ovl: create ovl_need_index() helper
[linux/fpc-iii.git] / mm / truncate.c
blobe4b4cf0f407068caf2175624731f3d8f9b361098
1 /*
2 * mm/truncate.c - code for taking down pages from address_spaces
4 * Copyright (C) 2002, Linus Torvalds
6 * 10Sep2002 Andrew Morton
7 * Initial version.
8 */
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/mm.h>
15 #include <linux/swap.h>
16 #include <linux/export.h>
17 #include <linux/pagemap.h>
18 #include <linux/highmem.h>
19 #include <linux/pagevec.h>
20 #include <linux/task_io_accounting_ops.h>
21 #include <linux/buffer_head.h> /* grr. try_to_release_page,
22 do_invalidatepage */
23 #include <linux/shmem_fs.h>
24 #include <linux/cleancache.h>
25 #include <linux/rmap.h>
26 #include "internal.h"
29 * Regular page slots are stabilized by the page lock even without the tree
30 * itself locked. These unlocked entries need verification under the tree
31 * lock.
33 static inline void __clear_shadow_entry(struct address_space *mapping,
34 pgoff_t index, void *entry)
36 struct radix_tree_node *node;
37 void **slot;
39 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
40 return;
41 if (*slot != entry)
42 return;
43 __radix_tree_replace(&mapping->page_tree, node, slot, NULL,
44 workingset_update_node);
45 mapping->nrexceptional--;
48 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
49 void *entry)
51 spin_lock_irq(&mapping->tree_lock);
52 __clear_shadow_entry(mapping, index, entry);
53 spin_unlock_irq(&mapping->tree_lock);
57 * Unconditionally remove exceptional entries. Usually called from truncate
58 * path. Note that the pagevec may be altered by this function by removing
59 * exceptional entries similar to what pagevec_remove_exceptionals does.
61 static void truncate_exceptional_pvec_entries(struct address_space *mapping,
62 struct pagevec *pvec, pgoff_t *indices,
63 pgoff_t end)
65 int i, j;
66 bool dax, lock;
68 /* Handled by shmem itself */
69 if (shmem_mapping(mapping))
70 return;
72 for (j = 0; j < pagevec_count(pvec); j++)
73 if (radix_tree_exceptional_entry(pvec->pages[j]))
74 break;
76 if (j == pagevec_count(pvec))
77 return;
79 dax = dax_mapping(mapping);
80 lock = !dax && indices[j] < end;
81 if (lock)
82 spin_lock_irq(&mapping->tree_lock);
84 for (i = j; i < pagevec_count(pvec); i++) {
85 struct page *page = pvec->pages[i];
86 pgoff_t index = indices[i];
88 if (!radix_tree_exceptional_entry(page)) {
89 pvec->pages[j++] = page;
90 continue;
93 if (index >= end)
94 continue;
96 if (unlikely(dax)) {
97 dax_delete_mapping_entry(mapping, index);
98 continue;
101 __clear_shadow_entry(mapping, index, page);
104 if (lock)
105 spin_unlock_irq(&mapping->tree_lock);
106 pvec->nr = j;
110 * Invalidate exceptional entry if easily possible. This handles exceptional
111 * entries for invalidate_inode_pages().
113 static int invalidate_exceptional_entry(struct address_space *mapping,
114 pgoff_t index, void *entry)
116 /* Handled by shmem itself, or for DAX we do nothing. */
117 if (shmem_mapping(mapping) || dax_mapping(mapping))
118 return 1;
119 clear_shadow_entry(mapping, index, entry);
120 return 1;
124 * Invalidate exceptional entry if clean. This handles exceptional entries for
125 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
127 static int invalidate_exceptional_entry2(struct address_space *mapping,
128 pgoff_t index, void *entry)
130 /* Handled by shmem itself */
131 if (shmem_mapping(mapping))
132 return 1;
133 if (dax_mapping(mapping))
134 return dax_invalidate_mapping_entry_sync(mapping, index);
135 clear_shadow_entry(mapping, index, entry);
136 return 1;
140 * do_invalidatepage - invalidate part or all of a page
141 * @page: the page which is affected
142 * @offset: start of the range to invalidate
143 * @length: length of the range to invalidate
145 * do_invalidatepage() is called when all or part of the page has become
146 * invalidated by a truncate operation.
