4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
24 #include <trace/events/f2fs.h>
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
28 static struct kmem_cache
*discard_entry_slab
;
29 static struct kmem_cache
*sit_entry_set_slab
;
30 static struct kmem_cache
*inmem_entry_slab
;
32 static unsigned long __reverse_ulong(unsigned char *str
)
34 unsigned long tmp
= 0;
35 int shift
= 24, idx
= 0;
37 #if BITS_PER_LONG == 64
41 tmp
|= (unsigned long)str
[idx
++] << shift
;
42 shift
-= BITS_PER_BYTE
;
48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 static inline unsigned long __reverse_ffs(unsigned long word
)
55 #if BITS_PER_LONG == 64
56 if ((word
& 0xffffffff00000000UL
) == 0)
61 if ((word
& 0xffff0000) == 0)
66 if ((word
& 0xff00) == 0)
71 if ((word
& 0xf0) == 0)
76 if ((word
& 0xc) == 0)
81 if ((word
& 0x2) == 0)
87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
89 * @size must be integral times of unsigned long.
92 * f2fs_set_bit(0, bitmap) => 1000 0000
93 * f2fs_set_bit(7, bitmap) => 0000 0001
95 static unsigned long __find_rev_next_bit(const unsigned long *addr
,
96 unsigned long size
, unsigned long offset
)
98 const unsigned long *p
= addr
+ BIT_WORD(offset
);
99 unsigned long result
= size
;
105 size
-= (offset
& ~(BITS_PER_LONG
- 1));
106 offset
%= BITS_PER_LONG
;
112 tmp
= __reverse_ulong((unsigned char *)p
);
114 tmp
&= ~0UL >> offset
;
115 if (size
< BITS_PER_LONG
)
116 tmp
&= (~0UL << (BITS_PER_LONG
- size
));
120 if (size
<= BITS_PER_LONG
)
122 size
-= BITS_PER_LONG
;
128 return result
- size
+ __reverse_ffs(tmp
);
131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr
,
132 unsigned long size
, unsigned long offset
)
134 const unsigned long *p
= addr
+ BIT_WORD(offset
);
135 unsigned long result
= size
;
141 size
-= (offset
& ~(BITS_PER_LONG
- 1));
142 offset
%= BITS_PER_LONG
;
148 tmp
= __reverse_ulong((unsigned char *)p
);
151 tmp
|= ~0UL << (BITS_PER_LONG
- offset
);
152 if (size
< BITS_PER_LONG
)
157 if (size
<= BITS_PER_LONG
)
159 size
-= BITS_PER_LONG
;
165 return result
- size
+ __reverse_ffz(tmp
);
168 void register_inmem_page(struct inode
*inode
, struct page
*page
)
170 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
171 struct inmem_pages
*new;
173 f2fs_trace_pid(page
);
175 set_page_private(page
, (unsigned long)ATOMIC_WRITTEN_PAGE
);
176 SetPagePrivate(page
);
178 new = f2fs_kmem_cache_alloc(inmem_entry_slab
, GFP_NOFS
);
180 /* add atomic page indices to the list */
182 INIT_LIST_HEAD(&new->list
);
184 /* increase reference count with clean state */
185 mutex_lock(&fi
->inmem_lock
);
187 list_add_tail(&new->list
, &fi
->inmem_pages
);
188 inc_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
189 mutex_unlock(&fi
->inmem_lock
);
191 trace_f2fs_register_inmem_page(page
, INMEM
);
194 static int __revoke_inmem_pages(struct inode
*inode
,
195 struct list_head
*head
, bool drop
, bool recover
)
197 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
198 struct inmem_pages
*cur
, *tmp
;
201 list_for_each_entry_safe(cur
, tmp
, head
, list
) {
202 struct page
*page
= cur
->page
;
205 trace_f2fs_commit_inmem_page(page
, INMEM_DROP
);
210 struct dnode_of_data dn
;
213 trace_f2fs_commit_inmem_page(page
, INMEM_REVOKE
);
215 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
216 if (get_dnode_of_data(&dn
, page
->index
, LOOKUP_NODE
)) {
220 get_node_info(sbi
, dn
.nid
, &ni
);
221 f2fs_replace_block(sbi
, &dn
, dn
.data_blkaddr
,
222 cur
->old_addr
, ni
.version
, true, true);
226 /* we don't need to invalidate this in the sccessful status */
228 ClearPageUptodate(page
);
229 set_page_private(page
, 0);
230 ClearPagePrivate(page
);
231 f2fs_put_page(page
, 1);
233 list_del(&cur
->list
);
234 kmem_cache_free(inmem_entry_slab
, cur
);
235 dec_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
240 void drop_inmem_pages(struct inode
*inode
)
242 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
244 clear_inode_flag(inode
, FI_ATOMIC_FILE
);
246 mutex_lock(&fi
->inmem_lock
);
247 __revoke_inmem_pages(inode
, &fi
->inmem_pages
, true, false);
248 mutex_unlock(&fi
->inmem_lock
);
251 static int __commit_inmem_pages(struct inode
*inode
,
252 struct list_head
*revoke_list
)
254 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
255 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
256 struct inmem_pages
*cur
, *tmp
;
257 struct f2fs_io_info fio
= {
261 .op_flags
= WRITE_SYNC
| REQ_PRIO
,
262 .encrypted_page
= NULL
,
264 bool submit_bio
= false;
267 list_for_each_entry_safe(cur
, tmp
, &fi
->inmem_pages
, list
) {
268 struct page
*page
= cur
->page
;
271 if (page
->mapping
== inode
->i_mapping
) {
272 trace_f2fs_commit_inmem_page(page
, INMEM
);
274 set_page_dirty(page
);
275 f2fs_wait_on_page_writeback(page
, DATA
, true);
276 if (clear_page_dirty_for_io(page
))
277 inode_dec_dirty_pages(inode
);
280 err
= do_write_data_page(&fio
);
286 /* record old blkaddr for revoking */
287 cur
->old_addr
= fio
.old_blkaddr
;
289 clear_cold_data(page
);
293 list_move_tail(&cur
->list
, revoke_list
);
297 f2fs_submit_merged_bio_cond(sbi
, inode
, NULL
, 0, DATA
, WRITE
);
300 __revoke_inmem_pages(inode
, revoke_list
, false, false);
305 int commit_inmem_pages(struct inode
*inode
)
307 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
308 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
309 struct list_head revoke_list
;
312 INIT_LIST_HEAD(&revoke_list
);
313 f2fs_balance_fs(sbi
, true);
316 mutex_lock(&fi
->inmem_lock
);
317 err
= __commit_inmem_pages(inode
, &revoke_list
);
321 * try to revoke all committed pages, but still we could fail
322 * due to no memory or other reason, if that happened, EAGAIN
323 * will be returned, which means in such case, transaction is
324 * already not integrity, caller should use journal to do the
325 * recovery or rewrite & commit last transaction. For other
326 * error number, revoking was done by filesystem itself.
328 ret
= __revoke_inmem_pages(inode
, &revoke_list
, false, true);
332 /* drop all uncommitted pages */
333 __revoke_inmem_pages(inode
, &fi
->inmem_pages
, true, false);
335 mutex_unlock(&fi
->inmem_lock
);
342 * This function balances dirty node and dentry pages.
343 * In addition, it controls garbage collection.
345 void f2fs_balance_fs(struct f2fs_sb_info
*sbi
, bool need
)
350 /* balance_fs_bg is able to be pending */
351 if (excess_cached_nats(sbi
))
352 f2fs_balance_fs_bg(sbi
);
355 * We should do GC or end up with checkpoint, if there are so many dirty
356 * dir/node pages without enough free segments.
