drm/i915: Mark i915_hpd_poll_init_work as static
[linux/fpc-iii.git] / fs / f2fs / data.c
blobd64d2a515cb2ce1d162b8fd9c0c0e0e5e68a7fbb
1 /*
2 * fs/f2fs/data.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/mm.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "trace.h"
30 #include <trace/events/f2fs.h>
32 static void f2fs_read_end_io(struct bio *bio)
34 struct bio_vec *bvec;
35 int i;
37 if (f2fs_bio_encrypted(bio)) {
38 if (bio->bi_error) {
39 fscrypt_release_ctx(bio->bi_private);
40 } else {
41 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
42 return;
46 bio_for_each_segment_all(bvec, bio, i) {
47 struct page *page = bvec->bv_page;
49 if (!bio->bi_error) {
50 if (!PageUptodate(page))
51 SetPageUptodate(page);
52 } else {
53 ClearPageUptodate(page);
54 SetPageError(page);
56 unlock_page(page);
58 bio_put(bio);
61 static void f2fs_write_end_io(struct bio *bio)
63 struct f2fs_sb_info *sbi = bio->bi_private;
64 struct bio_vec *bvec;
65 int i;
67 bio_for_each_segment_all(bvec, bio, i) {
68 struct page *page = bvec->bv_page;
70 fscrypt_pullback_bio_page(&page, true);
72 if (unlikely(bio->bi_error)) {
73 set_bit(AS_EIO, &page->mapping->flags);
74 f2fs_stop_checkpoint(sbi, true);
76 end_page_writeback(page);
78 if (atomic_dec_and_test(&sbi->nr_wb_bios) &&
79 wq_has_sleeper(&sbi->cp_wait))
80 wake_up(&sbi->cp_wait);
82 bio_put(bio);
86 * Low-level block read/write IO operations.
88 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
89 int npages, bool is_read)
91 struct bio *bio;
93 bio = f2fs_bio_alloc(npages);
95 bio->bi_bdev = sbi->sb->s_bdev;
96 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
97 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
98 bio->bi_private = is_read ? NULL : sbi;
100 return bio;
103 static inline void __submit_bio(struct f2fs_sb_info *sbi,
104 struct bio *bio, enum page_type type)
106 if (!is_read_io(bio_op(bio))) {
107 atomic_inc(&sbi->nr_wb_bios);
108 if (f2fs_sb_mounted_hmsmr(sbi->sb) &&
109 current->plug && (type == DATA || type == NODE))
110 blk_finish_plug(current->plug);
112 submit_bio(bio);
115 static void __submit_merged_bio(struct f2fs_bio_info *io)
117 struct f2fs_io_info *fio = &io->fio;
119 if (!io->bio)
120 return;
122 if (is_read_io(fio->op))
123 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
124 else
125 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
127 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
129 __submit_bio(io->sbi, io->bio, fio->type);
130 io->bio = NULL;
133 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
134 struct page *page, nid_t ino)
136 struct bio_vec *bvec;
137 struct page *target;
138 int i;
140 if (!io->bio)
141 return false;
143 if (!inode && !page && !ino)
144 return true;
146 bio_for_each_segment_all(bvec, io->bio, i) {
148 if (bvec->bv_page->mapping)
149 target = bvec->bv_page;
150 else
151 target = fscrypt_control_page(bvec->bv_page);
153 if (inode && inode == target->mapping->host)
154 return true;
155 if (page && page == target)
156 return true;
157 if (ino && ino == ino_of_node(target))
158 return true;
161 return false;
164 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
165 struct page *page, nid_t ino,
166 enum page_type type)
168 enum page_type btype = PAGE_TYPE_OF_BIO(type);
169 struct f2fs_bio_info *io = &sbi->write_io[btype];
170 bool ret;
172 down_read(&io->io_rwsem);
173 ret = __has_merged_page(io, inode, page, ino);
174 up_read(&io->io_rwsem);
175 return ret;
178 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
179 struct inode *inode, struct page *page,
180 nid_t ino, enum page_type type, int rw)
182 enum page_type btype = PAGE_TYPE_OF_BIO(type);
183 struct f2fs_bio_info *io;
185 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
187 down_write(&io->io_rwsem);
189 if (!__has_merged_page(io, inode, page, ino))
190 goto out;
192 /* change META to META_FLUSH in the checkpoint procedure */
193 if (type >= META_FLUSH) {
194 io->fio.type = META_FLUSH;
195 io->fio.op = REQ_OP_WRITE;
196 if (test_opt(sbi, NOBARRIER))
197 io->fio.op_flags = WRITE_FLUSH | REQ_META | REQ_PRIO;
198 else
199 io->fio.op_flags = WRITE_FLUSH_FUA | REQ_META |
200 REQ_PRIO;
202 __submit_merged_bio(io);
203 out:
204 up_write(&io->io_rwsem);
207 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
208 int rw)
210 __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
213 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
214 struct inode *inode, struct page *page,
215 nid_t ino, enum page_type type, int rw)
217 if (has_merged_page(sbi, inode, page, ino, type))
218 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
221 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
223 f2fs_submit_merged_bio(sbi, DATA, WRITE);
224 f2fs_submit_merged_bio(sbi, NODE, WRITE);
225 f2fs_submit_merged_bio(sbi, META, WRITE);
229 * Fill the locked page with data located in the block address.
230 * Return unlocked page.
232 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
234 struct bio *bio;
235 struct page *page = fio->encrypted_page ?
