1 // SPDX-License-Identifier: GPL-2.0
3 * Functions related to segment and merge handling
5 #include <linux/kernel.h>
6 #include <linux/module.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
11 #include <trace/events/block.h>
15 static inline bool bio_will_gap(struct request_queue
*q
,
16 struct request
*prev_rq
, struct bio
*prev
, struct bio
*next
)
18 struct bio_vec pb
, nb
;
20 if (!bio_has_data(prev
) || !queue_virt_boundary(q
))
24 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
25 * is quite difficult to respect the sg gap limit. We work hard to
26 * merge a huge number of small single bios in case of mkfs.
29 bio_get_first_bvec(prev_rq
->bio
, &pb
);
31 bio_get_first_bvec(prev
, &pb
);
32 if (pb
.bv_offset
& queue_virt_boundary(q
))
36 * We don't need to worry about the situation that the merged segment
37 * ends in unaligned virt boundary:
39 * - if 'pb' ends aligned, the merged segment ends aligned
40 * - if 'pb' ends unaligned, the next bio must include
41 * one single bvec of 'nb', otherwise the 'nb' can't
44 bio_get_last_bvec(prev
, &pb
);
45 bio_get_first_bvec(next
, &nb
);
46 if (biovec_phys_mergeable(q
, &pb
, &nb
))
48 return __bvec_gap_to_prev(q
, &pb
, nb
.bv_offset
);
51 static inline bool req_gap_back_merge(struct request
*req
, struct bio
*bio
)
53 return bio_will_gap(req
->q
, req
, req
->biotail
, bio
);
56 static inline bool req_gap_front_merge(struct request
*req
, struct bio
*bio
)
58 return bio_will_gap(req
->q
, NULL
, bio
, req
->bio
);
61 static struct bio
*blk_bio_discard_split(struct request_queue
*q
,
66 unsigned int max_discard_sectors
, granularity
;
69 unsigned split_sectors
;
73 /* Zero-sector (unknown) and one-sector granularities are the same. */
74 granularity
= max(q
->limits
.discard_granularity
>> 9, 1U);
76 max_discard_sectors
= min(q
->limits
.max_discard_sectors
,
77 bio_allowed_max_sectors(q
));
78 max_discard_sectors
-= max_discard_sectors
% granularity
;
80 if (unlikely(!max_discard_sectors
)) {
85 if (bio_sectors(bio
) <= max_discard_sectors
)
88 split_sectors
= max_discard_sectors
;
91 * If the next starting sector would be misaligned, stop the discard at
92 * the previous aligned sector.
94 alignment
= (q
->limits
.discard_alignment
>> 9) % granularity
;
96 tmp
= bio
->bi_iter
.bi_sector
+ split_sectors
- alignment
;
97 tmp
= sector_div(tmp
, granularity
);
99 if (split_sectors
> tmp
)
100 split_sectors
-= tmp
;
102 return bio_split(bio
, split_sectors
, GFP_NOIO
, bs
);
105 static struct bio
*blk_bio_write_zeroes_split(struct request_queue
*q
,
106 struct bio
*bio
, struct bio_set
*bs
, unsigned *nsegs
)
110 if (!q
->limits
.max_write_zeroes_sectors
)
113 if (bio_sectors(bio
) <= q
->limits
.max_write_zeroes_sectors
)
116 return bio_split(bio
, q
->limits
.max_write_zeroes_sectors
, GFP_NOIO
, bs
);
119 static struct bio
*blk_bio_write_same_split(struct request_queue
*q
,
126 if (!q
->limits
.max_write_same_sectors
)
129 if (bio_sectors(bio
) <= q
->limits
.max_write_same_sectors
)
132 return bio_split(bio
, q
->limits
.max_write_same_sectors
, GFP_NOIO
, bs
);
136 * Return the maximum number of sectors from the start of a bio that may be
137 * submitted as a single request to a block device. If enough sectors remain,
138 * align the end to the physical block size. Otherwise align the end to the
139 * logical block size. This approach minimizes the number of non-aligned
140 * requests that are submitted to a block device if the start of a bio is not
141 * aligned to a physical block boundary.
