1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
71 #include <asm/uaccess.h>
73 #include <trace/events/vmscan.h>
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
76 EXPORT_SYMBOL(memory_cgrp_subsys
);
78 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket
;
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem
;
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly
;
92 #define do_swap_account 0
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys
) && do_swap_account
;
101 static const char * const mem_cgroup_stat_names
[] = {
111 static const char * const mem_cgroup_events_names
[] = {
118 static const char * const mem_cgroup_lru_names
[] = {
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
135 struct mem_cgroup_tree_per_zone
{
136 struct rb_root rb_root
;
140 struct mem_cgroup_tree_per_node
{
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
144 struct mem_cgroup_tree
{
145 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
151 struct mem_cgroup_eventfd_list
{
152 struct list_head list
;
153 struct eventfd_ctx
*eventfd
;
157 * cgroup_event represents events which userspace want to receive.
159 struct mem_cgroup_event
{
161 * memcg which the event belongs to.
163 struct mem_cgroup
*memcg
;
165 * eventfd to signal userspace about the event.
167 struct eventfd_ctx
*eventfd
;
169 * Each of these stored in a list by the cgroup.
171 struct list_head list
;
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
177 int (*register_event
)(struct mem_cgroup
*memcg
,
178 struct eventfd_ctx
*eventfd
, const char *args
);
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
184 void (*unregister_event
)(struct mem_cgroup
*memcg
,
185 struct eventfd_ctx
*eventfd
);
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
191 wait_queue_head_t
*wqh
;
193 struct work_struct remove
;
196 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
197 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
199 /* Stuffs for move charges at task migration. */
201 * Types of charges to be moved.
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct
{
209 spinlock_t lock
; /* for from, to */
210 struct mem_cgroup
*from
;
211 struct mem_cgroup
*to
;
213 unsigned long precharge
;
214 unsigned long moved_charge
;
215 unsigned long moved_swap
;
216 struct task_struct
*moving_task
; /* a task moving charges */
217 wait_queue_head_t waitq
; /* a waitq for other context */
219 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
220 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225 * limit reclaim to prevent infinite loops, if they ever occur.
227 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
228 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
231 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
232 MEM_CGROUP_CHARGE_TYPE_ANON
,
233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
234 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
238 /* for encoding cft->private value on file */
247 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
249 #define MEMFILE_ATTR(val) ((val) & 0xffff)
250 /* Used for OOM nofiier */
251 #define OOM_CONTROL (0)
253 /* Some nice accessors for the vmpressure. */
254 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
257 memcg
= root_mem_cgroup
;
258 return &memcg
->vmpressure
;
261 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
263 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
266 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
268 return (memcg
== root_mem_cgroup
);
273 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
274 * The main reason for not using cgroup id for this:
275 * this works better in sparse environments, where we have a lot of memcgs,
276 * but only a few kmem-limited. Or also, if we have, for instance, 200
277 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
278 * 200 entry array for that.
280 * The current size of the caches array is stored in memcg_nr_cache_ids. It
281 * will double each time we have to increase it.
283 static DEFINE_IDA(memcg_cache_ida
);
284 int memcg_nr_cache_ids
;
286 /* Protects memcg_nr_cache_ids */
287 static DECLARE_RWSEM(memcg_cache_ids_sem
);
289 void memcg_get_cache_ids(void)
291 down_read(&memcg_cache_ids_sem
);
294 void memcg_put_cache_ids(void)
296 up_read(&memcg_cache_ids_sem
);
300 * MIN_SIZE is different than 1, because we would like to avoid going through
301 * the alloc/free process all the time. In a small machine, 4 kmem-limited
302 * cgroups is a reasonable guess. In the future, it could be a parameter or
303 * tunable, but that is strictly not necessary.
305 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
306 * this constant directly from cgroup, but it is understandable that this is
307 * better kept as an internal representation in cgroup.c. In any case, the
308 * cgrp_id space is not getting any smaller, and we don't have to necessarily
309 * increase ours as well if it increases.