236 fio->encrypted_page : fio->page;
238 trace_f2fs_submit_page_bio(page, fio);
239 f2fs_trace_ios(fio, 0);
241 /* Allocate a new bio */
242 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
244 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
245 bio_put(bio);
246 return -EFAULT;
248 bio_set_op_attrs(bio, fio->op, fio->op_flags);
250 __submit_bio(fio->sbi, bio, fio->type);
251 return 0;
254 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
256 struct f2fs_sb_info *sbi = fio->sbi;
257 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
258 struct f2fs_bio_info *io;
259 bool is_read = is_read_io(fio->op);
260 struct page *bio_page;
262 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
264 if (fio->old_blkaddr != NEW_ADDR)
265 verify_block_addr(sbi, fio->old_blkaddr);
266 verify_block_addr(sbi, fio->new_blkaddr);
268 down_write(&io->io_rwsem);
270 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
271 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags)))
272 __submit_merged_bio(io);
273 alloc_new:
274 if (io->bio == NULL) {
275 int bio_blocks = MAX_BIO_BLOCKS(sbi);
277 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
278 bio_blocks, is_read);
279 io->fio = *fio;
282 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
284 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
285 PAGE_SIZE) {
286 __submit_merged_bio(io);
287 goto alloc_new;
290 io->last_block_in_bio = fio->new_blkaddr;
291 f2fs_trace_ios(fio, 0);
293 up_write(&io->io_rwsem);
294 trace_f2fs_submit_page_mbio(fio->page, fio);
297 static void __set_data_blkaddr(struct dnode_of_data *dn)
299 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
300 __le32 *addr_array;
302 /* Get physical address of data block */
303 addr_array = blkaddr_in_node(rn);
304 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
308 * Lock ordering for the change of data block address:
309 * ->data_page
310 * ->node_page
311 * update block addresses in the node page
313 void set_data_blkaddr(struct dnode_of_data *dn)
315 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
316 __set_data_blkaddr(dn);
317 if (set_page_dirty(dn->node_page))
318 dn->node_changed = true;
321 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
323 dn->data_blkaddr = blkaddr;
324 set_data_blkaddr(dn);
325 f2fs_update_extent_cache(dn);
328 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
329 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
331 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
333 if (!count)
334 return 0;
336 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
337 return -EPERM;
338 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
339 return -ENOSPC;
341 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
342 dn->ofs_in_node, count);
344 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
346 for (; count > 0; dn->ofs_in_node++) {
347 block_t blkaddr =
348 datablock_addr(dn->node_page, dn->ofs_in_node);
349 if (blkaddr == NULL_ADDR) {
350 dn->data_blkaddr = NEW_ADDR;
351 __set_data_blkaddr(dn);
352 count--;
356 if (set_page_dirty(dn->node_page))
357 dn->node_changed = true;
358 return 0;
361 /* Should keep dn->ofs_in_node unchanged */
362 int reserve_new_block(struct dnode_of_data *dn)
364 unsigned int ofs_in_node = dn->ofs_in_node;
365 int ret;
367 ret = reserve_new_blocks(dn, 1);
368 dn->ofs_in_node = ofs_in_node;
369 return ret;
372 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
374 bool need_put = dn->inode_page ? false : true;
375 int err;
377 err = get_dnode_of_data(dn, index, ALLOC_NODE);
378 if (err)
379 return err;
381 if (dn->data_blkaddr == NULL_ADDR)
382 err = reserve_new_block(dn);
383 if (err || need_put)
384 f2fs_put_dnode(dn);
385 return err;
388 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
390 struct extent_info ei;
391 struct inode *inode = dn->inode;
393 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
394 dn->data_blkaddr = ei.blk + index - ei.fofs;
395 return 0;
398 return f2fs_reserve_block(dn, index);
401 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
402 int op_flags, bool for_write)
404 struct address_space *mapping = inode->i_mapping;
405 struct dnode_of_data dn;
406 struct page *page;
407 struct extent_info ei;
408 int err;
409 struct f2fs_io_info fio = {
410 .sbi = F2FS_I_SB(inode),
411 .type = DATA,
412 .op = REQ_OP_READ,
413 .op_flags = op_flags,
414 .encrypted_page = NULL,
417 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
418 return read_mapping_page(mapping, index, NULL);
420 page = f2fs_grab_cache_page(mapping, index, for_write);
421 if (!page)
422 return ERR_PTR(-ENOMEM);
424 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
425 dn.data_blkaddr = ei.blk + index - ei.fofs;
426 goto got_it;
429 set_new_dnode(&dn, inode, NULL, NULL, 0);
430 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
431 if (err)
432 goto put_err;
433 f2fs_put_dnode(&dn);
435 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
436 err = -ENOENT;
437 goto put_err;
439 got_it:
440 if (PageUptodate(page)) {
441 unlock_page(page);
442 return page;
446 * A new dentry page is allocated but not able to be written, since its
447 * new inode page couldn't be allocated due to -ENOSPC.
448 * In such the case, its blkaddr can be remained as NEW_ADDR.
449 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
451 if (dn.data_blkaddr == NEW_ADDR) {
452 zero_user_segment(page, 0, PAGE_SIZE);
453 if (!PageUptodate(page))
454 SetPageUptodate(page);
455 unlock_page(page);
456 return page;
459 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
460 fio.page = page;
461 err = f2fs_submit_page_bio(&fio);
462 if (err)
463 goto put_err;
464 return page;
466 put_err:
467 f2fs_put_page(page, 1);
468 return ERR_PTR(err);
471 struct page *find_data_page(struct inode *inode, pgoff_t index)
473 struct address_space *mapping = inode->i_mapping;
474 struct page *page;
476 page = find_get_page(mapping, index);
477 if (page && PageUptodate(page))
478 return page;
479 f2fs_put_page(page, 0);
481 page = get_read_data_page(inode, index, READ_SYNC, false);
482 if (IS_ERR(page))
483 return page;
485 if (PageUptodate(page))
486 return page;
488 wait_on_page_locked(page);
489 if (unlikely(!PageUptodate(page))) {
490 f2fs_put_page(page, 0);
491 return ERR_PTR(-EIO);
493 return page;
497 * If it tries to access a hole, return an error.
498 * Because, the callers, functions in dir.c and GC, should be able to know
499 * whether this page exists or not.
501 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
502 bool for_write)
504 struct address_space *mapping = inode->i_mapping;
505 struct page *page;
506 repeat:
507 page = get_read_data_page(inode, index, READ_SYNC, for_write);
508 if (IS_ERR(page))
509 return page;
511 /* wait for read completion */
512 lock_page(page);
513 if (unlikely(page->mapping != mapping)) {
514 f2fs_put_page(page, 1);
515 goto repeat;
517 if (unlikely(!PageUptodate(page))) {
518 f2fs_put_page(page, 1);
519 return ERR_PTR(-EIO);
521 return page;
525 * Caller ensures that this data page is never allocated.
526 * A new zero-filled data page is allocated in the page cache.
528 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
529 * f2fs_unlock_op().
530 * Note that, ipage is set only by make_empty_dir, and if any error occur,
531 * ipage should be released by this function.
