ovl: create ovl_need_index() helper
[linux/fpc-iii.git] / mm / zsmalloc.c
blob683c0651098c719ab25c5b48789262e541a13362
1 /*
2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/pagemap.h>
56 #include <linux/fs.h>
58 #define ZSPAGE_MAGIC 0x58
61 * This must be power of 2 and greater than of equal to sizeof(link_free).
62 * These two conditions ensure that any 'struct link_free' itself doesn't
63 * span more than 1 page which avoids complex case of mapping 2 pages simply
64 * to restore link_free pointer values.
66 #define ZS_ALIGN 8
69 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
70 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72 #define ZS_MAX_ZSPAGE_ORDER 2
73 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
78 * Object location (<PFN>, <obj_idx>) is encoded as
79 * as single (unsigned long) handle value.
81 * Note that object index <obj_idx> starts from 0.
83 * This is made more complicated by various memory models and PAE.
86 #ifndef MAX_PHYSMEM_BITS
87 #ifdef CONFIG_HIGHMEM64G
88 #define MAX_PHYSMEM_BITS 36
89 #else /* !CONFIG_HIGHMEM64G */
91 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
92 * be PAGE_SHIFT
94 #define MAX_PHYSMEM_BITS BITS_PER_LONG
95 #endif
96 #endif
97 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
100 * Memory for allocating for handle keeps object position by
101 * encoding <page, obj_idx> and the encoded value has a room
102 * in least bit(ie, look at obj_to_location).
103 * We use the bit to synchronize between object access by
104 * user and migration.
106 #define HANDLE_PIN_BIT 0
109 * Head in allocated object should have OBJ_ALLOCATED_TAG
110 * to identify the object was allocated or not.
111 * It's okay to add the status bit in the least bit because
112 * header keeps handle which is 4byte-aligned address so we
113 * have room for two bit at least.
115 #define OBJ_ALLOCATED_TAG 1
116 #define OBJ_TAG_BITS 1
117 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
118 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
120 #define FULLNESS_BITS 2
121 #define CLASS_BITS 8
122 #define ISOLATED_BITS 3
123 #define MAGIC_VAL_BITS 8
125 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
126 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
127 #define ZS_MIN_ALLOC_SIZE \
128 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
129 /* each chunk includes extra space to keep handle */
130 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
133 * On systems with 4K page size, this gives 255 size classes! There is a
134 * trader-off here:
135 * - Large number of size classes is potentially wasteful as free page are
136 * spread across these classes
137 * - Small number of size classes causes large internal fragmentation
138 * - Probably its better to use specific size classes (empirically
139 * determined). NOTE: all those class sizes must be set as multiple of
140 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
142 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
143 * (reason above)
145 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
146 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
147 ZS_SIZE_CLASS_DELTA) + 1)
149 enum fullness_group {
150 ZS_EMPTY,
151 ZS_ALMOST_EMPTY,
152 ZS_ALMOST_FULL,
153 ZS_FULL,
154 NR_ZS_FULLNESS,
157 enum zs_stat_type {
158 CLASS_EMPTY,
159 CLASS_ALMOST_EMPTY,
160 CLASS_ALMOST_FULL,
161 CLASS_FULL,
162 OBJ_ALLOCATED,
163 OBJ_USED,
164 NR_ZS_STAT_TYPE,
167 struct zs_size_stat {
168 unsigned long objs[NR_ZS_STAT_TYPE];
171 #ifdef CONFIG_ZSMALLOC_STAT
172 static struct dentry *zs_stat_root;
173 #endif
175 #ifdef CONFIG_COMPACTION
176 static struct vfsmount *zsmalloc_mnt;
177 #endif
180 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
181 * n <= N / f, where
182 * n = number of allocated objects
183 * N = total number of objects zspage can store
184 * f = fullness_threshold_frac
186 * Similarly, we assign zspage to:
187 * ZS_ALMOST_FULL when n > N / f
188 * ZS_EMPTY when n == 0
189 * ZS_FULL when n == N
191 * (see: fix_fullness_group())
193 static const int fullness_threshold_frac = 4;
195 struct size_class {
196 spinlock_t lock;
197 struct list_head fullness_list[NR_ZS_FULLNESS];
199 * Size of objects stored in this class. Must be multiple
200 * of ZS_ALIGN.
202 int size;
203 int objs_per_zspage;
204 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
205 int pages_per_zspage;
207 unsigned int index;
208 struct zs_size_stat stats;
211 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
212 static void SetPageHugeObject(struct page *page)
214 SetPageOwnerPriv1(page);
217 static void ClearPageHugeObject(struct page *page)
219 ClearPageOwnerPriv1(page);
222 static int PageHugeObject(struct page *page)
224 return PageOwnerPriv1(page);
228 * Placed within free objects to form a singly linked list.
229 * For every zspage, zspage->freeobj gives head of this list.
231 * This must be power of 2 and less than or equal to ZS_ALIGN
233 struct link_free {
234 union {
236 * Free object index;
237 * It's valid for non-allocated object
239 unsigned long next;
241 * Handle of allocated object.
243 unsigned long handle;
247 struct zs_pool {
248 const char *name;
250 struct size_class *size_class[ZS_SIZE_CLASSES];
251 struct kmem_cache *handle_cachep;
252 struct kmem_cache *zspage_cachep;
254 atomic_long_t pages_allocated;
256 struct zs_pool_stats stats;
258 /* Compact classes */
259 struct shrinker shrinker;
261 * To signify that register_shrinker() was successful
262 * and unregister_shrinker() will not Oops.
264 bool shrinker_enabled;
265 #ifdef CONFIG_ZSMALLOC_STAT
266 struct dentry *stat_dentry;
267 #endif
268 #ifdef CONFIG_COMPACTION
269 struct inode *inode;
270 struct work_struct free_work;
271 #endif
274 struct zspage {
275 struct {
276 unsigned int fullness:FULLNESS_BITS;
277 unsigned int class:CLASS_BITS + 1;
278 unsigned int isolated:ISOLATED_BITS;
279 unsigned int magic:MAGIC_VAL_BITS;
281 unsigned int inuse;
282 unsigned int freeobj;
283 struct page *first_page;
284 struct list_head list; /* fullness list */
285 #ifdef CONFIG_COMPACTION
286 rwlock_t lock;
287 #endif
290 struct mapping_area {
291 #ifdef CONFIG_PGTABLE_MAPPING
292 struct vm_struct *vm; /* vm area for mapping object that span pages */
293 #else
294 char *vm_buf; /* copy buffer for objects that span pages */
295 #endif
296 char *vm_addr; /* address of kmap_atomic()'ed pages */
297 enum zs_mapmode vm_mm; /* mapping mode */
300 #ifdef CONFIG_COMPACTION
301 static int zs_register_migration(struct zs_pool *pool);
302 static void zs_unregister_migration(struct zs_pool *pool);
303 static void migrate_lock_init(struct zspage *zspage);
304 static void migrate_read_lock(struct zspage *zspage);
305 static void migrate_read_unlock(struct zspage *zspage);
306 static void kick_deferred_free(struct zs_pool *pool);
307 static void init_deferred_free(struct zs_pool *pool);
308 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
309 #else
310 static int zsmalloc_mount(void) { return 0; }
311 static void zsmalloc_unmount(void) {}
312 static int zs_register_migration(struct zs_pool *pool) { return 0; }
313 static void zs_unregister_migration(struct zs_pool *pool) {}
314 static void migrate_lock_init(struct zspage *zspage) {}
315 static void migrate_read_lock(struct zspage *zspage) {}
316 static void migrate_read_unlock(struct zspage *zspage) {}
317 static void kick_deferred_free(struct zs_pool *pool) {}
318 static void init_deferred_free(struct zs_pool *pool) {}
319 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
320 #endif
322 static int create_cache(struct zs_pool *pool)
324 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
325 0, 0, NULL);
326 if (!pool->handle_cachep)
327 return 1;
329 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
330 0, 0, NULL);
331 if (!pool->zspage_cachep) {
332 kmem_cache_destroy(pool->handle_cachep);
333 pool->handle_cachep = NULL;
334 return 1;
337 return 0;
340 static void destroy_cache(struct zs_pool *pool)
342 kmem_cache_destroy(pool->handle_cachep);
343 kmem_cache_destroy(pool->zspage_cachep);
346 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
348 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
349 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
352 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
354 kmem_cache_free(pool->handle_cachep, (void *)handle);
357 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
359 return kmem_cache_alloc(pool->zspage_cachep,
360 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
363 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
365 kmem_cache_free(pool->zspage_cachep, zspage);
368 static void record_obj(unsigned long handle, unsigned long obj)
371 * lsb of @obj represents handle lock while other bits
372 * represent object value the handle is pointing so
373 * updating shouldn't do store tearing.