143 static inline unsigned get_max_io_size(struct request_queue
*q
,
146 unsigned sectors
= blk_max_size_offset(q
, bio
->bi_iter
.bi_sector
);
147 unsigned max_sectors
= sectors
;
148 unsigned pbs
= queue_physical_block_size(q
) >> SECTOR_SHIFT
;
149 unsigned lbs
= queue_logical_block_size(q
) >> SECTOR_SHIFT
;
150 unsigned start_offset
= bio
->bi_iter
.bi_sector
& (pbs
- 1);
152 max_sectors
+= start_offset
;
153 max_sectors
&= ~(pbs
- 1);
154 if (max_sectors
> start_offset
)
155 return max_sectors
- start_offset
;
157 return sectors
& (lbs
- 1);
160 static unsigned get_max_segment_size(const struct request_queue
*q
,
163 unsigned long mask
= queue_segment_boundary(q
);
165 /* default segment boundary mask means no boundary limit */
166 if (mask
== BLK_SEG_BOUNDARY_MASK
)
167 return queue_max_segment_size(q
);
169 return min_t(unsigned long, mask
- (mask
& offset
) + 1,
170 queue_max_segment_size(q
));
174 * bvec_split_segs - verify whether or not a bvec should be split in the middle
175 * @q: [in] request queue associated with the bio associated with @bv
176 * @bv: [in] bvec to examine
177 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
178 * by the number of segments from @bv that may be appended to that
179 * bio without exceeding @max_segs
180 * @sectors: [in,out] Number of sectors in the bio being built. Incremented
181 * by the number of sectors from @bv that may be appended to that
182 * bio without exceeding @max_sectors
183 * @max_segs: [in] upper bound for *@nsegs
184 * @max_sectors: [in] upper bound for *@sectors
186 * When splitting a bio, it can happen that a bvec is encountered that is too
187 * big to fit in a single segment and hence that it has to be split in the
188 * middle. This function verifies whether or not that should happen. The value
189 * %true is returned if and only if appending the entire @bv to a bio with
190 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
193 static bool bvec_split_segs(const struct request_queue
*q
,
194 const struct bio_vec
*bv
, unsigned *nsegs
,
195 unsigned *sectors
, unsigned max_segs
,
196 unsigned max_sectors
)
198 unsigned max_len
= (min(max_sectors
, UINT_MAX
>> 9) - *sectors
) << 9;
199 unsigned len
= min(bv
->bv_len
, max_len
);
200 unsigned total_len
= 0;
201 unsigned seg_size
= 0;
203 while (len
&& *nsegs
< max_segs
) {
204 seg_size
= get_max_segment_size(q
, bv
->bv_offset
+ total_len
);
205 seg_size
= min(seg_size
, len
);
208 total_len
+= seg_size
;
211 if ((bv
->bv_offset
+ total_len
) & queue_virt_boundary(q
))
215 *sectors
+= total_len
>> 9;
217 /* tell the caller to split the bvec if it is too big to fit */
218 return len
> 0 || bv
->bv_len
> max_len
;
222 * blk_bio_segment_split - split a bio in two bios
223 * @q: [in] request queue pointer
224 * @bio: [in] bio to be split
225 * @bs: [in] bio set to allocate the clone from
226 * @segs: [out] number of segments in the bio with the first half of the sectors
228 * Clone @bio, update the bi_iter of the clone to represent the first sectors
229 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
230 * following is guaranteed for the cloned bio:
231 * - That it has at most get_max_io_size(@q, @bio) sectors.
232 * - That it has at most queue_max_segments(@q) segments.