533 struct page *get_new_data_page(struct inode *inode,
534 struct page *ipage, pgoff_t index, bool new_i_size)
536 struct address_space *mapping = inode->i_mapping;
537 struct page *page;
538 struct dnode_of_data dn;
539 int err;
541 page = f2fs_grab_cache_page(mapping, index, true);
542 if (!page) {
544 * before exiting, we should make sure ipage will be released
545 * if any error occur.
547 f2fs_put_page(ipage, 1);
548 return ERR_PTR(-ENOMEM);
551 set_new_dnode(&dn, inode, ipage, NULL, 0);
552 err = f2fs_reserve_block(&dn, index);
553 if (err) {
554 f2fs_put_page(page, 1);
555 return ERR_PTR(err);
557 if (!ipage)
558 f2fs_put_dnode(&dn);
560 if (PageUptodate(page))
561 goto got_it;
563 if (dn.data_blkaddr == NEW_ADDR) {
564 zero_user_segment(page, 0, PAGE_SIZE);
565 if (!PageUptodate(page))
566 SetPageUptodate(page);
567 } else {
568 f2fs_put_page(page, 1);
570 /* if ipage exists, blkaddr should be NEW_ADDR */
571 f2fs_bug_on(F2FS_I_SB(inode), ipage);
572 page = get_lock_data_page(inode, index, true);
573 if (IS_ERR(page))
574 return page;
576 got_it:
577 if (new_i_size && i_size_read(inode) <
578 ((loff_t)(index + 1) << PAGE_SHIFT))
579 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
580 return page;
583 static int __allocate_data_block(struct dnode_of_data *dn)
585 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
586 struct f2fs_summary sum;
587 struct node_info ni;
588 int seg = CURSEG_WARM_DATA;
589 pgoff_t fofs;
590 blkcnt_t count = 1;
592 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
593 return -EPERM;
595 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
596 if (dn->data_blkaddr == NEW_ADDR)
597 goto alloc;
599 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
600 return -ENOSPC;
602 alloc:
603 get_node_info(sbi, dn->nid, &ni);
604 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
606 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
607 seg = CURSEG_DIRECT_IO;
609 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
610 &sum, seg);
611 set_data_blkaddr(dn);
613 /* update i_size */
614 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
615 dn->ofs_in_node;
616 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
617 f2fs_i_size_write(dn->inode,
618 ((loff_t)(fofs + 1) << PAGE_SHIFT));
619 return 0;
622 ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
624 struct inode *inode = file_inode(iocb->ki_filp);
625 struct f2fs_map_blocks map;
626 ssize_t ret = 0;
628 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
629 map.m_len = F2FS_BYTES_TO_BLK(iov_iter_count(from));
630 map.m_next_pgofs = NULL;
632 if (f2fs_encrypted_inode(inode))
633 return 0;
635 if (iocb->ki_flags & IOCB_DIRECT) {
636 ret = f2fs_convert_inline_inode(inode);
637 if (ret)
638 return ret;
639 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
641 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
642 ret = f2fs_convert_inline_inode(inode);
643 if (ret)
644 return ret;
646 if (!f2fs_has_inline_data(inode))
647 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
648 return ret;
652 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
653 * f2fs_map_blocks structure.
654 * If original data blocks are allocated, then give them to blockdev.
655 * Otherwise,
656 * a. preallocate requested block addresses
657 * b. do not use extent cache for better performance
658 * c. give the block addresses to blockdev
660 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
661 int create, int flag)
663 unsigned int maxblocks = map->m_len;
664 struct dnode_of_data dn;
665 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
666 int mode = create ? ALLOC_NODE : LOOKUP_NODE;
667 pgoff_t pgofs, end_offset, end;
668 int err = 0, ofs = 1;
669 unsigned int ofs_in_node, last_ofs_in_node;
670 blkcnt_t prealloc;
671 struct extent_info ei;
672 bool allocated = false;
673 block_t blkaddr;
675 map->m_len = 0;
676 map->m_flags = 0;
678 /* it only supports block size == page size */
679 pgofs = (pgoff_t)map->m_lblk;
680 end = pgofs + maxblocks;
682 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
683 map->m_pblk = ei.blk + pgofs - ei.fofs;
684 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
685 map->m_flags = F2FS_MAP_MAPPED;
686 goto out;
689 next_dnode:
690 if (create)
691 f2fs_lock_op(sbi);
693 /* When reading holes, we need its node page */
694 set_new_dnode(&dn, inode, NULL, NULL, 0);
695 err = get_dnode_of_data(&dn, pgofs, mode);
696 if (err) {
697 if (flag == F2FS_GET_BLOCK_BMAP)
698 map->m_pblk = 0;
699 if (err == -ENOENT) {
700 err = 0;
701 if (map->m_next_pgofs)
702 *map->m_next_pgofs =
703 get_next_page_offset(&dn, pgofs);
705 goto unlock_out;
708 prealloc = 0;
709 ofs_in_node = dn.ofs_in_node;
710 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
712 next_block:
713 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
715 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
716 if (create) {
717 if (unlikely(f2fs_cp_error(sbi))) {
718 err = -EIO;
719 goto sync_out;
721 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
722 if (blkaddr == NULL_ADDR) {
723 prealloc++;
724 last_ofs_in_node = dn.ofs_in_node;
726 } else {
727 err = __allocate_data_block(&dn);
728 if (!err) {
729 set_inode_flag(inode, FI_APPEND_WRITE);
730 allocated = true;
733 if (err)
734 goto sync_out;
735 map->m_flags = F2FS_MAP_NEW;
736 blkaddr = dn.data_blkaddr;
737 } else {
738 if (flag == F2FS_GET_BLOCK_BMAP) {
739 map->m_pblk = 0;
740 goto sync_out;
742 if (flag == F2FS_GET_BLOCK_FIEMAP &&
743 blkaddr == NULL_ADDR) {
744 if (map->m_next_pgofs)
745 *map->m_next_pgofs = pgofs + 1;
747 if (flag != F2FS_GET_BLOCK_FIEMAP ||
748 blkaddr != NEW_ADDR)
749 goto sync_out;
753 if (flag == F2FS_GET_BLOCK_PRE_AIO)
754 goto skip;
756 if (map->m_len == 0) {
757 /* preallocated unwritten block should be mapped for fiemap. */
758 if (blkaddr == NEW_ADDR)
759 map->m_flags |= F2FS_MAP_UNWRITTEN;