375 WRITE_ONCE(*(unsigned long *)handle, obj);
378 /* zpool driver */
380 #ifdef CONFIG_ZPOOL
382 static void *zs_zpool_create(const char *name, gfp_t gfp,
383 const struct zpool_ops *zpool_ops,
384 struct zpool *zpool)
387 * Ignore global gfp flags: zs_malloc() may be invoked from
388 * different contexts and its caller must provide a valid
389 * gfp mask.
391 return zs_create_pool(name);
394 static void zs_zpool_destroy(void *pool)
396 zs_destroy_pool(pool);
399 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
400 unsigned long *handle)
402 *handle = zs_malloc(pool, size, gfp);
403 return *handle ? 0 : -1;
405 static void zs_zpool_free(void *pool, unsigned long handle)
407 zs_free(pool, handle);
410 static int zs_zpool_shrink(void *pool, unsigned int pages,
411 unsigned int *reclaimed)
413 return -EINVAL;
416 static void *zs_zpool_map(void *pool, unsigned long handle,
417 enum zpool_mapmode mm)
419 enum zs_mapmode zs_mm;
421 switch (mm) {
422 case ZPOOL_MM_RO:
423 zs_mm = ZS_MM_RO;
424 break;
425 case ZPOOL_MM_WO:
426 zs_mm = ZS_MM_WO;
427 break;
428 case ZPOOL_MM_RW: /* fallthru */
429 default:
430 zs_mm = ZS_MM_RW;
431 break;
434 return zs_map_object(pool, handle, zs_mm);
436 static void zs_zpool_unmap(void *pool, unsigned long handle)
438 zs_unmap_object(pool, handle);
441 static u64 zs_zpool_total_size(void *pool)
443 return zs_get_total_pages(pool) << PAGE_SHIFT;
446 static struct zpool_driver zs_zpool_driver = {
447 .type = "zsmalloc",
448 .owner = THIS_MODULE,
449 .create = zs_zpool_create,
450 .destroy = zs_zpool_destroy,
451 .malloc = zs_zpool_malloc,
452 .free = zs_zpool_free,
453 .shrink = zs_zpool_shrink,
454 .map = zs_zpool_map,
455 .unmap = zs_zpool_unmap,
456 .total_size = zs_zpool_total_size,
459 MODULE_ALIAS("zpool-zsmalloc");
460 #endif /* CONFIG_ZPOOL */
462 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
463 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
465 static bool is_zspage_isolated(struct zspage *zspage)
467 return zspage->isolated;
470 static __maybe_unused int is_first_page(struct page *page)
472 return PagePrivate(page);
475 /* Protected by class->lock */
476 static inline int get_zspage_inuse(struct zspage *zspage)
478 return zspage->inuse;
481 static inline void set_zspage_inuse(struct zspage *zspage, int val)
483 zspage->inuse = val;
486 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
488 zspage->inuse += val;
491 static inline struct page *get_first_page(struct zspage *zspage)
493 struct page *first_page = zspage->first_page;
495 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
496 return first_page;
499 static inline int get_first_obj_offset(struct page *page)
501 return page->units;
504 static inline void set_first_obj_offset(struct page *page, int offset)
506 page->units = offset;
509 static inline unsigned int get_freeobj(struct zspage *zspage)
511 return zspage->freeobj;
514 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
516 zspage->freeobj = obj;
519 static void get_zspage_mapping(struct zspage *zspage,
520 unsigned int *class_idx,
521 enum fullness_group *fullness)
523 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
525 *fullness = zspage->fullness;
526 *class_idx = zspage->class;
529 static void set_zspage_mapping(struct zspage *zspage,
530 unsigned int class_idx,
531 enum fullness_group fullness)
533 zspage->class = class_idx;
534 zspage->fullness = fullness;
538 * zsmalloc divides the pool into various size classes where each
539 * class maintains a list of zspages where each zspage is divided
540 * into equal sized chunks. Each allocation falls into one of these
541 * classes depending on its size. This function returns index of the
542 * size class which has chunk size big enough to hold the give size.
544 static int get_size_class_index(int size)
546 int idx = 0;
548 if (likely(size > ZS_MIN_ALLOC_SIZE))
549 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
550 ZS_SIZE_CLASS_DELTA);
552 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
555 /* type can be of enum type zs_stat_type or fullness_group */
556 static inline void zs_stat_inc(struct size_class *class,
557 int type, unsigned long cnt)
559 class->stats.objs[type] += cnt;
562 /* type can be of enum type zs_stat_type or fullness_group */
563 static inline void zs_stat_dec(struct size_class *class,
564 int type, unsigned long cnt)
566 class->stats.objs[type] -= cnt;
569 /* type can be of enum type zs_stat_type or fullness_group */
570 static inline unsigned long zs_stat_get(struct size_class *class,
571 int type)
573 return class->stats.objs[type];
576 #ifdef CONFIG_ZSMALLOC_STAT
578 static void __init zs_stat_init(void)
580 if (!debugfs_initialized()) {
581 pr_warn("debugfs not available, stat dir not created\n");
582 return;
585 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
586 if (!zs_stat_root)
587 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
590 static void __exit zs_stat_exit(void)
592 debugfs_remove_recursive(zs_stat_root);
595 static unsigned long zs_can_compact(struct size_class *class);
597 static int zs_stats_size_show(struct seq_file *s, void *v)
599 int i;
600 struct zs_pool *pool = s->private;
601 struct size_class *class;
602 int objs_per_zspage;
603 unsigned long class_almost_full, class_almost_empty;
604 unsigned long obj_allocated, obj_used, pages_used, freeable;
605 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
606 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
607 unsigned long total_freeable = 0;
609 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
610 "class", "size", "almost_full", "almost_empty",
611 "obj_allocated", "obj_used", "pages_used",
612 "pages_per_zspage", "freeable");
614 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
615 class = pool->size_class[i];
617 if (class->index != i)
618 continue;
620 spin_lock(&class->lock);
621 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
622 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
623 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
624 obj_used = zs_stat_get(class, OBJ_USED);
625 freeable = zs_can_compact(class);
626 spin_unlock(&class->lock);
628 objs_per_zspage = class->objs_per_zspage;
629 pages_used = obj_allocated / objs_per_zspage *
630 class->pages_per_zspage;
632 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
633 " %10lu %10lu %16d %8lu\n",
634 i, class->size, class_almost_full, class_almost_empty,
635 obj_allocated, obj_used, pages_used,
636 class->pages_per_zspage, freeable);
638 total_class_almost_full += class_almost_full;
639 total_class_almost_empty += class_almost_empty;
640 total_objs += obj_allocated;
641 total_used_objs += obj_used;
642 total_pages += pages_used;
643 total_freeable += freeable;
646 seq_puts(s, "\n");
647 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
648 "Total", "", total_class_almost_full,
649 total_class_almost_empty, total_objs,
650 total_used_objs, total_pages, "", total_freeable);
652 return 0;
655 static int zs_stats_size_open(struct inode *inode, struct file *file)
657 return single_open(file, zs_stats_size_show, inode->i_private);
660 static const struct file_operations zs_stat_size_ops = {
661 .open = zs_stats_size_open,
662 .read = seq_read,
663 .llseek = seq_lseek,
664 .release = single_release,
667 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
669 struct dentry *entry;
671 if (!zs_stat_root) {
672 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
673 return;
676 entry = debugfs_create_dir(name, zs_stat_root);
677 if (!entry) {
678 pr_warn("debugfs dir <%s> creation failed\n", name);
679 return;
681 pool->stat_dentry = entry;
683 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
684 pool->stat_dentry, pool, &zs_stat_size_ops);
685 if (!entry) {
686 pr_warn("%s: debugfs file entry <%s> creation failed\n",
687 name, "classes");
688 debugfs_remove_recursive(pool->stat_dentry);
689 pool->stat_dentry = NULL;
693 static void zs_pool_stat_destroy(struct zs_pool *pool)
695 debugfs_remove_recursive(pool->stat_dentry);
698 #else /* CONFIG_ZSMALLOC_STAT */
699 static void __init zs_stat_init(void)
703 static void __exit zs_stat_exit(void)
707 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
711 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
714 #endif
718 * For each size class, zspages are divided into different groups
719 * depending on how "full" they are. This was done so that we could
720 * easily find empty or nearly empty zspages when we try to shrink
721 * the pool (not yet implemented). This function returns fullness
722 * status of the given page.
