net: add recursion limit to GRO
[linux/fpc-iii.git] / net / ipv4 / tcp.c
blobffbb218de52057afbc55f95386200226a1c60517
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <asm/unaligned.h>
283 #include <net/busy_poll.h>
285 int sysctl_tcp_min_tso_segs __read_mostly = 2;
287 int sysctl_tcp_autocorking __read_mostly = 1;
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292 long sysctl_tcp_mem[3] __read_mostly;
293 int sysctl_tcp_wmem[3] __read_mostly;
294 int sysctl_tcp_rmem[3] __read_mostly;
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297 EXPORT_SYMBOL(sysctl_tcp_rmem);
298 EXPORT_SYMBOL(sysctl_tcp_wmem);
300 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated);
304 * Current number of TCP sockets.
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
310 * TCP splice context
312 struct tcp_splice_state {
313 struct pipe_inode_info *pipe;
314 size_t len;
315 unsigned int flags;
319 * Pressure flag: try to collapse.
320 * Technical note: it is used by multiple contexts non atomically.
321 * All the __sk_mem_schedule() is of this nature: accounting
322 * is strict, actions are advisory and have some latency.
324 int tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL(tcp_memory_pressure);
327 void tcp_enter_memory_pressure(struct sock *sk)
329 if (!tcp_memory_pressure) {
330 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
331 tcp_memory_pressure = 1;
334 EXPORT_SYMBOL(tcp_enter_memory_pressure);
336 /* Convert seconds to retransmits based on initial and max timeout */
337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
339 u8 res = 0;
341 if (seconds > 0) {
342 int period = timeout;
344 res = 1;
345 while (seconds > period && res < 255) {
346 res++;
347 timeout <<= 1;
348 if (timeout > rto_max)
349 timeout = rto_max;
350 period += timeout;
353 return res;
356 /* Convert retransmits to seconds based on initial and max timeout */
357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
359 int period = 0;
361 if (retrans > 0) {
362 period = timeout;
363 while (--retrans) {
364 timeout <<= 1;
365 if (timeout > rto_max)
366 timeout = rto_max;
367 period += timeout;
370 return period;
373 /* Address-family independent initialization for a tcp_sock.
375 * NOTE: A lot of things set to zero explicitly by call to
376 * sk_alloc() so need not be done here.
378 void tcp_init_sock(struct sock *sk)
380 struct inet_connection_sock *icsk = inet_csk(sk);
381 struct tcp_sock *tp = tcp_sk(sk);
383 __skb_queue_head_init(&tp->out_of_order_queue);
384 tcp_init_xmit_timers(sk);
385 tcp_prequeue_init(tp);
386 INIT_LIST_HEAD(&tp->tsq_node);
388 icsk->icsk_rto = TCP_TIMEOUT_INIT;
389 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
390 tp->rtt_min[0].rtt = ~0U;
392 /* So many TCP implementations out there (incorrectly) count the
393 * initial SYN frame in their delayed-ACK and congestion control
394 * algorithms that we must have the following bandaid to talk
395 * efficiently to them. -DaveM
397 tp->snd_cwnd = TCP_INIT_CWND;
399 /* See draft-stevens-tcpca-spec-01 for discussion of the
400 * initialization of these values.
402 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403 tp->snd_cwnd_clamp = ~0;
404 tp->mss_cache = TCP_MSS_DEFAULT;
405 u64_stats_init(&tp->syncp);
407 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
408 tcp_enable_early_retrans(tp);
409 tcp_assign_congestion_control(sk);
411 tp->tsoffset = 0;
413 sk->sk_state = TCP_CLOSE;
415 sk->sk_write_space = sk_stream_write_space;
416 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
418 icsk->icsk_sync_mss = tcp_sync_mss;
420 sk->sk_sndbuf = sysctl_tcp_wmem[1];
421 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
423 local_bh_disable();
424 if (mem_cgroup_sockets_enabled)
425 sock_update_memcg(sk);
426 sk_sockets_allocated_inc(sk);
427 local_bh_enable();
429 EXPORT_SYMBOL(tcp_init_sock);
431 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
433 if (tsflags) {
434 struct skb_shared_info *shinfo = skb_shinfo(skb);
435 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
437 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
438 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
439 tcb->txstamp_ack = 1;
440 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
441 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
446 * Wait for a TCP event.
448 * Note that we don't need to lock the socket, as the upper poll layers
449 * take care of normal races (between the test and the event) and we don't
450 * go look at any of the socket buffers directly.
452 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
454 unsigned int mask;
455 struct sock *sk = sock->sk;
456 const struct tcp_sock *tp = tcp_sk(sk);
457 int state;
459 sock_rps_record_flow(sk);
461 sock_poll_wait(file, sk_sleep(sk), wait);
463 state = sk_state_load(sk);
464 if (state == TCP_LISTEN)
465 return inet_csk_listen_poll(sk);
467 /* Socket is not locked. We are protected from async events
468 * by poll logic and correct handling of state changes
469 * made by other threads is impossible in any case.
472 mask = 0;
475 * POLLHUP is certainly not done right. But poll() doesn't
476 * have a notion of HUP in just one direction, and for a
477 * socket the read side is more interesting.
479 * Some poll() documentation says that POLLHUP is incompatible
480 * with the POLLOUT/POLLWR flags, so somebody should check this
481 * all. But careful, it tends to be safer to return too many
482 * bits than too few, and you can easily break real applications
483 * if you don't tell them that something has hung up!
485 * Check-me.
487 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
488 * our fs/select.c). It means that after we received EOF,
489 * poll always returns immediately, making impossible poll() on write()
490 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
491 * if and only if shutdown has been made in both directions.
492 * Actually, it is interesting to look how Solaris and DUX
493 * solve this dilemma. I would prefer, if POLLHUP were maskable,
494 * then we could set it on SND_SHUTDOWN. BTW examples given
495 * in Stevens' books assume exactly this behaviour, it explains
496 * why POLLHUP is incompatible with POLLOUT. --ANK
498 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
499 * blocking on fresh not-connected or disconnected socket. --ANK
501 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
502 mask |= POLLHUP;
503 if (sk->sk_shutdown & RCV_SHUTDOWN)
504 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
506 /* Connected or passive Fast Open socket? */
507 if (state != TCP_SYN_SENT &&
508 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
509 int target = sock_rcvlowat(sk, 0, INT_MAX);
511 if (tp->urg_seq == tp->copied_seq &&
512 !sock_flag(sk, SOCK_URGINLINE) &&
513 tp->urg_data)
514 target++;
516 if (tp->rcv_nxt - tp->copied_seq >= target)
517 mask |= POLLIN | POLLRDNORM;
519 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
520 if (sk_stream_is_writeable(sk)) {
521 mask |= POLLOUT | POLLWRNORM;
522 } else { /* send SIGIO later */
523 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
524 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
526 /* Race breaker. If space is freed after
527 * wspace test but before the flags are set,
528 * IO signal will be lost. Memory barrier
529 * pairs with the input side.
531 smp_mb__after_atomic();
532 if (sk_stream_is_writeable(sk))
533 mask |= POLLOUT | POLLWRNORM;
535 } else
536 mask |= POLLOUT | POLLWRNORM;
538 if (tp->urg_data & TCP_URG_VALID)
539 mask |= POLLPRI;
541 /* This barrier is coupled with smp_wmb() in tcp_reset() */
542 smp_rmb();
543 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
544 mask |= POLLERR;
546 return mask;
548 EXPORT_SYMBOL(tcp_poll);
550 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
552 struct tcp_sock *tp = tcp_sk(sk);
553 int answ;
554 bool slow;
556 switch (cmd) {
557 case SIOCINQ:
558 if (sk->sk_state == TCP_LISTEN)
559 return -EINVAL;
561 slow = lock_sock_fast(sk);
562 answ = tcp_inq(sk);
563 unlock_sock_fast(sk, slow);
564 break;
565 case SIOCATMARK:
566 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
567 break;
568 case SIOCOUTQ:
569 if (sk->sk_state == TCP_LISTEN)
570 return -EINVAL;
572 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
573 answ = 0;
574 else
575 answ = tp->write_seq - tp->snd_una;
576 break;
577 case SIOCOUTQNSD:
578 if (sk->sk_state == TCP_LISTEN)
579 return -EINVAL;
581 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
582 answ = 0;
583 else
584 answ = tp->write_seq - tp->snd_nxt;
585 break;
586 default:
587 return -ENOIOCTLCMD;
590 return put_user(answ, (int __user *)arg);
592 EXPORT_SYMBOL(tcp_ioctl);
594 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
596 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
597 tp->pushed_seq = tp->write_seq;
600 static inline bool forced_push(const struct tcp_sock *tp)
602 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
605 static void skb_entail(struct sock *sk, struct sk_buff *skb)
607 struct tcp_sock *tp = tcp_sk(sk);
608 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
610 skb->csum = 0;
611 tcb->seq = tcb->end_seq = tp->write_seq;
612 tcb->tcp_flags = TCPHDR_ACK;
613 tcb->sacked = 0;
614 __skb_header_release(skb);
615 tcp_add_write_queue_tail(sk, skb);
616 sk->sk_wmem_queued += skb->truesize;
617 sk_mem_charge(sk, skb->truesize);
618 if (tp->nonagle & TCP_NAGLE_PUSH)
619 tp->nonagle &= ~TCP_NAGLE_PUSH;
621 tcp_slow_start_after_idle_check(sk);
624 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
626 if (flags & MSG_OOB)
627 tp->snd_up = tp->write_seq;
630 /* If a not yet filled skb is pushed, do not send it if
631 * we have data packets in Qdisc or NIC queues :
632 * Because TX completion will happen shortly, it gives a chance
633 * to coalesce future sendmsg() payload into this skb, without
634 * need for a timer, and with no latency trade off.
635 * As packets containing data payload have a bigger truesize
636 * than pure acks (dataless) packets, the last checks prevent
637 * autocorking if we only have an ACK in Qdisc/NIC queues,
638 * or if TX completion was delayed after we processed ACK packet.
640 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
641 int size_goal)
643 return skb->len < size_goal &&
644 sysctl_tcp_autocorking &&
645 skb != tcp_write_queue_head(sk) &&
646 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
649 static void tcp_push(struct sock *sk, int flags, int mss_now,
650 int nonagle, int size_goal)
652 struct tcp_sock *tp = tcp_sk(sk);
653 struct sk_buff *skb;
655 if (!tcp_send_head(sk))
656 return;
658 skb = tcp_write_queue_tail(sk);
659 if (!(flags & MSG_MORE) || forced_push(tp))
660 tcp_mark_push(tp, skb);
662 tcp_mark_urg(tp, flags);
664 if (tcp_should_autocork(sk, skb, size_goal)) {
666 /* avoid atomic op if TSQ_THROTTLED bit is already set */
667 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
668 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
669 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
671 /* It is possible TX completion already happened
672 * before we set TSQ_THROTTLED.