358 if (has_not_enough_free_secs(sbi
, 0)) {
359 mutex_lock(&sbi
->gc_mutex
);
364 void f2fs_balance_fs_bg(struct f2fs_sb_info
*sbi
)
366 /* try to shrink extent cache when there is no enough memory */
367 if (!available_free_memory(sbi
, EXTENT_CACHE
))
368 f2fs_shrink_extent_tree(sbi
, EXTENT_CACHE_SHRINK_NUMBER
);
370 /* check the # of cached NAT entries */
371 if (!available_free_memory(sbi
, NAT_ENTRIES
))
372 try_to_free_nats(sbi
, NAT_ENTRY_PER_BLOCK
);
374 if (!available_free_memory(sbi
, FREE_NIDS
))
375 try_to_free_nids(sbi
, MAX_FREE_NIDS
);
377 build_free_nids(sbi
);
379 /* checkpoint is the only way to shrink partial cached entries */
380 if (!available_free_memory(sbi
, NAT_ENTRIES
) ||
381 !available_free_memory(sbi
, INO_ENTRIES
) ||
382 excess_prefree_segs(sbi
) ||
383 excess_dirty_nats(sbi
) ||
384 (is_idle(sbi
) && f2fs_time_over(sbi
, CP_TIME
))) {
385 if (test_opt(sbi
, DATA_FLUSH
)) {
386 struct blk_plug plug
;
388 blk_start_plug(&plug
);
389 sync_dirty_inodes(sbi
, FILE_INODE
);
390 blk_finish_plug(&plug
);
392 f2fs_sync_fs(sbi
->sb
, true);
393 stat_inc_bg_cp_count(sbi
->stat_info
);
397 static int issue_flush_thread(void *data
)
399 struct f2fs_sb_info
*sbi
= data
;
400 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
401 wait_queue_head_t
*q
= &fcc
->flush_wait_queue
;
403 if (kthread_should_stop())
406 if (!llist_empty(&fcc
->issue_list
)) {
408 struct flush_cmd
*cmd
, *next
;
411 bio
= f2fs_bio_alloc(0);
413 fcc
->dispatch_list
= llist_del_all(&fcc
->issue_list
);
414 fcc
->dispatch_list
= llist_reverse_order(fcc
->dispatch_list
);
416 bio
->bi_bdev
= sbi
->sb
->s_bdev
;
417 bio_set_op_attrs(bio
, REQ_OP_WRITE
, WRITE_FLUSH
);
418 ret
= submit_bio_wait(bio
);
420 llist_for_each_entry_safe(cmd
, next
,
421 fcc
->dispatch_list
, llnode
) {
423 complete(&cmd
->wait
);
426 fcc
->dispatch_list
= NULL
;
429 wait_event_interruptible(*q
,
430 kthread_should_stop() || !llist_empty(&fcc
->issue_list
));
434 int f2fs_issue_flush(struct f2fs_sb_info
*sbi
)
436 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
437 struct flush_cmd cmd
;
439 trace_f2fs_issue_flush(sbi
->sb
, test_opt(sbi
, NOBARRIER
),
440 test_opt(sbi
, FLUSH_MERGE
));
442 if (test_opt(sbi
, NOBARRIER
))
445 if (!test_opt(sbi
, FLUSH_MERGE
) || !atomic_read(&fcc
->submit_flush
)) {
446 struct bio
*bio
= f2fs_bio_alloc(0);
449 atomic_inc(&fcc
->submit_flush
);
450 bio
->bi_bdev
= sbi
->sb
->s_bdev
;
451 bio_set_op_attrs(bio
, REQ_OP_WRITE
, WRITE_FLUSH
);
452 ret
= submit_bio_wait(bio
);
453 atomic_dec(&fcc
->submit_flush
);
458 init_completion(&cmd
.wait
);
460 atomic_inc(&fcc
->submit_flush
);
461 llist_add(&cmd
.llnode
, &fcc
->issue_list
);
463 if (!fcc
->dispatch_list
)
464 wake_up(&fcc
->flush_wait_queue
);
466 wait_for_completion(&cmd
.wait
);
467 atomic_dec(&fcc
->submit_flush
);
472 int create_flush_cmd_control(struct f2fs_sb_info
*sbi
)
474 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
475 struct flush_cmd_control
*fcc
;
478 fcc
= kzalloc(sizeof(struct flush_cmd_control
), GFP_KERNEL
);
481 atomic_set(&fcc
->submit_flush
, 0);
482 init_waitqueue_head(&fcc
->flush_wait_queue
);
483 init_llist_head(&fcc
->issue_list
);
484 SM_I(sbi
)->cmd_control_info
= fcc
;
485 fcc
->f2fs_issue_flush
= kthread_run(issue_flush_thread
, sbi
,
486 "f2fs_flush-%u:%u", MAJOR(dev
), MINOR(dev
));
487 if (IS_ERR(fcc
->f2fs_issue_flush
)) {
488 err
= PTR_ERR(fcc
->f2fs_issue_flush
);
490 SM_I(sbi
)->cmd_control_info
= NULL
;
497 void destroy_flush_cmd_control(struct f2fs_sb_info
*sbi
)
499 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
501 if (fcc
&& fcc
->f2fs_issue_flush
)
502 kthread_stop(fcc
->f2fs_issue_flush
);
504 SM_I(sbi
)->cmd_control_info
= NULL
;
507 static void __locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
508 enum dirty_type dirty_type
)
510 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
512 /* need not be added */
513 if (IS_CURSEG(sbi
, segno
))
516 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
517 dirty_i
->nr_dirty
[dirty_type
]++;
519 if (dirty_type
== DIRTY
) {
520 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
521 enum dirty_type t
= sentry
->type
;
523 if (unlikely(t
>= DIRTY
)) {
527 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[t
]))
528 dirty_i
->nr_dirty
[t
]++;
532 static void __remove_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
533 enum dirty_type dirty_type
)
535 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
537 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
538 dirty_i
->nr_dirty
[dirty_type
]--;
540 if (dirty_type
== DIRTY
) {
541 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
542 enum dirty_type t
= sentry
->type
;
544 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[t
]))
545 dirty_i
->nr_dirty
[t
]--;
547 if (get_valid_blocks(sbi
, segno
, sbi
->segs_per_sec
) == 0)
548 clear_bit(GET_SECNO(sbi
, segno
),
549 dirty_i
->victim_secmap
);
554 * Should not occur error such as -ENOMEM.
555 * Adding dirty entry into seglist is not critical operation.
556 * If a given segment is one of current working segments, it won't be added.
558 static void locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
)
560 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
561 unsigned short valid_blocks
;
563 if (segno
== NULL_SEGNO
|| IS_CURSEG(sbi
, segno
))
566 mutex_lock(&dirty_i
->seglist_lock
);
568 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
570 if (valid_blocks
== 0) {
571 __locate_dirty_segment(sbi
, segno
, PRE
);
572 __remove_dirty_segment(sbi
, segno
, DIRTY
);
573 } else if (valid_blocks
< sbi
->blocks_per_seg
) {
574 __locate_dirty_segment(sbi
, segno
, DIRTY
);
576 /* Recovery routine with SSR needs this */
577 __remove_dirty_segment(sbi
, segno
, DIRTY
);
580 mutex_unlock(&dirty_i
->seglist_lock
);
583 static int f2fs_issue_discard(struct f2fs_sb_info
*sbi
,
584 block_t blkstart
, block_t blklen
)
586 sector_t start
= SECTOR_FROM_BLOCK(blkstart
);
587 sector_t len
= SECTOR_FROM_BLOCK(blklen
);
588 struct seg_entry
*se
;
592 for (i
= blkstart
; i
< blkstart
+ blklen
; i
++) {
593 se
= get_seg_entry(sbi
, GET_SEGNO(sbi
, i
));
594 offset
= GET_BLKOFF_FROM_SEG0(sbi
, i
);
596 if (!f2fs_test_and_set_bit(offset
, se
->discard_map
))
599 trace_f2fs_issue_discard(sbi
->sb
, blkstart
, blklen
);
600 return blkdev_issue_discard(sbi
->sb
->s_bdev
, start
, len
, GFP_NOFS
, 0);
603 bool discard_next_dnode(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
605 int err
= -EOPNOTSUPP
;
607 if (test_opt(sbi
, DISCARD
)) {
608 struct seg_entry
*se
= get_seg_entry(sbi
,
609 GET_SEGNO(sbi
, blkaddr
));
610 unsigned int offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
612 if (f2fs_test_bit(offset
, se
->discard_map
))
615 err
= f2fs_issue_discard(sbi
, blkaddr
, 1);
619 update_meta_page(sbi
, NULL
, blkaddr
);
625 static void __add_discard_entry(struct f2fs_sb_info
*sbi
,
626 struct cp_control
*cpc
, struct seg_entry
*se
,
627 unsigned int start
, unsigned int end
)
629 struct list_head
*head
= &SM_I(sbi
)->discard_list
;
630 struct discard_entry
*new, *last
;
632 if (!list_empty(head
)) {
633 last
= list_last_entry(head
, struct discard_entry
, list
);
634 if (START_BLOCK(sbi
, cpc
->trim_start
) + start
==
635 last
->blkaddr
+ last
->len
) {
636 last
->len
+= end
- start
;
641 new = f2fs_kmem_cache_alloc(discard_entry_slab
, GFP_NOFS
);
642 INIT_LIST_HEAD(&new->list
);
643 new->blkaddr
= START_BLOCK(sbi
, cpc
->trim_start
) + start
;
644 new->len
= end
- start
;
645 list_add_tail(&new->list
, head
);
647 SM_I(sbi
)->nr_discards
+= end
- start
;
650 static void add_discard_addrs(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
652 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
653 int max_blocks
= sbi
->blocks_per_seg
;
654 struct seg_entry
*se
= get_seg_entry(sbi
, cpc
->trim_start
);
655 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
656 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
657 unsigned long *discard_map
= (unsigned long *)se
->discard_map
;
658 unsigned long *dmap
= SIT_I(sbi
)->tmp_map
;
659 unsigned int start
= 0, end
= -1;
660 bool force
= (cpc
->reason
== CP_DISCARD
);
663 if (se
->valid_blocks
== max_blocks
)
667 if (!test_opt(sbi
, DISCARD
) || !se
->valid_blocks
||
668 SM_I(sbi
)->nr_discards
>= SM_I(sbi
)->max_discards
)
672 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
673 for (i
= 0; i
< entries
; i
++)
674 dmap
[i
] = force
? ~ckpt_map
[i
] & ~discard_map
[i
] :
675 (cur_map
[i
] ^ ckpt_map
[i
]) & ckpt_map
[i
];
677 while (force
|| SM_I(sbi
)->nr_discards
<= SM_I(sbi
)->max_discards
) {
678 start
= __find_rev_next_bit(dmap
, max_blocks
, end
+ 1);
679 if (start
>= max_blocks
)
682 end
= __find_rev_next_zero_bit(dmap
, max_blocks
, start
+ 1);
683 if (force
&& start
&& end
!= max_blocks
684 && (end
- start
) < cpc
->trim_minlen
)
687 __add_discard_entry(sbi
, cpc
, se
, start
, end
);
691 void release_discard_addrs(struct f2fs_sb_info
*sbi
)
693 struct list_head
*head
= &(SM_I(sbi
)->discard_list
);
694 struct discard_entry
*entry
, *this;
697 list_for_each_entry_safe(entry
, this, head
, list
) {
698 list_del(&entry
->list
);
699 kmem_cache_free(discard_entry_slab
, entry
);
704 * Should call clear_prefree_segments after checkpoint is done.