724 static enum fullness_group get_fullness_group(struct size_class *class,
725 struct zspage *zspage)
727 int inuse, objs_per_zspage;
728 enum fullness_group fg;
730 inuse = get_zspage_inuse(zspage);
731 objs_per_zspage = class->objs_per_zspage;
733 if (inuse == 0)
734 fg = ZS_EMPTY;
735 else if (inuse == objs_per_zspage)
736 fg = ZS_FULL;
737 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
738 fg = ZS_ALMOST_EMPTY;
739 else
740 fg = ZS_ALMOST_FULL;
742 return fg;
746 * Each size class maintains various freelists and zspages are assigned
747 * to one of these freelists based on the number of live objects they
748 * have. This functions inserts the given zspage into the freelist
749 * identified by <class, fullness_group>.
751 static void insert_zspage(struct size_class *class,
752 struct zspage *zspage,
753 enum fullness_group fullness)
755 struct zspage *head;
757 zs_stat_inc(class, fullness, 1);
758 head = list_first_entry_or_null(&class->fullness_list[fullness],
759 struct zspage, list);
761 * We want to see more ZS_FULL pages and less almost empty/full.
762 * Put pages with higher ->inuse first.
764 if (head) {
765 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
766 list_add(&zspage->list, &head->list);
767 return;
770 list_add(&zspage->list, &class->fullness_list[fullness]);
774 * This function removes the given zspage from the freelist identified
775 * by <class, fullness_group>.
777 static void remove_zspage(struct size_class *class,
778 struct zspage *zspage,
779 enum fullness_group fullness)
781 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
782 VM_BUG_ON(is_zspage_isolated(zspage));
784 list_del_init(&zspage->list);
785 zs_stat_dec(class, fullness, 1);
789 * Each size class maintains zspages in different fullness groups depending
790 * on the number of live objects they contain. When allocating or freeing
791 * objects, the fullness status of the page can change, say, from ALMOST_FULL
792 * to ALMOST_EMPTY when freeing an object. This function checks if such
793 * a status change has occurred for the given page and accordingly moves the
794 * page from the freelist of the old fullness group to that of the new
795 * fullness group.
797 static enum fullness_group fix_fullness_group(struct size_class *class,
798 struct zspage *zspage)
800 int class_idx;
801 enum fullness_group currfg, newfg;
803 get_zspage_mapping(zspage, &class_idx, &currfg);
804 newfg = get_fullness_group(class, zspage);
805 if (newfg == currfg)
806 goto out;
808 if (!is_zspage_isolated(zspage)) {
809 remove_zspage(class, zspage, currfg);
810 insert_zspage(class, zspage, newfg);
813 set_zspage_mapping(zspage, class_idx, newfg);
815 out:
816 return newfg;
820 * We have to decide on how many pages to link together
821 * to form a zspage for each size class. This is important
822 * to reduce wastage due to unusable space left at end of
823 * each zspage which is given as:
824 * wastage = Zp % class_size
825 * usage = Zp - wastage
826 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
828 * For example, for size class of 3/8 * PAGE_SIZE, we should
829 * link together 3 PAGE_SIZE sized pages to form a zspage
830 * since then we can perfectly fit in 8 such objects.
832 static int get_pages_per_zspage(int class_size)
834 int i, max_usedpc = 0;
835 /* zspage order which gives maximum used size per KB */
836 int max_usedpc_order = 1;
838 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
839 int zspage_size;
840 int waste, usedpc;
842 zspage_size = i * PAGE_SIZE;
843 waste = zspage_size % class_size;
844 usedpc = (zspage_size - waste) * 100 / zspage_size;
846 if (usedpc > max_usedpc) {
847 max_usedpc = usedpc;
848 max_usedpc_order = i;
852 return max_usedpc_order;
855 static struct zspage *get_zspage(struct page *page)
857 struct zspage *zspage = (struct zspage *)page->private;
859 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
860 return zspage;
863 static struct page *get_next_page(struct page *page)
865 if (unlikely(PageHugeObject(page)))
866 return NULL;
868 return page->freelist;
872 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
873 * @page: page object resides in zspage
874 * @obj_idx: object index
876 static void obj_to_location(unsigned long obj, struct page **page,
877 unsigned int *obj_idx)
879 obj >>= OBJ_TAG_BITS;
880 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
881 *obj_idx = (obj & OBJ_INDEX_MASK);
885 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
886 * @page: page object resides in zspage
887 * @obj_idx: object index
889 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
891 unsigned long obj;
893 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
894 obj |= obj_idx & OBJ_INDEX_MASK;
895 obj <<= OBJ_TAG_BITS;
897 return obj;
900 static unsigned long handle_to_obj(unsigned long handle)
902 return *(unsigned long *)handle;
905 static unsigned long obj_to_head(struct page *page, void *obj)
907 if (unlikely(PageHugeObject(page))) {
908 VM_BUG_ON_PAGE(!is_first_page(page), page);
909 return page->index;
910 } else
911 return *(unsigned long *)obj;
914 static inline int testpin_tag(unsigned long handle)
916 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
919 static inline int trypin_tag(unsigned long handle)
921 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
924 static void pin_tag(unsigned long handle)
926 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
929 static void unpin_tag(unsigned long handle)
931 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
934 static void reset_page(struct page *page)
936 __ClearPageMovable(page);
937 ClearPagePrivate(page);
938 set_page_private(page, 0);
939 page_mapcount_reset(page);
940 ClearPageHugeObject(page);
941 page->freelist = NULL;
945 * To prevent zspage destroy during migration, zspage freeing should
946 * hold locks of all pages in the zspage.
948 void lock_zspage(struct zspage *zspage)
950 struct page *page = get_first_page(zspage);
952 do {
953 lock_page(page);
954 } while ((page = get_next_page(page)) != NULL);
957 int trylock_zspage(struct zspage *zspage)
959 struct page *cursor, *fail;
961 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
962 get_next_page(cursor)) {
963 if (!trylock_page(cursor)) {
964 fail = cursor;
965 goto unlock;
969 return 1;
970 unlock:
971 for (cursor = get_first_page(zspage); cursor != fail; cursor =
972 get_next_page(cursor))
973 unlock_page(cursor);
975 return 0;
978 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
979 struct zspage *zspage)
981 struct page *page, *next;
982 enum fullness_group fg;
983 unsigned int class_idx;
985 get_zspage_mapping(zspage, &class_idx, &fg);
987 assert_spin_locked(&class->lock);
989 VM_BUG_ON(get_zspage_inuse(zspage));
990 VM_BUG_ON(fg != ZS_EMPTY);
992 next = page = get_first_page(zspage);
993 do {
994 VM_BUG_ON_PAGE(!PageLocked(page), page);
995 next = get_next_page(page);
996 reset_page(page);
997 unlock_page(page);
998 dec_zone_page_state(page, NR_ZSPAGES);
999 put_page(page);
1000 page = next;
1001 } while (page != NULL);
1003 cache_free_zspage(pool, zspage);
1005 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1006 atomic_long_sub(class->pages_per_zspage,
1007 &pool->pages_allocated);
1010 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1011 struct zspage *zspage)
1013 VM_BUG_ON(get_zspage_inuse(zspage));
1014 VM_BUG_ON(list_empty(&zspage->list));
1016 if (!trylock_zspage(zspage)) {
1017 kick_deferred_free(pool);
1018 return;
1021 remove_zspage(class, zspage, ZS_EMPTY);
1022 __free_zspage(pool, class, zspage);
1025 /* Initialize a newly allocated zspage */
1026 static void init_zspage(struct size_class *class, struct zspage *zspage)
1028 unsigned int freeobj = 1;
1029 unsigned long off = 0;
1030 struct page *page = get_first_page(zspage);
1032 while (page) {
1033 struct page *next_page;
1034 struct link_free *link;
1035 void *vaddr;
1037 set_first_obj_offset(page, off);
1039 vaddr = kmap_atomic(page);
1040 link = (struct link_free *)vaddr + off / sizeof(*link);
1042 while ((off += class->size) < PAGE_SIZE) {
1043 link->next = freeobj++ << OBJ_TAG_BITS;
1044 link += class->size / sizeof(*link);
1048 * We now come to the last (full or partial) object on this
1049 * page, which must point to the first object on the next
1050 * page (if present)
1052 next_page = get_next_page(page);
1053 if (next_page) {
1054 link->next = freeobj++ << OBJ_TAG_BITS;
1055 } else {
1057 * Reset OBJ_TAG_BITS bit to last link to tell
1058 * whether it's allocated object or not.