674 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
675 return;
678 if (flags & MSG_MORE)
679 nonagle = TCP_NAGLE_CORK;
681 __tcp_push_pending_frames(sk, mss_now, nonagle);
684 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
685 unsigned int offset, size_t len)
687 struct tcp_splice_state *tss = rd_desc->arg.data;
688 int ret;
690 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
691 min(rd_desc->count, len), tss->flags,
692 skb_socket_splice);
693 if (ret > 0)
694 rd_desc->count -= ret;
695 return ret;
698 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
700 /* Store TCP splice context information in read_descriptor_t. */
701 read_descriptor_t rd_desc = {
702 .arg.data = tss,
703 .count = tss->len,
706 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
710 * tcp_splice_read - splice data from TCP socket to a pipe
711 * @sock: socket to splice from
712 * @ppos: position (not valid)
713 * @pipe: pipe to splice to
714 * @len: number of bytes to splice
715 * @flags: splice modifier flags
717 * Description:
718 * Will read pages from given socket and fill them into a pipe.
721 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
722 struct pipe_inode_info *pipe, size_t len,
723 unsigned int flags)
725 struct sock *sk = sock->sk;
726 struct tcp_splice_state tss = {
727 .pipe = pipe,
728 .len = len,
729 .flags = flags,
731 long timeo;
732 ssize_t spliced;
733 int ret;
735 sock_rps_record_flow(sk);
737 * We can't seek on a socket input
739 if (unlikely(*ppos))
740 return -ESPIPE;
742 ret = spliced = 0;
744 lock_sock(sk);
746 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
747 while (tss.len) {
748 ret = __tcp_splice_read(sk, &tss);
749 if (ret < 0)
750 break;
751 else if (!ret) {
752 if (spliced)
753 break;
754 if (sock_flag(sk, SOCK_DONE))
755 break;
756 if (sk->sk_err) {
757 ret = sock_error(sk);
758 break;
760 if (sk->sk_shutdown & RCV_SHUTDOWN)
761 break;
762 if (sk->sk_state == TCP_CLOSE) {
764 * This occurs when user tries to read
765 * from never connected socket.
767 if (!sock_flag(sk, SOCK_DONE))
768 ret = -ENOTCONN;
769 break;
771 if (!timeo) {
772 ret = -EAGAIN;
773 break;
775 sk_wait_data(sk, &timeo, NULL);
776 if (signal_pending(current)) {
777 ret = sock_intr_errno(timeo);
778 break;
780 continue;
782 tss.len -= ret;
783 spliced += ret;
785 if (!timeo)
786 break;
787 release_sock(sk);
788 lock_sock(sk);
790 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
791 (sk->sk_shutdown & RCV_SHUTDOWN) ||
792 signal_pending(current))
793 break;
796 release_sock(sk);
798 if (spliced)
799 return spliced;
801 return ret;
803 EXPORT_SYMBOL(tcp_splice_read);
805 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
806 bool force_schedule)
808 struct sk_buff *skb;
810 /* The TCP header must be at least 32-bit aligned. */
811 size = ALIGN(size, 4);
813 if (unlikely(tcp_under_memory_pressure(sk)))
814 sk_mem_reclaim_partial(sk);
816 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
817 if (likely(skb)) {
818 bool mem_scheduled;
820 if (force_schedule) {
821 mem_scheduled = true;
822 sk_forced_mem_schedule(sk, skb->truesize);
823 } else {
824 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
826 if (likely(mem_scheduled)) {
827 skb_reserve(skb, sk->sk_prot->max_header);
829 * Make sure that we have exactly size bytes
830 * available to the caller, no more, no less.
832 skb->reserved_tailroom = skb->end - skb->tail - size;
833 return skb;
835 __kfree_skb(skb);
836 } else {
837 sk->sk_prot->enter_memory_pressure(sk);
838 sk_stream_moderate_sndbuf(sk);
840 return NULL;
843 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
844 int large_allowed)
846 struct tcp_sock *tp = tcp_sk(sk);
847 u32 new_size_goal, size_goal;
849 if (!large_allowed || !sk_can_gso(sk))
850 return mss_now;
852 /* Note : tcp_tso_autosize() will eventually split this later */
853 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
854 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
856 /* We try hard to avoid divides here */
857 size_goal = tp->gso_segs * mss_now;
858 if (unlikely(new_size_goal < size_goal ||
859 new_size_goal >= size_goal + mss_now)) {
860 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
861 sk->sk_gso_max_segs);
862 size_goal = tp->gso_segs * mss_now;
865 return max(size_goal, mss_now);
868 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
870 int mss_now;
872 mss_now = tcp_current_mss(sk);
873 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
875 return mss_now;
878 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
879 size_t size, int flags)
881 struct tcp_sock *tp = tcp_sk(sk);
882 int mss_now, size_goal;
883 int err;
884 ssize_t copied;
885 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
887 /* Wait for a connection to finish. One exception is TCP Fast Open
888 * (passive side) where data is allowed to be sent before a connection
889 * is fully established.
891 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
892 !tcp_passive_fastopen(sk)) {
893 err = sk_stream_wait_connect(sk, &timeo);
894 if (err != 0)
895 goto out_err;
898 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
900 mss_now = tcp_send_mss(sk, &size_goal, flags);
901 copied = 0;
903 err = -EPIPE;
904 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
905 goto out_err;
907 while (size > 0) {
908 struct sk_buff *skb = tcp_write_queue_tail(sk);
909 int copy, i;
910 bool can_coalesce;
912 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
913 !tcp_skb_can_collapse_to(skb)) {
914 new_segment:
915 if (!sk_stream_memory_free(sk))
916 goto wait_for_sndbuf;
918 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
919 skb_queue_empty(&sk->sk_write_queue));
920 if (!skb)
921 goto wait_for_memory;
923 skb_entail(sk, skb);
924 copy = size_goal;
927 if (copy > size)
928 copy = size;
930 i = skb_shinfo(skb)->nr_frags;
931 can_coalesce = skb_can_coalesce(skb, i, page, offset);
932 if (!can_coalesce && i >= sysctl_max_skb_frags) {
933 tcp_mark_push(tp, skb);
934 goto new_segment;
936 if (!sk_wmem_schedule(sk, copy))
937 goto wait_for_memory;
939 if (can_coalesce) {
940 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
941 } else {
942 get_page(page);
943 skb_fill_page_desc(skb, i, page, offset, copy);
945 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
947 skb->len += copy;
948 skb->data_len += copy;
949 skb->truesize += copy;
950 sk->sk_wmem_queued += copy;
951 sk_mem_charge(sk, copy);
952 skb->ip_summed = CHECKSUM_PARTIAL;
953 tp->write_seq += copy;
954 TCP_SKB_CB(skb)->end_seq += copy;
955 tcp_skb_pcount_set(skb, 0);
957 if (!copied)
958 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
960 copied += copy;
961 offset += copy;
962 size -= copy;
963 if (!size) {
964 tcp_tx_timestamp(sk, sk->sk_tsflags, skb);
965 goto out;
968 if (skb->len < size_goal || (flags & MSG_OOB))
969 continue;
971 if (forced_push(tp)) {
972 tcp_mark_push(tp, skb);
973 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
974 } else if (skb == tcp_send_head(sk))
975 tcp_push_one(sk, mss_now);
976 continue;
978 wait_for_sndbuf:
979 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
980 wait_for_memory:
981 tcp_push(sk, flags & ~MSG_MORE, mss_now,
982 TCP_NAGLE_PUSH, size_goal);
984 err = sk_stream_wait_memory(sk, &timeo);
985 if (err != 0)
986 goto do_error;
988 mss_now = tcp_send_mss(sk, &size_goal, flags);
991 out:
992 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
993 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
994 return copied;
996 do_error:
997 if (copied)
998 goto out;
999 out_err:
1000 /* make sure we wake any epoll edge trigger waiter */
1001 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1002 sk->sk_write_space(sk);
1003 return sk_stream_error(sk, flags, err);
1006 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1007 size_t size, int flags)
1009 ssize_t res;
1011 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1012 !sk_check_csum_caps(sk))
1013 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1014 flags);
1016 lock_sock(sk);
1017 res = do_tcp_sendpages(sk, page, offset, size, flags);
1018 release_sock(sk);
1019 return res;
1021 EXPORT_SYMBOL(tcp_sendpage);
1023 static inline int select_size(const struct sock *sk, bool sg)
1025 const struct tcp_sock *tp = tcp_sk(sk);
1026 int tmp = tp->mss_cache;
1028 if (sg) {
1029 if (sk_can_gso(sk)) {
1030 /* Small frames wont use a full page:
1031 * Payload will immediately follow tcp header.
1033 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1034 } else {
1035 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1037 if (tmp >= pgbreak &&
1038 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1039 tmp = pgbreak;
1043 return tmp;
1046 void tcp_free_fastopen_req(struct tcp_sock *tp)
1048 if (tp->fastopen_req) {
1049 kfree(tp->fastopen_req);
1050 tp->fastopen_req = NULL;
1054 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1055 int *copied, size_t size)
1057 struct tcp_sock *tp = tcp_sk(sk);
1058 int err, flags;
1060 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1061 return -EOPNOTSUPP;
1062 if (tp->fastopen_req)
1063 return -EALREADY; /* Another Fast Open is in progress */
1065 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1066 sk->sk_allocation);
1067 if (unlikely(!tp->fastopen_req))
1068 return -ENOBUFS;
1069 tp->fastopen_req->data = msg;
1070 tp->fastopen_req->size = size;
1072 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1073 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1074 msg->msg_namelen, flags);
1075 *copied = tp->fastopen_req->copied;
1076 tcp_free_fastopen_req(tp);
1077 return err;
1080 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1082 struct tcp_sock *tp = tcp_sk(sk);
1083 struct sk_buff *skb;
1084 struct sockcm_cookie sockc;
1085 int flags, err, copied = 0;
1086 int mss_now = 0, size_goal, copied_syn = 0;
1087 bool process_backlog = false;
1088 bool sg;
1089 long timeo;
1091 lock_sock(sk);
1093 flags = msg->msg_flags;
1094 if (flags & MSG_FASTOPEN) {
1095 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1096 if (err == -EINPROGRESS && copied_syn > 0)
1097 goto out;
1098 else if (err)
1099 goto out_err;
1102 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1104 /* Wait for a connection to finish. One exception is TCP Fast Open
1105 * (passive side) where data is allowed to be sent before a connection
1106 * is fully established.
