1, &tasks
);
2149 sem_unlock(sma
, -1);
2151 wake_up_sem_queue_do(&tasks
);
2158 #ifdef CONFIG_PROC_FS
2159 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
2161 struct user_namespace
*user_ns
= seq_user_ns(s
);
2162 struct sem_array
*sma
= it
;
2166 * The proc interface isn't aware of sem_lock(), it calls
2167 * ipc_lock_object() directly (in sysvipc_find_ipc).
2168 * In order to stay compatible with sem_lock(), we must wait until
2169 * all simple semop() calls have left their critical regions.
2171 sem_wait_array(sma
);
2173 sem_otime
= get_semotime(sma
);
2175 return seq_printf(s
,
2176 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2181 from_kuid_munged(user_ns
, sma
->sem_perm
.uid
),
2182 from_kgid_munged(user_ns
, sma
->sem_perm
.gid
),
2183 from_kuid_munged(user_ns
, sma
->sem_perm
.cuid
),
2184 from_kgid_munged(user_ns
, sma
->sem_perm
.cgid
),