1060 link->next = -1 << OBJ_TAG_BITS;
1062 kunmap_atomic(vaddr);
1063 page = next_page;
1064 off %= PAGE_SIZE;
1067 set_freeobj(zspage, 0);
1070 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1071 struct page *pages[])
1073 int i;
1074 struct page *page;
1075 struct page *prev_page = NULL;
1076 int nr_pages = class->pages_per_zspage;
1079 * Allocate individual pages and link them together as:
1080 * 1. all pages are linked together using page->freelist
1081 * 2. each sub-page point to zspage using page->private
1083 * we set PG_private to identify the first page (i.e. no other sub-page
1084 * has this flag set).
1086 for (i = 0; i < nr_pages; i++) {
1087 page = pages[i];
1088 set_page_private(page, (unsigned long)zspage);
1089 page->freelist = NULL;
1090 if (i == 0) {
1091 zspage->first_page = page;
1092 SetPagePrivate(page);
1093 if (unlikely(class->objs_per_zspage == 1 &&
1094 class->pages_per_zspage == 1))
1095 SetPageHugeObject(page);
1096 } else {
1097 prev_page->freelist = page;
1099 prev_page = page;
1104 * Allocate a zspage for the given size class
1106 static struct zspage *alloc_zspage(struct zs_pool *pool,
1107 struct size_class *class,
1108 gfp_t gfp)
1110 int i;
1111 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1112 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1114 if (!zspage)
1115 return NULL;
1117 memset(zspage, 0, sizeof(struct zspage));
1118 zspage->magic = ZSPAGE_MAGIC;
1119 migrate_lock_init(zspage);
1121 for (i = 0; i < class->pages_per_zspage; i++) {
1122 struct page *page;
1124 page = alloc_page(gfp);
1125 if (!page) {
1126 while (--i >= 0) {
1127 dec_zone_page_state(pages[i], NR_ZSPAGES);
1128 __free_page(pages[i]);
1130 cache_free_zspage(pool, zspage);
1131 return NULL;
1134 inc_zone_page_state(page, NR_ZSPAGES);
1135 pages[i] = page;
1138 create_page_chain(class, zspage, pages);
1139 init_zspage(class, zspage);
1141 return zspage;
1144 static struct zspage *find_get_zspage(struct size_class *class)
1146 int i;
1147 struct zspage *zspage;
1149 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1150 zspage = list_first_entry_or_null(&class->fullness_list[i],
1151 struct zspage, list);
1152 if (zspage)
1153 break;
1156 return zspage;
1159 #ifdef CONFIG_PGTABLE_MAPPING
1160 static inline int __zs_cpu_up(struct mapping_area *area)
1163 * Make sure we don't leak memory if a cpu UP notification
1164 * and zs_init() race and both call zs_cpu_up() on the same cpu
1166 if (area->vm)
1167 return 0;
1168 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1169 if (!area->vm)
1170 return -ENOMEM;
1171 return 0;
1174 static inline void __zs_cpu_down(struct mapping_area *area)
1176 if (area->vm)
1177 free_vm_area(area->vm);
1178 area->vm = NULL;
1181 static inline void *__zs_map_object(struct mapping_area *area,
1182 struct page *pages[2], int off, int size)
1184 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1185 area->vm_addr = area->vm->addr;
1186 return area->vm_addr + off;
1189 static inline void __zs_unmap_object(struct mapping_area *area,
1190 struct page *pages[2], int off, int size)
1192 unsigned long addr = (unsigned long)area->vm_addr;
1194 unmap_kernel_range(addr, PAGE_SIZE * 2);
1197 #else /* CONFIG_PGTABLE_MAPPING */
1199 static inline int __zs_cpu_up(struct mapping_area *area)
1202 * Make sure we don't leak memory if a cpu UP notification
1203 * and zs_init() race and both call zs_cpu_up() on the same cpu
1205 if (area->vm_buf)
1206 return 0;
1207 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1208 if (!area->vm_buf)
1209 return -ENOMEM;
1210 return 0;
1213 static inline void __zs_cpu_down(struct mapping_area *area)
1215 kfree(area->vm_buf);
1216 area->vm_buf = NULL;
1219 static void *__zs_map_object(struct mapping_area *area,
1220 struct page *pages[2], int off, int size)
1222 int sizes[2];
1223 void *addr;
1224 char *buf = area->vm_buf;
1226 /* disable page faults to match kmap_atomic() return conditions */
1227 pagefault_disable();
1229 /* no read fastpath */
1230 if (area->vm_mm == ZS_MM_WO)
1231 goto out;
1233 sizes[0] = PAGE_SIZE - off;
1234 sizes[1] = size - sizes[0];
1236 /* copy object to per-cpu buffer */
1237 addr = kmap_atomic(pages[0]);
1238 memcpy(buf, addr + off, sizes[0]);
1239 kunmap_atomic(addr);
1240 addr = kmap_atomic(pages[1]);
1241 memcpy(buf + sizes[0], addr, sizes[1]);
1242 kunmap_atomic(addr);
1243 out:
1244 return area->vm_buf;
1247 static void __zs_unmap_object(struct mapping_area *area,
1248 struct page *pages[2], int off, int size)
1250 int sizes[2];
1251 void *addr;
1252 char *buf;
1254 /* no write fastpath */
1255 if (area->vm_mm == ZS_MM_RO)
1256 goto out;
1258 buf = area->vm_buf;
1259 buf = buf + ZS_HANDLE_SIZE;
1260 size -= ZS_HANDLE_SIZE;
1261 off += ZS_HANDLE_SIZE;
1263 sizes[0] = PAGE_SIZE - off;
1264 sizes[1] = size - sizes[0];
1266 /* copy per-cpu buffer to object */
1267 addr = kmap_atomic(pages[0]);
1268 memcpy(addr + off, buf, sizes[0]);
1269 kunmap_atomic(addr);
1270 addr = kmap_atomic(pages[1]);
1271 memcpy(addr, buf + sizes[0], sizes[1]);
1272 kunmap_atomic(addr);
1274 out:
1275 /* enable page faults to match kunmap_atomic() return conditions */
1276 pagefault_enable();
1279 #endif /* CONFIG_PGTABLE_MAPPING */
1281 static int zs_cpu_prepare(unsigned int cpu)
1283 struct mapping_area *area;
1285 area = &per_cpu(zs_map_area, cpu);
1286 return __zs_cpu_up(area);
1289 static int zs_cpu_dead(unsigned int cpu)
1291 struct mapping_area *area;
1293 area = &per_cpu(zs_map_area, cpu);
1294 __zs_cpu_down(area);
1295 return 0;
1298 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1299 int objs_per_zspage)
1301 if (prev->pages_per_zspage == pages_per_zspage &&
1302 prev->objs_per_zspage == objs_per_zspage)
1303 return true;
1305 return false;
1308 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1310 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1313 unsigned long zs_get_total_pages(struct zs_pool *pool)
1315 return atomic_long_read(&pool->pages_allocated);
1317 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1320 * zs_map_object - get address of allocated object from handle.