311 #define MEMCG_CACHES_MIN_SIZE 4
312 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
315 * A lot of the calls to the cache allocation functions are expected to be
316 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
317 * conditional to this static branch, we'll have to allow modules that does
318 * kmem_cache_alloc and the such to see this symbol as well
320 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key
);
321 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
323 #endif /* !CONFIG_SLOB */
325 static struct mem_cgroup_per_zone
*
326 mem_cgroup_zone_zoneinfo(struct mem_cgroup
*memcg
, struct zone
*zone
)
328 int nid
= zone_to_nid(zone
);
329 int zid
= zone_idx(zone
);
331 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
335 * mem_cgroup_css_from_page - css of the memcg associated with a page
336 * @page: page of interest
338 * If memcg is bound to the default hierarchy, css of the memcg associated
339 * with @page is returned. The returned css remains associated with @page
340 * until it is released.
342 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
345 struct cgroup_subsys_state
*mem_cgroup_css_from_page(struct page
*page
)
347 struct mem_cgroup
*memcg
;
349 memcg
= page
->mem_cgroup
;
351 if (!memcg
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
352 memcg
= root_mem_cgroup
;
358 * page_cgroup_ino - return inode number of the memcg a page is charged to
361 * Look up the closest online ancestor of the memory cgroup @page is charged to
362 * and return its inode number or 0 if @page is not charged to any cgroup. It
363 * is safe to call this function without holding a reference to @page.
365 * Note, this function is inherently racy, because there is nothing to prevent
366 * the cgroup inode from getting torn down and potentially reallocated a moment
367 * after page_cgroup_ino() returns, so it only should be used by callers that
368 * do not care (such as procfs interfaces).
370 ino_t
page_cgroup_ino(struct page
*page
)
372 struct mem_cgroup
*memcg
;
373 unsigned long ino
= 0;
376 memcg
= READ_ONCE(page
->mem_cgroup
);
377 while (memcg
&& !(memcg
->css
.flags
& CSS_ONLINE
))
378 memcg
= parent_mem_cgroup(memcg
);
380 ino
= cgroup_ino(memcg
->css
.cgroup
);
385 static struct mem_cgroup_per_zone
*
386 mem_cgroup_page_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
388 int nid
= page_to_nid(page
);
389 int zid
= page_zonenum(page
);
391 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
394 static struct mem_cgroup_tree_per_zone
*
395 soft_limit_tree_node_zone(int nid
, int zid
)
397 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
400 static struct mem_cgroup_tree_per_zone
*
401 soft_limit_tree_from_page(struct page
*page
)
403 int nid
= page_to_nid(page
);
404 int zid
= page_zonenum(page
);
406 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
409 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone
*mz
,
410 struct mem_cgroup_tree_per_zone
*mctz
,
411 unsigned long new_usage_in_excess
)
413 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
414 struct rb_node
*parent
= NULL
;
415 struct mem_cgroup_per_zone
*mz_node
;
420 mz
->usage_in_excess
= new_usage_in_excess
;
421 if (!mz
->usage_in_excess
)
425 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
427 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
430 * We can't avoid mem cgroups that are over their soft
431 * limit by the same amount
433 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
436 rb_link_node(&mz
->tree_node
, parent
, p
);
437 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
441 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone
*mz
,
442 struct mem_cgroup_tree_per_zone
*mctz
)
446 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
450 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone
*mz
,
451 struct mem_cgroup_tree_per_zone
*mctz
)
455 spin_lock_irqsave(&mctz
->lock
, flags
);
456 __mem_cgroup_remove_exceeded(mz
, mctz
);
457 spin_unlock_irqrestore(&mctz
->lock
, flags
);
460 static unsigned long soft_limit_excess(struct mem_cgroup
*memcg
)
462 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
463 unsigned long soft_limit
= READ_ONCE(memcg
->soft_limit
);
464 unsigned long excess
= 0;
466 if (nr_pages
> soft_limit
)
467 excess
= nr_pages
- soft_limit
;
472 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
474 unsigned long excess
;
475 struct mem_cgroup_per_zone
*mz
;
476 struct mem_cgroup_tree_per_zone
*mctz
;
478 mctz
= soft_limit_tree_from_page(page
);
480 * Necessary to update all ancestors when hierarchy is used.
481 * because their event counter is not touched.
483 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
484 mz
= mem_cgroup_page_zoneinfo(memcg
, page
);
485 excess
= soft_limit_excess(memcg
);
487 * We have to update the tree if mz is on RB-tree or
488 * mem is over its softlimit.