706 static void set_prefree_as_free_segments(struct f2fs_sb_info
*sbi
)
708 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
711 mutex_lock(&dirty_i
->seglist_lock
);
712 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[PRE
], MAIN_SEGS(sbi
))
713 __set_test_and_free(sbi
, segno
);
714 mutex_unlock(&dirty_i
->seglist_lock
);
717 void clear_prefree_segments(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
719 struct list_head
*head
= &(SM_I(sbi
)->discard_list
);
720 struct discard_entry
*entry
, *this;
721 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
722 unsigned long *prefree_map
= dirty_i
->dirty_segmap
[PRE
];
723 unsigned int start
= 0, end
= -1;
724 unsigned int secno
, start_segno
;
725 bool force
= (cpc
->reason
== CP_DISCARD
);
727 mutex_lock(&dirty_i
->seglist_lock
);
731 start
= find_next_bit(prefree_map
, MAIN_SEGS(sbi
), end
+ 1);
732 if (start
>= MAIN_SEGS(sbi
))
734 end
= find_next_zero_bit(prefree_map
, MAIN_SEGS(sbi
),
737 for (i
= start
; i
< end
; i
++)
738 clear_bit(i
, prefree_map
);
740 dirty_i
->nr_dirty
[PRE
] -= end
- start
;
742 if (force
|| !test_opt(sbi
, DISCARD
))
745 if (!test_opt(sbi
, LFS
) || sbi
->segs_per_sec
== 1) {
746 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start
),
747 (end
- start
) << sbi
->log_blocks_per_seg
);
751 secno
= GET_SECNO(sbi
, start
);
752 start_segno
= secno
* sbi
->segs_per_sec
;
753 if (!IS_CURSEC(sbi
, secno
) &&
754 !get_valid_blocks(sbi
, start
, sbi
->segs_per_sec
))
755 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start_segno
),
756 sbi
->segs_per_sec
<< sbi
->log_blocks_per_seg
);
758 start
= start_segno
+ sbi
->segs_per_sec
;
762 mutex_unlock(&dirty_i
->seglist_lock
);
764 /* send small discards */
765 list_for_each_entry_safe(entry
, this, head
, list
) {
766 if (force
&& entry
->len
< cpc
->trim_minlen
)
768 f2fs_issue_discard(sbi
, entry
->blkaddr
, entry
->len
);
769 cpc
->trimmed
+= entry
->len
;
771 list_del(&entry
->list
);
772 SM_I(sbi
)->nr_discards
-= entry
->len
;
773 kmem_cache_free(discard_entry_slab
, entry
);
777 static bool __mark_sit_entry_dirty(struct f2fs_sb_info
*sbi
, unsigned int segno
)
779 struct sit_info
*sit_i
= SIT_I(sbi
);
781 if (!__test_and_set_bit(segno
, sit_i
->dirty_sentries_bitmap
)) {
782 sit_i
->dirty_sentries
++;
789 static void __set_sit_entry_type(struct f2fs_sb_info
*sbi
, int type
,
790 unsigned int segno
, int modified
)
792 struct seg_entry
*se
= get_seg_entry(sbi
, segno
);
795 __mark_sit_entry_dirty(sbi
, segno
);
798 static void update_sit_entry(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int del
)
800 struct seg_entry
*se
;
801 unsigned int segno
, offset
;
802 long int new_vblocks
;
804 segno
= GET_SEGNO(sbi
, blkaddr
);
806 se
= get_seg_entry(sbi
, segno
);
807 new_vblocks
= se
->valid_blocks
+ del
;
808 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
810 f2fs_bug_on(sbi
, (new_vblocks
>> (sizeof(unsigned short) << 3) ||
811 (new_vblocks
> sbi
->blocks_per_seg
)));
813 se
->valid_blocks
= new_vblocks
;
814 se
->mtime
= get_mtime(sbi
);
815 SIT_I(sbi
)->max_mtime
= se
->mtime
;
817 /* Update valid block bitmap */
819 if (f2fs_test_and_set_bit(offset
, se
->cur_valid_map
))
821 if (!f2fs_test_and_set_bit(offset
, se
->discard_map
))
824 if (!f2fs_test_and_clear_bit(offset
, se
->cur_valid_map
))
826 if (f2fs_test_and_clear_bit(offset
, se
->discard_map
))
829 if (!f2fs_test_bit(offset
, se
->ckpt_valid_map
))
830 se
->ckpt_valid_blocks
+= del
;
832 __mark_sit_entry_dirty(sbi
, segno
);
834 /* update total number of valid blocks to be written in ckpt area */
835 SIT_I(sbi
)->written_valid_blocks
+= del
;
837 if (sbi
->segs_per_sec
> 1)
838 get_sec_entry(sbi
, segno
)->valid_blocks
+= del
;
841 void refresh_sit_entry(struct f2fs_sb_info
*sbi
, block_t old
, block_t
new)
843 update_sit_entry(sbi
, new, 1);
844 if (GET_SEGNO(sbi
, old
) != NULL_SEGNO
)
845 update_sit_entry(sbi
, old
, -1);
847 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old
));
848 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new));
851 void invalidate_blocks(struct f2fs_sb_info
*sbi
, block_t addr
)
853 unsigned int segno
= GET_SEGNO(sbi
, addr
);
854 struct sit_info
*sit_i
= SIT_I(sbi
);
856 f2fs_bug_on(sbi
, addr
== NULL_ADDR
);
857 if (addr
== NEW_ADDR
)
860 /* add it into sit main buffer */
861 mutex_lock(&sit_i
->sentry_lock
);
863 update_sit_entry(sbi
, addr
, -1);
865 /* add it into dirty seglist */
866 locate_dirty_segment(sbi
, segno
);
868 mutex_unlock(&sit_i
->sentry_lock
);
871 bool is_checkpointed_data(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
873 struct sit_info
*sit_i
= SIT_I(sbi
);
874 unsigned int segno
, offset
;
875 struct seg_entry
*se
;
878 if (blkaddr
== NEW_ADDR
|| blkaddr
== NULL_ADDR
)
881 mutex_lock(&sit_i
->sentry_lock
);
883 segno
= GET_SEGNO(sbi
, blkaddr
);
884 se
= get_seg_entry(sbi
, segno
);
885 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
887 if (f2fs_test_bit(offset
, se
->ckpt_valid_map
))
890 mutex_unlock(&sit_i
->sentry_lock
);
896 * This function should be resided under the curseg_mutex lock
898 static void __add_sum_entry(struct f2fs_sb_info
*sbi
, int type
,
899 struct f2fs_summary
*sum
)
901 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
902 void *addr
= curseg
->sum_blk
;
903 addr
+= curseg
->next_blkoff
* sizeof(struct f2fs_summary
);
904 memcpy(addr
, sum
, sizeof(struct f2fs_summary
));
908 * Calculate the number of current summary pages for writing
910 int npages_for_summary_flush(struct f2fs_sb_info
*sbi
, bool for_ra
)
912 int valid_sum_count
= 0;
915 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
916 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
917 valid_sum_count
+= sbi
->blocks_per_seg
;
920 valid_sum_count
+= le16_to_cpu(
921 F2FS_CKPT(sbi
)->cur_data_blkoff
[i
]);
923 valid_sum_count
+= curseg_blkoff(sbi
, i
);
927 sum_in_page
= (PAGE_SIZE
- 2 * SUM_JOURNAL_SIZE
-
928 SUM_FOOTER_SIZE
) / SUMMARY_SIZE
;
929 if (valid_sum_count
<= sum_in_page
)
931 else if ((valid_sum_count
- sum_in_page
) <=
932 (PAGE_SIZE
- SUM_FOOTER_SIZE
) / SUMMARY_SIZE
)
938 * Caller should put this summary page
940 struct page
*get_sum_page(struct f2fs_sb_info
*sbi
, unsigned int segno
)
942 return get_meta_page(sbi
, GET_SUM_BLOCK(sbi
, segno
));
945 void update_meta_page(struct f2fs_sb_info
*sbi
, void *src
, block_t blk_addr
)
947 struct page
*page
= grab_meta_page(sbi
, blk_addr
);
948 void *dst
= page_address(page
);
951 memcpy(dst
, src
, PAGE_SIZE
);
953 memset(dst
, 0, PAGE_SIZE
);
954 set_page_dirty(page
);
955 f2fs_put_page(page
, 1);
958 static void write_sum_page(struct f2fs_sb_info
*sbi
,
959 struct f2fs_summary_block
*sum_blk
, block_t blk_addr
)
961 update_meta_page(sbi
, (void *)sum_blk
, blk_addr
);
964 static void write_current_sum_page(struct f2fs_sb_info
*sbi
,
965 int type
, block_t blk_addr
)
967 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
968 struct page
*page
= grab_meta_page(sbi
, blk_addr
);
969 struct f2fs_summary_block
*src
= curseg
->sum_blk
;
970 struct f2fs_summary_block
*dst
;
972 dst
= (struct f2fs_summary_block
*)page_address(page
);
974 mutex_lock(&curseg
->curseg_mutex
);
976 down_read(&curseg
->journal_rwsem
);
977 memcpy(&dst
->journal
, curseg
->journal
, SUM_JOURNAL_SIZE
);
978 up_read(&curseg
->journal_rwsem
);
980 memcpy(dst
->entries
, src
->entries
, SUM_ENTRY_SIZE
);
981 memcpy(&dst
->footer
, &src
->footer
, SUM_FOOTER_SIZE
);
983 mutex_unlock(&curseg
->curseg_mutex
);
985 set_page_dirty(page
);
986 f2fs_put_page(page
, 1);
989 static int is_next_segment_free(struct f2fs_sb_info
*sbi
, int type
)
991 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
992 unsigned int segno
= curseg
->segno
+ 1;
993 struct free_segmap_info
*free_i
= FREE_I(sbi
);
995 if (segno
< MAIN_SEGS(sbi
) && segno
% sbi
->segs_per_sec
)
996 return !test_bit(segno
, free_i
->free_segmap
);
1001 * Find a new segment from the free segments bitmap to right order
1002 * This function should be returned with success, otherwise BUG
1004 static void get_new_segment(struct f2fs_sb_info
*sbi
,
1005 unsigned int *newseg
, bool new_sec
, int dir
)
1007 struct free_segmap_info
*free_i
= FREE_I(sbi
);
1008 unsigned int segno
, secno
, zoneno
;
1009 unsigned int total_zones
= MAIN_SECS(sbi
) / sbi
->secs_per_zone
;
1010 unsigned int hint
= *newseg
/ sbi
->segs_per_sec
;
1011 unsigned int old_zoneno
= GET_ZONENO_FROM_SEGNO(sbi
, *newseg
);
1012 unsigned int left_start
= hint
;
1017 spin_lock(&free_i
->segmap_lock
);
1019 if (!new_sec
&& ((*newseg
+ 1) % sbi
->segs_per_sec
)) {
1020 segno
= find_next_zero_bit(free_i
->free_segmap
,
1021 (hint
+ 1) * sbi
->segs_per_sec
, *newseg
+ 1);
1022 if (segno
< (hint
+ 1) * sbi
->segs_per_sec
)
1026 secno
= find_next_zero_bit(free_i
->free_secmap
, MAIN_SECS(sbi
), hint
);
1027 if (secno
>= MAIN_SECS(sbi
)) {
1028 if (dir
== ALLOC_RIGHT
) {
1029 secno
= find_next_zero_bit(free_i
->free_secmap
,
1031 f2fs_bug_on(sbi
, secno
>= MAIN_SECS(sbi
));
1034 left_start
= hint
- 1;
1040 while (test_bit(left_start
, free_i
->free_secmap
)) {
1041 if (left_start
> 0) {
1045 left_start
= find_next_zero_bit(free_i
->free_secmap
,
1047 f2fs_bug_on(sbi
, left_start
>= MAIN_SECS(sbi
));
1053 segno
= secno
* sbi
->segs_per_sec
;
1054 zoneno
= secno
/ sbi
->secs_per_zone
;
1056 /* give up on finding another zone */
1059 if (sbi
->secs_per_zone
== 1)
1061 if (zoneno
== old_zoneno
)
1063 if (dir
== ALLOC_LEFT
) {
1064 if (!go_left
&& zoneno
+ 1 >= total_zones
)
1066 if (go_left
&& zoneno
== 0)
1069 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
1070 if (CURSEG_I(sbi
, i
)->zone
== zoneno
)
1073 if (i
< NR_CURSEG_TYPE
) {
1074 /* zone is in user, try another */
1076 hint
= zoneno
* sbi
->secs_per_zone
- 1;
1077 else if (zoneno
+ 1 >= total_zones
)
1080 hint
= (zoneno
+ 1) * sbi
->secs_per_zone
;
1082 goto find_other_zone
;
1085 /* set it as dirty segment in free segmap */
1086 f2fs_bug_on(sbi
, test_bit(segno
, free_i
->free_segmap
));
1087 __set_inuse(sbi
, segno
);
1089 spin_unlock(&free_i
->segmap_lock
);
1092 static void reset_curseg(struct f2fs_sb_info
*sbi
, int type
, int modified
)
1094 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1095 struct summary_footer
*sum_footer
;
1097 curseg
->segno
= curseg
->next_segno
;
1098 curseg
->zone
= GET_ZONENO_FROM_SEGNO(sbi
, curseg
->segno
);
1099 curseg
->next_blkoff
= 0;
1100 curseg
->next_segno
= NULL_SEGNO
;
1102 sum_footer
= &(curseg
->sum_blk
->footer
);
1103 memset(sum_footer
, 0, sizeof(struct summary_footer
));
1104 if (IS_DATASEG(type
))
1105 SET_SUM_TYPE(sum_footer
, SUM_TYPE_DATA
);
1106 if (IS_NODESEG(type
))
1107 SET_SUM_TYPE(sum_footer
, SUM_TYPE_NODE
);
1108 __set_sit_entry_type(sbi
, type
, curseg
->segno
, modified
);
1112 * Allocate a current working segment.