148 * do_invalidatepage() does not have to release all buffers, but it must
149 * ensure that no dirty buffer is left outside @offset and that no I/O
150 * is underway against any of the blocks which are outside the truncation
151 * point. Because the caller is about to free (and possibly reuse) those
152 * blocks on-disk.
154 void do_invalidatepage(struct page *page, unsigned int offset,
155 unsigned int length)
157 void (*invalidatepage)(struct page *, unsigned int, unsigned int);
159 invalidatepage = page->mapping->a_ops->invalidatepage;
160 #ifdef CONFIG_BLOCK
161 if (!invalidatepage)
162 invalidatepage = block_invalidatepage;
163 #endif
164 if (invalidatepage)
165 (*invalidatepage)(page, offset, length);
169 * If truncate cannot remove the fs-private metadata from the page, the page
170 * becomes orphaned. It will be left on the LRU and may even be mapped into
171 * user pagetables if we're racing with filemap_fault().
173 * We need to bale out if page->mapping is no longer equal to the original
174 * mapping. This happens a) when the VM reclaimed the page while we waited on
175 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
176 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
178 static void
179 truncate_cleanup_page(struct address_space *mapping, struct page *page)
181 if (page_mapped(page)) {
182 loff_t holelen;
184 holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE;
185 unmap_mapping_range(mapping,
186 (loff_t)page->index << PAGE_SHIFT,
187 holelen, 0);
190 if (page_has_private(page))
191 do_invalidatepage(page, 0, PAGE_SIZE);
194 * Some filesystems seem to re-dirty the page even after
195 * the VM has canceled the dirty bit (eg ext3 journaling).
196 * Hence dirty accounting check is placed after invalidation.
198 cancel_dirty_page(page);
199 ClearPageMappedToDisk(page);
203 * This is for invalidate_mapping_pages(). That function can be called at
204 * any time, and is not supposed to throw away dirty pages. But pages can
205 * be marked dirty at any time too, so use remove_mapping which safely
206 * discards clean, unused pages.
208 * Returns non-zero if the page was successfully invalidated.
210 static int
211 invalidate_complete_page(struct address_space *mapping, struct page *page)
213 int ret;
215 if (page->mapping != mapping)
216 return 0;
218 if (page_has_private(page) && !try_to_release_page(page, 0))
219 return 0;
221 ret = remove_mapping(mapping, page);
223 return ret;
226 int truncate_inode_page(struct address_space *mapping, struct page *page)
228 VM_BUG_ON_PAGE(PageTail(page), page);
230 if (page->mapping != mapping)
231 return -EIO;
233 truncate_cleanup_page(mapping, page);
234 delete_from_page_cache(page);
235 return 0;
239 * Used to get rid of pages on hardware memory corruption.
241 int generic_error_remove_page(struct address_space *mapping, struct page *page)
243 if (!mapping)
244 return -EINVAL;
246 * Only punch for normal data pages for now.
247 * Handling other types like directories would need more auditing.
249 if (!S_ISREG(mapping->host->i_mode))
250 return -EIO;
251 return truncate_inode_page(mapping, page);
253 EXPORT_SYMBOL(generic_error_remove_page);
256 * Safely invalidate one page from its pagecache mapping.
257 * It only drops clean, unused pages. The page must be locked.
259 * Returns 1 if the page is successfully invalidated, otherwise 0.
261 int invalidate_inode_page(struct page *page)
263 struct address_space *mapping = page_mapping(page);
264 if (!mapping)
265 return 0;
266 if (PageDirty(page) || PageWriteback(page))
267 return 0;
268 if (page_mapped(page))
269 return 0;
270 return invalidate_complete_page(mapping, page);
274 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
275 * @mapping: mapping to truncate
276 * @lstart: offset from which to truncate
277 * @lend: offset to which to truncate (inclusive)
279 * Truncate the page cache, removing the pages that are between
280 * specified offsets (and zeroing out partial pages
281 * if lstart or lend + 1 is not page aligned).