234 * Except for discard requests the cloned bio will point at the bi_io_vec of
235 * the original bio. It is the responsibility of the caller to ensure that the
236 * original bio is not freed before the cloned bio. The caller is also
237 * responsible for ensuring that @bs is only destroyed after processing of the
238 * split bio has finished.
240 static struct bio
*blk_bio_segment_split(struct request_queue
*q
,
245 struct bio_vec bv
, bvprv
, *bvprvp
= NULL
;
246 struct bvec_iter iter
;
247 unsigned nsegs
= 0, sectors
= 0;
248 const unsigned max_sectors
= get_max_io_size(q
, bio
);
249 const unsigned max_segs
= queue_max_segments(q
);
251 bio_for_each_bvec(bv
, bio
, iter
) {
253 * If the queue doesn't support SG gaps and adding this
254 * offset would create a gap, disallow it.
256 if (bvprvp
&& bvec_gap_to_prev(q
, bvprvp
, bv
.bv_offset
))
259 if (nsegs
< max_segs
&&
260 sectors
+ (bv
.bv_len
>> 9) <= max_sectors
&&
261 bv
.bv_offset
+ bv
.bv_len
<= PAGE_SIZE
) {
263 sectors
+= bv
.bv_len
>> 9;
264 } else if (bvec_split_segs(q
, &bv
, &nsegs
, §ors
, max_segs
,
277 return bio_split(bio
, sectors
, GFP_NOIO
, bs
);
281 * __blk_queue_split - split a bio and submit the second half
282 * @q: [in] request queue pointer
283 * @bio: [in, out] bio to be split
284 * @nr_segs: [out] number of segments in the first bio
286 * Split a bio into two bios, chain the two bios, submit the second half and
287 * store a pointer to the first half in *@bio. If the second bio is still too
288 * big it will be split by a recursive call to this function. Since this
289 * function may allocate a new bio from @q->bio_split, it is the responsibility
290 * of the caller to ensure that @q is only released after processing of the
291 * split bio has finished.
293 void __blk_queue_split(struct request_queue
*q
, struct bio
**bio
,
294 unsigned int *nr_segs
)
298 switch (bio_op(*bio
)) {
300 case REQ_OP_SECURE_ERASE
:
301 split
= blk_bio_discard_split(q
, *bio
, &q
->bio_split
, nr_segs
);
303 case REQ_OP_WRITE_ZEROES
:
304 split
= blk_bio_write_zeroes_split(q
, *bio
, &q
->bio_split
,
307 case REQ_OP_WRITE_SAME
:
308 split
= blk_bio_write_same_split(q
, *bio
, &q
->bio_split
,
312 split
= blk_bio_segment_split(q
, *bio
, &q
->bio_split
, nr_segs
);
317 /* there isn't chance to merge the splitted bio */
318 split
->bi_opf
|= REQ_NOMERGE
;
321 * Since we're recursing into make_request here, ensure
322 * that we mark this bio as already having entered the queue.
323 * If not, and the queue is going away, we can get stuck
324 * forever on waiting for the queue reference to drop. But
325 * that will never happen, as we're already holding a
328 bio_set_flag(*bio
, BIO_QUEUE_ENTERED
);
330 bio_chain(split
, *bio
);
331 trace_block_split(q
, split
, (*bio
)->bi_iter
.bi_sector
);
332 generic_make_request(*bio
);
338 * blk_queue_split - split a bio and submit the second half
339 * @q: [in] request queue pointer
340 * @bio: [in, out] bio to be split
342 * Split a bio into two bios, chains the two bios, submit the second half and
343 * store a pointer to the first half in *@bio. Since this function may allocate
344 * a new bio from @q->bio_split, it is the responsibility of the caller to
345 * ensure that @q is only released after processing of the split bio has
348 void blk_queue_split(struct request_queue
*q
, struct bio
**bio
)
350 unsigned int nr_segs
;
352 __blk_queue_split(q
, bio
, &nr_segs
);
354 EXPORT_SYMBOL(blk_queue_split
);
356 unsigned int blk_recalc_rq_segments(struct request
*rq
)
358 unsigned int nr_phys_segs
= 0;
359 unsigned int nr_sectors
= 0;
360 struct req_iterator iter
;
366 switch (bio_op(rq
->bio
)) {
368 case REQ_OP_SECURE_ERASE
:
369 case REQ_OP_WRITE_ZEROES
:
371 case REQ_OP_WRITE_SAME
:
375 rq_for_each_bvec(bv
, rq
, iter
)
376 bvec_split_segs(rq
->q
, &bv
, &nr_phys_segs
, &nr_sectors
,
381 static inline struct scatterlist
*blk_next_sg(struct scatterlist
**sg
,
382 struct scatterlist
*sglist
)
388 * If the driver previously mapped a shorter list, we could see a
389 * termination bit prematurely unless it fully inits the sg table
390 * on each mapping. We KNOW that there must be more entries here
391 * or the driver would be buggy, so force clear the termination bit
392 * to avoid doing a full sg_init_table() in drivers for each command.