1108 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1109 !tcp_passive_fastopen(sk)) {
1110 err = sk_stream_wait_connect(sk, &timeo);
1111 if (err != 0)
1112 goto do_error;
1115 if (unlikely(tp->repair)) {
1116 if (tp->repair_queue == TCP_RECV_QUEUE) {
1117 copied = tcp_send_rcvq(sk, msg, size);
1118 goto out_nopush;
1121 err = -EINVAL;
1122 if (tp->repair_queue == TCP_NO_QUEUE)
1123 goto out_err;
1125 /* 'common' sending to sendq */
1128 sockc.tsflags = sk->sk_tsflags;
1129 if (msg->msg_controllen) {
1130 err = sock_cmsg_send(sk, msg, &sockc);
1131 if (unlikely(err)) {
1132 err = -EINVAL;
1133 goto out_err;
1137 /* This should be in poll */
1138 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1140 /* Ok commence sending. */
1141 copied = 0;
1143 restart:
1144 mss_now = tcp_send_mss(sk, &size_goal, flags);
1146 err = -EPIPE;
1147 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1148 goto out_err;
1150 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1152 while (msg_data_left(msg)) {
1153 int copy = 0;
1154 int max = size_goal;
1156 skb = tcp_write_queue_tail(sk);
1157 if (tcp_send_head(sk)) {
1158 if (skb->ip_summed == CHECKSUM_NONE)
1159 max = mss_now;
1160 copy = max - skb->len;
1163 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1164 new_segment:
1165 /* Allocate new segment. If the interface is SG,
1166 * allocate skb fitting to single page.
1168 if (!sk_stream_memory_free(sk))
1169 goto wait_for_sndbuf;
1171 if (process_backlog && sk_flush_backlog(sk)) {
1172 process_backlog = false;
1173 goto restart;
1175 skb = sk_stream_alloc_skb(sk,
1176 select_size(sk, sg),
1177 sk->sk_allocation,
1178 skb_queue_empty(&sk->sk_write_queue));
1179 if (!skb)
1180 goto wait_for_memory;
1182 process_backlog = true;
1184 * Check whether we can use HW checksum.
1186 if (sk_check_csum_caps(sk))
1187 skb->ip_summed = CHECKSUM_PARTIAL;
1189 skb_entail(sk, skb);
1190 copy = size_goal;
1191 max = size_goal;
1193 /* All packets are restored as if they have
1194 * already been sent. skb_mstamp isn't set to
1195 * avoid wrong rtt estimation.
1197 if (tp->repair)
1198 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1201 /* Try to append data to the end of skb. */
1202 if (copy > msg_data_left(msg))
1203 copy = msg_data_left(msg);
1205 /* Where to copy to? */
1206 if (skb_availroom(skb) > 0) {
1207 /* We have some space in skb head. Superb! */
1208 copy = min_t(int, copy, skb_availroom(skb));
1209 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1210 if (err)
1211 goto do_fault;
1212 } else {
1213 bool merge = true;
1214 int i = skb_shinfo(skb)->nr_frags;
1215 struct page_frag *pfrag = sk_page_frag(sk);
1217 if (!sk_page_frag_refill(sk, pfrag))
1218 goto wait_for_memory;
1220 if (!skb_can_coalesce(skb, i, pfrag->page,
1221 pfrag->offset)) {
1222 if (i == sysctl_max_skb_frags || !sg) {
1223 tcp_mark_push(tp, skb);
1224 goto new_segment;
1226 merge = false;
1229 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1231 if (!sk_wmem_schedule(sk, copy))
1232 goto wait_for_memory;
1234 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1235 pfrag->page,
1236 pfrag->offset,
1237 copy);
1238 if (err)
1239 goto do_error;
1241 /* Update the skb. */
1242 if (merge) {
1243 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1244 } else {
1245 skb_fill_page_desc(skb, i, pfrag->page,
1246 pfrag->offset, copy);
1247 get_page(pfrag->page);
1249 pfrag->offset += copy;
1252 if (!copied)
1253 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1255 tp->write_seq += copy;
1256 TCP_SKB_CB(skb)->end_seq += copy;
1257 tcp_skb_pcount_set(skb, 0);
1259 copied += copy;
1260 if (!msg_data_left(msg)) {
1261 tcp_tx_timestamp(sk, sockc.tsflags, skb);
1262 if (unlikely(flags & MSG_EOR))
1263 TCP_SKB_CB(skb)->eor = 1;
1264 goto out;
1267 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1268 continue;
1270 if (forced_push(tp)) {
1271 tcp_mark_push(tp, skb);
1272 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1273 } else if (skb == tcp_send_head(sk))
1274 tcp_push_one(sk, mss_now);
1275 continue;
1277 wait_for_sndbuf:
1278 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1279 wait_for_memory:
1280 if (copied)
1281 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1282 TCP_NAGLE_PUSH, size_goal);
1284 err = sk_stream_wait_memory(sk, &timeo);
1285 if (err != 0)
1286 goto do_error;
1288 mss_now = tcp_send_mss(sk, &size_goal, flags);
1291 out:
1292 if (copied)
1293 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1294 out_nopush:
1295 release_sock(sk);
1296 return copied + copied_syn;
1298 do_fault:
1299 if (!skb->len) {
1300 tcp_unlink_write_queue(skb, sk);
1301 /* It is the one place in all of TCP, except connection
1302 * reset, where we can be unlinking the send_head.
1304 tcp_check_send_head(sk, skb);
1305 sk_wmem_free_skb(sk, skb);
1308 do_error:
1309 if (copied + copied_syn)
1310 goto out;
1311 out_err:
1312 err = sk_stream_error(sk, flags, err);
1313 /* make sure we wake any epoll edge trigger waiter */
1314 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1315 sk->sk_write_space(sk);
1316 release_sock(sk);
1317 return err;
1319 EXPORT_SYMBOL(tcp_sendmsg);
1322 * Handle reading urgent data. BSD has very simple semantics for
1323 * this, no blocking and very strange errors 8)
1326 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1328 struct tcp_sock *tp = tcp_sk(sk);
1330 /* No URG data to read. */
1331 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1332 tp->urg_data == TCP_URG_READ)
1333 return -EINVAL; /* Yes this is right ! */
1335 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1336 return -ENOTCONN;
1338 if (tp->urg_data & TCP_URG_VALID) {
1339 int err = 0;
1340 char c = tp->urg_data;
1342 if (!(flags & MSG_PEEK))
1343 tp->urg_data = TCP_URG_READ;
1345 /* Read urgent data. */
1346 msg->msg_flags |= MSG_OOB;
1348 if (len > 0) {
1349 if (!(flags & MSG_TRUNC))
1350 err = memcpy_to_msg(msg, &c, 1);
1351 len = 1;
1352 } else
1353 msg->msg_flags |= MSG_TRUNC;
1355 return err ? -EFAULT : len;
1358 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1359 return 0;
1361 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1362 * the available implementations agree in this case:
1363 * this call should never block, independent of the
1364 * blocking state of the socket.
1365 * Mike <pall@rz.uni-karlsruhe.de>
1367 return -EAGAIN;
1370 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1372 struct sk_buff *skb;
1373 int copied = 0, err = 0;
1375 /* XXX -- need to support SO_PEEK_OFF */
1377 skb_queue_walk(&sk->sk_write_queue, skb) {
1378 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1379 if (err)
1380 break;
1382 copied += skb->len;
1385 return err ?: copied;
1388 /* Clean up the receive buffer for full frames taken by the user,
1389 * then send an ACK if necessary. COPIED is the number of bytes
1390 * tcp_recvmsg has given to the user so far, it speeds up the
1391 * calculation of whether or not we must ACK for the sake of
1392 * a window update.
1394 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1396 struct tcp_sock *tp = tcp_sk(sk);
1397 bool time_to_ack = false;
1399 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1401 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1402 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1403 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1405 if (inet_csk_ack_scheduled(sk)) {
1406 const struct inet_connection_sock *icsk = inet_csk(sk);
1407 /* Delayed ACKs frequently hit locked sockets during bulk
1408 * receive. */
1409 if (icsk->icsk_ack.blocked ||
1410 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1411 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1413 * If this read emptied read buffer, we send ACK, if
1414 * connection is not bidirectional, user drained
1415 * receive buffer and there was a small segment
1416 * in queue.
1418 (copied > 0 &&
1419 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1420 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1421 !icsk->icsk_ack.pingpong)) &&
1422 !atomic_read(&sk->sk_rmem_alloc)))
1423 time_to_ack = true;
1426 /* We send an ACK if we can now advertise a non-zero window
1427 * which has been raised "significantly".
1429 * Even if window raised up to infinity, do not send window open ACK
1430 * in states, where we will not receive more. It is useless.
1432 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1433 __u32 rcv_window_now = tcp_receive_window(tp);
1435 /* Optimize, __tcp_select_window() is not cheap. */
1436 if (2*rcv_window_now <= tp->window_clamp) {
1437 __u32 new_window = __tcp_select_window(sk);
1439 /* Send ACK now, if this read freed lots of space
1440 * in our buffer. Certainly, new_window is new window.
1441 * We can advertise it now, if it is not less than current one.
1442 * "Lots" means "at least twice" here.
1444 if (new_window && new_window >= 2 * rcv_window_now)
1445 time_to_ack = true;
1448 if (time_to_ack)
1449 tcp_send_ack(sk);
1452 static void tcp_prequeue_process(struct sock *sk)
1454 struct sk_buff *skb;
1455 struct tcp_sock *tp = tcp_sk(sk);
1457 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1459 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1460 sk_backlog_rcv(sk, skb);
1462 /* Clear memory counter. */
1463 tp->ucopy.memory = 0;
1466 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1468 struct sk_buff *skb;
1469 u32 offset;
1471 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1472 offset = seq - TCP_SKB_CB(skb)->seq;
1473 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1474 pr_err_once("%s: found a SYN, please report !\n", __func__);
1475 offset--;
1477 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1478 *off = offset;
1479 return skb;
1481 /* This looks weird, but this can happen if TCP collapsing
1482 * splitted a fat GRO packet, while we released socket lock
1483 * in skb_splice_bits()
1485 sk_eat_skb(sk, skb);
1487 return NULL;
1491 * This routine provides an alternative to tcp_recvmsg() for routines
1492 * that would like to handle copying from skbuffs directly in 'sendfile'
1493 * fashion.