283 * Truncate takes two passes - the first pass is nonblocking. It will not
284 * block on page locks and it will not block on writeback. The second pass
285 * will wait. This is to prevent as much IO as possible in the affected region.
286 * The first pass will remove most pages, so the search cost of the second pass
287 * is low.
289 * We pass down the cache-hot hint to the page freeing code. Even if the
290 * mapping is large, it is probably the case that the final pages are the most
291 * recently touched, and freeing happens in ascending file offset order.
293 * Note that since ->invalidatepage() accepts range to invalidate
294 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
295 * page aligned properly.
297 void truncate_inode_pages_range(struct address_space *mapping,
298 loff_t lstart, loff_t lend)
300 pgoff_t start; /* inclusive */
301 pgoff_t end; /* exclusive */
302 unsigned int partial_start; /* inclusive */
303 unsigned int partial_end; /* exclusive */
304 struct pagevec pvec;
305 pgoff_t indices[PAGEVEC_SIZE];
306 pgoff_t index;
307 int i;
309 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
310 goto out;
312 /* Offsets within partial pages */
313 partial_start = lstart & (PAGE_SIZE - 1);
314 partial_end = (lend + 1) & (PAGE_SIZE - 1);
317 * 'start' and 'end' always covers the range of pages to be fully
318 * truncated. Partial pages are covered with 'partial_start' at the
319 * start of the range and 'partial_end' at the end of the range.
320 * Note that 'end' is exclusive while 'lend' is inclusive.
322 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
323 if (lend == -1)
325 * lend == -1 indicates end-of-file so we have to set 'end'
326 * to the highest possible pgoff_t and since the type is
327 * unsigned we're using -1.
329 end = -1;
330 else
331 end = (lend + 1) >> PAGE_SHIFT;
333 pagevec_init(&pvec);
334 index = start;
335 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
336 min(end - index, (pgoff_t)PAGEVEC_SIZE),
337 indices)) {
339 * Pagevec array has exceptional entries and we may also fail
340 * to lock some pages. So we store pages that can be deleted
341 * in a new pagevec.
343 struct pagevec locked_pvec;
345 pagevec_init(&locked_pvec);
346 for (i = 0; i < pagevec_count(&pvec); i++) {
347 struct page *page = pvec.pages[i];
349 /* We rely upon deletion not changing page->index */
350 index = indices[i];
351 if (index >= end)
352 break;
354 if (radix_tree_exceptional_entry(page))
355 continue;
357 if (!trylock_page(page))
358 continue;
359 WARN_ON(page_to_index(page) != index);
360 if (PageWriteback(page)) {
361 unlock_page(page);
362 continue;
364 if (page->mapping != mapping) {
365 unlock_page(page);
366 continue;
368 pagevec_add(&locked_pvec, page);
370 for (i = 0; i < pagevec_count(&locked_pvec); i++)
371 truncate_cleanup_page(mapping, locked_pvec.pages[i]);
372 delete_from_page_cache_batch(mapping, &locked_pvec);
373 for (i = 0; i < pagevec_count(&locked_pvec); i++)
374 unlock_page(locked_pvec.pages[i]);
375 truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
376 pagevec_release(&pvec);
377 cond_resched();
378 index++;
380 if (partial_start) {
381 struct page *page = find_lock_page(mapping, start - 1);
382 if (page) {
383 unsigned int top = PAGE_SIZE;
384 if (start > end) {
385 /* Truncation within a single page */
386 top = partial_end;
387 partial_end = 0;
389 wait_on_page_writeback(page);
390 zero_user_segment(page, partial_start, top);
391 cleancache_invalidate_page(mapping, page);
392 if (page_has_private(page))
393 do_invalidatepage(page, partial_start,
394 top - partial_start);
395 unlock_page(page);
396 put_page(page);
399 if (partial_end) {
400 struct page *page = find_lock_page(mapping, end);
401 if (page) {
402 wait_on_page_writeback(page);
403 zero_user_segment(page, 0, partial_end);
404 cleancache_invalidate_page(mapping, page);
405 if (page_has_private(page))
406 do_invalidatepage(page, 0,
407 partial_end);
408 unlock_page(page);
409 put_page(page);
413 * If the truncation happened within a single page no pages
414 * will be released, just zeroed, so we can bail out now.