1321 * @pool: pool from which the object was allocated
1322 * @handle: handle returned from zs_malloc
1324 * Before using an object allocated from zs_malloc, it must be mapped using
1325 * this function. When done with the object, it must be unmapped using
1326 * zs_unmap_object.
1328 * Only one object can be mapped per cpu at a time. There is no protection
1329 * against nested mappings.
1331 * This function returns with preemption and page faults disabled.
1333 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1334 enum zs_mapmode mm)
1336 struct zspage *zspage;
1337 struct page *page;
1338 unsigned long obj, off;
1339 unsigned int obj_idx;
1341 unsigned int class_idx;
1342 enum fullness_group fg;
1343 struct size_class *class;
1344 struct mapping_area *area;
1345 struct page *pages[2];
1346 void *ret;
1349 * Because we use per-cpu mapping areas shared among the
1350 * pools/users, we can't allow mapping in interrupt context
1351 * because it can corrupt another users mappings.
1353 BUG_ON(in_interrupt());
1355 /* From now on, migration cannot move the object */
1356 pin_tag(handle);
1358 obj = handle_to_obj(handle);
1359 obj_to_location(obj, &page, &obj_idx);
1360 zspage = get_zspage(page);
1362 /* migration cannot move any subpage in this zspage */
1363 migrate_read_lock(zspage);
1365 get_zspage_mapping(zspage, &class_idx, &fg);
1366 class = pool->size_class[class_idx];
1367 off = (class->size * obj_idx) & ~PAGE_MASK;
1369 area = &get_cpu_var(zs_map_area);
1370 area->vm_mm = mm;
1371 if (off + class->size <= PAGE_SIZE) {
1372 /* this object is contained entirely within a page */
1373 area->vm_addr = kmap_atomic(page);
1374 ret = area->vm_addr + off;
1375 goto out;
1378 /* this object spans two pages */
1379 pages[0] = page;
1380 pages[1] = get_next_page(page);
1381 BUG_ON(!pages[1]);
1383 ret = __zs_map_object(area, pages, off, class->size);
1384 out:
1385 if (likely(!PageHugeObject(page)))
1386 ret += ZS_HANDLE_SIZE;
1388 return ret;
1390 EXPORT_SYMBOL_GPL(zs_map_object);
1392 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1394 struct zspage *zspage;
1395 struct page *page;
1396 unsigned long obj, off;
1397 unsigned int obj_idx;
1399 unsigned int class_idx;
1400 enum fullness_group fg;
1401 struct size_class *class;
1402 struct mapping_area *area;
1404 obj = handle_to_obj(handle);
1405 obj_to_location(obj, &page, &obj_idx);
1406 zspage = get_zspage(page);
1407 get_zspage_mapping(zspage, &class_idx, &fg);
1408 class = pool->size_class[class_idx];
1409 off = (class->size * obj_idx) & ~PAGE_MASK;
1411 area = this_cpu_ptr(&zs_map_area);
1412 if (off + class->size <= PAGE_SIZE)
1413 kunmap_atomic(area->vm_addr);
1414 else {
1415 struct page *pages[2];
1417 pages[0] = page;
1418 pages[1] = get_next_page(page);
1419 BUG_ON(!pages[1]);
1421 __zs_unmap_object(area, pages, off, class->size);
1423 put_cpu_var(zs_map_area);
1425 migrate_read_unlock(zspage);
1426 unpin_tag(handle);
1428 EXPORT_SYMBOL_GPL(zs_unmap_object);
1430 static unsigned long obj_malloc(struct size_class *class,
1431 struct zspage *zspage, unsigned long handle)
1433 int i, nr_page, offset;
1434 unsigned long obj;
1435 struct link_free *link;
1437 struct page *m_page;
1438 unsigned long m_offset;
1439 void *vaddr;
1441 handle |= OBJ_ALLOCATED_TAG;
1442 obj = get_freeobj(zspage);
1444 offset = obj * class->size;
1445 nr_page = offset >> PAGE_SHIFT;
1446 m_offset = offset & ~PAGE_MASK;
1447 m_page = get_first_page(zspage);
1449 for (i = 0; i < nr_page; i++)
1450 m_page = get_next_page(m_page);
1452 vaddr = kmap_atomic(m_page);
1453 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1454 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1455 if (likely(!PageHugeObject(m_page)))
1456 /* record handle in the header of allocated chunk */
1457 link->handle = handle;
1458 else
1459 /* record handle to page->index */
1460 zspage->first_page->index = handle;
1462 kunmap_atomic(vaddr);
1463 mod_zspage_inuse(zspage, 1);
1464 zs_stat_inc(class, OBJ_USED, 1);
1466 obj = location_to_obj(m_page, obj);
1468 return obj;
1473 * zs_malloc - Allocate block of given size from pool.
1474 * @pool: pool to allocate from
1475 * @size: size of block to allocate
1476 * @gfp: gfp flags when allocating object
1478 * On success, handle to the allocated object is returned,
1479 * otherwise 0.
1480 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1482 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1484 unsigned long handle, obj;
1485 struct size_class *class;
1486 enum fullness_group newfg;
1487 struct zspage *zspage;
1489 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1490 return 0;
1492 handle = cache_alloc_handle(pool, gfp);
1493 if (!handle)
1494 return 0;
1496 /* extra space in chunk to keep the handle */
1497 size += ZS_HANDLE_SIZE;
1498 class = pool->size_class[get_size_class_index(size)];
1500 spin_lock(&class->lock);
1501 zspage = find_get_zspage(class);
1502 if (likely(zspage)) {
1503 obj = obj_malloc(class, zspage, handle);
1504 /* Now move the zspage to another fullness group, if required */
1505 fix_fullness_group(class, zspage);
1506 record_obj(handle, obj);
1507 spin_unlock(&class->lock);
1509 return handle;
1512 spin_unlock(&class->lock);
1514 zspage = alloc_zspage(pool, class, gfp);
1515 if (!zspage) {
1516 cache_free_handle(pool, handle);
1517 return 0;
1520 spin_lock(&class->lock);
1521 obj = obj_malloc(class, zspage, handle);
1522 newfg = get_fullness_group(class, zspage);
1523 insert_zspage(class, zspage, newfg);
1524 set_zspage_mapping(zspage, class->index, newfg);
1525 record_obj(handle, obj);
1526 atomic_long_add(class->pages_per_zspage,
1527 &pool->pages_allocated);
1528 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1530 /* We completely set up zspage so mark them as movable */
1531 SetZsPageMovable(pool, zspage);
1532 spin_unlock(&class->lock);
1534 return handle;
1536 EXPORT_SYMBOL_GPL(zs_malloc);
1538 static void obj_free(struct size_class *class, unsigned long obj)
1540 struct link_free *link;
1541 struct zspage *zspage;
1542 struct page *f_page;
1543 unsigned long f_offset;
1544 unsigned int f_objidx;
1545 void *vaddr;
1547 obj &= ~OBJ_ALLOCATED_TAG;
1548 obj_to_location(obj, &f_page, &f_objidx);
1549 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1550 zspage = get_zspage(f_page);
1552 vaddr = kmap_atomic(f_page);
1554 /* Insert this object in containing zspage's freelist */
1555 link = (struct link_free *)(vaddr + f_offset);
1556 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1557 kunmap_atomic(vaddr);
1558 set_freeobj(zspage, f_objidx);
1559 mod_zspage_inuse(zspage, -1);
1560 zs_stat_dec(class, OBJ_USED, 1);
1563 void zs_free(struct zs_pool *pool, unsigned long handle)
1565 struct zspage *zspage;
1566 struct page *f_page;
1567 unsigned long obj;
1568 unsigned int f_objidx;
1569 int class_idx;
1570 struct size_class *class;
1571 enum fullness_group fullness;
1572 bool isolated;
1574 if (unlikely(!handle))
1575 return;
1577 pin_tag(handle);
1578 obj = handle_to_obj(handle);
1579 obj_to_location(obj, &f_page, &f_objidx);
1580 zspage = get_zspage(f_page);
1582 migrate_read_lock(zspage);
1584 get_zspage_mapping(zspage, &class_idx, &fullness);
1585 class = pool->size_class[class_idx];
1587 spin_lock(&class->lock);
1588 obj_free(class, obj);
1589 fullness = fix_fullness_group(class, zspage);
1590 if (fullness != ZS_EMPTY) {
1591 migrate_read_unlock(zspage);
1592 goto out;
1595 isolated = is_zspage_isolated(zspage);
1596 migrate_read_unlock(zspage);