1494 * Note:
1495 * - It is assumed that the socket was locked by the caller.
1496 * - The routine does not block.
1497 * - At present, there is no support for reading OOB data
1498 * or for 'peeking' the socket using this routine
1499 * (although both would be easy to implement).
1501 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1502 sk_read_actor_t recv_actor)
1504 struct sk_buff *skb;
1505 struct tcp_sock *tp = tcp_sk(sk);
1506 u32 seq = tp->copied_seq;
1507 u32 offset;
1508 int copied = 0;
1510 if (sk->sk_state == TCP_LISTEN)
1511 return -ENOTCONN;
1512 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1513 if (offset < skb->len) {
1514 int used;
1515 size_t len;
1517 len = skb->len - offset;
1518 /* Stop reading if we hit a patch of urgent data */
1519 if (tp->urg_data) {
1520 u32 urg_offset = tp->urg_seq - seq;
1521 if (urg_offset < len)
1522 len = urg_offset;
1523 if (!len)
1524 break;
1526 used = recv_actor(desc, skb, offset, len);
1527 if (used <= 0) {
1528 if (!copied)
1529 copied = used;
1530 break;
1531 } else if (used <= len) {
1532 seq += used;
1533 copied += used;
1534 offset += used;
1536 /* If recv_actor drops the lock (e.g. TCP splice
1537 * receive) the skb pointer might be invalid when
1538 * getting here: tcp_collapse might have deleted it
1539 * while aggregating skbs from the socket queue.
1541 skb = tcp_recv_skb(sk, seq - 1, &offset);
1542 if (!skb)
1543 break;
1544 /* TCP coalescing might have appended data to the skb.
1545 * Try to splice more frags
1547 if (offset + 1 != skb->len)
1548 continue;
1550 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1551 sk_eat_skb(sk, skb);
1552 ++seq;
1553 break;
1555 sk_eat_skb(sk, skb);
1556 if (!desc->count)
1557 break;
1558 tp->copied_seq = seq;
1560 tp->copied_seq = seq;
1562 tcp_rcv_space_adjust(sk);
1564 /* Clean up data we have read: This will do ACK frames. */
1565 if (copied > 0) {
1566 tcp_recv_skb(sk, seq, &offset);
1567 tcp_cleanup_rbuf(sk, copied);
1569 return copied;
1571 EXPORT_SYMBOL(tcp_read_sock);
1574 * This routine copies from a sock struct into the user buffer.
1576 * Technical note: in 2.3 we work on _locked_ socket, so that
1577 * tricks with *seq access order and skb->users are not required.
1578 * Probably, code can be easily improved even more.
1581 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1582 int flags, int *addr_len)
1584 struct tcp_sock *tp = tcp_sk(sk);
1585 int copied = 0;
1586 u32 peek_seq;
1587 u32 *seq;
1588 unsigned long used;
1589 int err;
1590 int target; /* Read at least this many bytes */
1591 long timeo;
1592 struct task_struct *user_recv = NULL;
1593 struct sk_buff *skb, *last;
1594 u32 urg_hole = 0;
1596 if (unlikely(flags & MSG_ERRQUEUE))
1597 return inet_recv_error(sk, msg, len, addr_len);
1599 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1600 (sk->sk_state == TCP_ESTABLISHED))
1601 sk_busy_loop(sk, nonblock);
1603 lock_sock(sk);
1605 err = -ENOTCONN;
1606 if (sk->sk_state == TCP_LISTEN)
1607 goto out;
1609 timeo = sock_rcvtimeo(sk, nonblock);
1611 /* Urgent data needs to be handled specially. */
1612 if (flags & MSG_OOB)
1613 goto recv_urg;
1615 if (unlikely(tp->repair)) {
1616 err = -EPERM;
1617 if (!(flags & MSG_PEEK))
1618 goto out;
1620 if (tp->repair_queue == TCP_SEND_QUEUE)
1621 goto recv_sndq;
1623 err = -EINVAL;
1624 if (tp->repair_queue == TCP_NO_QUEUE)
1625 goto out;
1627 /* 'common' recv queue MSG_PEEK-ing */
1630 seq = &tp->copied_seq;
1631 if (flags & MSG_PEEK) {
1632 peek_seq = tp->copied_seq;
1633 seq = &peek_seq;
1636 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1638 do {
1639 u32 offset;
1641 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1642 if (tp->urg_data && tp->urg_seq == *seq) {
1643 if (copied)
1644 break;
1645 if (signal_pending(current)) {
1646 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1647 break;
1651 /* Next get a buffer. */
1653 last = skb_peek_tail(&sk->sk_receive_queue);
1654 skb_queue_walk(&sk->sk_receive_queue, skb) {
1655 last = skb;
1656 /* Now that we have two receive queues this
1657 * shouldn't happen.
1659 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1660 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1661 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1662 flags))
1663 break;
1665 offset = *seq - TCP_SKB_CB(skb)->seq;
1666 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1667 pr_err_once("%s: found a SYN, please report !\n", __func__);
1668 offset--;
1670 if (offset < skb->len)
1671 goto found_ok_skb;
1672 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1673 goto found_fin_ok;
1674 WARN(!(flags & MSG_PEEK),
1675 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1676 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1679 /* Well, if we have backlog, try to process it now yet. */
1681 if (copied >= target && !sk->sk_backlog.tail)
1682 break;
1684 if (copied) {
1685 if (sk->sk_err ||
1686 sk->sk_state == TCP_CLOSE ||
1687 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1688 !timeo ||
1689 signal_pending(current))
1690 break;
1691 } else {
1692 if (sock_flag(sk, SOCK_DONE))
1693 break;
1695 if (sk->sk_err) {
1696 copied = sock_error(sk);
1697 break;
1700 if (sk->sk_shutdown & RCV_SHUTDOWN)
1701 break;
1703 if (sk->sk_state == TCP_CLOSE) {
1704 if (!sock_flag(sk, SOCK_DONE)) {
1705 /* This occurs when user tries to read
1706 * from never connected socket.
1708 copied = -ENOTCONN;
1709 break;
1711 break;
1714 if (!timeo) {
1715 copied = -EAGAIN;
1716 break;
1719 if (signal_pending(current)) {
1720 copied = sock_intr_errno(timeo);
1721 break;
1725 tcp_cleanup_rbuf(sk, copied);
1727 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1728 /* Install new reader */
1729 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1730 user_recv = current;
1731 tp->ucopy.task = user_recv;
1732 tp->ucopy.msg = msg;
1735 tp->ucopy.len = len;
1737 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1738 !(flags & (MSG_PEEK | MSG_TRUNC)));
1740 /* Ugly... If prequeue is not empty, we have to
1741 * process it before releasing socket, otherwise
1742 * order will be broken at second iteration.
1743 * More elegant solution is required!!!
1745 * Look: we have the following (pseudo)queues:
1747 * 1. packets in flight
1748 * 2. backlog
1749 * 3. prequeue
1750 * 4. receive_queue
1752 * Each queue can be processed only if the next ones
1753 * are empty. At this point we have empty receive_queue.
1754 * But prequeue _can_ be not empty after 2nd iteration,
1755 * when we jumped to start of loop because backlog
1756 * processing added something to receive_queue.
1757 * We cannot release_sock(), because backlog contains
1758 * packets arrived _after_ prequeued ones.
1760 * Shortly, algorithm is clear --- to process all
1761 * the queues in order. We could make it more directly,
1762 * requeueing packets from backlog to prequeue, if
1763 * is not empty. It is more elegant, but eats cycles,
1764 * unfortunately.
1766 if (!skb_queue_empty(&tp->ucopy.prequeue))
1767 goto do_prequeue;
1769 /* __ Set realtime policy in scheduler __ */
1772 if (copied >= target) {
1773 /* Do not sleep, just process backlog. */
1774 release_sock(sk);
1775 lock_sock(sk);
1776 } else {
1777 sk_wait_data(sk, &timeo, last);
1780 if (user_recv) {
1781 int chunk;
1783 /* __ Restore normal policy in scheduler __ */
1785 chunk = len - tp->ucopy.len;
1786 if (chunk != 0) {
1787 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1788 len -= chunk;
1789 copied += chunk;
1792 if (tp->rcv_nxt == tp->copied_seq &&
1793 !skb_queue_empty(&tp->ucopy.prequeue)) {
1794 do_prequeue:
1795 tcp_prequeue_process(sk);
1797 chunk = len - tp->ucopy.len;
1798 if (chunk != 0) {
1799 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1800 len -= chunk;
1801 copied += chunk;
1805 if ((flags & MSG_PEEK) &&
1806 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1807 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1808 current->comm,
1809 task_pid_nr(current));
1810 peek_seq = tp->copied_seq;
1812 continue;
1814 found_ok_skb:
1815 /* Ok so how much can we use? */
1816 used = skb->len - offset;
1817 if (len < used)
1818 used = len;
1820 /* Do we have urgent data here? */
1821 if (tp->urg_data) {
1822 u32 urg_offset = tp->urg_seq - *seq;
1823 if (urg_offset < used) {
1824 if (!urg_offset) {
1825 if (!sock_flag(sk, SOCK_URGINLINE)) {
1826 ++*seq;
1827 urg_hole++;
1828 offset++;
1829 used--;
1830 if (!used)
1831 goto skip_copy;
1833 } else
1834 used = urg_offset;
1838 if (!(flags & MSG_TRUNC)) {
1839 err = skb_copy_datagram_msg(skb, offset, msg, used);
1840 if (err) {
1841 /* Exception. Bailout! */
1842 if (!copied)
1843 copied = -EFAULT;
1844 break;
1848 *seq += used;
1849 copied += used;
1850 len -= used;
1852 tcp_rcv_space_adjust(sk);
1854 skip_copy:
1855 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1856 tp->urg_data = 0;
1857 tcp_fast_path_check(sk);
1859 if (used + offset < skb->len)
1860 continue;
1862 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1863 goto found_fin_ok;
1864 if (!(flags & MSG_PEEK))
1865 sk_eat_skb(sk, skb);
1866 continue;
1868 found_fin_ok:
1869 /* Process the FIN. */
1870 ++*seq;
1871 if (!(flags & MSG_PEEK))
1872 sk_eat_skb(sk, skb);
1873 break;
1874 } while (len > 0);
1876 if (user_recv) {
1877 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1878 int chunk;
1880 tp->ucopy.len = copied > 0 ? len : 0;
1882 tcp_prequeue_process(sk);
1884 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1885 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1886 len -= chunk;
1887 copied += chunk;
1891 tp->ucopy.task = NULL;
1892 tp->ucopy.len = 0;
1895 /* According to UNIX98, msg_name/msg_namelen are ignored
1896 * on connected socket. I was just happy when found this 8) --ANK
1899 /* Clean up data we have read: This will do ACK frames. */
1900 tcp_cleanup_rbuf(sk, copied);
1902 release_sock(sk);
1903 return copied;
1905 out:
1906 release_sock(sk);
1907 return err;
1909 recv_urg:
1910 err = tcp_recv_urg(sk, msg, len, flags);
1911 goto out;
1913 recv_sndq:
1914 err = tcp_peek_sndq(sk, msg, len);
1915 goto out;
1917 EXPORT_SYMBOL(tcp_recvmsg);
1919 void tcp_set_state(struct sock *sk, int state)
1921 int oldstate = sk->sk_state;
1923 switch (state) {
1924 case TCP_ESTABLISHED:
1925 if (oldstate != TCP_ESTABLISHED)
1926 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1927 break;
1929 case TCP_CLOSE:
1930 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1931 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1933 sk->sk_prot->unhash(sk);
1934 if (inet_csk(sk)->icsk_bind_hash &&
1935 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1936 inet_put_port(sk);
1937 /* fall through */
1938 default:
1939 if (oldstate == TCP_ESTABLISHED)
1940 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1943 /* Change state AFTER socket is unhashed to avoid closed
1944 * socket sitting in hash tables.