398 static unsigned blk_bvec_map_sg(struct request_queue
*q
,
399 struct bio_vec
*bvec
, struct scatterlist
*sglist
,
400 struct scatterlist
**sg
)
402 unsigned nbytes
= bvec
->bv_len
;
403 unsigned nsegs
= 0, total
= 0;
406 unsigned offset
= bvec
->bv_offset
+ total
;
407 unsigned len
= min(get_max_segment_size(q
, offset
), nbytes
);
408 struct page
*page
= bvec
->bv_page
;
411 * Unfortunately a fair number of drivers barf on scatterlists
412 * that have an offset larger than PAGE_SIZE, despite other
413 * subsystems dealing with that invariant just fine. For now
414 * stick to the legacy format where we never present those from
415 * the block layer, but the code below should be removed once
416 * these offenders (mostly MMC/SD drivers) are fixed.
418 page
+= (offset
>> PAGE_SHIFT
);
419 offset
&= ~PAGE_MASK
;
421 *sg
= blk_next_sg(sg
, sglist
);
422 sg_set_page(*sg
, page
, len
, offset
);
432 static inline int __blk_bvec_map_sg(struct bio_vec bv
,
433 struct scatterlist
*sglist
, struct scatterlist
**sg
)
435 *sg
= blk_next_sg(sg
, sglist
);
436 sg_set_page(*sg
, bv
.bv_page
, bv
.bv_len
, bv
.bv_offset
);
440 /* only try to merge bvecs into one sg if they are from two bios */
442 __blk_segment_map_sg_merge(struct request_queue
*q
, struct bio_vec
*bvec
,
443 struct bio_vec
*bvprv
, struct scatterlist
**sg
)
446 int nbytes
= bvec
->bv_len
;
451 if ((*sg
)->length
+ nbytes
> queue_max_segment_size(q
))
454 if (!biovec_phys_mergeable(q
, bvprv
, bvec
))
457 (*sg
)->length
+= nbytes
;
462 static int __blk_bios_map_sg(struct request_queue
*q
, struct bio
*bio
,
463 struct scatterlist
*sglist
,
464 struct scatterlist
**sg
)
466 struct bio_vec
uninitialized_var(bvec
), bvprv
= { NULL
};
467 struct bvec_iter iter
;
469 bool new_bio
= false;
472 bio_for_each_bvec(bvec
, bio
, iter
) {
474 * Only try to merge bvecs from two bios given we
475 * have done bio internal merge when adding pages
479 __blk_segment_map_sg_merge(q
, &bvec
, &bvprv
, sg
))
482 if (bvec
.bv_offset
+ bvec
.bv_len
<= PAGE_SIZE
)
483 nsegs
+= __blk_bvec_map_sg(bvec
, sglist
, sg
);
485 nsegs
+= blk_bvec_map_sg(q
, &bvec
, sglist
, sg
);
489 if (likely(bio
->bi_iter
.bi_size
)) {
499 * map a request to scatterlist, return number of sg entries setup. Caller
500 * must make sure sg can hold rq->nr_phys_segments entries
502 int blk_rq_map_sg(struct request_queue
*q
, struct request
*rq
,
503 struct scatterlist
*sglist
)
505 struct scatterlist
*sg
= NULL
;
508 if (rq
->rq_flags
& RQF_SPECIAL_PAYLOAD
)
509 nsegs
= __blk_bvec_map_sg(rq
->special_vec
, sglist
, &sg
);
510 else if (rq
->bio
&& bio_op(rq
->bio
) == REQ_OP_WRITE_SAME
)
511 nsegs
= __blk_bvec_map_sg(bio_iovec(rq
->bio
), sglist