760 map->m_flags |= F2FS_MAP_MAPPED;
762 map->m_pblk = blkaddr;
763 map->m_len = 1;
764 } else if ((map->m_pblk != NEW_ADDR &&
765 blkaddr == (map->m_pblk + ofs)) ||
766 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
767 flag == F2FS_GET_BLOCK_PRE_DIO) {
768 ofs++;
769 map->m_len++;
770 } else {
771 goto sync_out;
774 skip:
775 dn.ofs_in_node++;
776 pgofs++;
778 /* preallocate blocks in batch for one dnode page */
779 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
780 (pgofs == end || dn.ofs_in_node == end_offset)) {
782 dn.ofs_in_node = ofs_in_node;
783 err = reserve_new_blocks(&dn, prealloc);
784 if (err)
785 goto sync_out;
787 map->m_len += dn.ofs_in_node - ofs_in_node;
788 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
789 err = -ENOSPC;
790 goto sync_out;
792 dn.ofs_in_node = end_offset;
795 if (pgofs >= end)
796 goto sync_out;
797 else if (dn.ofs_in_node < end_offset)
798 goto next_block;
800 f2fs_put_dnode(&dn);
802 if (create) {
803 f2fs_unlock_op(sbi);
804 f2fs_balance_fs(sbi, allocated);
806 allocated = false;
807 goto next_dnode;
809 sync_out:
810 f2fs_put_dnode(&dn);
811 unlock_out:
812 if (create) {
813 f2fs_unlock_op(sbi);
814 f2fs_balance_fs(sbi, allocated);
816 out:
817 trace_f2fs_map_blocks(inode, map, err);
818 return err;
821 static int __get_data_block(struct inode *inode, sector_t iblock,
822 struct buffer_head *bh, int create, int flag,
823 pgoff_t *next_pgofs)
825 struct f2fs_map_blocks map;
826 int ret;
828 map.m_lblk = iblock;
829 map.m_len = bh->b_size >> inode->i_blkbits;
830 map.m_next_pgofs = next_pgofs;
832 ret = f2fs_map_blocks(inode, &map, create, flag);
833 if (!ret) {
834 map_bh(bh, inode->i_sb, map.m_pblk);
835 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
836 bh->b_size = map.m_len << inode->i_blkbits;
838 return ret;
841 static int get_data_block(struct inode *inode, sector_t iblock,
842 struct buffer_head *bh_result, int create, int flag,
843 pgoff_t *next_pgofs)
845 return __get_data_block(inode, iblock, bh_result, create,
846 flag, next_pgofs);
849 static int get_data_block_dio(struct inode *inode, sector_t iblock,
850 struct buffer_head *bh_result, int create)
852 return __get_data_block(inode, iblock, bh_result, create,
853 F2FS_GET_BLOCK_DIO, NULL);
856 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
857 struct buffer_head *bh_result, int create)
859 /* Block number less than F2FS MAX BLOCKS */
860 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
861 return -EFBIG;
863 return __get_data_block(inode, iblock, bh_result, create,
864 F2FS_GET_BLOCK_BMAP, NULL);
867 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
869 return (offset >> inode->i_blkbits);
872 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
874 return (blk << inode->i_blkbits);
877 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
878 u64 start, u64 len)
880 struct buffer_head map_bh;
881 sector_t start_blk, last_blk;
882 pgoff_t next_pgofs;
883 loff_t isize;
884 u64 logical = 0, phys = 0, size = 0;
885 u32 flags = 0;
886 int ret = 0;
888 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
889 if (ret)
890 return ret;
892 if (f2fs_has_inline_data(inode)) {
893 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
894 if (ret != -EAGAIN)
895 return ret;
898 inode_lock(inode);
900 isize = i_size_read(inode);
901 if (start >= isize)
902 goto out;
904 if (start + len > isize)
905 len = isize - start;
907 if (logical_to_blk(inode, len) == 0)
908 len = blk_to_logical(inode, 1);
910 start_blk = logical_to_blk(inode, start);
911 last_blk = logical_to_blk(inode, start + len - 1);
913 next:
914 memset(&map_bh, 0, sizeof(struct buffer_head));
915 map_bh.b_size = len;
917 ret = get_data_block(inode, start_blk, &map_bh, 0,
918 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
919 if (ret)
920 goto out;
922 /* HOLE */
923 if (!buffer_mapped(&map_bh)) {
924 start_blk = next_pgofs;
925 /* Go through holes util pass the EOF */
926 if (blk_to_logical(inode, start_blk) < isize)
927 goto prep_next;
928 /* Found a hole beyond isize means no more extents.
929 * Note that the premise is that filesystems don't
930 * punch holes beyond isize and keep size unchanged.
932 flags |= FIEMAP_EXTENT_LAST;
935 if (size) {
936 if (f2fs_encrypted_inode(inode))
937 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
939 ret = fiemap_fill_next_extent(fieinfo, logical,
940 phys, size, flags);
943 if (start_blk > last_blk || ret)
944 goto out;
946 logical = blk_to_logical(inode, start_blk);
947 phys = blk_to_logical(inode, map_bh.b_blocknr);
948 size = map_bh.b_size;
949 flags = 0;
950 if (buffer_unwritten(&map_bh))
951 flags = FIEMAP_EXTENT_UNWRITTEN;
953 start_blk += logical_to_blk(inode, size);
955 prep_next:
956 cond_resched();
957 if (fatal_signal_pending(current))
958 ret = -EINTR;
959 else
960 goto next;
961 out:
962 if (ret == 1)
963 ret = 0;
965 inode_unlock(inode);
966 return ret;
969 struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
970 unsigned nr_pages)
972 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
973 struct fscrypt_ctx *ctx = NULL;
974 struct block_device *bdev = sbi->sb->s_bdev;
975 struct bio *bio;
977 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
978 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
979 if (IS_ERR(ctx))
980 return ERR_CAST(ctx);
982 /* wait the page to be moved by cleaning */
983 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
986 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
987 if (!bio) {
988 if (ctx)
989 fscrypt_release_ctx(ctx);
990 return ERR_PTR(-ENOMEM);
992 bio->bi_bdev = bdev;
993 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blkaddr);
994 bio->bi_end_io = f2fs_read_end_io;
995 bio->bi_private = ctx;
997 return bio;
1001 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1002 * Major change was from block_size == page_size in f2fs by default.