416 if (start >= end)
417 goto out;
419 index = start;
420 for ( ; ; ) {
421 cond_resched();
422 if (!pagevec_lookup_entries(&pvec, mapping, index,
423 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
424 /* If all gone from start onwards, we're done */
425 if (index == start)
426 break;
427 /* Otherwise restart to make sure all gone */
428 index = start;
429 continue;
431 if (index == start && indices[0] >= end) {
432 /* All gone out of hole to be punched, we're done */
433 pagevec_remove_exceptionals(&pvec);
434 pagevec_release(&pvec);
435 break;
438 for (i = 0; i < pagevec_count(&pvec); i++) {
439 struct page *page = pvec.pages[i];
441 /* We rely upon deletion not changing page->index */
442 index = indices[i];
443 if (index >= end) {
444 /* Restart punch to make sure all gone */
445 index = start - 1;
446 break;
449 if (radix_tree_exceptional_entry(page))
450 continue;
452 lock_page(page);
453 WARN_ON(page_to_index(page) != index);
454 wait_on_page_writeback(page);
455 truncate_inode_page(mapping, page);
456 unlock_page(page);
458 truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
459 pagevec_release(&pvec);
460 index++;
463 out:
464 cleancache_invalidate_inode(mapping);
466 EXPORT_SYMBOL(truncate_inode_pages_range);
469 * truncate_inode_pages - truncate *all* the pages from an offset
470 * @mapping: mapping to truncate
471 * @lstart: offset from which to truncate
473 * Called under (and serialised by) inode->i_mutex.
475 * Note: When this function returns, there can be a page in the process of
476 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
477 * mapping->nrpages can be non-zero when this function returns even after
478 * truncation of the whole mapping.
480 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
482 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
484 EXPORT_SYMBOL(truncate_inode_pages);
487 * truncate_inode_pages_final - truncate *all* pages before inode dies
488 * @mapping: mapping to truncate
490 * Called under (and serialized by) inode->i_mutex.
492 * Filesystems have to use this in the .evict_inode path to inform the
493 * VM that this is the final truncate and the inode is going away.
495 void truncate_inode_pages_final(struct address_space *mapping)
497 unsigned long nrexceptional;
498 unsigned long nrpages;
501 * Page reclaim can not participate in regular inode lifetime
502 * management (can't call iput()) and thus can race with the
503 * inode teardown. Tell it when the address space is exiting,
504 * so that it does not install eviction information after the
505 * final truncate has begun.
507 mapping_set_exiting(mapping);
510 * When reclaim installs eviction entries, it increases
511 * nrexceptional first, then decreases nrpages. Make sure we see
512 * this in the right order or we might miss an entry.
514 nrpages = mapping->nrpages;
515 smp_rmb();
516 nrexceptional = mapping->nrexceptional;
518 if (nrpages || nrexceptional) {
520 * As truncation uses a lockless tree lookup, cycle
521 * the tree lock to make sure any ongoing tree
522 * modification that does not see AS_EXITING is
523 * completed before starting the final truncate.
525 spin_lock_irq(&mapping->tree_lock);
526 spin_unlock_irq(&mapping->tree_lock);
528 truncate_inode_pages(mapping, 0);
531 EXPORT_SYMBOL(truncate_inode_pages_final);
534 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
535 * @mapping: the address_space which holds the pages to invalidate
536 * @start: the offset 'from' which to invalidate
537 * @end: the offset 'to' which to invalidate (inclusive)
539 * This function only removes the unlocked pages, if you want to
540 * remove all the pages of one inode, you must call truncate_inode_pages.