1113 * This function always allocates a free segment in LFS manner.
1115 static void new_curseg(struct f2fs_sb_info
*sbi
, int type
, bool new_sec
)
1117 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1118 unsigned int segno
= curseg
->segno
;
1119 int dir
= ALLOC_LEFT
;
1121 write_sum_page(sbi
, curseg
->sum_blk
,
1122 GET_SUM_BLOCK(sbi
, segno
));
1123 if (type
== CURSEG_WARM_DATA
|| type
== CURSEG_COLD_DATA
)
1126 if (test_opt(sbi
, NOHEAP
))
1129 get_new_segment(sbi
, &segno
, new_sec
, dir
);
1130 curseg
->next_segno
= segno
;
1131 reset_curseg(sbi
, type
, 1);
1132 curseg
->alloc_type
= LFS
;
1135 static void __next_free_blkoff(struct f2fs_sb_info
*sbi
,
1136 struct curseg_info
*seg
, block_t start
)
1138 struct seg_entry
*se
= get_seg_entry(sbi
, seg
->segno
);
1139 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
1140 unsigned long *target_map
= SIT_I(sbi
)->tmp_map
;
1141 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
1142 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
1145 for (i
= 0; i
< entries
; i
++)
1146 target_map
[i
] = ckpt_map
[i
] | cur_map
[i
];
1148 pos
= __find_rev_next_zero_bit(target_map
, sbi
->blocks_per_seg
, start
);
1150 seg
->next_blkoff
= pos
;
1154 * If a segment is written by LFS manner, next block offset is just obtained
1155 * by increasing the current block offset. However, if a segment is written by
1156 * SSR manner, next block offset obtained by calling __next_free_blkoff
1158 static void __refresh_next_blkoff(struct f2fs_sb_info
*sbi
,
1159 struct curseg_info
*seg
)
1161 if (seg
->alloc_type
== SSR
)
1162 __next_free_blkoff(sbi
, seg
, seg
->next_blkoff
+ 1);
1168 * This function always allocates a used segment(from dirty seglist) by SSR
1169 * manner, so it should recover the existing segment information of valid blocks
1171 static void change_curseg(struct f2fs_sb_info
*sbi
, int type
, bool reuse
)
1173 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1174 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1175 unsigned int new_segno
= curseg
->next_segno
;
1176 struct f2fs_summary_block
*sum_node
;
1177 struct page
*sum_page
;
1179 write_sum_page(sbi
, curseg
->sum_blk
,
1180 GET_SUM_BLOCK(sbi
, curseg
->segno
));
1181 __set_test_and_inuse(sbi
, new_segno
);
1183 mutex_lock(&dirty_i
->seglist_lock
);
1184 __remove_dirty_segment(sbi
, new_segno
, PRE
);
1185 __remove_dirty_segment(sbi
, new_segno
, DIRTY
);
1186 mutex_unlock(&dirty_i
->seglist_lock
);
1188 reset_curseg(sbi
, type
, 1);
1189 curseg
->alloc_type
= SSR
;
1190 __next_free_blkoff(sbi
, curseg
, 0);
1193 sum_page
= get_sum_page(sbi
, new_segno
);
1194 sum_node
= (struct f2fs_summary_block
*)page_address(sum_page
);
1195 memcpy(curseg
->sum_blk
, sum_node
, SUM_ENTRY_SIZE
);
1196 f2fs_put_page(sum_page
, 1);
1200 static int get_ssr_segment(struct f2fs_sb_info
*sbi
, int type
)
1202 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1203 const struct victim_selection
*v_ops
= DIRTY_I(sbi
)->v_ops
;
1205 if (IS_NODESEG(type
) || !has_not_enough_free_secs(sbi
, 0))
1206 return v_ops
->get_victim(sbi
,
1207 &(curseg
)->next_segno
, BG_GC
, type
, SSR
);
1209 /* For data segments, let's do SSR more intensively */
1210 for (; type
>= CURSEG_HOT_DATA
; type
--)
1211 if (v_ops
->get_victim(sbi
, &(curseg
)->next_segno
,
1218 * flush out current segment and replace it with new segment
1219 * This function should be returned with success, otherwise BUG
1221 static void allocate_segment_by_default(struct f2fs_sb_info
*sbi
,
1222 int type
, bool force
)
1224 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1227 new_curseg(sbi
, type
, true);
1228 else if (type
== CURSEG_WARM_NODE
)
1229 new_curseg(sbi
, type
, false);
1230 else if (curseg
->alloc_type
== LFS
&& is_next_segment_free(sbi
, type
))
1231 new_curseg(sbi
, type
, false);
1232 else if (need_SSR(sbi
) && get_ssr_segment(sbi
, type
))
1233 change_curseg(sbi
, type
, true);
1235 new_curseg(sbi
, type
, false);
1237 stat_inc_seg_type(sbi
, curseg
);
1240 static void __allocate_new_segments(struct f2fs_sb_info
*sbi
, int type
)
1242 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1243 unsigned int old_segno
;
1245 old_segno
= curseg
->segno
;
1246 SIT_I(sbi
)->s_ops
->allocate_segment(sbi
, type
, true);
1247 locate_dirty_segment(sbi
, old_segno
);
1250 void allocate_new_segments(struct f2fs_sb_info
*sbi
)
1254 if (test_opt(sbi
, LFS
))
1257 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++)
1258 __allocate_new_segments(sbi
, i
);
1261 static const struct segment_allocation default_salloc_ops
= {
1262 .allocate_segment
= allocate_segment_by_default
,
1265 int f2fs_trim_fs(struct f2fs_sb_info
*sbi
, struct fstrim_range
*range
)
1267 __u64 start
= F2FS_BYTES_TO_BLK(range
->start
);
1268 __u64 end
= start
+ F2FS_BYTES_TO_BLK(range
->len
) - 1;
1269 unsigned int start_segno
, end_segno
;
1270 struct cp_control cpc
;
1273 if (start
>= MAX_BLKADDR(sbi
) || range
->len
< sbi
->blocksize
)
1277 if (end
<= MAIN_BLKADDR(sbi
))
1280 /* start/end segment number in main_area */
1281 start_segno
= (start
<= MAIN_BLKADDR(sbi
)) ? 0 : GET_SEGNO(sbi
, start
);
1282 end_segno
= (end
>= MAX_BLKADDR(sbi
)) ? MAIN_SEGS(sbi
) - 1 :
1283 GET_SEGNO(sbi
, end
);
1284 cpc
.reason
= CP_DISCARD
;
1285 cpc
.trim_minlen
= max_t(__u64
, 1, F2FS_BYTES_TO_BLK(range
->minlen
));
1287 /* do checkpoint to issue discard commands safely */
1288 for (; start_segno
<= end_segno
; start_segno
= cpc
.trim_end
+ 1) {
1289 cpc
.trim_start
= start_segno
;
1291 if (sbi
->discard_blks
== 0)
1293 else if (sbi
->discard_blks
< BATCHED_TRIM_BLOCKS(sbi
))
1294 cpc
.trim_end
= end_segno
;
1296 cpc
.trim_end
= min_t(unsigned int,
1297 rounddown(start_segno
+
1298 BATCHED_TRIM_SEGMENTS(sbi
),
1299 sbi
->segs_per_sec
) - 1, end_segno
);
1301 mutex_lock(&sbi
->gc_mutex
);
1302 err
= write_checkpoint(sbi
, &cpc
);
1303 mutex_unlock(&sbi
->gc_mutex
);
1306 range
->len
= F2FS_BLK_TO_BYTES(cpc
.trimmed
);
1310 static bool __has_curseg_space(struct f2fs_sb_info
*sbi
, int type
)
1312 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1313 if (curseg
->next_blkoff
< sbi
->blocks_per_seg
)
1318 static int __get_segment_type_2(struct page
*page
, enum page_type p_type
)
1321 return CURSEG_HOT_DATA
;
1323 return CURSEG_HOT_NODE
;
1326 static int __get_segment_type_4(struct page
*page
, enum page_type p_type
)
1328 if (p_type
== DATA
) {
1329 struct inode
*inode
= page
->mapping
->host
;
1331 if (S_ISDIR(inode
->i_mode
))
1332 return CURSEG_HOT_DATA
;
1334 return CURSEG_COLD_DATA
;
1336 if (IS_DNODE(page
) && is_cold_node(page
))
1337 return CURSEG_WARM_NODE
;
1339 return CURSEG_COLD_NODE
;
1343 static int __get_segment_type_6(struct page
*page
, enum page_type p_type
)
1345 if (p_type
== DATA
) {
1346 struct inode
*inode
= page
->mapping
->host
;
1348 if (S_ISDIR(inode
->i_mode
))
1349 return CURSEG_HOT_DATA
;
1350 else if (is_cold_data(page
) || file_is_cold(inode
))
1351 return CURSEG_COLD_DATA
;
1353 return CURSEG_WARM_DATA
;
1356 return is_cold_node(page
) ? CURSEG_WARM_NODE
:
1359 return CURSEG_COLD_NODE
;
1363 static int __get_segment_type(struct page
*page
, enum page_type p_type
)
1365 switch (F2FS_P_SB(page
)->active_logs
) {
1367 return __get_segment_type_2(page
, p_type
);
1369 return __get_segment_type_4(page
, p_type
);
1371 /* NR_CURSEG_TYPE(6) logs by default */
1372 f2fs_bug_on(F2FS_P_SB(page
),
1373 F2FS_P_SB(page
)->active_logs
!= NR_CURSEG_TYPE
);
1374 return __get_segment_type_6(page
, p_type
);
1377 void allocate_data_block(struct f2fs_sb_info
*sbi
, struct page
*page
,
1378 block_t old_blkaddr
, block_t
*new_blkaddr
,
1379 struct f2fs_summary
*sum
, int type
)
1381 struct sit_info
*sit_i
= SIT_I(sbi
);
1382 struct curseg_info
*curseg
;
1383 bool direct_io
= (type
== CURSEG_DIRECT_IO
);
1385 type
= direct_io
? CURSEG_WARM_DATA
: type
;
1387 curseg
= CURSEG_I(sbi
, type
);
1389 mutex_lock(&curseg
->curseg_mutex
);
1390 mutex_lock(&sit_i
->sentry_lock
);
1392 /* direct_io'ed data is aligned to the segment for better performance */
1393 if (direct_io
&& curseg
->next_blkoff
&&
1394 !has_not_enough_free_secs(sbi
, 0))
1395 __allocate_new_segments(sbi
, type
);
1397 *new_blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
1400 * __add_sum_entry should be resided under the curseg_mutex
1401 * because, this function updates a summary entry in the
1402 * current summary block.