1597 /* If zspage is isolated, zs_page_putback will free the zspage */
1598 if (likely(!isolated))
1599 free_zspage(pool, class, zspage);
1600 out:
1602 spin_unlock(&class->lock);
1603 unpin_tag(handle);
1604 cache_free_handle(pool, handle);
1606 EXPORT_SYMBOL_GPL(zs_free);
1608 static void zs_object_copy(struct size_class *class, unsigned long dst,
1609 unsigned long src)
1611 struct page *s_page, *d_page;
1612 unsigned int s_objidx, d_objidx;
1613 unsigned long s_off, d_off;
1614 void *s_addr, *d_addr;
1615 int s_size, d_size, size;
1616 int written = 0;
1618 s_size = d_size = class->size;
1620 obj_to_location(src, &s_page, &s_objidx);
1621 obj_to_location(dst, &d_page, &d_objidx);
1623 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1624 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1626 if (s_off + class->size > PAGE_SIZE)
1627 s_size = PAGE_SIZE - s_off;
1629 if (d_off + class->size > PAGE_SIZE)
1630 d_size = PAGE_SIZE - d_off;
1632 s_addr = kmap_atomic(s_page);
1633 d_addr = kmap_atomic(d_page);
1635 while (1) {
1636 size = min(s_size, d_size);
1637 memcpy(d_addr + d_off, s_addr + s_off, size);
1638 written += size;
1640 if (written == class->size)
1641 break;
1643 s_off += size;
1644 s_size -= size;
1645 d_off += size;
1646 d_size -= size;
1648 if (s_off >= PAGE_SIZE) {
1649 kunmap_atomic(d_addr);
1650 kunmap_atomic(s_addr);
1651 s_page = get_next_page(s_page);
1652 s_addr = kmap_atomic(s_page);
1653 d_addr = kmap_atomic(d_page);
1654 s_size = class->size - written;
1655 s_off = 0;
1658 if (d_off >= PAGE_SIZE) {
1659 kunmap_atomic(d_addr);
1660 d_page = get_next_page(d_page);
1661 d_addr = kmap_atomic(d_page);
1662 d_size = class->size - written;
1663 d_off = 0;
1667 kunmap_atomic(d_addr);
1668 kunmap_atomic(s_addr);
1672 * Find alloced object in zspage from index object and
1673 * return handle.
1675 static unsigned long find_alloced_obj(struct size_class *class,
1676 struct page *page, int *obj_idx)
1678 unsigned long head;
1679 int offset = 0;
1680 int index = *obj_idx;
1681 unsigned long handle = 0;
1682 void *addr = kmap_atomic(page);
1684 offset = get_first_obj_offset(page);
1685 offset += class->size * index;
1687 while (offset < PAGE_SIZE) {
1688 head = obj_to_head(page, addr + offset);
1689 if (head & OBJ_ALLOCATED_TAG) {
1690 handle = head & ~OBJ_ALLOCATED_TAG;
1691 if (trypin_tag(handle))
1692 break;
1693 handle = 0;
1696 offset += class->size;
1697 index++;
1700 kunmap_atomic(addr);
1702 *obj_idx = index;
1704 return handle;
1707 struct zs_compact_control {
1708 /* Source spage for migration which could be a subpage of zspage */
1709 struct page *s_page;
1710 /* Destination page for migration which should be a first page
1711 * of zspage. */
1712 struct page *d_page;
1713 /* Starting object index within @s_page which used for live object
1714 * in the subpage. */
1715 int obj_idx;
1718 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1719 struct zs_compact_control *cc)
1721 unsigned long used_obj, free_obj;
1722 unsigned long handle;
1723 struct page *s_page = cc->s_page;
1724 struct page *d_page = cc->d_page;
1725 int obj_idx = cc->obj_idx;
1726 int ret = 0;
1728 while (1) {
1729 handle = find_alloced_obj(class, s_page, &obj_idx);
1730 if (!handle) {
1731 s_page = get_next_page(s_page);
1732 if (!s_page)
1733 break;
1734 obj_idx = 0;
1735 continue;
1738 /* Stop if there is no more space */
1739 if (zspage_full(class, get_zspage(d_page))) {
1740 unpin_tag(handle);
1741 ret = -ENOMEM;
1742 break;
1745 used_obj = handle_to_obj(handle);
1746 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1747 zs_object_copy(class, free_obj, used_obj);
1748 obj_idx++;
1750 * record_obj updates handle's value to free_obj and it will
1751 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1752 * breaks synchronization using pin_tag(e,g, zs_free) so
1753 * let's keep the lock bit.
1755 free_obj |= BIT(HANDLE_PIN_BIT);
1756 record_obj(handle, free_obj);
1757 unpin_tag(handle);
1758 obj_free(class, used_obj);
1761 /* Remember last position in this iteration */
1762 cc->s_page = s_page;
1763 cc->obj_idx = obj_idx;
1765 return ret;
1768 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1770 int i;
1771 struct zspage *zspage;
1772 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1774 if (!source) {
1775 fg[0] = ZS_ALMOST_FULL;
1776 fg[1] = ZS_ALMOST_EMPTY;
1779 for (i = 0; i < 2; i++) {
1780 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1781 struct zspage, list);
1782 if (zspage) {
1783 VM_BUG_ON(is_zspage_isolated(zspage));
1784 remove_zspage(class, zspage, fg[i]);
1785 return zspage;
1789 return zspage;
1793 * putback_zspage - add @zspage into right class's fullness list
1794 * @class: destination class
1795 * @zspage: target page
1797 * Return @zspage's fullness_group
1799 static enum fullness_group putback_zspage(struct size_class *class,
1800 struct zspage *zspage)
1802 enum fullness_group fullness;
1804 VM_BUG_ON(is_zspage_isolated(zspage));
1806 fullness = get_fullness_group(class, zspage);
1807 insert_zspage(class, zspage, fullness);
1808 set_zspage_mapping(zspage, class->index, fullness);
1810 return fullness;
1813 #ifdef CONFIG_COMPACTION
1814 static struct dentry *zs_mount(struct file_system_type *fs_type,
1815 int flags, const char *dev_name, void *data)
1817 static const struct dentry_operations ops = {
1818 .d_dname = simple_dname,
1821 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1824 static struct file_system_type zsmalloc_fs = {
1825 .name = "zsmalloc",
1826 .mount = zs_mount,
1827 .kill_sb = kill_anon_super,
1830 static int zsmalloc_mount(void)
1832 int ret = 0;
1834 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1835 if (IS_ERR(zsmalloc_mnt))
1836 ret = PTR_ERR(zsmalloc_mnt);
1838 return ret;
1841 static void zsmalloc_unmount(void)
1843 kern_unmount(zsmalloc_mnt);
1846 static void migrate_lock_init(struct zspage *zspage)
1848 rwlock_init(&zspage->lock);
1851 static void migrate_read_lock(struct zspage *zspage)
1853 read_lock(&zspage->lock);
1856 static void migrate_read_unlock(struct zspage *zspage)
1858 read_unlock(&zspage->lock);
1861 static void migrate_write_lock(struct zspage *zspage)
1863 write_lock(&zspage->lock);
1866 static void migrate_write_unlock(struct zspage *zspage)
1868 write_unlock(&zspage->lock);
1871 /* Number of isolated subpage for *page migration* in this zspage */
1872 static void inc_zspage_isolation(struct zspage *zspage)
1874 zspage->isolated++;
1877 static void dec_zspage_isolation(struct zspage *zspage)
1879 zspage->isolated--;
1882 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1883 struct page *newpage, struct page *oldpage)
1885 struct page *page;
1886 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1887 int idx = 0;
1889 page = get_first_page(zspage);
1890 do {
1891 if (page == oldpage)
1892 pages[idx] = newpage;
1893 else
1894 pages[idx] = page;
1895 idx++;
1896 } while ((page = get_next_page(page)) != NULL);
1898 create_page_chain(class, zspage, pages);
1899 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1900 if (unlikely(PageHugeObject(oldpage)))
1901 newpage->index = oldpage->index;
1902 __SetPageMovable(newpage, page_mapping(oldpage));
1905 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1907 struct zs_pool *pool;
1908 struct size_class *class;
1909 int class_idx;
1910 enum fullness_group fullness;
1911 struct zspage *zspage;
1912 struct address_space *mapping;
1915 * Page is locked so zspage couldn't be destroyed. For detail, look at
1916 * lock_zspage in free_zspage.