542 * invalidate_mapping_pages() will not block on IO activity. It will not
543 * invalidate pages which are dirty, locked, under writeback or mapped into
544 * pagetables.
546 unsigned long invalidate_mapping_pages(struct address_space *mapping,
547 pgoff_t start, pgoff_t end)
549 pgoff_t indices[PAGEVEC_SIZE];
550 struct pagevec pvec;
551 pgoff_t index = start;
552 unsigned long ret;
553 unsigned long count = 0;
554 int i;
556 pagevec_init(&pvec);
557 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
558 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
559 indices)) {
560 for (i = 0; i < pagevec_count(&pvec); i++) {
561 struct page *page = pvec.pages[i];
563 /* We rely upon deletion not changing page->index */
564 index = indices[i];
565 if (index > end)
566 break;
568 if (radix_tree_exceptional_entry(page)) {
569 invalidate_exceptional_entry(mapping, index,
570 page);
571 continue;
574 if (!trylock_page(page))
575 continue;
577 WARN_ON(page_to_index(page) != index);
579 /* Middle of THP: skip */
580 if (PageTransTail(page)) {
581 unlock_page(page);
582 continue;
583 } else if (PageTransHuge(page)) {
584 index += HPAGE_PMD_NR - 1;
585 i += HPAGE_PMD_NR - 1;
587 * 'end' is in the middle of THP. Don't
588 * invalidate the page as the part outside of
589 * 'end' could be still useful.
591 if (index > end) {
592 unlock_page(page);
593 continue;
597 ret = invalidate_inode_page(page);
598 unlock_page(page);
600 * Invalidation is a hint that the page is no longer
601 * of interest and try to speed up its reclaim.
603 if (!ret)
604 deactivate_file_page(page);
605 count += ret;
607 pagevec_remove_exceptionals(&pvec);
608 pagevec_release(&pvec);
609 cond_resched();
610 index++;
612 return count;
614 EXPORT_SYMBOL(invalidate_mapping_pages);
617 * This is like invalidate_complete_page(), except it ignores the page's
618 * refcount. We do this because invalidate_inode_pages2() needs stronger
619 * invalidation guarantees, and cannot afford to leave pages behind because
620 * shrink_page_list() has a temp ref on them, or because they're transiently
621 * sitting in the lru_cache_add() pagevecs.
623 static int
624 invalidate_complete_page2(struct address_space *mapping, struct page *page)
626 unsigned long flags;
628 if (page->mapping != mapping)
629 return 0;
631 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
632 return 0;
634 spin_lock_irqsave(&mapping->tree_lock, flags);
635 if (PageDirty(page))
636 goto failed;
638 BUG_ON(page_has_private(page));
639 __delete_from_page_cache(page, NULL);
640 spin_unlock_irqrestore(&mapping->tree_lock, flags);
642 if (mapping->a_ops->freepage)
643 mapping->a_ops->freepage(page);
645 put_page(page); /* pagecache ref */
646 return 1;
647 failed:
648 spin_unlock_irqrestore(&mapping->tree_lock, flags);
649 return 0;
652 static int do_launder_page(struct address_space *mapping, struct page *page)
654 if (!PageDirty(page))
655 return 0;
656 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
657 return 0;
658 return mapping->a_ops->launder_page(page);
662 * invalidate_inode_pages2_range - remove range of pages from an address_space
663 * @mapping: the address_space
664 * @start: the page offset 'from' which to invalidate
665 * @end: the page offset 'to' which to invalidate (inclusive)
667 * Any pages which are found to be mapped into pagetables are unmapped prior to
668 * invalidation.
670 * Returns -EBUSY if any pages could not be invalidated.