1404 __add_sum_entry(sbi
, type
, sum
);
1406 __refresh_next_blkoff(sbi
, curseg
);
1408 stat_inc_block_count(sbi
, curseg
);
1410 if (!__has_curseg_space(sbi
, type
))
1411 sit_i
->s_ops
->allocate_segment(sbi
, type
, false);
1413 * SIT information should be updated before segment allocation,
1414 * since SSR needs latest valid block information.
1416 refresh_sit_entry(sbi
, old_blkaddr
, *new_blkaddr
);
1418 mutex_unlock(&sit_i
->sentry_lock
);
1420 if (page
&& IS_NODESEG(type
))
1421 fill_node_footer_blkaddr(page
, NEXT_FREE_BLKADDR(sbi
, curseg
));
1423 mutex_unlock(&curseg
->curseg_mutex
);
1426 static void do_write_page(struct f2fs_summary
*sum
, struct f2fs_io_info
*fio
)
1428 int type
= __get_segment_type(fio
->page
, fio
->type
);
1430 if (fio
->type
== NODE
|| fio
->type
== DATA
)
1431 mutex_lock(&fio
->sbi
->wio_mutex
[fio
->type
]);
1433 allocate_data_block(fio
->sbi
, fio
->page
, fio
->old_blkaddr
,
1434 &fio
->new_blkaddr
, sum
, type
);
1436 /* writeout dirty page into bdev */
1437 f2fs_submit_page_mbio(fio
);
1439 if (fio
->type
== NODE
|| fio
->type
== DATA
)
1440 mutex_unlock(&fio
->sbi
->wio_mutex
[fio
->type
]);
1443 void write_meta_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
1445 struct f2fs_io_info fio
= {
1449 .op_flags
= WRITE_SYNC
| REQ_META
| REQ_PRIO
,
1450 .old_blkaddr
= page
->index
,
1451 .new_blkaddr
= page
->index
,
1453 .encrypted_page
= NULL
,
1456 if (unlikely(page
->index
>= MAIN_BLKADDR(sbi
)))
1457 fio
.op_flags
&= ~REQ_META
;
1459 set_page_writeback(page
);
1460 f2fs_submit_page_mbio(&fio
);
1463 void write_node_page(unsigned int nid
, struct f2fs_io_info
*fio
)
1465 struct f2fs_summary sum
;
1467 set_summary(&sum
, nid
, 0, 0);
1468 do_write_page(&sum
, fio
);
1471 void write_data_page(struct dnode_of_data
*dn
, struct f2fs_io_info
*fio
)
1473 struct f2fs_sb_info
*sbi
= fio
->sbi
;
1474 struct f2fs_summary sum
;
1475 struct node_info ni
;
1477 f2fs_bug_on(sbi
, dn
->data_blkaddr
== NULL_ADDR
);
1478 get_node_info(sbi
, dn
->nid
, &ni
);
1479 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, ni
.version
);
1480 do_write_page(&sum
, fio
);
1481 f2fs_update_data_blkaddr(dn
, fio
->new_blkaddr
);
1484 void rewrite_data_page(struct f2fs_io_info
*fio
)
1486 fio
->new_blkaddr
= fio
->old_blkaddr
;
1487 stat_inc_inplace_blocks(fio
->sbi
);
1488 f2fs_submit_page_mbio(fio
);
1491 void __f2fs_replace_block(struct f2fs_sb_info
*sbi
, struct f2fs_summary
*sum
,
1492 block_t old_blkaddr
, block_t new_blkaddr
,
1493 bool recover_curseg
, bool recover_newaddr
)
1495 struct sit_info
*sit_i
= SIT_I(sbi
);
1496 struct curseg_info
*curseg
;
1497 unsigned int segno
, old_cursegno
;
1498 struct seg_entry
*se
;
1500 unsigned short old_blkoff
;
1502 segno
= GET_SEGNO(sbi
, new_blkaddr
);
1503 se
= get_seg_entry(sbi
, segno
);
1506 if (!recover_curseg
) {
1507 /* for recovery flow */
1508 if (se
->valid_blocks
== 0 && !IS_CURSEG(sbi
, segno
)) {
1509 if (old_blkaddr
== NULL_ADDR
)
1510 type
= CURSEG_COLD_DATA
;
1512 type
= CURSEG_WARM_DATA
;
1515 if (!IS_CURSEG(sbi
, segno
))
1516 type
= CURSEG_WARM_DATA
;
1519 curseg
= CURSEG_I(sbi
, type
);
1521 mutex_lock(&curseg
->curseg_mutex
);
1522 mutex_lock(&sit_i
->sentry_lock
);
1524 old_cursegno
= curseg
->segno
;
1525 old_blkoff
= curseg
->next_blkoff
;
1527 /* change the current segment */
1528 if (segno
!= curseg
->segno
) {
1529 curseg
->next_segno
= segno
;
1530 change_curseg(sbi
, type
, true);
1533 curseg
->next_blkoff
= GET_BLKOFF_FROM_SEG0(sbi
, new_blkaddr
);
1534 __add_sum_entry(sbi
, type
, sum
);
1536 if (!recover_curseg
|| recover_newaddr
)
1537 update_sit_entry(sbi
, new_blkaddr
, 1);
1538 if (GET_SEGNO(sbi
, old_blkaddr
) != NULL_SEGNO
)
1539 update_sit_entry(sbi
, old_blkaddr
, -1);
1541 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
1542 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new_blkaddr
));
1544 locate_dirty_segment(sbi
, old_cursegno
);
1546 if (recover_curseg
) {
1547 if (old_cursegno
!= curseg
->segno
) {
1548 curseg
->next_segno
= old_cursegno
;
1549 change_curseg(sbi
, type
, true);
1551 curseg
->next_blkoff
= old_blkoff
;
1554 mutex_unlock(&sit_i
->sentry_lock
);
1555 mutex_unlock(&curseg
->curseg_mutex
);
1558 void f2fs_replace_block(struct f2fs_sb_info
*sbi
, struct dnode_of_data
*dn
,
1559 block_t old_addr
, block_t new_addr
,
1560 unsigned char version
, bool recover_curseg
,
1561 bool recover_newaddr
)
1563 struct f2fs_summary sum
;
1565 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, version
);
1567 __f2fs_replace_block(sbi
, &sum
, old_addr
, new_addr
,
1568 recover_curseg
, recover_newaddr
);
1570 f2fs_update_data_blkaddr(dn
, new_addr
);
1573 void f2fs_wait_on_page_writeback(struct page
*page
,
1574 enum page_type type
, bool ordered
)
1576 if (PageWriteback(page
)) {
1577 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1579 f2fs_submit_merged_bio_cond(sbi
, NULL
, page
, 0, type
, WRITE
);
1581 wait_on_page_writeback(page
);
1583 wait_for_stable_page(page
);
1587 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info
*sbi
,
1592 if (blkaddr
== NEW_ADDR
)
1595 f2fs_bug_on(sbi
, blkaddr
== NULL_ADDR
);
1597 cpage
= find_lock_page(META_MAPPING(sbi
), blkaddr
);
1599 f2fs_wait_on_page_writeback(cpage
, DATA
, true);
1600 f2fs_put_page(cpage
, 1);
1604 static int read_compacted_summaries(struct f2fs_sb_info
*sbi
)
1606 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1607 struct curseg_info
*seg_i
;
1608 unsigned char *kaddr
;
1613 start
= start_sum_block(sbi
);
1615 page
= get_meta_page(sbi
, start
++);
1616 kaddr
= (unsigned char *)page_address(page
);
1618 /* Step 1: restore nat cache */
1619 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1620 memcpy(seg_i
->journal
, kaddr
, SUM_JOURNAL_SIZE
);
1622 /* Step 2: restore sit cache */
1623 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1624 memcpy(seg_i
->journal
, kaddr
+ SUM_JOURNAL_SIZE
, SUM_JOURNAL_SIZE
);
1625 offset
= 2 * SUM_JOURNAL_SIZE
;
1627 /* Step 3: restore summary entries */
1628 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1629 unsigned short blk_off
;
1632 seg_i
= CURSEG_I(sbi
, i
);
1633 segno
= le32_to_cpu(ckpt
->cur_data_segno
[i
]);
1634 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[i
]);
1635 seg_i
->next_segno
= segno
;
1636 reset_curseg(sbi
, i
, 0);
1637 seg_i
->alloc_type
= ckpt
->alloc_type
[i
];
1638 seg_i
->next_blkoff
= blk_off
;
1640 if (seg_i
->alloc_type
== SSR
)
1641 blk_off
= sbi
->blocks_per_seg
;
1643 for (j
= 0; j
< blk_off
; j
++) {
1644 struct f2fs_summary
*s
;
1645 s
= (struct f2fs_summary
*)(kaddr
+ offset
);
1646 seg_i
->sum_blk
->entries
[j
] = *s
;
1647 offset
+= SUMMARY_SIZE
;
1648 if (offset
+ SUMMARY_SIZE
<= PAGE_SIZE
-
1652 f2fs_put_page(page
, 1);
1655 page
= get_meta_page(sbi
, start
++);
1656 kaddr
= (unsigned char *)page_address(page
);
1660 f2fs_put_page(page
, 1);
1664 static int read_normal_summaries(struct f2fs_sb_info
*sbi
, int type
)
1666 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1667 struct f2fs_summary_block
*sum
;
1668 struct curseg_info
*curseg
;
1670 unsigned short blk_off
;
1671 unsigned int segno
= 0;
1672 block_t blk_addr
= 0;
1674 /* get segment number and block addr */
1675 if (IS_DATASEG(type
)) {
1676 segno
= le32_to_cpu(ckpt
->cur_data_segno
[type
]);
1677 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[type
-
1679 if (__exist_node_summaries(sbi
))
1680 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
);
1682 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_DATA_TYPE
, type
);
1684 segno
= le32_to_cpu(ckpt
->cur_node_segno
[type
-
1686 blk_off
= le16_to_cpu(ckpt
->cur_node_blkoff
[type
-
1688 if (__exist_node_summaries(sbi
))