1946 sk_state_store(sk, state);
1948 #ifdef STATE_TRACE
1949 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1950 #endif
1952 EXPORT_SYMBOL_GPL(tcp_set_state);
1955 * State processing on a close. This implements the state shift for
1956 * sending our FIN frame. Note that we only send a FIN for some
1957 * states. A shutdown() may have already sent the FIN, or we may be
1958 * closed.
1961 static const unsigned char new_state[16] = {
1962 /* current state: new state: action: */
1963 [0 /* (Invalid) */] = TCP_CLOSE,
1964 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1965 [TCP_SYN_SENT] = TCP_CLOSE,
1966 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1967 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
1968 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
1969 [TCP_TIME_WAIT] = TCP_CLOSE,
1970 [TCP_CLOSE] = TCP_CLOSE,
1971 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
1972 [TCP_LAST_ACK] = TCP_LAST_ACK,
1973 [TCP_LISTEN] = TCP_CLOSE,
1974 [TCP_CLOSING] = TCP_CLOSING,
1975 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
1978 static int tcp_close_state(struct sock *sk)
1980 int next = (int)new_state[sk->sk_state];
1981 int ns = next & TCP_STATE_MASK;
1983 tcp_set_state(sk, ns);
1985 return next & TCP_ACTION_FIN;
1989 * Shutdown the sending side of a connection. Much like close except
1990 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1993 void tcp_shutdown(struct sock *sk, int how)
1995 /* We need to grab some memory, and put together a FIN,
1996 * and then put it into the queue to be sent.
1997 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1999 if (!(how & SEND_SHUTDOWN))
2000 return;
2002 /* If we've already sent a FIN, or it's a closed state, skip this. */
2003 if ((1 << sk->sk_state) &
2004 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2005 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2006 /* Clear out any half completed packets. FIN if needed. */
2007 if (tcp_close_state(sk))
2008 tcp_send_fin(sk);
2011 EXPORT_SYMBOL(tcp_shutdown);
2013 bool tcp_check_oom(struct sock *sk, int shift)
2015 bool too_many_orphans, out_of_socket_memory;
2017 too_many_orphans = tcp_too_many_orphans(sk, shift);
2018 out_of_socket_memory = tcp_out_of_memory(sk);
2020 if (too_many_orphans)
2021 net_info_ratelimited("too many orphaned sockets\n");
2022 if (out_of_socket_memory)
2023 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2024 return too_many_orphans || out_of_socket_memory;
2027 void tcp_close(struct sock *sk, long timeout)
2029 struct sk_buff *skb;
2030 int data_was_unread = 0;
2031 int state;
2033 lock_sock(sk);
2034 sk->sk_shutdown = SHUTDOWN_MASK;
2036 if (sk->sk_state == TCP_LISTEN) {
2037 tcp_set_state(sk, TCP_CLOSE);
2039 /* Special case. */
2040 inet_csk_listen_stop(sk);
2042 goto adjudge_to_death;
2045 /* We need to flush the recv. buffs. We do this only on the
2046 * descriptor close, not protocol-sourced closes, because the
2047 * reader process may not have drained the data yet!
2049 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2050 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2052 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2053 len--;
2054 data_was_unread += len;
2055 __kfree_skb(skb);
2058 sk_mem_reclaim(sk);
2060 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2061 if (sk->sk_state == TCP_CLOSE)
2062 goto adjudge_to_death;
2064 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2065 * data was lost. To witness the awful effects of the old behavior of
2066 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2067 * GET in an FTP client, suspend the process, wait for the client to
2068 * advertise a zero window, then kill -9 the FTP client, wheee...
2069 * Note: timeout is always zero in such a case.
2071 if (unlikely(tcp_sk(sk)->repair)) {
2072 sk->sk_prot->disconnect(sk, 0);
2073 } else if (data_was_unread) {
2074 /* Unread data was tossed, zap the connection. */
2075 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2076 tcp_set_state(sk, TCP_CLOSE);
2077 tcp_send_active_reset(sk, sk->sk_allocation);
2078 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2079 /* Check zero linger _after_ checking for unread data. */
2080 sk->sk_prot->disconnect(sk, 0);
2081 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2082 } else if (tcp_close_state(sk)) {
2083 /* We FIN if the application ate all the data before
2084 * zapping the connection.
2087 /* RED-PEN. Formally speaking, we have broken TCP state
2088 * machine. State transitions:
2090 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2091 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2092 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2094 * are legal only when FIN has been sent (i.e. in window),
2095 * rather than queued out of window. Purists blame.
2097 * F.e. "RFC state" is ESTABLISHED,
2098 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2100 * The visible declinations are that sometimes
2101 * we enter time-wait state, when it is not required really
2102 * (harmless), do not send active resets, when they are
2103 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2104 * they look as CLOSING or LAST_ACK for Linux)
2105 * Probably, I missed some more holelets.
2106 * --ANK
2107 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2108 * in a single packet! (May consider it later but will
2109 * probably need API support or TCP_CORK SYN-ACK until
2110 * data is written and socket is closed.)
2112 tcp_send_fin(sk);
2115 sk_stream_wait_close(sk, timeout);
2117 adjudge_to_death:
2118 state = sk->sk_state;
2119 sock_hold(sk);
2120 sock_orphan(sk);
2122 /* It is the last release_sock in its life. It will remove backlog. */
2123 release_sock(sk);
2126 /* Now socket is owned by kernel and we acquire BH lock
2127 to finish close. No need to check for user refs.
2129 local_bh_disable();
2130 bh_lock_sock(sk);
2131 WARN_ON(sock_owned_by_user(sk));
2133 percpu_counter_inc(sk->sk_prot->orphan_count);
2135 /* Have we already been destroyed by a softirq or backlog? */
2136 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2137 goto out;
2139 /* This is a (useful) BSD violating of the RFC. There is a
2140 * problem with TCP as specified in that the other end could
2141 * keep a socket open forever with no application left this end.
2142 * We use a 1 minute timeout (about the same as BSD) then kill
2143 * our end. If they send after that then tough - BUT: long enough
2144 * that we won't make the old 4*rto = almost no time - whoops
2145 * reset mistake.
2147 * Nope, it was not mistake. It is really desired behaviour
2148 * f.e. on http servers, when such sockets are useless, but
2149 * consume significant resources. Let's do it with special
2150 * linger2 option. --ANK
2153 if (sk->sk_state == TCP_FIN_WAIT2) {
2154 struct tcp_sock *tp = tcp_sk(sk);
2155 if (tp->linger2 < 0) {
2156 tcp_set_state(sk, TCP_CLOSE);
2157 tcp_send_active_reset(sk, GFP_ATOMIC);
2158 __NET_INC_STATS(sock_net(sk),
2159 LINUX_MIB_TCPABORTONLINGER);
2160 } else {
2161 const int tmo = tcp_fin_time(sk);
2163 if (tmo > TCP_TIMEWAIT_LEN) {
2164 inet_csk_reset_keepalive_timer(sk,
2165 tmo - TCP_TIMEWAIT_LEN);
2166 } else {
2167 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2168 goto out;
2172 if (sk->sk_state != TCP_CLOSE) {
2173 sk_mem_reclaim(sk);
2174 if (tcp_check_oom(sk, 0)) {
2175 tcp_set_state(sk, TCP_CLOSE);
2176 tcp_send_active_reset(sk, GFP_ATOMIC);
2177 __NET_INC_STATS(sock_net(sk),
2178 LINUX_MIB_TCPABORTONMEMORY);
2182 if (sk->sk_state == TCP_CLOSE) {
2183 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2184 /* We could get here with a non-NULL req if the socket is
2185 * aborted (e.g., closed with unread data) before 3WHS
2186 * finishes.