672 int invalidate_inode_pages2_range(struct address_space *mapping,
673 pgoff_t start, pgoff_t end)
675 pgoff_t indices[PAGEVEC_SIZE];
676 struct pagevec pvec;
677 pgoff_t index;
678 int i;
679 int ret = 0;
680 int ret2 = 0;
681 int did_range_unmap = 0;
683 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
684 goto out;
686 pagevec_init(&pvec);
687 index = start;
688 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
689 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
690 indices)) {
691 for (i = 0; i < pagevec_count(&pvec); i++) {
692 struct page *page = pvec.pages[i];
694 /* We rely upon deletion not changing page->index */
695 index = indices[i];
696 if (index > end)
697 break;
699 if (radix_tree_exceptional_entry(page)) {
700 if (!invalidate_exceptional_entry2(mapping,
701 index, page))
702 ret = -EBUSY;
703 continue;
706 lock_page(page);
707 WARN_ON(page_to_index(page) != index);
708 if (page->mapping != mapping) {
709 unlock_page(page);
710 continue;
712 wait_on_page_writeback(page);
713 if (page_mapped(page)) {
714 if (!did_range_unmap) {
716 * Zap the rest of the file in one hit.
718 unmap_mapping_range(mapping,
719 (loff_t)index << PAGE_SHIFT,
720 (loff_t)(1 + end - index)
721 << PAGE_SHIFT,
723 did_range_unmap = 1;
724 } else {
726 * Just zap this page
728 unmap_mapping_range(mapping,
729 (loff_t)index << PAGE_SHIFT,
730 PAGE_SIZE, 0);
733 BUG_ON(page_mapped(page));
734 ret2 = do_launder_page(mapping, page);
735 if (ret2 == 0) {
736 if (!invalidate_complete_page2(mapping, page))
737 ret2 = -EBUSY;
739 if (ret2 < 0)
740 ret = ret2;
741 unlock_page(page);
743 pagevec_remove_exceptionals(&pvec);
744 pagevec_release(&pvec);
745 cond_resched();
746 index++;
749 * For DAX we invalidate page tables after invalidating radix tree. We
750 * could invalidate page tables while invalidating each entry however
751 * that would be expensive. And doing range unmapping before doesn't
752 * work as we have no cheap way to find whether radix tree entry didn't
753 * get remapped later.
755 if (dax_mapping(mapping)) {
756 unmap_mapping_range(mapping, (loff_t)start << PAGE_SHIFT,
757 (loff_t)(end - start + 1) << PAGE_SHIFT, 0);
759 out:
760 cleancache_invalidate_inode(mapping);
761 return ret;
763 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
766 * invalidate_inode_pages2 - remove all pages from an address_space
767 * @mapping: the address_space
769 * Any pages which are found to be mapped into pagetables are unmapped prior to
770 * invalidation.
772 * Returns -EBUSY if any pages could not be invalidated.
774 int invalidate_inode_pages2(struct address_space *mapping)
776 return invalidate_inode_pages2_range(mapping, 0, -1);
778 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
781 * truncate_pagecache - unmap and remove pagecache that has been truncated
782 * @inode: inode
783 * @newsize: new file size
785 * inode's new i_size must already be written before truncate_pagecache
786 * is called.
788 * This function should typically be called before the filesystem
789 * releases resources associated with the freed range (eg. deallocates
790 * blocks). This way, pagecache will always stay logically coherent
791 * with on-disk format, and the filesystem would not have to deal with
792 * situations such as writepage being called for a page that has already
793 * had its underlying blocks deallocated.
795 void truncate_pagecache(struct inode *inode, loff_t newsize)
797 struct address_space *mapping = inode->i_mapping;
798 loff_t holebegin = round_up(newsize, PAGE_SIZE);
801 * unmap_mapping_range is called twice, first simply for
802 * efficiency so that truncate_inode_pages does fewer
803 * single-page unmaps. However after this first call, and
804 * before truncate_inode_pages finishes, it is possible for
805 * private pages to be COWed, which remain after
806 * truncate_inode_pages finishes, hence the second
807 * unmap_mapping_range call must be made for correctness.