1004 static int f2fs_mpage_readpages(struct address_space *mapping,
1005 struct list_head *pages, struct page *page,
1006 unsigned nr_pages)
1008 struct bio *bio = NULL;
1009 unsigned page_idx;
1010 sector_t last_block_in_bio = 0;
1011 struct inode *inode = mapping->host;
1012 const unsigned blkbits = inode->i_blkbits;
1013 const unsigned blocksize = 1 << blkbits;
1014 sector_t block_in_file;
1015 sector_t last_block;
1016 sector_t last_block_in_file;
1017 sector_t block_nr;
1018 struct f2fs_map_blocks map;
1020 map.m_pblk = 0;
1021 map.m_lblk = 0;
1022 map.m_len = 0;
1023 map.m_flags = 0;
1024 map.m_next_pgofs = NULL;
1026 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1028 prefetchw(&page->flags);
1029 if (pages) {
1030 page = list_entry(pages->prev, struct page, lru);
1031 list_del(&page->lru);
1032 if (add_to_page_cache_lru(page, mapping,
1033 page->index,
1034 readahead_gfp_mask(mapping)))
1035 goto next_page;
1038 block_in_file = (sector_t)page->index;
1039 last_block = block_in_file + nr_pages;
1040 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1041 blkbits;
1042 if (last_block > last_block_in_file)
1043 last_block = last_block_in_file;
1046 * Map blocks using the previous result first.
1048 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1049 block_in_file > map.m_lblk &&
1050 block_in_file < (map.m_lblk + map.m_len))
1051 goto got_it;
1054 * Then do more f2fs_map_blocks() calls until we are
1055 * done with this page.
1057 map.m_flags = 0;
1059 if (block_in_file < last_block) {
1060 map.m_lblk = block_in_file;
1061 map.m_len = last_block - block_in_file;
1063 if (f2fs_map_blocks(inode, &map, 0,
1064 F2FS_GET_BLOCK_READ))
1065 goto set_error_page;
1067 got_it:
1068 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1069 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1070 SetPageMappedToDisk(page);
1072 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1073 SetPageUptodate(page);
1074 goto confused;
1076 } else {
1077 zero_user_segment(page, 0, PAGE_SIZE);
1078 if (!PageUptodate(page))
1079 SetPageUptodate(page);
1080 unlock_page(page);
1081 goto next_page;
1085 * This page will go to BIO. Do we need to send this
1086 * BIO off first?
1088 if (bio && (last_block_in_bio != block_nr - 1)) {
1089 submit_and_realloc:
1090 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1091 bio = NULL;
1093 if (bio == NULL) {
1094 bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1095 if (IS_ERR(bio)) {
1096 bio = NULL;
1097 goto set_error_page;
1099 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1102 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1103 goto submit_and_realloc;
1105 last_block_in_bio = block_nr;
1106 goto next_page;
1107 set_error_page:
1108 SetPageError(page);
1109 zero_user_segment(page, 0, PAGE_SIZE);
1110 unlock_page(page);
1111 goto next_page;
1112 confused:
1113 if (bio) {
1114 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1115 bio = NULL;
1117 unlock_page(page);
1118 next_page:
1119 if (pages)
1120 put_page(page);
1122 BUG_ON(pages && !list_empty(pages));
1123 if (bio)
1124 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1125 return 0;
1128 static int f2fs_read_data_page(struct file *file, struct page *page)
1130 struct inode *inode = page->mapping->host;
1131 int ret = -EAGAIN;
1133 trace_f2fs_readpage(page, DATA);
1135 /* If the file has inline data, try to read it directly */
1136 if (f2fs_has_inline_data(inode))
1137 ret = f2fs_read_inline_data(inode, page);
1138 if (ret == -EAGAIN)
1139 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1140 return ret;
1143 static int f2fs_read_data_pages(struct file *file,
1144 struct address_space *mapping,
1145 struct list_head *pages, unsigned nr_pages)
1147 struct inode *inode = file->f_mapping->host;
1148 struct page *page = list_entry(pages->prev, struct page, lru);
1150 trace_f2fs_readpages(inode, page, nr_pages);
1152 /* If the file has inline data, skip readpages */
1153 if (f2fs_has_inline_data(inode))
1154 return 0;
1156 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1159 int do_write_data_page(struct f2fs_io_info *fio)
1161 struct page *page = fio->page;
1162 struct inode *inode = page->mapping->host;
1163 struct dnode_of_data dn;
1164 int err = 0;
1166 set_new_dnode(&dn, inode, NULL, NULL, 0);
1167 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1168 if (err)
1169 return err;
1171 fio->old_blkaddr = dn.data_blkaddr;
1173 /* This page is already truncated */
1174 if (fio->old_blkaddr == NULL_ADDR) {
1175 ClearPageUptodate(page);
1176 goto out_writepage;
1179 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1180 gfp_t gfp_flags = GFP_NOFS;
1182 /* wait for GCed encrypted page writeback */
1183 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1184 fio->old_blkaddr);
1185 retry_encrypt:
1186 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1187 gfp_flags);
1188 if (IS_ERR(fio->encrypted_page)) {
1189 err = PTR_ERR(fio->encrypted_page);
1190 if (err == -ENOMEM) {
1191 /* flush pending ios and wait for a while */
1192 f2fs_flush_merged_bios(F2FS_I_SB(inode));
1193 congestion_wait(BLK_RW_ASYNC, HZ/50);
1194 gfp_flags |= __GFP_NOFAIL;
1195 err = 0;
1196 goto retry_encrypt;
1198 goto out_writepage;
1202 set_page_writeback(page);
1205 * If current allocation needs SSR,
1206 * it had better in-place writes for updated data.