, &sg
);
513 nsegs
= __blk_bios_map_sg(q
, rq
->bio
, sglist
, &sg
);
515 if (unlikely(rq
->rq_flags
& RQF_COPY_USER
) &&
516 (blk_rq_bytes(rq
) & q
->dma_pad_mask
)) {
517 unsigned int pad_len
=
518 (q
->dma_pad_mask
& ~blk_rq_bytes(rq
)) + 1;
520 sg
->length
+= pad_len
;
521 rq
->extra_len
+= pad_len
;
524 if (q
->dma_drain_size
&& q
->dma_drain_needed(rq
)) {
525 if (op_is_write(req_op(rq
)))
526 memset(q
->dma_drain_buffer
, 0, q
->dma_drain_size
);
530 sg_set_page(sg
, virt_to_page(q
->dma_drain_buffer
),
532 ((unsigned long)q
->dma_drain_buffer
) &
535 rq
->extra_len
+= q
->dma_drain_size
;
542 * Something must have been wrong if the figured number of
543 * segment is bigger than number of req's physical segments
545 WARN_ON(nsegs
> blk_rq_nr_phys_segments(rq
));
549 EXPORT_SYMBOL(blk_rq_map_sg
);
551 static inline int ll_new_hw_segment(struct request
*req
, struct bio
*bio
,
552 unsigned int nr_phys_segs
)
554 if (req
->nr_phys_segments
+ nr_phys_segs
> queue_max_segments(req
->q
))
557 if (blk_integrity_merge_bio(req
->q
, req
, bio
) == false)
561 * This will form the start of a new hw segment. Bump both
564 req
->nr_phys_segments
+= nr_phys_segs
;
568 req_set_nomerge(req
->q
, req
);
572 int ll_back_merge_fn(struct request
*req
, struct bio
*bio
, unsigned int nr_segs
)
574 if (req_gap_back_merge(req
, bio
))
576 if (blk_integrity_rq(req
) &&
577 integrity_req_gap_back_merge(req
, bio
))
579 if (blk_rq_sectors(req
) + bio_sectors(bio
) >
580 blk_rq_get_max_sectors(req
, blk_rq_pos(req
))) {
581 req_set_nomerge(req
->q
, req
);
585 return ll_new_hw_segment(req
, bio
, nr_segs
);
588 int ll_front_merge_fn(struct request
*req
, struct bio
*bio
, unsigned int nr_segs
)
590 if (req_gap_front_merge(req
, bio
))
592 if (blk_integrity_rq(req
) &&
593 integrity_req_gap_front_merge(req
, bio
))
595 if (blk_rq_sectors(req
) + bio_sectors(bio
) >
596 blk_rq_get_max_sectors(req
, bio
->bi_iter
.bi_sector
)) {
597 req_set_nomerge(req
->q
, req
);
601 return ll_new_hw_segment(req
, bio
, nr_segs
);
604 static bool req_attempt_discard_merge(struct request_queue
*q
, struct request
*req
,
605 struct request
*next
)
607 unsigned short segments
= blk_rq_nr_discard_segments(req
);
609 if (segments
>= queue_max_discard_segments(q
))
611 if (blk_rq_sectors(req
) + bio_sectors(next
->bio
) >
612 blk_rq_get_max_sectors(req
, blk_rq_pos(req
)))
615 req
->nr_phys_segments
= segments
+ blk_rq_nr_discard_segments(next
);
618 req_set_nomerge(q
, req
);
622 static int ll_merge_requests_fn(struct request_queue
*q
, struct request
*req
,
623 struct request
*next
)
625 int total_phys_segments
;
627 if (req_gap_back_merge(req
, next
->bio
))
631 * Will it become too large?