2188 if (req)
2189 reqsk_fastopen_remove(sk, req, false);
2190 inet_csk_destroy_sock(sk);
2192 /* Otherwise, socket is reprieved until protocol close. */
2194 out:
2195 bh_unlock_sock(sk);
2196 local_bh_enable();
2197 sock_put(sk);
2199 EXPORT_SYMBOL(tcp_close);
2201 /* These states need RST on ABORT according to RFC793 */
2203 static inline bool tcp_need_reset(int state)
2205 return (1 << state) &
2206 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2207 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2210 int tcp_disconnect(struct sock *sk, int flags)
2212 struct inet_sock *inet = inet_sk(sk);
2213 struct inet_connection_sock *icsk = inet_csk(sk);
2214 struct tcp_sock *tp = tcp_sk(sk);
2215 int err = 0;
2216 int old_state = sk->sk_state;
2218 if (old_state != TCP_CLOSE)
2219 tcp_set_state(sk, TCP_CLOSE);
2221 /* ABORT function of RFC793 */
2222 if (old_state == TCP_LISTEN) {
2223 inet_csk_listen_stop(sk);
2224 } else if (unlikely(tp->repair)) {
2225 sk->sk_err = ECONNABORTED;
2226 } else if (tcp_need_reset(old_state) ||
2227 (tp->snd_nxt != tp->write_seq &&
2228 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2229 /* The last check adjusts for discrepancy of Linux wrt. RFC
2230 * states
2232 tcp_send_active_reset(sk, gfp_any());
2233 sk->sk_err = ECONNRESET;
2234 } else if (old_state == TCP_SYN_SENT)
2235 sk->sk_err = ECONNRESET;
2237 tcp_clear_xmit_timers(sk);
2238 __skb_queue_purge(&sk->sk_receive_queue);
2239 tcp_write_queue_purge(sk);
2240 __skb_queue_purge(&tp->out_of_order_queue);
2242 inet->inet_dport = 0;
2244 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2245 inet_reset_saddr(sk);
2247 sk->sk_shutdown = 0;
2248 sock_reset_flag(sk, SOCK_DONE);
2249 tp->srtt_us = 0;
2250 tp->write_seq += tp->max_window + 2;
2251 if (tp->write_seq == 0)
2252 tp->write_seq = 1;
2253 icsk->icsk_backoff = 0;
2254 tp->snd_cwnd = 2;
2255 icsk->icsk_probes_out = 0;
2256 tp->packets_out = 0;
2257 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2258 tp->snd_cwnd_cnt = 0;
2259 tp->window_clamp = 0;
2260 tcp_set_ca_state(sk, TCP_CA_Open);
2261 tcp_clear_retrans(tp);
2262 inet_csk_delack_init(sk);
2263 tcp_init_send_head(sk);
2264 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2265 __sk_dst_reset(sk);
2267 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2269 sk->sk_error_report(sk);
2270 return err;
2272 EXPORT_SYMBOL(tcp_disconnect);
2274 static inline bool tcp_can_repair_sock(const struct sock *sk)
2276 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2277 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2280 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2282 struct tcp_repair_window opt;
2284 if (!tp->repair)
2285 return -EPERM;
2287 if (len != sizeof(opt))
2288 return -EINVAL;
2290 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2291 return -EFAULT;
2293 if (opt.max_window < opt.snd_wnd)
2294 return -EINVAL;
2296 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2297 return -EINVAL;
2299 if (after(opt.rcv_wup, tp->rcv_nxt))
2300 return -EINVAL;
2302 tp->snd_wl1 = opt.snd_wl1;
2303 tp->snd_wnd = opt.snd_wnd;
2304 tp->max_window = opt.max_window;
2306 tp->rcv_wnd = opt.rcv_wnd;
2307 tp->rcv_wup = opt.rcv_wup;
2309 return 0;
2312 static int tcp_repair_options_est(struct tcp_sock *tp,
2313 struct tcp_repair_opt __user *optbuf, unsigned int len)
2315 struct tcp_repair_opt opt;
2317 while (len >= sizeof(opt)) {
2318 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2319 return -EFAULT;
2321 optbuf++;
2322 len -= sizeof(opt);
2324 switch (opt.opt_code) {
2325 case TCPOPT_MSS:
2326 tp->rx_opt.mss_clamp = opt.opt_val;
2327 break;
2328 case TCPOPT_WINDOW:
2330 u16 snd_wscale = opt.opt_val & 0xFFFF;
2331 u16 rcv_wscale = opt.opt_val >> 16;
2333 if (snd_wscale > 14 || rcv_wscale > 14)
2334 return -EFBIG;
2336 tp->rx_opt.snd_wscale = snd_wscale;
2337 tp->rx_opt.rcv_wscale = rcv_wscale;
2338 tp->rx_opt.wscale_ok = 1;
2340 break;
2341 case TCPOPT_SACK_PERM:
2342 if (opt.opt_val != 0)
2343 return -EINVAL;
2345 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2346 if (sysctl_tcp_fack)
2347 tcp_enable_fack(tp);
2348 break;
2349 case TCPOPT_TIMESTAMP:
2350 if (opt.opt_val != 0)
2351 return -EINVAL;
2353 tp->rx_opt.tstamp_ok = 1;
2354 break;
2358 return 0;
2362 * Socket option code for TCP.
2364 static int do_tcp_setsockopt(struct sock *sk, int level,
2365 int optname, char __user *optval, unsigned int optlen)
2367 struct tcp_sock *tp = tcp_sk(sk);
2368 struct inet_connection_sock *icsk = inet_csk(sk);
2369 struct net *net = sock_net(sk);
2370 int val;
2371 int err = 0;
2373 /* These are data/string values, all the others are ints */
2374 switch (optname) {
2375 case TCP_CONGESTION: {
2376 char name[TCP_CA_NAME_MAX];
2378 if (optlen < 1)
2379 return -EINVAL;
2381 val = strncpy_from_user(name, optval,
2382 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2383 if (val < 0)
2384 return -EFAULT;
2385 name[val] = 0;
2387 lock_sock(sk);
2388 err = tcp_set_congestion_control(sk, name);
2389 release_sock(sk);
2390 return err;
2392 default:
2393 /* fallthru */
2394 break;
2397 if (optlen < sizeof(int))
2398 return -EINVAL;
2400 if (get_user(val, (int __user *)optval))
2401 return -EFAULT;
2403 lock_sock(sk);
2405 switch (optname) {
2406 case TCP_MAXSEG:
2407 /* Values greater than interface MTU won't take effect. However
2408 * at the point when this call is done we typically don't yet
2409 * know which interface is going to be used */
2410 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2411 err = -EINVAL;
2412 break;
2414 tp->rx_opt.user_mss = val;
2415 break;
2417 case TCP_NODELAY:
2418 if (val) {
2419 /* TCP_NODELAY is weaker than TCP_CORK, so that
2420 * this option on corked socket is remembered, but
2421 * it is not activated until cork is cleared.
2423 * However, when TCP_NODELAY is set we make
2424 * an explicit push, which overrides even TCP_CORK
2425 * for currently queued segments.
2427 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2428 tcp_push_pending_frames(sk);
2429 } else {
2430 tp->nonagle &= ~TCP_NAGLE_OFF;
2432 break;
2434 case TCP_THIN_LINEAR_TIMEOUTS:
2435 if (val < 0 || val > 1)
2436 err = -EINVAL;
2437 else
2438 tp->thin_lto = val;
2439 break;
2441 case TCP_THIN_DUPACK:
2442 if (val < 0 || val > 1)
2443 err = -EINVAL;
2444 else {
2445 tp->thin_dupack = val;
2446 if (tp->thin_dupack)
2447 tcp_disable_early_retrans(tp);
2449 break;
2451 case TCP_REPAIR:
2452 if (!tcp_can_repair_sock(sk))
2453 err = -EPERM;
2454 else if (val == 1) {
2455 tp->repair = 1;
2456 sk->sk_reuse = SK_FORCE_REUSE;
2457 tp->repair_queue = TCP_NO_QUEUE;
2458 } else if (val == 0) {
2459 tp->repair = 0;
2460 sk->sk_reuse = SK_NO_REUSE;
2461 tcp_send_window_probe(sk);
2462 } else
2463 err = -EINVAL;
2465 break;
2467 case TCP_REPAIR_QUEUE:
2468 if (!tp->repair)
2469 err = -EPERM;
2470 else if (val < TCP_QUEUES_NR)
2471 tp->repair_queue = val;
2472 else
2473 err = -EINVAL;
2474 break;
2476 case TCP_QUEUE_SEQ:
2477 if (sk->sk_state != TCP_CLOSE)
2478 err = -EPERM;
2479 else if (tp->repair_queue == TCP_SEND_QUEUE)
2480 tp->write_seq = val;
2481 else if (tp->repair_queue == TCP_RECV_QUEUE)
2482 tp->rcv_nxt = val;
2483 else
2484 err = -EINVAL;
2485 break;
2487 case TCP_REPAIR_OPTIONS:
2488 if (!tp->repair)
2489 err = -EINVAL;
2490 else if (sk->sk_state == TCP_ESTABLISHED)
2491 err = tcp_repair_options_est(tp,
2492 (struct tcp_repair_opt __user *)optval,
2493 optlen);
2494 else
2495 err = -EPERM;
2496 break;
2498 case TCP_CORK:
2499 /* When set indicates to always queue non-full frames.
2500 * Later the user clears this option and we transmit
2501 * any pending partial frames in the queue. This is
2502 * meant to be used alongside sendfile() to get properly
2503 * filled frames when the user (for example) must write
2504 * out headers with a write() call first and then use
2505 * sendfile to send out the data parts.
2507 * TCP_CORK can be set together with TCP_NODELAY and it is
2508 * stronger than TCP_NODELAY.
2510 if (val) {
2511 tp->nonagle |= TCP_NAGLE_CORK;
2512 } else {
2513 tp->nonagle &= ~TCP_NAGLE_CORK;
2514 if (tp->nonagle&TCP_NAGLE_OFF)
2515 tp->nonagle |= TCP_NAGLE_PUSH;
2516 tcp_push_pending_frames(sk);
2518 break;
2520 case TCP_KEEPIDLE:
2521 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2522 err = -EINVAL;
2523 else {
2524 tp->keepalive_time = val * HZ;
2525 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2526 !((1 << sk->sk_state) &
2527 (TCPF_CLOSE | TCPF_LISTEN))) {
2528 u32 elapsed = keepalive_time_elapsed(tp);
2529 if (tp->keepalive_time > elapsed)
2530 elapsed = tp->keepalive_time - elapsed;
2531 else
2532 elapsed = 0;
2533 inet_csk_reset_keepalive_timer(sk, elapsed);
2536 break;
2537 case TCP_KEEPINTVL:
2538 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2539 err = -EINVAL;
2540 else
2541 tp->keepalive_intvl = val * HZ;
2542 break;
2543 case TCP_KEEPCNT:
2544 if (val < 1 || val > MAX_TCP_KEEPCNT)
2545 err = -EINVAL;
2546 else
2547 tp->keepalive_probes = val;
2548 break;
2549 case TCP_SYNCNT:
2550 if (val < 1 || val > MAX_TCP_SYNCNT)
2551 err = -EINVAL;
2552 else
2553 icsk->icsk_syn_retries = val;
2554 break;
2556 case TCP_SAVE_SYN:
2557 if (val < 0 || val > 1)
2558 err = -EINVAL;
2559 else
2560 tp->save_syn = val;
2561 break;
2563 case TCP_LINGER2:
2564 if (val < 0)
2565 tp->linger2 = -1;
2566 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2567 tp->linger2 = 0;
2568 else
2569 tp->linger2 = val * HZ;
2570 break;
2572 case TCP_DEFER_ACCEPT:
2573 /* Translate value in seconds to number of retransmits */
2574 icsk->icsk_accept_queue.rskq_defer_accept =
2575 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2576 TCP_RTO_MAX / HZ);
2577 break;
2579 case TCP_WINDOW_CLAMP:
2580 if (!val) {
2581 if (sk->sk_state != TCP_CLOSE) {
2582 err = -EINVAL;
2583 break;
2585 tp->window_clamp = 0;
2586 } else
2587 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2588 SOCK_MIN_RCVBUF / 2 : val;
2589 break;
2591 case TCP_QUICKACK:
2592 if (!val) {
2593 icsk->icsk_ack.pingpong = 1;
2594 } else {
2595 icsk->icsk_ack.pingpong = 0;
2596 if ((1 << sk->sk_state) &
2597 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2598 inet_csk_ack_scheduled(sk)) {
2599 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2600 tcp_cleanup_rbuf(sk, 1);
2601 if (!(val & 1))
2602 icsk->icsk_ack.pingpong = 1;
2605 break;
2607 #ifdef CONFIG_TCP_MD5SIG
2608 case TCP_MD5SIG:
2609 /* Read the IP->Key mappings from userspace */
2610 err = tp->af_specific->md5_parse(sk, optval, optlen);
2611 break;
2612 #endif
2613 case TCP_USER_TIMEOUT:
2614 /* Cap the max time in ms TCP will retry or probe the window
2615 * before giving up and aborting (ETIMEDOUT) a connection.