1689 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_NODE_TYPE
,
1690 type
- CURSEG_HOT_NODE
);
1692 blk_addr
= GET_SUM_BLOCK(sbi
, segno
);
1695 new = get_meta_page(sbi
, blk_addr
);
1696 sum
= (struct f2fs_summary_block
*)page_address(new);
1698 if (IS_NODESEG(type
)) {
1699 if (__exist_node_summaries(sbi
)) {
1700 struct f2fs_summary
*ns
= &sum
->entries
[0];
1702 for (i
= 0; i
< sbi
->blocks_per_seg
; i
++, ns
++) {
1704 ns
->ofs_in_node
= 0;
1709 err
= restore_node_summary(sbi
, segno
, sum
);
1711 f2fs_put_page(new, 1);
1717 /* set uncompleted segment to curseg */
1718 curseg
= CURSEG_I(sbi
, type
);
1719 mutex_lock(&curseg
->curseg_mutex
);
1721 /* update journal info */
1722 down_write(&curseg
->journal_rwsem
);
1723 memcpy(curseg
->journal
, &sum
->journal
, SUM_JOURNAL_SIZE
);
1724 up_write(&curseg
->journal_rwsem
);
1726 memcpy(curseg
->sum_blk
->entries
, sum
->entries
, SUM_ENTRY_SIZE
);
1727 memcpy(&curseg
->sum_blk
->footer
, &sum
->footer
, SUM_FOOTER_SIZE
);
1728 curseg
->next_segno
= segno
;
1729 reset_curseg(sbi
, type
, 0);
1730 curseg
->alloc_type
= ckpt
->alloc_type
[type
];
1731 curseg
->next_blkoff
= blk_off
;
1732 mutex_unlock(&curseg
->curseg_mutex
);
1733 f2fs_put_page(new, 1);
1737 static int restore_curseg_summaries(struct f2fs_sb_info
*sbi
)
1739 int type
= CURSEG_HOT_DATA
;
1742 if (is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_COMPACT_SUM_FLAG
)) {
1743 int npages
= npages_for_summary_flush(sbi
, true);
1746 ra_meta_pages(sbi
, start_sum_block(sbi
), npages
,
1749 /* restore for compacted data summary */
1750 if (read_compacted_summaries(sbi
))
1752 type
= CURSEG_HOT_NODE
;
1755 if (__exist_node_summaries(sbi
))
1756 ra_meta_pages(sbi
, sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
),
1757 NR_CURSEG_TYPE
- type
, META_CP
, true);
1759 for (; type
<= CURSEG_COLD_NODE
; type
++) {
1760 err
= read_normal_summaries(sbi
, type
);
1768 static void write_compacted_summaries(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
1771 unsigned char *kaddr
;
1772 struct f2fs_summary
*summary
;
1773 struct curseg_info
*seg_i
;
1774 int written_size
= 0;
1777 page
= grab_meta_page(sbi
, blkaddr
++);
1778 kaddr
= (unsigned char *)page_address(page
);
1780 /* Step 1: write nat cache */
1781 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1782 memcpy(kaddr
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
1783 written_size
+= SUM_JOURNAL_SIZE
;
1785 /* Step 2: write sit cache */
1786 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1787 memcpy(kaddr
+ written_size
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
1788 written_size
+= SUM_JOURNAL_SIZE
;
1790 /* Step 3: write summary entries */
1791 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1792 unsigned short blkoff
;
1793 seg_i
= CURSEG_I(sbi
, i
);
1794 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
1795 blkoff
= sbi
->blocks_per_seg
;
1797 blkoff
= curseg_blkoff(sbi
, i
);
1799 for (j
= 0; j
< blkoff
; j
++) {
1801 page
= grab_meta_page(sbi
, blkaddr
++);
1802 kaddr
= (unsigned char *)page_address(page
);
1805 summary
= (struct f2fs_summary
*)(kaddr
+ written_size
);
1806 *summary
= seg_i
->sum_blk
->entries
[j
];
1807 written_size
+= SUMMARY_SIZE
;
1809 if (written_size
+ SUMMARY_SIZE
<= PAGE_SIZE
-
1813 set_page_dirty(page
);
1814 f2fs_put_page(page
, 1);
1819 set_page_dirty(page
);
1820 f2fs_put_page(page
, 1);
1824 static void write_normal_summaries(struct f2fs_sb_info
*sbi
,
1825 block_t blkaddr
, int type
)
1828 if (IS_DATASEG(type
))
1829 end
= type
+ NR_CURSEG_DATA_TYPE
;
1831 end
= type
+ NR_CURSEG_NODE_TYPE
;
1833 for (i
= type
; i
< end
; i
++)
1834 write_current_sum_page(sbi
, i
, blkaddr
+ (i
- type
));
1837 void write_data_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
1839 if (is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_COMPACT_SUM_FLAG
))
1840 write_compacted_summaries(sbi
, start_blk
);
1842 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_DATA
);
1845 void write_node_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
1847 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_NODE
);
1850 int lookup_journal_in_cursum(struct f2fs_journal
*journal
, int type
,
1851 unsigned int val
, int alloc
)
1855 if (type
== NAT_JOURNAL
) {
1856 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
1857 if (le32_to_cpu(nid_in_journal(journal
, i
)) == val
)
1860 if (alloc
&& __has_cursum_space(journal
, 1, NAT_JOURNAL
))
1861 return update_nats_in_cursum(journal
, 1);
1862 } else if (type
== SIT_JOURNAL
) {
1863 for (i
= 0; i
< sits_in_cursum(journal
); i
++)
1864 if (le32_to_cpu(segno_in_journal(journal
, i
)) == val
)
1866 if (alloc
&& __has_cursum_space(journal
, 1, SIT_JOURNAL
))
1867 return update_sits_in_cursum(journal
, 1);
1872 static struct page
*get_current_sit_page(struct f2fs_sb_info
*sbi
,
1875 return get_meta_page(sbi
, current_sit_addr(sbi
, segno
));
1878 static struct page
*get_next_sit_page(struct f2fs_sb_info
*sbi
,
1881 struct sit_info
*sit_i
= SIT_I(sbi
);
1882 struct page
*src_page
, *dst_page
;
1883 pgoff_t src_off
, dst_off
;
1884 void *src_addr
, *dst_addr
;
1886 src_off
= current_sit_addr(sbi
, start
);
1887 dst_off
= next_sit_addr(sbi
, src_off
);
1889 /* get current sit block page without lock */
1890 src_page
= get_meta_page(sbi
, src_off
);
1891 dst_page
= grab_meta_page(sbi
, dst_off
);
1892 f2fs_bug_on(sbi
, PageDirty(src_page
));
1894 src_addr
= page_address(src_page
);
1895 dst_addr
= page_address(dst_page
);
1896 memcpy(dst_addr
, src_addr
, PAGE_SIZE
);
1898 set_page_dirty(dst_page
);
1899 f2fs_put_page(src_page
, 1);
1901 set_to_next_sit(sit_i
, start
);
1906 static struct sit_entry_set
*grab_sit_entry_set(void)
1908 struct sit_entry_set
*ses
=
1909 f2fs_kmem_cache_alloc(sit_entry_set_slab
, GFP_NOFS
);
1912 INIT_LIST_HEAD(&ses
->set_list
);
1916 static void release_sit_entry_set(struct sit_entry_set
*ses
)
1918 list_del(&ses
->set_list
);
1919 kmem_cache_free(sit_entry_set_slab
, ses
);
1922 static void adjust_sit_entry_set(struct sit_entry_set
*ses
,
1923 struct list_head
*head
)
1925 struct sit_entry_set
*next
= ses
;
1927 if (list_is_last(&ses
->set_list
, head
))
1930 list_for_each_entry_continue(next
, head
, set_list
)
1931 if (ses
->entry_cnt
<= next
->entry_cnt
)
1934 list_move_tail(&ses
->set_list
, &next
->set_list
);
1937 static void add_sit_entry(unsigned int segno
, struct list_head
*head
)
1939 struct sit_entry_set
*ses
;
1940 unsigned int start_segno
= START_SEGNO(segno
);
1942 list_for_each_entry(ses
, head
, set_list
) {
1943 if (ses
->start_segno
== start_segno
) {
1945 adjust_sit_entry_set(ses
, head
);
1950 ses
= grab_sit_entry_set();
1952 ses
->start_segno
= start_segno
;
1954 list_add(&ses
->set_list
, head
);
1957 static void add_sits_in_set(struct f2fs_sb_info
*sbi
)
1959 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
1960 struct list_head
*set_list
= &sm_info
->sit_entry_set
;
1961 unsigned long *bitmap
= SIT_I(sbi
)->dirty_sentries_bitmap
;
1964 for_each_set_bit(segno
, bitmap
, MAIN_SEGS(sbi
))
1965 add_sit_entry(segno
, set_list
);
1968 static void remove_sits_in_journal(struct f2fs_sb_info
*sbi
)
1970 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1971 struct f2fs_journal
*journal
= curseg
->journal
;
1974 down_write(&curseg
->journal_rwsem
);
1975 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
1979 segno
= le32_to_cpu(segno_in_journal(journal
, i
));
1980 dirtied
= __mark_sit_entry_dirty(sbi
, segno
);
1983 add_sit_entry(segno
, &SM_I(sbi
)->sit_entry_set
);
1985 update_sits_in_cursum(journal
, -i
);
1986 up_write(&curseg
->journal_rwsem
);
1990 * CP calls this function, which flushes SIT entries including sit_journal,
1991 * and moves prefree segs to free segs.