633 if ((blk_rq_sectors(req
) + blk_rq_sectors(next
)) >
634 blk_rq_get_max_sectors(req
, blk_rq_pos(req
)))
637 total_phys_segments
= req
->nr_phys_segments
+ next
->nr_phys_segments
;
638 if (total_phys_segments
> queue_max_segments(q
))
641 if (blk_integrity_merge_rq(q
, req
, next
) == false)
645 req
->nr_phys_segments
= total_phys_segments
;
650 * blk_rq_set_mixed_merge - mark a request as mixed merge
651 * @rq: request to mark as mixed merge
654 * @rq is about to be mixed merged. Make sure the attributes
655 * which can be mixed are set in each bio and mark @rq as mixed
658 void blk_rq_set_mixed_merge(struct request
*rq
)
660 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
663 if (rq
->rq_flags
& RQF_MIXED_MERGE
)
667 * @rq will no longer represent mixable attributes for all the
668 * contained bios. It will just track those of the first one.
669 * Distributes the attributs to each bio.
671 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
672 WARN_ON_ONCE((bio
->bi_opf
& REQ_FAILFAST_MASK
) &&
673 (bio
->bi_opf
& REQ_FAILFAST_MASK
) != ff
);
676 rq
->rq_flags
|= RQF_MIXED_MERGE
;
679 static void blk_account_io_merge(struct request
*req
)
681 if (blk_do_io_stat(req
)) {
682 struct hd_struct
*part
;
687 part_dec_in_flight(req
->q
, part
, rq_data_dir(req
));
694 * Two cases of handling DISCARD merge:
695 * If max_discard_segments > 1, the driver takes every bio
696 * as a range and send them to controller together. The ranges
697 * needn't to be contiguous.
698 * Otherwise, the bios/requests will be handled as same as
699 * others which should be contiguous.
701 static inline bool blk_discard_mergable(struct request
*req
)
703 if (req_op(req
) == REQ_OP_DISCARD
&&
704 queue_max_discard_segments(req
->q
) > 1)
709 static enum elv_merge
blk_try_req_merge(struct request
*req
,
710 struct request
*next
)
712 if (blk_discard_mergable(req
))
713 return ELEVATOR_DISCARD_MERGE
;
714 else if (blk_rq_pos(req
) + blk_rq_sectors(req
) == blk_rq_pos(next
))
715 return ELEVATOR_BACK_MERGE
;
717 return ELEVATOR_NO_MERGE
;
721 * For non-mq, this has to be called with the request spinlock acquired.
722 * For mq with scheduling, the appropriate queue wide lock should be held.
724 static struct request
*attempt_merge(struct request_queue
*q
,
725 struct request
*req
, struct request
*next
)
727 if (!rq_mergeable(req
) || !rq_mergeable(next
))
730 if (req_op(req
) != req_op(next
))
733 if (rq_data_dir(req
) != rq_data_dir(next
)
734 || req
->rq_disk
!= next
->rq_disk
)
737 if (req_op(req
) == REQ_OP_WRITE_SAME
&&
738 !blk_write_same_mergeable(req
->bio
, next
->bio
))
742 * Don't allow merge of different write hints, or for a hint with
745 if (req
->write_hint
!= next
->write_hint
)
748 if (req
->ioprio
!= next
->ioprio
)
752 * If we are allowed to merge, then append bio list
753 * from next to rq and release next. merge_requests_fn
754 * will have updated segment counts, update sector
755 * counts here. Handle DISCARDs separately, as they
756 * have separate settings.