1208 if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1209 !is_cold_data(page) &&
1210 !IS_ATOMIC_WRITTEN_PAGE(page) &&
1211 need_inplace_update(inode))) {
1212 rewrite_data_page(fio);
1213 set_inode_flag(inode, FI_UPDATE_WRITE);
1214 trace_f2fs_do_write_data_page(page, IPU);
1215 } else {
1216 write_data_page(&dn, fio);
1217 trace_f2fs_do_write_data_page(page, OPU);
1218 set_inode_flag(inode, FI_APPEND_WRITE);
1219 if (page->index == 0)
1220 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1222 out_writepage:
1223 f2fs_put_dnode(&dn);
1224 return err;
1227 static int f2fs_write_data_page(struct page *page,
1228 struct writeback_control *wbc)
1230 struct inode *inode = page->mapping->host;
1231 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1232 loff_t i_size = i_size_read(inode);
1233 const pgoff_t end_index = ((unsigned long long) i_size)
1234 >> PAGE_SHIFT;
1235 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1236 unsigned offset = 0;
1237 bool need_balance_fs = false;
1238 int err = 0;
1239 struct f2fs_io_info fio = {
1240 .sbi = sbi,
1241 .type = DATA,
1242 .op = REQ_OP_WRITE,
1243 .op_flags = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0,
1244 .page = page,
1245 .encrypted_page = NULL,
1248 trace_f2fs_writepage(page, DATA);
1250 if (page->index < end_index)
1251 goto write;
1254 * If the offset is out-of-range of file size,
1255 * this page does not have to be written to disk.
1257 offset = i_size & (PAGE_SIZE - 1);
1258 if ((page->index >= end_index + 1) || !offset)
1259 goto out;
1261 zero_user_segment(page, offset, PAGE_SIZE);
1262 write:
1263 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1264 goto redirty_out;
1265 if (f2fs_is_drop_cache(inode))
1266 goto out;
1267 /* we should not write 0'th page having journal header */
1268 if (f2fs_is_volatile_file(inode) && (!page->index ||
1269 (!wbc->for_reclaim &&
1270 available_free_memory(sbi, BASE_CHECK))))
1271 goto redirty_out;
1273 /* we should bypass data pages to proceed the kworkder jobs */
1274 if (unlikely(f2fs_cp_error(sbi))) {
1275 mapping_set_error(page->mapping, -EIO);
1276 goto out;
1279 /* Dentry blocks are controlled by checkpoint */
1280 if (S_ISDIR(inode->i_mode)) {
1281 err = do_write_data_page(&fio);
1282 goto done;
1285 if (!wbc->for_reclaim)
1286 need_balance_fs = true;
1287 else if (has_not_enough_free_secs(sbi, 0))
1288 goto redirty_out;
1290 err = -EAGAIN;
1291 f2fs_lock_op(sbi);
1292 if (f2fs_has_inline_data(inode))
1293 err = f2fs_write_inline_data(inode, page);
1294 if (err == -EAGAIN)
1295 err = do_write_data_page(&fio);
1296 if (F2FS_I(inode)->last_disk_size < psize)
1297 F2FS_I(inode)->last_disk_size = psize;
1298 f2fs_unlock_op(sbi);
1299 done:
1300 if (err && err != -ENOENT)
1301 goto redirty_out;
1303 clear_cold_data(page);
1304 out:
1305 inode_dec_dirty_pages(inode);
1306 if (err)
1307 ClearPageUptodate(page);
1309 if (wbc->for_reclaim) {
1310 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1311 remove_dirty_inode(inode);
1314 unlock_page(page);
1315 f2fs_balance_fs(sbi, need_balance_fs);
1317 if (unlikely(f2fs_cp_error(sbi)))
1318 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1320 return 0;
1322 redirty_out:
1323 redirty_page_for_writepage(wbc, page);
1324 unlock_page(page);
1325 return err;
1329 * This function was copied from write_cche_pages from mm/page-writeback.c.
1330 * The major change is making write step of cold data page separately from
1331 * warm/hot data page.
1333 static int f2fs_write_cache_pages(struct address_space *mapping,
1334 struct writeback_control *wbc)
1336 int ret = 0;
1337 int done = 0;
1338 struct pagevec pvec;
1339 int nr_pages;
1340 pgoff_t uninitialized_var(writeback_index);
1341 pgoff_t index;
1342 pgoff_t end; /* Inclusive */
1343 pgoff_t done_index;
1344 int cycled;
1345 int range_whole = 0;
1346 int tag;
1348 pagevec_init(&pvec, 0);
1350 if (wbc->range_cyclic) {
1351 writeback_index = mapping->writeback_index; /* prev offset */
1352 index = writeback_index;
1353 if (index == 0)
1354 cycled = 1;
1355 else
1356 cycled = 0;
1357 end = -1;
1358 } else {
1359 index = wbc->range_start >> PAGE_SHIFT;
1360 end = wbc->range_end >> PAGE_SHIFT;
1361 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1362 range_whole = 1;
1363 cycled = 1; /* ignore range_cyclic tests */
1365 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1366 tag = PAGECACHE_TAG_TOWRITE;
1367 else
1368 tag = PAGECACHE_TAG_DIRTY;
1369 retry:
1370 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1371 tag_pages_for_writeback(mapping, index, end);
1372 done_index = index;
1373 while (!done && (index <= end)) {
1374 int i;
1376 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1377 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1378 if (nr_pages == 0)
1379 break;
1381 for (i = 0; i < nr_pages; i++) {
1382 struct page *page = pvec.pages[i];
1384 if (page->index > end) {
1385 done = 1;
1386 break;
1389 done_index = page->index;
1391 lock_page(page);
1393 if (unlikely(page->mapping != mapping)) {
1394 continue_unlock:
1395 unlock_page(page);
1396 continue;
1399 if (!PageDirty(page)) {
1400 /* someone wrote it for us */
1401 goto continue_unlock;
1404 if (PageWriteback(page)) {
1405 if (wbc->sync_mode != WB_SYNC_NONE)
1406 f2fs_wait_on_page_writeback(page,
1407 DATA, true);
1408 else
1409 goto continue_unlock;
1412 BUG_ON(PageWriteback(page));
1413 if (!clear_page_dirty_for_io(page))
1414 goto continue_unlock;
1416 ret = mapping->a_ops->writepage(page, wbc);
1417 if (unlikely(ret)) {
1418 done_index = page->index + 1;
1419 done = 1;
1420 break;
1423 if (--wbc->nr_to_write <= 0 &&
1424 wbc->sync_mode == WB_SYNC_NONE) {
1425 done = 1;
1426 break;
1429 pagevec_release(&pvec);
1430 cond_resched();
1433 if (!cycled && !done) {
1434 cycled = 1;
1435 index = 0;
1436 end = writeback_index - 1;
1437 goto retry;
1439 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1440 mapping->writeback_index = done_index;
1442 return ret;
1445 static int f2fs_write_data_pages(struct address_space *mapping,
1446 struct writeback_control *wbc)
1448 struct inode *inode = mapping->host;
1449 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1450 struct blk_plug plug;
1451 int ret;
1453 /* deal with chardevs and other special file */
1454 if (!mapping->a_ops->writepage)
1455 return 0;
1457 /* skip writing if there is no dirty page in this inode */
1458 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1459 return 0;
1461 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1462 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1463 available_free_memory(sbi, DIRTY_DENTS))
1464 goto skip_write;
1466 /* skip writing during file defragment */
1467 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1468 goto skip_write;
1470 /* during POR, we don't need to trigger writepage at all. */
1471 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1472 goto skip_write;
1474 trace_f2fs_writepages(mapping->host, wbc, DATA);
1476 blk_start_plug(&plug);
1477 ret = f2fs_write_cache_pages(mapping, wbc);
1478 blk_finish_plug(&plug);
1480 * if some pages were truncated, we cannot guarantee its mapping->host
1481 * to detect pending bios.