1993 void flush_sit_entries(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1995 struct sit_info
*sit_i
= SIT_I(sbi
);
1996 unsigned long *bitmap
= sit_i
->dirty_sentries_bitmap
;
1997 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1998 struct f2fs_journal
*journal
= curseg
->journal
;
1999 struct sit_entry_set
*ses
, *tmp
;
2000 struct list_head
*head
= &SM_I(sbi
)->sit_entry_set
;
2001 bool to_journal
= true;
2002 struct seg_entry
*se
;
2004 mutex_lock(&sit_i
->sentry_lock
);
2006 if (!sit_i
->dirty_sentries
)
2010 * add and account sit entries of dirty bitmap in sit entry
2013 add_sits_in_set(sbi
);
2016 * if there are no enough space in journal to store dirty sit
2017 * entries, remove all entries from journal and add and account
2018 * them in sit entry set.
2020 if (!__has_cursum_space(journal
, sit_i
->dirty_sentries
, SIT_JOURNAL
))
2021 remove_sits_in_journal(sbi
);
2024 * there are two steps to flush sit entries:
2025 * #1, flush sit entries to journal in current cold data summary block.
2026 * #2, flush sit entries to sit page.
2028 list_for_each_entry_safe(ses
, tmp
, head
, set_list
) {
2029 struct page
*page
= NULL
;
2030 struct f2fs_sit_block
*raw_sit
= NULL
;
2031 unsigned int start_segno
= ses
->start_segno
;
2032 unsigned int end
= min(start_segno
+ SIT_ENTRY_PER_BLOCK
,
2033 (unsigned long)MAIN_SEGS(sbi
));
2034 unsigned int segno
= start_segno
;
2037 !__has_cursum_space(journal
, ses
->entry_cnt
, SIT_JOURNAL
))
2041 down_write(&curseg
->journal_rwsem
);
2043 page
= get_next_sit_page(sbi
, start_segno
);
2044 raw_sit
= page_address(page
);
2047 /* flush dirty sit entries in region of current sit set */
2048 for_each_set_bit_from(segno
, bitmap
, end
) {
2049 int offset
, sit_offset
;
2051 se
= get_seg_entry(sbi
, segno
);
2053 /* add discard candidates */
2054 if (cpc
->reason
!= CP_DISCARD
) {
2055 cpc
->trim_start
= segno
;
2056 add_discard_addrs(sbi
, cpc
);
2060 offset
= lookup_journal_in_cursum(journal
,
2061 SIT_JOURNAL
, segno
, 1);
2062 f2fs_bug_on(sbi
, offset
< 0);
2063 segno_in_journal(journal
, offset
) =
2065 seg_info_to_raw_sit(se
,
2066 &sit_in_journal(journal
, offset
));
2068 sit_offset
= SIT_ENTRY_OFFSET(sit_i
, segno
);
2069 seg_info_to_raw_sit(se
,
2070 &raw_sit
->entries
[sit_offset
]);
2073 __clear_bit(segno
, bitmap
);
2074 sit_i
->dirty_sentries
--;
2079 up_write(&curseg
->journal_rwsem
);
2081 f2fs_put_page(page
, 1);
2083 f2fs_bug_on(sbi
, ses
->entry_cnt
);
2084 release_sit_entry_set(ses
);
2087 f2fs_bug_on(sbi
, !list_empty(head
));
2088 f2fs_bug_on(sbi
, sit_i
->dirty_sentries
);
2090 if (cpc
->reason
== CP_DISCARD
) {
2091 for (; cpc
->trim_start
<= cpc
->trim_end
; cpc
->trim_start
++)
2092 add_discard_addrs(sbi
, cpc
);
2094 mutex_unlock(&sit_i
->sentry_lock
);
2096 set_prefree_as_free_segments(sbi
);
2099 static int build_sit_info(struct f2fs_sb_info
*sbi
)
2101 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
2102 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2103 struct sit_info
*sit_i
;
2104 unsigned int sit_segs
, start
;
2105 char *src_bitmap
, *dst_bitmap
;
2106 unsigned int bitmap_size
;
2108 /* allocate memory for SIT information */
2109 sit_i
= kzalloc(sizeof(struct sit_info
), GFP_KERNEL
);
2113 SM_I(sbi
)->sit_info
= sit_i
;
2115 sit_i
->sentries
= f2fs_kvzalloc(MAIN_SEGS(sbi
) *
2116 sizeof(struct seg_entry
), GFP_KERNEL
);
2117 if (!sit_i
->sentries
)
2120 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2121 sit_i
->dirty_sentries_bitmap
= f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2122 if (!sit_i
->dirty_sentries_bitmap
)
2125 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2126 sit_i
->sentries
[start
].cur_valid_map
2127 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2128 sit_i
->sentries
[start
].ckpt_valid_map
2129 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2130 sit_i
->sentries
[start
].discard_map
2131 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2132 if (!sit_i
->sentries
[start
].cur_valid_map
||
2133 !sit_i
->sentries
[start
].ckpt_valid_map
||
2134 !sit_i
->sentries
[start
].discard_map
)
2138 sit_i
->tmp_map
= kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2139 if (!sit_i
->tmp_map
)
2142 if (sbi
->segs_per_sec
> 1) {
2143 sit_i
->sec_entries
= f2fs_kvzalloc(MAIN_SECS(sbi
) *
2144 sizeof(struct sec_entry
), GFP_KERNEL
);
2145 if (!sit_i
->sec_entries
)
2149 /* get information related with SIT */
2150 sit_segs
= le32_to_cpu(raw_super
->segment_count_sit
) >> 1;
2152 /* setup SIT bitmap from ckeckpoint pack */
2153 bitmap_size
= __bitmap_size(sbi
, SIT_BITMAP
);
2154 src_bitmap
= __bitmap_ptr(sbi
, SIT_BITMAP
);
2156 dst_bitmap
= kmemdup(src_bitmap
, bitmap_size
, GFP_KERNEL
);
2160 /* init SIT information */
2161 sit_i
->s_ops
= &default_salloc_ops
;
2163 sit_i
->sit_base_addr
= le32_to_cpu(raw_super
->sit_blkaddr
);
2164 sit_i
->sit_blocks
= sit_segs
<< sbi
->log_blocks_per_seg
;
2165 sit_i
->written_valid_blocks
= le64_to_cpu(ckpt
->valid_block_count
);
2166 sit_i
->sit_bitmap
= dst_bitmap
;
2167 sit_i
->bitmap_size
= bitmap_size
;
2168 sit_i
->dirty_sentries
= 0;
2169 sit_i
->sents_per_block
= SIT_ENTRY_PER_BLOCK
;
2170 sit_i
->elapsed_time
= le64_to_cpu(sbi
->ckpt
->elapsed_time
);
2171 sit_i
->mounted_time
= CURRENT_TIME_SEC
.tv_sec
;
2172 mutex_init(&sit_i
->sentry_lock
);
2176 static int build_free_segmap(struct f2fs_sb_info
*sbi
)
2178 struct free_segmap_info
*free_i
;
2179 unsigned int bitmap_size
, sec_bitmap_size
;
2181 /* allocate memory for free segmap information */
2182 free_i
= kzalloc(sizeof(struct free_segmap_info
), GFP_KERNEL
);
2186 SM_I(sbi
)->free_info
= free_i
;
2188 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2189 free_i
->free_segmap
= f2fs_kvmalloc(bitmap_size
, GFP_KERNEL
);
2190 if (!free_i
->free_segmap
)
2193 sec_bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
2194 free_i
->free_secmap
= f2fs_kvmalloc(sec_bitmap_size
, GFP_KERNEL
);
2195 if (!free_i
->free_secmap
)
2198 /* set all segments as dirty temporarily */
2199 memset(free_i
->free_segmap
, 0xff, bitmap_size
);
2200 memset(free_i
->free_secmap
, 0xff, sec_bitmap_size
);
2202 /* init free segmap information */
2203 free_i
->start_segno
= GET_SEGNO_FROM_SEG0(sbi
, MAIN_BLKADDR(sbi
));
2204 free_i
->free_segments
= 0;
2205 free_i
->free_sections
= 0;
2206 spin_lock_init(&free_i
->segmap_lock
);
2210 static int build_curseg(struct f2fs_sb_info
*sbi
)
2212 struct curseg_info
*array
;
2215 array
= kcalloc(NR_CURSEG_TYPE
, sizeof(*array
), GFP_KERNEL
);
2219 SM_I(sbi
)->curseg_array
= array
;
2221 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
2222 mutex_init(&array
[i
].curseg_mutex
);
2223 array
[i
].sum_blk
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
2224 if (!array
[i
].sum_blk
)
2226 init_rwsem(&array
[i
].journal_rwsem
);
2227 array
[i
].journal
= kzalloc(sizeof(struct f2fs_journal
),
2229 if (!array
[i
].journal
)
2231 array
[i
].segno
= NULL_SEGNO
;
2232 array
[i
].next_blkoff
= 0;
2234 return restore_curseg_summaries(sbi
);
2237 static void build_sit_entries(struct f2fs_sb_info
*sbi
)
2239 struct sit_info
*sit_i
= SIT_I(sbi
);
2240 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
2241 struct f2fs_journal
*journal
= curseg
->journal
;
2242 int sit_blk_cnt
= SIT_BLK_CNT(sbi
);
2243 unsigned int i
, start
, end
;
2244 unsigned int readed
, start_blk
= 0;
2245 int nrpages
= MAX_BIO_BLOCKS(sbi
) * 8;
2248 readed
= ra_meta_pages(sbi
, start_blk
, nrpages
, META_SIT
, true);
2250 start
= start_blk
* sit_i
->sents_per_block
;
2251 end
= (start_blk
+ readed
) * sit_i
->sents_per_block
;
2253 for (; start
< end
&& start
< MAIN_SEGS(sbi
); start
++) {
2254 struct seg_entry
*se
= &sit_i
->sentries
[start
];
2255 struct f2fs_sit_block
*sit_blk
;
2256 struct f2fs_sit_entry sit
;
2259 down_read(&curseg
->journal_rwsem
);
2260 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
2261 if (le32_to_cpu(segno_in_journal(journal
, i
))
2263 sit
= sit_in_journal(journal
, i
);
2264 up_read(&curseg
->journal_rwsem
);
2268 up_read(&curseg
->journal_rwsem
);
2270 page
= get_current_sit_page(sbi
, start
);
2271 sit_blk
= (struct f2fs_sit_block
*)page_address(page
);
2272 sit
= sit_blk
->entries
[SIT_ENTRY_OFFSET(sit_i
, start
)];
2273 f2fs_put_page(page
, 1);
2275 check_block_count(sbi