1918 VM_BUG_ON_PAGE(!PageMovable(page), page);
1919 VM_BUG_ON_PAGE(PageIsolated(page), page);
1921 zspage = get_zspage(page);
1924 * Without class lock, fullness could be stale while class_idx is okay
1925 * because class_idx is constant unless page is freed so we should get
1926 * fullness again under class lock.
1928 get_zspage_mapping(zspage, &class_idx, &fullness);
1929 mapping = page_mapping(page);
1930 pool = mapping->private_data;
1931 class = pool->size_class[class_idx];
1933 spin_lock(&class->lock);
1934 if (get_zspage_inuse(zspage) == 0) {
1935 spin_unlock(&class->lock);
1936 return false;
1939 /* zspage is isolated for object migration */
1940 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1941 spin_unlock(&class->lock);
1942 return false;
1946 * If this is first time isolation for the zspage, isolate zspage from
1947 * size_class to prevent further object allocation from the zspage.
1949 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1950 get_zspage_mapping(zspage, &class_idx, &fullness);
1951 remove_zspage(class, zspage, fullness);
1954 inc_zspage_isolation(zspage);
1955 spin_unlock(&class->lock);
1957 return true;
1960 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1961 struct page *page, enum migrate_mode mode)
1963 struct zs_pool *pool;
1964 struct size_class *class;
1965 int class_idx;
1966 enum fullness_group fullness;
1967 struct zspage *zspage;
1968 struct page *dummy;
1969 void *s_addr, *d_addr, *addr;
1970 int offset, pos;
1971 unsigned long handle, head;
1972 unsigned long old_obj, new_obj;
1973 unsigned int obj_idx;
1974 int ret = -EAGAIN;
1977 * We cannot support the _NO_COPY case here, because copy needs to
1978 * happen under the zs lock, which does not work with
1979 * MIGRATE_SYNC_NO_COPY workflow.
1981 if (mode == MIGRATE_SYNC_NO_COPY)
1982 return -EINVAL;
1984 VM_BUG_ON_PAGE(!PageMovable(page), page);
1985 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1987 zspage = get_zspage(page);
1989 /* Concurrent compactor cannot migrate any subpage in zspage */
1990 migrate_write_lock(zspage);
1991 get_zspage_mapping(zspage, &class_idx, &fullness);
1992 pool = mapping->private_data;
1993 class = pool->size_class[class_idx];
1994 offset = get_first_obj_offset(page);
1996 spin_lock(&class->lock);
1997 if (!get_zspage_inuse(zspage)) {
1999 * Set "offset" to end of the page so that every loops
2000 * skips unnecessary object scanning.
2002 offset = PAGE_SIZE;
2005 pos = offset;
2006 s_addr = kmap_atomic(page);
2007 while (pos < PAGE_SIZE) {
2008 head = obj_to_head(page, s_addr + pos);
2009 if (head & OBJ_ALLOCATED_TAG) {
2010 handle = head & ~OBJ_ALLOCATED_TAG;
2011 if (!trypin_tag(handle))
2012 goto unpin_objects;
2014 pos += class->size;
2018 * Here, any user cannot access all objects in the zspage so let's move.
2020 d_addr = kmap_atomic(newpage);
2021 memcpy(d_addr, s_addr, PAGE_SIZE);
2022 kunmap_atomic(d_addr);
2024 for (addr = s_addr + offset; addr < s_addr + pos;
2025 addr += class->size) {
2026 head = obj_to_head(page, addr);
2027 if (head & OBJ_ALLOCATED_TAG) {
2028 handle = head & ~OBJ_ALLOCATED_TAG;
2029 if (!testpin_tag(handle))
2030 BUG();
2032 old_obj = handle_to_obj(handle);
2033 obj_to_location(old_obj, &dummy, &obj_idx);
2034 new_obj = (unsigned long)location_to_obj(newpage,
2035 obj_idx);
2036 new_obj |= BIT(HANDLE_PIN_BIT);
2037 record_obj(handle, new_obj);
2041 replace_sub_page(class, zspage, newpage, page);
2042 get_page(newpage);
2044 dec_zspage_isolation(zspage);
2047 * Page migration is done so let's putback isolated zspage to
2048 * the list if @page is final isolated subpage in the zspage.
2050 if (!is_zspage_isolated(zspage))
2051 putback_zspage(class, zspage);
2053 reset_page(page);
2054 put_page(page);
2055 page = newpage;
2057 ret = MIGRATEPAGE_SUCCESS;
2058 unpin_objects:
2059 for (addr = s_addr + offset; addr < s_addr + pos;
2060 addr += class->size) {
2061 head = obj_to_head(page, addr);
2062 if (head & OBJ_ALLOCATED_TAG) {
2063 handle = head & ~OBJ_ALLOCATED_TAG;
2064 if (!testpin_tag(handle))
2065 BUG();
2066 unpin_tag(handle);
2069 kunmap_atomic(s_addr);
2070 spin_unlock(&class->lock);
2071 migrate_write_unlock(zspage);
2073 return ret;
2076 void zs_page_putback(struct page *page)
2078 struct zs_pool *pool;
2079 struct size_class *class;
2080 int class_idx;
2081 enum fullness_group fg;
2082 struct address_space *mapping;
2083 struct zspage *zspage;
2085 VM_BUG_ON_PAGE(!PageMovable(page), page);
2086 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2088 zspage = get_zspage(page);
2089 get_zspage_mapping(zspage, &class_idx, &fg);
2090 mapping = page_mapping(page);
2091 pool = mapping->private_data;
2092 class = pool->size_class[class_idx];
2094 spin_lock(&class->lock);
2095 dec_zspage_isolation(zspage);
2096 if (!is_zspage_isolated(zspage)) {
2097 fg = putback_zspage(class, zspage);
2099 * Due to page_lock, we cannot free zspage immediately
2100 * so let's defer.
2102 if (fg == ZS_EMPTY)
2103 schedule_work(&pool->free_work);
2105 spin_unlock(&class->lock);
2108 const struct address_space_operations zsmalloc_aops = {
2109 .isolate_page = zs_page_isolate,
2110 .migratepage = zs_page_migrate,
2111 .putback_page = zs_page_putback,
2114 static int zs_register_migration(struct zs_pool *pool)
2116 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2117 if (IS_ERR(pool->inode)) {
2118 pool->inode = NULL;
2119 return 1;
2122 pool->inode->i_mapping->private_data = pool;
2123 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2124 return 0;
2127 static void zs_unregister_migration(struct zs_pool *pool)
2129 flush_work(&pool->free_work);
2130 iput(pool->inode);
2134 * Caller should hold page_lock of all pages in the zspage
2135 * In here, we cannot use zspage meta data.
2137 static void async_free_zspage(struct work_struct *work)
2139 int i;
2140 struct size_class *class;
2141 unsigned int class_idx;
2142 enum fullness_group fullness;
2143 struct zspage *zspage, *tmp;
2144 LIST_HEAD(free_pages);
2145 struct zs_pool *pool = container_of(work, struct zs_pool,
2146 free_work);
2148 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2149 class = pool->size_class[i];
2150 if (class->index != i)
2151 continue;
2153 spin_lock(&class->lock);
2154 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2155 spin_unlock(&class->lock);
2159 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2160 list_del(&zspage->list);
2161 lock_zspage(zspage);
2163 get_zspage_mapping(zspage, &class_idx, &fullness);
2164 VM_BUG_ON(fullness != ZS_EMPTY);
2165 class = pool->size_class[class_idx];
2166 spin_lock(&class->lock);
2167 __free_zspage(pool, pool->size_class[class_idx], zspage);
2168 spin_unlock(&class->lock);
2172 static void kick_deferred_free(struct zs_pool *pool)
2174 schedule_work(&pool->free_work);
2177 static void init_deferred_free(struct zs_pool *pool)
2179 INIT_WORK(&pool->free_work, async_free_zspage);
2182 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2184 struct page *page = get_first_page(zspage);
2186 do {
2187 WARN_ON(!trylock_page(page));
2188 __SetPageMovable(page, pool->inode->i_mapping);
2189 unlock_page(page);
2190 } while ((page = get_next_page(page)) != NULL);
2192 #endif
2196 * Based on the number of unused allocated objects calculate
2197 * and return the number of pages that we can free.