2617 if (val < 0)
2618 err = -EINVAL;
2619 else
2620 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2621 break;
2623 case TCP_FASTOPEN:
2624 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2625 TCPF_LISTEN))) {
2626 tcp_fastopen_init_key_once(true);
2628 fastopen_queue_tune(sk, val);
2629 } else {
2630 err = -EINVAL;
2632 break;
2633 case TCP_TIMESTAMP:
2634 if (!tp->repair)
2635 err = -EPERM;
2636 else
2637 tp->tsoffset = val - tcp_time_stamp;
2638 break;
2639 case TCP_REPAIR_WINDOW:
2640 err = tcp_repair_set_window(tp, optval, optlen);
2641 break;
2642 case TCP_NOTSENT_LOWAT:
2643 tp->notsent_lowat = val;
2644 sk->sk_write_space(sk);
2645 break;
2646 default:
2647 err = -ENOPROTOOPT;
2648 break;
2651 release_sock(sk);
2652 return err;
2655 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2656 unsigned int optlen)
2658 const struct inet_connection_sock *icsk = inet_csk(sk);
2660 if (level != SOL_TCP)
2661 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2662 optval, optlen);
2663 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2665 EXPORT_SYMBOL(tcp_setsockopt);
2667 #ifdef CONFIG_COMPAT
2668 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2669 char __user *optval, unsigned int optlen)
2671 if (level != SOL_TCP)
2672 return inet_csk_compat_setsockopt(sk, level, optname,
2673 optval, optlen);
2674 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2676 EXPORT_SYMBOL(compat_tcp_setsockopt);
2677 #endif
2679 /* Return information about state of tcp endpoint in API format. */
2680 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2682 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2683 const struct inet_connection_sock *icsk = inet_csk(sk);
2684 u32 now = tcp_time_stamp;
2685 unsigned int start;
2686 int notsent_bytes;
2687 u64 rate64;
2688 u32 rate;
2690 memset(info, 0, sizeof(*info));
2691 if (sk->sk_type != SOCK_STREAM)
2692 return;
2694 info->tcpi_state = sk_state_load(sk);
2696 info->tcpi_ca_state = icsk->icsk_ca_state;
2697 info->tcpi_retransmits = icsk->icsk_retransmits;
2698 info->tcpi_probes = icsk->icsk_probes_out;
2699 info->tcpi_backoff = icsk->icsk_backoff;
2701 if (tp->rx_opt.tstamp_ok)
2702 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2703 if (tcp_is_sack(tp))
2704 info->tcpi_options |= TCPI_OPT_SACK;
2705 if (tp->rx_opt.wscale_ok) {
2706 info->tcpi_options |= TCPI_OPT_WSCALE;
2707 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2708 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2711 if (tp->ecn_flags & TCP_ECN_OK)
2712 info->tcpi_options |= TCPI_OPT_ECN;
2713 if (tp->ecn_flags & TCP_ECN_SEEN)
2714 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2715 if (tp->syn_data_acked)
2716 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2718 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2719 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2720 info->tcpi_snd_mss = tp->mss_cache;
2721 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2723 if (info->tcpi_state == TCP_LISTEN) {
2724 info->tcpi_unacked = sk->sk_ack_backlog;
2725 info->tcpi_sacked = sk->sk_max_ack_backlog;
2726 } else {
2727 info->tcpi_unacked = tp->packets_out;
2728 info->tcpi_sacked = tp->sacked_out;
2730 info->tcpi_lost = tp->lost_out;
2731 info->tcpi_retrans = tp->retrans_out;
2732 info->tcpi_fackets = tp->fackets_out;
2734 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2735 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2736 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2738 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2739 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2740 info->tcpi_rtt = tp->srtt_us >> 3;
2741 info->tcpi_rttvar = tp->mdev_us >> 2;
2742 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2743 info->tcpi_snd_cwnd = tp->snd_cwnd;
2744 info->tcpi_advmss = tp->advmss;
2745 info->tcpi_reordering = tp->reordering;
2747 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2748 info->tcpi_rcv_space = tp->rcvq_space.space;
2750 info->tcpi_total_retrans = tp->total_retrans;
2752 rate = READ_ONCE(sk->sk_pacing_rate);
2753 rate64 = rate != ~0U ? rate : ~0ULL;
2754 put_unaligned(rate64, &info->tcpi_pacing_rate);
2756 rate = READ_ONCE(sk->sk_max_pacing_rate);
2757 rate64 = rate != ~0U ? rate : ~0ULL;
2758 put_unaligned(rate64, &info->tcpi_max_pacing_rate);
2760 do {
2761 start = u64_stats_fetch_begin_irq(&tp->syncp);
2762 put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked);
2763 put_unaligned(tp->bytes_received, &info->tcpi_bytes_received);
2764 } while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2765 info->tcpi_segs_out = tp->segs_out;
2766 info->tcpi_segs_in = tp->segs_in;
2768 notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt);
2769 info->tcpi_notsent_bytes = max(0, notsent_bytes);
2771 info->tcpi_min_rtt = tcp_min_rtt(tp);
2772 info->tcpi_data_segs_in = tp->data_segs_in;
2773 info->tcpi_data_segs_out = tp->data_segs_out;
2775 EXPORT_SYMBOL_GPL(tcp_get_info);
2777 static int do_tcp_getsockopt(struct sock *sk, int level,
2778 int optname, char __user *optval, int __user *optlen)
2780 struct inet_connection_sock *icsk = inet_csk(sk);
2781 struct tcp_sock *tp = tcp_sk(sk);
2782 struct net *net = sock_net(sk);
2783 int val, len;
2785 if (get_user(len, optlen))
2786 return -EFAULT;
2788 len = min_t(unsigned int, len, sizeof(int));
2790 if (len < 0)
2791 return -EINVAL;
2793 switch (optname) {
2794 case TCP_MAXSEG:
2795 val = tp->mss_cache;
2796 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2797 val = tp->rx_opt.user_mss;
2798 if (tp->repair)
2799 val = tp->rx_opt.mss_clamp;
2800 break;
2801 case TCP_NODELAY:
2802 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2803 break;
2804 case TCP_CORK:
2805 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2806 break;
2807 case TCP_KEEPIDLE:
2808 val = keepalive_time_when(tp) / HZ;
2809 break;
2810 case TCP_KEEPINTVL:
2811 val = keepalive_intvl_when(tp) / HZ;
2812 break;
2813 case TCP_KEEPCNT:
2814 val = keepalive_probes(tp);
2815 break;
2816 case TCP_SYNCNT:
2817 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2818 break;
2819 case TCP_LINGER2:
2820 val = tp->linger2;
2821 if (val >= 0)
2822 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2823 break;
2824 case TCP_DEFER_ACCEPT:
2825 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2826 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2827 break;
2828 case TCP_WINDOW_CLAMP:
2829 val = tp->window_clamp;
2830 break;
2831 case TCP_INFO: {
2832 struct tcp_info info;
2834 if (get_user(len, optlen))
2835 return -EFAULT;
2837 tcp_get_info(sk, &info);
2839 len = min_t(unsigned int, len, sizeof(info));
2840 if (put_user(len, optlen))
2841 return -EFAULT;
2842 if (copy_to_user(optval, &info, len))
2843 return -EFAULT;
2844 return 0;
2846 case TCP_CC_INFO: {
2847 const struct tcp_congestion_ops *ca_ops;
2848 union tcp_cc_info info;
2849 size_t sz = 0;
2850 int attr;
2852 if (get_user(len, optlen))
2853 return -EFAULT;
2855 ca_ops = icsk->icsk_ca_ops;
2856 if (ca_ops && ca_ops->get_info)
2857 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2859 len = min_t(unsigned int, len, sz);
2860 if (put_user(len, optlen))
2861 return -EFAULT;
2862 if (copy_to_user(optval, &info, len))
2863 return -EFAULT;
2864 return 0;
2866 case TCP_QUICKACK:
2867 val = !icsk->icsk_ack.pingpong;
2868 break;
2870 case TCP_CONGESTION:
2871 if (get_user(len, optlen))
2872 return -EFAULT;
2873 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2874 if (put_user(len, optlen))
2875 return -EFAULT;
2876 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2877 return -EFAULT;
2878 return 0;
2880 case TCP_THIN_LINEAR_TIMEOUTS:
2881 val = tp->thin_lto;
2882 break;
2883 case TCP_THIN_DUPACK:
2884 val = tp->thin_dupack;
2885 break;
2887 case TCP_REPAIR:
2888 val = tp->repair;
2889 break;
2891 case TCP_REPAIR_QUEUE:
2892 if (tp->repair)
2893 val = tp->repair_queue;
2894 else
2895 return -EINVAL;
2896 break;
2898 case TCP_REPAIR_WINDOW: {
2899 struct tcp_repair_window opt;
2901 if (get_user(len, optlen))
2902 return -EFAULT;
2904 if (len != sizeof(opt))
2905 return -EINVAL;
2907 if (!tp->repair)
2908 return -EPERM;
2910 opt.snd_wl1 = tp->snd_wl1;
2911 opt.snd_wnd = tp->snd_wnd;
2912 opt.max_window = tp->max_window;
2913 opt.rcv_wnd = tp->rcv_wnd;
2914 opt.rcv_wup = tp->rcv_wup;
2916 if (copy_to_user(optval, &opt, len))
2917 return -EFAULT;
2918 return 0;
2920 case TCP_QUEUE_SEQ:
2921 if (tp->repair_queue == TCP_SEND_QUEUE)
2922 val = tp->write_seq;
2923 else if (tp->repair_queue == TCP_RECV_QUEUE)
2924 val = tp->rcv_nxt;
2925 else
2926 return -EINVAL;
2927 break;
2929 case TCP_USER_TIMEOUT:
2930 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2931 break;
2933 case TCP_FASTOPEN:
2934 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
2935 break;
2937 case TCP_TIMESTAMP:
2938 val = tcp_time_stamp + tp->tsoffset;
2939 break;
2940 case TCP_NOTSENT_LOWAT:
2941 val = tp->notsent_lowat;
2942 break;
2943 case TCP_SAVE_SYN:
2944 val = tp->save_syn;
2945 break;
2946 case TCP_SAVED_SYN: {
2947 if (get_user(len, optlen))
2948 return -EFAULT;
2950 lock_sock(sk);
2951 if (tp->saved_syn) {
2952 if (len < tp->saved_syn[0]) {
2953 if (put_user(tp->saved_syn[0], optlen)) {
2954 release_sock(sk);
2955 return -EFAULT;
2957 release_sock(sk);
2958 return -EINVAL;
2960 len = tp->saved_syn[0];
2961 if (put_user(len, optlen)) {
2962 release_sock(sk);
2963 return -EFAULT;
2965 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
2966 release_sock(sk);
2967 return -EFAULT;
2969 tcp_saved_syn_free(tp);
2970 release_sock(sk);
2971 } else {
2972 release_sock(sk);
2973 len = 0;
2974 if (put_user(len, optlen))