, start
, &sit
);
2276 seg_info_from_raw_sit(se
, &sit
);
2278 /* build discard map only one time */
2279 memcpy(se
->discard_map
, se
->cur_valid_map
, SIT_VBLOCK_MAP_SIZE
);
2280 sbi
->discard_blks
+= sbi
->blocks_per_seg
- se
->valid_blocks
;
2282 if (sbi
->segs_per_sec
> 1) {
2283 struct sec_entry
*e
= get_sec_entry(sbi
, start
);
2284 e
->valid_blocks
+= se
->valid_blocks
;
2287 start_blk
+= readed
;
2288 } while (start_blk
< sit_blk_cnt
);
2291 static void init_free_segmap(struct f2fs_sb_info
*sbi
)
2296 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2297 struct seg_entry
*sentry
= get_seg_entry(sbi
, start
);
2298 if (!sentry
->valid_blocks
)
2299 __set_free(sbi
, start
);
2302 /* set use the current segments */
2303 for (type
= CURSEG_HOT_DATA
; type
<= CURSEG_COLD_NODE
; type
++) {
2304 struct curseg_info
*curseg_t
= CURSEG_I(sbi
, type
);
2305 __set_test_and_inuse(sbi
, curseg_t
->segno
);
2309 static void init_dirty_segmap(struct f2fs_sb_info
*sbi
)
2311 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2312 struct free_segmap_info
*free_i
= FREE_I(sbi
);
2313 unsigned int segno
= 0, offset
= 0;
2314 unsigned short valid_blocks
;
2317 /* find dirty segment based on free segmap */
2318 segno
= find_next_inuse(free_i
, MAIN_SEGS(sbi
), offset
);
2319 if (segno
>= MAIN_SEGS(sbi
))
2322 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
2323 if (valid_blocks
== sbi
->blocks_per_seg
|| !valid_blocks
)
2325 if (valid_blocks
> sbi
->blocks_per_seg
) {
2326 f2fs_bug_on(sbi
, 1);
2329 mutex_lock(&dirty_i
->seglist_lock
);
2330 __locate_dirty_segment(sbi
, segno
, DIRTY
);
2331 mutex_unlock(&dirty_i
->seglist_lock
);
2335 static int init_victim_secmap(struct f2fs_sb_info
*sbi
)
2337 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2338 unsigned int bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
2340 dirty_i
->victim_secmap
= f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2341 if (!dirty_i
->victim_secmap
)
2346 static int build_dirty_segmap(struct f2fs_sb_info
*sbi
)
2348 struct dirty_seglist_info
*dirty_i
;
2349 unsigned int bitmap_size
, i
;
2351 /* allocate memory for dirty segments list information */
2352 dirty_i
= kzalloc(sizeof(struct dirty_seglist_info
), GFP_KERNEL
);
2356 SM_I(sbi
)->dirty_info
= dirty_i
;
2357 mutex_init(&dirty_i
->seglist_lock
);
2359 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2361 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++) {
2362 dirty_i
->dirty_segmap
[i
] = f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2363 if (!dirty_i
->dirty_segmap
[i
])
2367 init_dirty_segmap(sbi
);
2368 return init_victim_secmap(sbi
);
2372 * Update min, max modified time for cost-benefit GC algorithm
2374 static void init_min_max_mtime(struct f2fs_sb_info
*sbi
)
2376 struct sit_info
*sit_i
= SIT_I(sbi
);
2379 mutex_lock(&sit_i
->sentry_lock
);
2381 sit_i
->min_mtime
= LLONG_MAX
;
2383 for (segno
= 0; segno
< MAIN_SEGS(sbi
); segno
+= sbi
->segs_per_sec
) {
2385 unsigned long long mtime
= 0;
2387 for (i
= 0; i
< sbi
->segs_per_sec
; i
++)
2388 mtime
+= get_seg_entry(sbi
, segno
+ i
)->mtime
;
2390 mtime
= div_u64(mtime
, sbi
->segs_per_sec
);
2392 if (sit_i
->min_mtime
> mtime
)
2393 sit_i
->min_mtime
= mtime
;
2395 sit_i
->max_mtime
= get_mtime(sbi
);
2396 mutex_unlock(&sit_i
->sentry_lock
);
2399 int build_segment_manager(struct f2fs_sb_info
*sbi
)
2401 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
2402 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2403 struct f2fs_sm_info
*sm_info
;
2406 sm_info
= kzalloc(sizeof(struct f2fs_sm_info
), GFP_KERNEL
);
2411 sbi
->sm_info
= sm_info
;
2412 sm_info
->seg0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
2413 sm_info
->main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
2414 sm_info
->segment_count
= le32_to_cpu(raw_super
->segment_count
);
2415 sm_info
->reserved_segments
= le32_to_cpu(ckpt
->rsvd_segment_count
);
2416 sm_info
->ovp_segments
= le32_to_cpu(ckpt
->overprov_segment_count
);
2417 sm_info
->main_segments
= le32_to_cpu(raw_super
->segment_count_main
);
2418 sm_info
->ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
2419 sm_info
->rec_prefree_segments
= sm_info
->main_segments
*
2420 DEF_RECLAIM_PREFREE_SEGMENTS
/ 100;
2421 if (sm_info
->rec_prefree_segments
> DEF_MAX_RECLAIM_PREFREE_SEGMENTS
)
2422 sm_info
->rec_prefree_segments
= DEF_MAX_RECLAIM_PREFREE_SEGMENTS
;
2424 if (!test_opt(sbi
, LFS
))
2425 sm_info
->ipu_policy
= 1 << F2FS_IPU_FSYNC
;
2426 sm_info
->min_ipu_util
= DEF_MIN_IPU_UTIL
;
2427 sm_info
->min_fsync_blocks
= DEF_MIN_FSYNC_BLOCKS
;
2429 INIT_LIST_HEAD(&sm_info
->discard_list
);
2430 sm_info
->nr_discards
= 0;
2431 sm_info
->max_discards
= 0;
2433 sm_info
->trim_sections
= DEF_BATCHED_TRIM_SECTIONS
;
2435 INIT_LIST_HEAD(&sm_info
->sit_entry_set
);
2437 if (test_opt(sbi
, FLUSH_MERGE
) && !f2fs_readonly(sbi
->sb
)) {
2438 err
= create_flush_cmd_control(sbi
);
2443 err
= build_sit_info(sbi
);
2446 err
= build_free_segmap(sbi
);
2449 err
= build_curseg(sbi
);
2453 /* reinit free segmap based on SIT */
2454 build_sit_entries(sbi
);
2456 init_free_segmap(sbi
);
2457 err
= build_dirty_segmap(sbi
);
2461 init_min_max_mtime(sbi
);
2465 static void discard_dirty_segmap(struct f2fs_sb_info
*sbi
,
2466 enum dirty_type dirty_type
)
2468 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2470 mutex_lock(&dirty_i
->seglist_lock
);
2471 kvfree(dirty_i
->dirty_segmap
[dirty_type
]);
2472 dirty_i
->nr_dirty
[dirty_type
] = 0;
2473 mutex_unlock(&dirty_i
->seglist_lock
);
2476 static void destroy_victim_secmap(struct f2fs_sb_info
*sbi
)
2478 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2479 kvfree(dirty_i
->victim_secmap
);
2482 static void destroy_dirty_segmap(struct f2fs_sb_info
*sbi
)
2484 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2490 /* discard pre-free/dirty segments list */
2491 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++)
2492 discard_dirty_segmap(sbi
, i
);
2494 destroy_victim_secmap(sbi
);
2495 SM_I(sbi
)->dirty_info
= NULL
;
2499 static void destroy_curseg(struct f2fs_sb_info
*sbi
)
2501 struct curseg_info
*array
= SM_I(sbi
)->curseg_array
;
2506 SM_I(sbi
)->curseg_array
= NULL
;
2507 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
2508 kfree(array
[i
].sum_blk
);
2509 kfree(array
[i
].journal
);
2514 static void destroy_free_segmap(struct f2fs_sb_info
*sbi
)
2516 struct free_segmap_info
*free_i
= SM_I(sbi
)->free_info
;
2519 SM_I(sbi
)->free_info
= NULL
;
2520 kvfree(free_i
->free_segmap
);
2521 kvfree(free_i
->free_secmap
);
2525 static void destroy_sit_info(struct f2fs_sb_info
*sbi
)
2527 struct sit_info
*sit_i
= SIT_I(sbi
);
2533 if (sit_i
->sentries
) {
2534 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2535 kfree(sit_i
->sentries
[start
].cur_valid_map
);
2536 kfree(sit_i
->sentries
[start
].ckpt_valid_map
);
2537 kfree(sit_i
->sentries
[start
].discard_map
);
2540 kfree(sit_i
->tmp_map
);
2542 kvfree(sit_i
->sentries
);
2543 kvfree(sit_i
->sec_entries
);
2544 kvfree(sit_i
->dirty_sentries_bitmap
);
2546 SM_I(sbi
)->sit_info
= NULL
;
2547 kfree(sit_i
->sit_bitmap
);
2551 void destroy_segment_manager(struct f2fs_sb_info
*sbi
)
2553 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
2557 destroy_flush_cmd_control(sbi
);
2558 destroy_dirty_segmap(sbi
);
2559 destroy_curseg(sbi
);
2560 destroy_free_segmap(sbi
);
2561 destroy_sit_info(sbi
);
2562 sbi
->sm_info
= NULL
;
2566 int __init
create_segment_manager_caches(void)
2568 discard_entry_slab
= f2fs_kmem_cache_create("discard_entry",
2569 sizeof(struct discard_entry
));
2570 if (!discard_entry_slab
)
2573 sit_entry_set_slab
= f2fs_kmem_cache_create("sit_entry_set",
2574 sizeof(struct sit_entry_set
));
2575 if (!sit_entry_set_slab
)
2576 goto destory_discard_entry
;
2578 inmem_entry_slab
= f2fs_kmem_cache_create("inmem_page_entry",
2579 sizeof(struct inmem_pages
));
2580 if (!inmem_entry_slab
)
2581 goto destroy_sit_entry_set
;
2584 destroy_sit_entry_set
:
2585 kmem_cache_destroy(sit_entry_set_slab
);
2586 destory_discard_entry
:
2587 kmem_cache_destroy(discard_entry_slab
);
2592 void destroy_segment_manager_caches(void)
2594 kmem_cache_destroy(sit_entry_set_slab
);
2595 kmem_cache_destroy(discard_entry_slab
);
2596 kmem_cache_destroy(inmem_entry_slab
);