490 if (excess
|| mz
->on_tree
) {
493 spin_lock_irqsave(&mctz
->lock
, flags
);
494 /* if on-tree, remove it */
496 __mem_cgroup_remove_exceeded(mz
, mctz
);
498 * Insert again. mz->usage_in_excess will be updated.
499 * If excess is 0, no tree ops.
501 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
502 spin_unlock_irqrestore(&mctz
->lock
, flags
);
507 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
509 struct mem_cgroup_tree_per_zone
*mctz
;
510 struct mem_cgroup_per_zone
*mz
;
514 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
515 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
516 mctz
= soft_limit_tree_node_zone(nid
, zid
);
517 mem_cgroup_remove_exceeded(mz
, mctz
);
522 static struct mem_cgroup_per_zone
*
523 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
525 struct rb_node
*rightmost
= NULL
;
526 struct mem_cgroup_per_zone
*mz
;
530 rightmost
= rb_last(&mctz
->rb_root
);
532 goto done
; /* Nothing to reclaim from */
534 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
536 * Remove the node now but someone else can add it back,
537 * we will to add it back at the end of reclaim to its correct
538 * position in the tree.
540 __mem_cgroup_remove_exceeded(mz
, mctz
);
541 if (!soft_limit_excess(mz
->memcg
) ||
542 !css_tryget_online(&mz
->memcg
->css
))
548 static struct mem_cgroup_per_zone
*
549 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
551 struct mem_cgroup_per_zone
*mz
;
553 spin_lock_irq(&mctz
->lock
);
554 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
555 spin_unlock_irq(&mctz
->lock
);
560 * Return page count for single (non recursive) @memcg.
562 * Implementation Note: reading percpu statistics for memcg.
564 * Both of vmstat[] and percpu_counter has threshold and do periodic
565 * synchronization to implement "quick" read. There are trade-off between
566 * reading cost and precision of value. Then, we may have a chance to implement
567 * a periodic synchronization of counter in memcg's counter.
569 * But this _read() function is used for user interface now. The user accounts
570 * memory usage by memory cgroup and he _always_ requires exact value because
571 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
572 * have to visit all online cpus and make sum. So, for now, unnecessary
573 * synchronization is not implemented. (just implemented for cpu hotplug)
575 * If there are kernel internal actions which can make use of some not-exact
576 * value, and reading all cpu value can be performance bottleneck in some
577 * common workload, threshold and synchronization as vmstat[] should be
581 mem_cgroup_read_stat(struct mem_cgroup
*memcg
, enum mem_cgroup_stat_index idx
)
586 /* Per-cpu values can be negative, use a signed accumulator */
587 for_each_possible_cpu(cpu
)
588 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
590 * Summing races with updates, so val may be negative. Avoid exposing
591 * transient negative values.
598 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
599 enum mem_cgroup_events_index idx
)
601 unsigned long val
= 0;
604 for_each_possible_cpu(cpu
)
605 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
609 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
611 bool compound
, int nr_pages
)
614 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
615 * counted as CACHE even if it's on ANON LRU.
618 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
621 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
625 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
626 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
630 /* pagein of a big page is an event. So, ignore page size */
632 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
634 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
635 nr_pages
= -nr_pages
; /* for event */
638 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
641 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
642 int nid
, unsigned int lru_mask
)
644 unsigned long nr
= 0;
647 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
649 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
650 struct mem_cgroup_per_zone
*mz
;
654 if (!(BIT(lru
) & lru_mask
))
656 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
657 nr
+= mz
->lru_size
[lru
];
663 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
664 unsigned int lru_mask
)
666 unsigned long nr
= 0;
669 for_each_node_state(nid
, N_MEMORY
)
670 nr
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
674 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
675 enum mem_cgroup_events_target target
)
677 unsigned long val
, next
;
679 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
680 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
681 /* from time_after() in jiffies.h */
682 if ((long)next
- (long)val
< 0) {
684 case MEM_CGROUP_TARGET_THRESH
:
685 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
687 case MEM_CGROUP_TARGET_SOFTLIMIT
:
688 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
690 case MEM_CGROUP_TARGET_NUMAINFO
:
691 next
= val
+ NUMAINFO_EVENTS_TARGET
;
696 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
703 * Check events in order.