1483 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1485 remove_dirty_inode(inode);
1486 return ret;
1488 skip_write:
1489 wbc->pages_skipped += get_dirty_pages(inode);
1490 trace_f2fs_writepages(mapping->host, wbc, DATA);
1491 return 0;
1494 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1496 struct inode *inode = mapping->host;
1497 loff_t i_size = i_size_read(inode);
1499 if (to > i_size) {
1500 truncate_pagecache(inode, i_size);
1501 truncate_blocks(inode, i_size, true);
1505 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1506 struct page *page, loff_t pos, unsigned len,
1507 block_t *blk_addr, bool *node_changed)
1509 struct inode *inode = page->mapping->host;
1510 pgoff_t index = page->index;
1511 struct dnode_of_data dn;
1512 struct page *ipage;
1513 bool locked = false;
1514 struct extent_info ei;
1515 int err = 0;
1518 * we already allocated all the blocks, so we don't need to get
1519 * the block addresses when there is no need to fill the page.
1521 if (!f2fs_has_inline_data(inode) && !f2fs_encrypted_inode(inode) &&
1522 len == PAGE_SIZE)
1523 return 0;
1525 if (f2fs_has_inline_data(inode) ||
1526 (pos & PAGE_MASK) >= i_size_read(inode)) {
1527 f2fs_lock_op(sbi);
1528 locked = true;
1530 restart:
1531 /* check inline_data */
1532 ipage = get_node_page(sbi, inode->i_ino);
1533 if (IS_ERR(ipage)) {
1534 err = PTR_ERR(ipage);
1535 goto unlock_out;
1538 set_new_dnode(&dn, inode, ipage, ipage, 0);
1540 if (f2fs_has_inline_data(inode)) {
1541 if (pos + len <= MAX_INLINE_DATA) {
1542 read_inline_data(page, ipage);
1543 set_inode_flag(inode, FI_DATA_EXIST);
1544 if (inode->i_nlink)
1545 set_inline_node(ipage);
1546 } else {
1547 err = f2fs_convert_inline_page(&dn, page);
1548 if (err)
1549 goto out;
1550 if (dn.data_blkaddr == NULL_ADDR)
1551 err = f2fs_get_block(&dn, index);
1553 } else if (locked) {
1554 err = f2fs_get_block(&dn, index);
1555 } else {
1556 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1557 dn.data_blkaddr = ei.blk + index - ei.fofs;
1558 } else {
1559 /* hole case */
1560 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1561 if (err || dn.data_blkaddr == NULL_ADDR) {
1562 f2fs_put_dnode(&dn);
1563 f2fs_lock_op(sbi);
1564 locked = true;
1565 goto restart;
1570 /* convert_inline_page can make node_changed */
1571 *blk_addr = dn.data_blkaddr;
1572 *node_changed = dn.node_changed;
1573 out:
1574 f2fs_put_dnode(&dn);
1575 unlock_out:
1576 if (locked)
1577 f2fs_unlock_op(sbi);
1578 return err;
1581 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1582 loff_t pos, unsigned len, unsigned flags,
1583 struct page **pagep, void **fsdata)
1585 struct inode *inode = mapping->host;
1586 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1587 struct page *page = NULL;
1588 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1589 bool need_balance = false;
1590 block_t blkaddr = NULL_ADDR;
1591 int err = 0;
1593 trace_f2fs_write_begin(inode, pos, len, flags);
1596 * We should check this at this moment to avoid deadlock on inode page
1597 * and #0 page. The locking rule for inline_data conversion should be:
1598 * lock_page(page #0) -> lock_page(inode_page)
1600 if (index != 0) {
1601 err = f2fs_convert_inline_inode(inode);
1602 if (err)
1603 goto fail;
1605 repeat:
1606 page = grab_cache_page_write_begin(mapping, index, flags);
1607 if (!page) {
1608 err = -ENOMEM;
1609 goto fail;
1612 *pagep = page;
1614 err = prepare_write_begin(sbi, page, pos, len,
1615 &blkaddr, &need_balance);
1616 if (err)
1617 goto fail;
1619 if (need_balance && has_not_enough_free_secs(sbi, 0)) {
1620 unlock_page(page);
1621 f2fs_balance_fs(sbi, true);
1622 lock_page(page);
1623 if (page->mapping != mapping) {
1624 /* The page got truncated from under us */
1625 f2fs_put_page(page, 1);
1626 goto repeat;
1630 f2fs_wait_on_page_writeback(page, DATA, false);
1632 /* wait for GCed encrypted page writeback */
1633 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1634 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1636 if (len == PAGE_SIZE)
1637 goto out_update;
1638 if (PageUptodate(page))
1639 goto out_clear;
1641 if ((pos & PAGE_MASK) >= i_size_read(inode)) {
1642 unsigned start = pos & (PAGE_SIZE - 1);
1643 unsigned end = start + len;
1645 /* Reading beyond i_size is simple: memset to zero */
1646 zero_user_segments(page, 0, start, end, PAGE_SIZE);
1647 goto out_update;
1650 if (blkaddr == NEW_ADDR) {
1651 zero_user_segment(page, 0, PAGE_SIZE);
1652 } else {
1653 struct bio *bio;
1655 bio = f2fs_grab_bio(inode, blkaddr, 1);
1656 if (IS_ERR(bio)) {
1657 err = PTR_ERR(bio);
1658 goto fail;
1660 bio_set_op_attrs(bio, REQ_OP_READ, READ_SYNC);
1661 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1662 bio_put(bio);
1663 err = -EFAULT;
1664 goto fail;
1667 __submit_bio(sbi, bio, DATA);
1669 lock_page(page);
1670 if (unlikely(page->mapping != mapping)) {
1671 f2fs_put_page(page, 1);
1672 goto repeat;
1674 if (unlikely(!PageUptodate(page))) {
1675 err = -EIO;
1676 goto fail;
1679 out_update:
1680 if (!PageUptodate(page))
1681 SetPageUptodate(page);
1682 out_clear:
1683 clear_cold_data(page);
1684 return 0;
1686 fail:
1687 f2fs_put_page(page, 1);