759 switch (blk_try_req_merge(req
, next
)) {
760 case ELEVATOR_DISCARD_MERGE
:
761 if (!req_attempt_discard_merge(q
, req
, next
))
764 case ELEVATOR_BACK_MERGE
:
765 if (!ll_merge_requests_fn(q
, req
, next
))
773 * If failfast settings disagree or any of the two is already
774 * a mixed merge, mark both as mixed before proceeding. This
775 * makes sure that all involved bios have mixable attributes
778 if (((req
->rq_flags
| next
->rq_flags
) & RQF_MIXED_MERGE
) ||
779 (req
->cmd_flags
& REQ_FAILFAST_MASK
) !=
780 (next
->cmd_flags
& REQ_FAILFAST_MASK
)) {
781 blk_rq_set_mixed_merge(req
);
782 blk_rq_set_mixed_merge(next
);
786 * At this point we have either done a back merge or front merge. We
787 * need the smaller start_time_ns of the merged requests to be the
788 * current request for accounting purposes.
790 if (next
->start_time_ns
< req
->start_time_ns
)
791 req
->start_time_ns
= next
->start_time_ns
;
793 req
->biotail
->bi_next
= next
->bio
;
794 req
->biotail
= next
->biotail
;
796 req
->__data_len
+= blk_rq_bytes(next
);
798 if (!blk_discard_mergable(req
))
799 elv_merge_requests(q
, req
, next
);
802 * 'next' is going away, so update stats accordingly
804 blk_account_io_merge(next
);
807 * ownership of bio passed from next to req, return 'next' for
814 struct request
*attempt_back_merge(struct request_queue
*q
, struct request
*rq
)
816 struct request
*next
= elv_latter_request(q
, rq
);
819 return attempt_merge(q
, rq
, next
);
824 struct request
*attempt_front_merge(struct request_queue
*q
, struct request
*rq
)
826 struct request
*prev
= elv_former_request(q
, rq
);
829 return attempt_merge(q
, prev
, rq
);
834 int blk_attempt_req_merge(struct request_queue
*q
, struct request
*rq
,
835 struct request
*next
)
837 struct request
*free
;
839 free
= attempt_merge(q
, rq
, next
);
841 blk_put_request(free
);
848 bool blk_rq_merge_ok(struct request
*rq
, struct bio
*bio
)
850 if (!rq_mergeable(rq
) || !bio_mergeable(bio
))
853 if (req_op(rq
) != bio_op(bio
))
856 /* different data direction or already started, don't merge */
857 if (bio_data_dir(bio
) != rq_data_dir(rq
))
860 /* must be same device */
861 if (rq
->rq_disk
!= bio
->bi_disk
)
864 /* only merge integrity protected bio into ditto rq */
865 if (blk_integrity_merge_bio(rq
->q
, rq
, bio
) == false)
868 /* must be using the same buffer */
869 if (req_op(rq
) == REQ_OP_WRITE_SAME
&&
870 !blk_write_same_mergeable(rq
->bio
, bio
))
874 * Don't allow merge of different write hints, or for a hint with
877 if (rq
->write_hint
!= bio
->bi_write_hint
)
880 if (rq
->ioprio
!= bio_prio(bio
))
886 enum elv_merge
blk_try_merge(struct request
*rq
, struct bio
*bio
)
888 if (blk_discard_mergable(rq
))
889 return ELEVATOR_DISCARD_MERGE
;
890 else if (blk_rq_pos(rq
) + blk_rq_sectors(rq
) == bio
->bi_iter
.bi_sector
)
891 return ELEVATOR_BACK_MERGE
;
892 else if (blk_rq_pos(rq
) - bio_sectors(bio
) == bio
->bi_iter
.bi_sector
)
893 return ELEVATOR_FRONT_MERGE
;
894 return ELEVATOR_NO_MERGE
;