2975 return -EFAULT;
2977 return 0;
2979 default:
2980 return -ENOPROTOOPT;
2983 if (put_user(len, optlen))
2984 return -EFAULT;
2985 if (copy_to_user(optval, &val, len))
2986 return -EFAULT;
2987 return 0;
2990 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2991 int __user *optlen)
2993 struct inet_connection_sock *icsk = inet_csk(sk);
2995 if (level != SOL_TCP)
2996 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2997 optval, optlen);
2998 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3000 EXPORT_SYMBOL(tcp_getsockopt);
3002 #ifdef CONFIG_COMPAT
3003 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3004 char __user *optval, int __user *optlen)
3006 if (level != SOL_TCP)
3007 return inet_csk_compat_getsockopt(sk, level, optname,
3008 optval, optlen);
3009 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3011 EXPORT_SYMBOL(compat_tcp_getsockopt);
3012 #endif
3014 #ifdef CONFIG_TCP_MD5SIG
3015 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3016 static DEFINE_MUTEX(tcp_md5sig_mutex);
3017 static bool tcp_md5sig_pool_populated = false;
3019 static void __tcp_alloc_md5sig_pool(void)
3021 struct crypto_ahash *hash;
3022 int cpu;
3024 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3025 if (IS_ERR(hash))
3026 return;
3028 for_each_possible_cpu(cpu) {
3029 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3030 struct ahash_request *req;
3032 if (!scratch) {
3033 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3034 sizeof(struct tcphdr),
3035 GFP_KERNEL,
3036 cpu_to_node(cpu));
3037 if (!scratch)
3038 return;
3039 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3041 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3042 continue;
3044 req = ahash_request_alloc(hash, GFP_KERNEL);
3045 if (!req)
3046 return;
3048 ahash_request_set_callback(req, 0, NULL, NULL);
3050 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3052 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3053 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3055 smp_wmb();
3056 tcp_md5sig_pool_populated = true;
3059 bool tcp_alloc_md5sig_pool(void)
3061 if (unlikely(!tcp_md5sig_pool_populated)) {
3062 mutex_lock(&tcp_md5sig_mutex);
3064 if (!tcp_md5sig_pool_populated)
3065 __tcp_alloc_md5sig_pool();
3067 mutex_unlock(&tcp_md5sig_mutex);
3069 return tcp_md5sig_pool_populated;
3071 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3075 * tcp_get_md5sig_pool - get md5sig_pool for this user
3077 * We use percpu structure, so if we succeed, we exit with preemption
3078 * and BH disabled, to make sure another thread or softirq handling
3079 * wont try to get same context.
3081 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3083 local_bh_disable();
3085 if (tcp_md5sig_pool_populated) {
3086 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3087 smp_rmb();
3088 return this_cpu_ptr(&tcp_md5sig_pool);
3090 local_bh_enable();
3091 return NULL;
3093 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3095 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3096 const struct tcphdr *th)
3098 struct scatterlist sg;
3099 struct tcphdr hdr;
3101 /* We are not allowed to change tcphdr, make a local copy */
3102 memcpy(&hdr, th, sizeof(hdr));
3103 hdr.check = 0;
3105 /* options aren't included in the hash */
3106 sg_init_one(&sg, &hdr, sizeof(hdr));
3107 ahash_request_set_crypt(hp->md5_req, &sg, NULL, sizeof(hdr));
3108 return crypto_ahash_update(hp->md5_req);
3110 EXPORT_SYMBOL(tcp_md5_hash_header);
3112 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3113 const struct sk_buff *skb, unsigned int header_len)
3115 struct scatterlist sg;
3116 const struct tcphdr *tp = tcp_hdr(skb);
3117 struct ahash_request *req = hp->md5_req;
3118 unsigned int i;
3119 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3120 skb_headlen(skb) - header_len : 0;
3121 const struct skb_shared_info *shi = skb_shinfo(skb);
3122 struct sk_buff *frag_iter;
3124 sg_init_table(&sg, 1);
3126 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3127 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3128 if (crypto_ahash_update(req))
3129 return 1;
3131 for (i = 0; i < shi->nr_frags; ++i) {
3132 const struct skb_frag_struct *f = &shi->frags[i];
3133 unsigned int offset = f->page_offset;
3134 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3136 sg_set_page(&sg, page, skb_frag_size(f),
3137 offset_in_page(offset));
3138 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3139 if (crypto_ahash_update(req))
3140 return 1;
3143 skb_walk_frags(skb, frag_iter)
3144 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3145 return 1;
3147 return 0;
3149 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3151 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3153 struct scatterlist sg;
3155 sg_init_one(&sg, key->key, key->keylen);
3156 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3157 return crypto_ahash_update(hp->md5_req);
3159 EXPORT_SYMBOL(tcp_md5_hash_key);
3161 #endif
3163 void tcp_done(struct sock *sk)
3165 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3167 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3168 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3170 tcp_set_state(sk, TCP_CLOSE);
3171 tcp_clear_xmit_timers(sk);
3172 if (req)
3173 reqsk_fastopen_remove(sk, req, false);
3175 sk->sk_shutdown = SHUTDOWN_MASK;
3177 if (!sock_flag(sk, SOCK_DEAD))
3178 sk->sk_state_change(sk);
3179 else
3180 inet_csk_destroy_sock(sk);
3182 EXPORT_SYMBOL_GPL(tcp_done);
3184 int tcp_abort(struct sock *sk, int err)
3186 if (!sk_fullsock(sk)) {
3187 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3188 struct request_sock *req = inet_reqsk(sk);
3190 local_bh_disable();
3191 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3192 req);
3193 local_bh_enable();
3194 return 0;
3196 return -EOPNOTSUPP;
3199 /* Don't race with userspace socket closes such as tcp_close. */
3200 lock_sock(sk);
3202 if (sk->sk_state == TCP_LISTEN) {
3203 tcp_set_state(sk, TCP_CLOSE);
3204 inet_csk_listen_stop(sk);
3207 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3208 local_bh_disable();
3209 bh_lock_sock(sk);
3211 if (!sock_flag(sk, SOCK_DEAD)) {
3212 sk->sk_err = err;
3213 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3214 smp_wmb();
3215 sk->sk_error_report(sk);
3216 if (tcp_need_reset(sk->sk_state))
3217 tcp_send_active_reset(sk, GFP_ATOMIC);
3218 tcp_done(sk);
3221 bh_unlock_sock(sk);
3222 local_bh_enable();
3223 release_sock(sk);
3224 return 0;
3226 EXPORT_SYMBOL_GPL(tcp_abort);
3228 extern struct tcp_congestion_ops tcp_reno;
3230 static __initdata unsigned long thash_entries;
3231 static int __init set_thash_entries(char *str)
3233 ssize_t ret;
3235 if (!str)
3236 return 0;
3238 ret = kstrtoul(str, 0, &thash_entries);
3239 if (ret)
3240 return 0;
3242 return 1;
3244 __setup("thash_entries=", set_thash_entries);
3246 static void __init tcp_init_mem(void)
3248 unsigned long limit = nr_free_buffer_pages() / 16;
3250 limit = max(limit, 128UL);
3251 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3252 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3253 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3256 void __init tcp_init(void)
3258 unsigned long limit;
3259 int max_rshare, max_wshare, cnt;
3260 unsigned int i;
3262 sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3264 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3265 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3266 tcp_hashinfo.bind_bucket_cachep =
3267 kmem_cache_create("tcp_bind_bucket",
3268 sizeof(struct inet_bind_bucket), 0,
3269 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3271 /* Size and allocate the main established and bind bucket
3272 * hash tables.
3274 * The methodology is similar to that of the buffer cache.
3276 tcp_hashinfo.ehash =
3277 alloc_large_system_hash("TCP established",
3278 sizeof(struct inet_ehash_bucket),
3279 thash_entries,
3280 17, /* one slot per 128 KB of memory */
3282 NULL,
3283 &tcp_hashinfo.ehash_mask,
3285 thash_entries ? 0 : 512 * 1024);
3286 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3287 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3289 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3290 panic("TCP: failed to alloc ehash_locks");
3291 tcp_hashinfo.bhash =
3292 alloc_large_system_hash("TCP bind",
3293 sizeof(struct inet_bind_hashbucket),
3294 tcp_hashinfo.ehash_mask + 1,
3295 17, /* one slot per 128 KB of memory */
3297 &tcp_hashinfo.bhash_size,
3298 NULL,
3300 64 * 1024);
3301 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3302 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3303 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3304 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3308 cnt = tcp_hashinfo.ehash_mask + 1;
3310 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3311 sysctl_tcp_max_orphans = cnt / 2;
3312 sysctl_max_syn_backlog = max(128, cnt / 256);
3314 tcp_init_mem();
3315 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3316 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3317 max_wshare = min(4UL*1024*1024, limit);
3318 max_rshare = min(6UL*1024*1024, limit);
3320 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3321 sysctl_tcp_wmem[1] = 16*1024;
3322 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3324 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3325 sysctl_tcp_rmem[1] = 87380;
3326 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3328 pr_info("Hash tables configured (established %u bind %u)\n",
3329 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3331 tcp_metrics_init();
3332 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3333 tcp_tasklet_init();