809 unmap_mapping_range(mapping, holebegin, 0, 1);
810 truncate_inode_pages(mapping, newsize);
811 unmap_mapping_range(mapping, holebegin, 0, 1);
813 EXPORT_SYMBOL(truncate_pagecache);
816 * truncate_setsize - update inode and pagecache for a new file size
817 * @inode: inode
818 * @newsize: new file size
820 * truncate_setsize updates i_size and performs pagecache truncation (if
821 * necessary) to @newsize. It will be typically be called from the filesystem's
822 * setattr function when ATTR_SIZE is passed in.
824 * Must be called with a lock serializing truncates and writes (generally
825 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
826 * specific block truncation has been performed.
828 void truncate_setsize(struct inode *inode, loff_t newsize)
830 loff_t oldsize = inode->i_size;
832 i_size_write(inode, newsize);
833 if (newsize > oldsize)
834 pagecache_isize_extended(inode, oldsize, newsize);
835 truncate_pagecache(inode, newsize);
837 EXPORT_SYMBOL(truncate_setsize);
840 * pagecache_isize_extended - update pagecache after extension of i_size
841 * @inode: inode for which i_size was extended
842 * @from: original inode size
843 * @to: new inode size
845 * Handle extension of inode size either caused by extending truncate or by
846 * write starting after current i_size. We mark the page straddling current
847 * i_size RO so that page_mkwrite() is called on the nearest write access to
848 * the page. This way filesystem can be sure that page_mkwrite() is called on
849 * the page before user writes to the page via mmap after the i_size has been
850 * changed.
852 * The function must be called after i_size is updated so that page fault
853 * coming after we unlock the page will already see the new i_size.
854 * The function must be called while we still hold i_mutex - this not only
855 * makes sure i_size is stable but also that userspace cannot observe new
856 * i_size value before we are prepared to store mmap writes at new inode size.
858 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
860 int bsize = i_blocksize(inode);
861 loff_t rounded_from;
862 struct page *page;
863 pgoff_t index;
865 WARN_ON(to > inode->i_size);
867 if (from >= to || bsize == PAGE_SIZE)
868 return;
869 /* Page straddling @from will not have any hole block created? */
870 rounded_from = round_up(from, bsize);
871 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
872 return;
874 index = from >> PAGE_SHIFT;
875 page = find_lock_page(inode->i_mapping, index);
876 /* Page not cached? Nothing to do */
877 if (!page)
878 return;
880 * See clear_page_dirty_for_io() for details why set_page_dirty()
881 * is needed.
883 if (page_mkclean(page))
884 set_page_dirty(page);
885 unlock_page(page);
886 put_page(page);
888 EXPORT_SYMBOL(pagecache_isize_extended);
891 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
892 * @inode: inode
893 * @lstart: offset of beginning of hole
894 * @lend: offset of last byte of hole
896 * This function should typically be called before the filesystem
897 * releases resources associated with the freed range (eg. deallocates
898 * blocks). This way, pagecache will always stay logically coherent
899 * with on-disk format, and the filesystem would not have to deal with
900 * situations such as writepage being called for a page that has already
901 * had its underlying blocks deallocated.
903 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
905 struct address_space *mapping = inode->i_mapping;
906 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
907 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
909 * This rounding is currently just for example: unmap_mapping_range
910 * expands its hole outwards, whereas we want it to contract the hole
911 * inwards. However, existing callers of truncate_pagecache_range are
912 * doing their own page rounding first. Note that unmap_mapping_range
913 * allows holelen 0 for all, and we allow lend -1 for end of file.
917 * Unlike in truncate_pagecache, unmap_mapping_range is called only
918 * once (before truncating pagecache), and without "even_cows" flag:
919 * hole-punching should not remove private COWed pages from the hole.
921 if ((u64)unmap_end > (u64)unmap_start)
922 unmap_mapping_range(mapping, unmap_start,
923 1 + unmap_end - unmap_start, 0);
924 truncate_inode_pages_range(mapping, lstart, lend);
926 EXPORT_SYMBOL(truncate_pagecache_range);