2199 static unsigned long zs_can_compact(struct size_class *class)
2201 unsigned long obj_wasted;
2202 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2203 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2205 if (obj_allocated <= obj_used)
2206 return 0;
2208 obj_wasted = obj_allocated - obj_used;
2209 obj_wasted /= class->objs_per_zspage;
2211 return obj_wasted * class->pages_per_zspage;
2214 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2216 struct zs_compact_control cc;
2217 struct zspage *src_zspage;
2218 struct zspage *dst_zspage = NULL;
2220 spin_lock(&class->lock);
2221 while ((src_zspage = isolate_zspage(class, true))) {
2223 if (!zs_can_compact(class))
2224 break;
2226 cc.obj_idx = 0;
2227 cc.s_page = get_first_page(src_zspage);
2229 while ((dst_zspage = isolate_zspage(class, false))) {
2230 cc.d_page = get_first_page(dst_zspage);
2232 * If there is no more space in dst_page, resched
2233 * and see if anyone had allocated another zspage.
2235 if (!migrate_zspage(pool, class, &cc))
2236 break;
2238 putback_zspage(class, dst_zspage);
2241 /* Stop if we couldn't find slot */
2242 if (dst_zspage == NULL)
2243 break;
2245 putback_zspage(class, dst_zspage);
2246 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2247 free_zspage(pool, class, src_zspage);
2248 pool->stats.pages_compacted += class->pages_per_zspage;
2250 spin_unlock(&class->lock);
2251 cond_resched();
2252 spin_lock(&class->lock);
2255 if (src_zspage)
2256 putback_zspage(class, src_zspage);
2258 spin_unlock(&class->lock);
2261 unsigned long zs_compact(struct zs_pool *pool)
2263 int i;
2264 struct size_class *class;
2266 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2267 class = pool->size_class[i];
2268 if (!class)
2269 continue;
2270 if (class->index != i)
2271 continue;
2272 __zs_compact(pool, class);
2275 return pool->stats.pages_compacted;
2277 EXPORT_SYMBOL_GPL(zs_compact);
2279 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2281 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2283 EXPORT_SYMBOL_GPL(zs_pool_stats);
2285 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2286 struct shrink_control *sc)
2288 unsigned long pages_freed;
2289 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2290 shrinker);
2292 pages_freed = pool->stats.pages_compacted;
2294 * Compact classes and calculate compaction delta.
2295 * Can run concurrently with a manually triggered
2296 * (by user) compaction.
2298 pages_freed = zs_compact(pool) - pages_freed;
2300 return pages_freed ? pages_freed : SHRINK_STOP;
2303 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2304 struct shrink_control *sc)
2306 int i;
2307 struct size_class *class;
2308 unsigned long pages_to_free = 0;
2309 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2310 shrinker);
2312 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2313 class = pool->size_class[i];
2314 if (!class)
2315 continue;
2316 if (class->index != i)
2317 continue;
2319 pages_to_free += zs_can_compact(class);
2322 return pages_to_free;
2325 static void zs_unregister_shrinker(struct zs_pool *pool)
2327 if (pool->shrinker_enabled) {
2328 unregister_shrinker(&pool->shrinker);
2329 pool->shrinker_enabled = false;
2333 static int zs_register_shrinker(struct zs_pool *pool)
2335 pool->shrinker.scan_objects = zs_shrinker_scan;
2336 pool->shrinker.count_objects = zs_shrinker_count;
2337 pool->shrinker.batch = 0;
2338 pool->shrinker.seeks = DEFAULT_SEEKS;
2340 return register_shrinker(&pool->shrinker);
2344 * zs_create_pool - Creates an allocation pool to work from.
2345 * @name: pool name to be created
2347 * This function must be called before anything when using
2348 * the zsmalloc allocator.
2350 * On success, a pointer to the newly created pool is returned,
2351 * otherwise NULL.
2353 struct zs_pool *zs_create_pool(const char *name)
2355 int i;
2356 struct zs_pool *pool;
2357 struct size_class *prev_class = NULL;
2359 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2360 if (!pool)
2361 return NULL;
2363 init_deferred_free(pool);
2365 pool->name = kstrdup(name, GFP_KERNEL);
2366 if (!pool->name)
2367 goto err;
2369 if (create_cache(pool))
2370 goto err;
2373 * Iterate reversely, because, size of size_class that we want to use
2374 * for merging should be larger or equal to current size.
2376 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2377 int size;
2378 int pages_per_zspage;
2379 int objs_per_zspage;
2380 struct size_class *class;
2381 int fullness = 0;
2383 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2384 if (size > ZS_MAX_ALLOC_SIZE)
2385 size = ZS_MAX_ALLOC_SIZE;
2386 pages_per_zspage = get_pages_per_zspage(size);
2387 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2390 * size_class is used for normal zsmalloc operation such
2391 * as alloc/free for that size. Although it is natural that we
2392 * have one size_class for each size, there is a chance that we
2393 * can get more memory utilization if we use one size_class for
2394 * many different sizes whose size_class have same
2395 * characteristics. So, we makes size_class point to
2396 * previous size_class if possible.
2398 if (prev_class) {
2399 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2400 pool->size_class[i] = prev_class;
2401 continue;
2405 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2406 if (!class)
2407 goto err;
2409 class->size = size;
2410 class->index = i;
2411 class->pages_per_zspage = pages_per_zspage;
2412 class->objs_per_zspage = objs_per_zspage;
2413 spin_lock_init(&class->lock);
2414 pool->size_class[i] = class;
2415 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2416 fullness++)
2417 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2419 prev_class = class;
2422 /* debug only, don't abort if it fails */
2423 zs_pool_stat_create(pool, name);
2425 if (zs_register_migration(pool))
2426 goto err;
2429 * Not critical, we still can use the pool
2430 * and user can trigger compaction manually.
2432 if (zs_register_shrinker(pool) == 0)
2433 pool->shrinker_enabled = true;
2434 return pool;
2436 err:
2437 zs_destroy_pool(pool);
2438 return NULL;
2440 EXPORT_SYMBOL_GPL(zs_create_pool);
2442 void zs_destroy_pool(struct zs_pool *pool)
2444 int i;
2446 zs_unregister_shrinker(pool);
2447 zs_unregister_migration(pool);
2448 zs_pool_stat_destroy(pool);
2450 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2451 int fg;
2452 struct size_class *class = pool->size_class[i];
2454 if (!class)
2455 continue;
2457 if (class->index != i)
2458 continue;
2460 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2461 if (!list_empty(&class->fullness_list[fg])) {
2462 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2463 class->size, fg);
2466 kfree(class);
2469 destroy_cache(pool);
2470 kfree(pool->name);
2471 kfree(pool);
2473 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2475 static int __init zs_init(void)
2477 int ret;
2479 ret = zsmalloc_mount();
2480 if (ret)
2481 goto out;
2483 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2484 zs_cpu_prepare, zs_cpu_dead);
2485 if (ret)
2486 goto hp_setup_fail;
2488 #ifdef CONFIG_ZPOOL
2489 zpool_register_driver(&zs_zpool_driver);
2490 #endif
2492 zs_stat_init();
2494 return 0;
2496 hp_setup_fail:
2497 zsmalloc_unmount();
2498 out:
2499 return ret;
2502 static void __exit zs_exit(void)
2504 #ifdef CONFIG_ZPOOL
2505 zpool_unregister_driver(&zs_zpool_driver);
2506 #endif
2507 zsmalloc_unmount();
2508 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2510 zs_stat_exit();
2513 module_init(zs_init);
2514 module_exit(zs_exit);
2516 MODULE_LICENSE("Dual BSD/GPL");
2517 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");