1688 f2fs_write_failed(mapping, pos + len);
1689 return err;
1692 static int f2fs_write_end(struct file *file,
1693 struct address_space *mapping,
1694 loff_t pos, unsigned len, unsigned copied,
1695 struct page *page, void *fsdata)
1697 struct inode *inode = page->mapping->host;
1699 trace_f2fs_write_end(inode, pos, len, copied);
1701 set_page_dirty(page);
1702 f2fs_put_page(page, 1);
1704 if (pos + copied > i_size_read(inode))
1705 f2fs_i_size_write(inode, pos + copied);
1707 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1708 return copied;
1711 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1712 loff_t offset)
1714 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1716 if (offset & blocksize_mask)
1717 return -EINVAL;
1719 if (iov_iter_alignment(iter) & blocksize_mask)
1720 return -EINVAL;
1722 return 0;
1725 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1727 struct address_space *mapping = iocb->ki_filp->f_mapping;
1728 struct inode *inode = mapping->host;
1729 size_t count = iov_iter_count(iter);
1730 loff_t offset = iocb->ki_pos;
1731 int rw = iov_iter_rw(iter);
1732 int err;
1734 err = check_direct_IO(inode, iter, offset);
1735 if (err)
1736 return err;
1738 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1739 return 0;
1740 if (test_opt(F2FS_I_SB(inode), LFS))
1741 return 0;
1743 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1745 down_read(&F2FS_I(inode)->dio_rwsem[rw]);
1746 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1747 up_read(&F2FS_I(inode)->dio_rwsem[rw]);
1749 if (rw == WRITE) {
1750 if (err > 0)
1751 set_inode_flag(inode, FI_UPDATE_WRITE);
1752 else if (err < 0)
1753 f2fs_write_failed(mapping, offset + count);
1756 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1758 return err;
1761 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1762 unsigned int length)
1764 struct inode *inode = page->mapping->host;
1765 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1767 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1768 (offset % PAGE_SIZE || length != PAGE_SIZE))
1769 return;
1771 if (PageDirty(page)) {
1772 if (inode->i_ino == F2FS_META_INO(sbi))
1773 dec_page_count(sbi, F2FS_DIRTY_META);
1774 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1775 dec_page_count(sbi, F2FS_DIRTY_NODES);
1776 else
1777 inode_dec_dirty_pages(inode);
1780 /* This is atomic written page, keep Private */
1781 if (IS_ATOMIC_WRITTEN_PAGE(page))
1782 return;
1784 set_page_private(page, 0);
1785 ClearPagePrivate(page);
1788 int f2fs_release_page(struct page *page, gfp_t wait)
1790 /* If this is dirty page, keep PagePrivate */
1791 if (PageDirty(page))
1792 return 0;
1794 /* This is atomic written page, keep Private */
1795 if (IS_ATOMIC_WRITTEN_PAGE(page))
1796 return 0;
1798 set_page_private(page, 0);
1799 ClearPagePrivate(page);
1800 return 1;
1804 * This was copied from __set_page_dirty_buffers which gives higher performance
1805 * in very high speed storages. (e.g., pmem)
1807 void f2fs_set_page_dirty_nobuffers(struct page *page)
1809 struct address_space *mapping = page->mapping;
1810 unsigned long flags;
1812 if (unlikely(!mapping))
1813 return;
1815 spin_lock(&mapping->private_lock);
1816 lock_page_memcg(page);
1817 SetPageDirty(page);
1818 spin_unlock(&mapping->private_lock);
1820 spin_lock_irqsave(&mapping->tree_lock, flags);
1821 WARN_ON_ONCE(!PageUptodate(page));
1822 account_page_dirtied(page, mapping);
1823 radix_tree_tag_set(&mapping->page_tree,
1824 page_index(page), PAGECACHE_TAG_DIRTY);
1825 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1826 unlock_page_memcg(page);
1828 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1829 return;
1832 static int f2fs_set_data_page_dirty(struct page *page)
1834 struct address_space *mapping = page->mapping;
1835 struct inode *inode = mapping->host;
1837 trace_f2fs_set_page_dirty(page, DATA);
1839 if (!PageUptodate(page))
1840 SetPageUptodate(page);
1842 if (f2fs_is_atomic_file(inode)) {
1843 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1844 register_inmem_page(inode, page);
1845 return 1;
1848 * Previously, this page has been registered, we just
1849 * return here.
1851 return 0;
1854 if (!PageDirty(page)) {
1855 f2fs_set_page_dirty_nobuffers(page);
1856 update_dirty_page(inode, page);
1857 return 1;
1859 return 0;
1862 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1864 struct inode *inode = mapping->host;
1866 if (f2fs_has_inline_data(inode))
1867 return 0;
1869 /* make sure allocating whole blocks */
1870 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1871 filemap_write_and_wait(mapping);
1873 return generic_block_bmap(mapping, block, get_data_block_bmap);
1876 const struct address_space_operations f2fs_dblock_aops = {
1877 .readpage = f2fs_read_data_page,
1878 .readpages = f2fs_read_data_pages,
1879 .writepage = f2fs_write_data_page,
1880 .writepages = f2fs_write_data_pages,
1881 .write_begin = f2fs_write_begin,
1882 .write_end = f2fs_write_end,
1883 .set_page_dirty = f2fs_set_data_page_dirty,
1884 .invalidatepage = f2fs_invalidate_page,
1885 .releasepage = f2fs_release_page,
1886 .direct_IO = f2fs_direct_IO,
1887 .bmap = f2fs_bmap,