706 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
708 /* threshold event is triggered in finer grain than soft limit */
709 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
710 MEM_CGROUP_TARGET_THRESH
))) {
712 bool do_numainfo __maybe_unused
;
714 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
715 MEM_CGROUP_TARGET_SOFTLIMIT
);
717 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
718 MEM_CGROUP_TARGET_NUMAINFO
);
720 mem_cgroup_threshold(memcg
);
721 if (unlikely(do_softlimit
))
722 mem_cgroup_update_tree(memcg
, page
);
724 if (unlikely(do_numainfo
))
725 atomic_inc(&memcg
->numainfo_events
);
730 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
733 * mm_update_next_owner() may clear mm->owner to NULL
734 * if it races with swapoff, page migration, etc.
735 * So this can be called with p == NULL.
740 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
742 EXPORT_SYMBOL(mem_cgroup_from_task
);
744 static struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
746 struct mem_cgroup
*memcg
= NULL
;
751 * Page cache insertions can happen withou an
752 * actual mm context, e.g. during disk probing
753 * on boot, loopback IO, acct() writes etc.
756 memcg
= root_mem_cgroup
;
758 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
759 if (unlikely(!memcg
))
760 memcg
= root_mem_cgroup
;
762 } while (!css_tryget_online(&memcg
->css
));
768 * mem_cgroup_iter - iterate over memory cgroup hierarchy
769 * @root: hierarchy root
770 * @prev: previously returned memcg, NULL on first invocation
771 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 * Returns references to children of the hierarchy below @root, or
774 * @root itself, or %NULL after a full round-trip.
776 * Caller must pass the return value in @prev on subsequent
777 * invocations for reference counting, or use mem_cgroup_iter_break()
778 * to cancel a hierarchy walk before the round-trip is complete.
780 * Reclaimers can specify a zone and a priority level in @reclaim to
781 * divide up the memcgs in the hierarchy among all concurrent
782 * reclaimers operating on the same zone and priority.
784 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
785 struct mem_cgroup
*prev
,
786 struct mem_cgroup_reclaim_cookie
*reclaim
)
788 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
789 struct cgroup_subsys_state
*css
= NULL
;
790 struct mem_cgroup
*memcg
= NULL
;
791 struct mem_cgroup
*pos
= NULL
;
793 if (mem_cgroup_disabled())
797 root
= root_mem_cgroup
;
799 if (prev
&& !reclaim
)
802 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
811 struct mem_cgroup_per_zone
*mz
;
813 mz
= mem_cgroup_zone_zoneinfo(root
, reclaim
->zone
);
814 iter
= &mz
->iter
[reclaim
->priority
];
816 if (prev
&& reclaim
->generation
!= iter
->generation
)
820 pos
= READ_ONCE(iter
->position
);
821 if (!pos
|| css_tryget(&pos
->css
))
824 * css reference reached zero, so iter->position will
825 * be cleared by ->css_released. However, we should not
826 * rely on this happening soon, because ->css_released
827 * is called from a work queue, and by busy-waiting we
828 * might block it. So we clear iter->position right
831 (void)cmpxchg(&iter
->position
, pos
, NULL
);
839 css
= css_next_descendant_pre(css
, &root
->css
);
842 * Reclaimers share the hierarchy walk, and a
843 * new one might jump in right at the end of
844 * the hierarchy - make sure they see at least
845 * one group and restart from the beginning.
853 * Verify the css and acquire a reference. The root
854 * is provided by the caller, so we know it's alive
855 * and kicking, and don't take an extra reference.
857 memcg
= mem_cgroup_from_css(css
);
859 if (css
== &root
->css
)
870 * The position could have already been updated by a competing
871 * thread, so check that the value hasn't changed since we read
872 * it to avoid reclaiming from the same cgroup twice.
874 (void)cmpxchg(&iter
->position
, pos
, memcg
);
882 reclaim
->generation
= iter
->generation
;
888 if (prev
&& prev
!= root
)
895 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
896 * @root: hierarchy root
897 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
900 struct mem_cgroup
*prev
)
903 root
= root_mem_cgroup
;
904 if (prev
&& prev
!= root
)
908 static void invalidate_reclaim_iterators(struct mem_cgroup
*dead_memcg
)
910 struct mem_cgroup
*memcg
= dead_memcg
;
911 struct mem_cgroup_reclaim_iter
*iter
;
912 struct mem_cgroup_per_zone
*mz
;
916 while ((memcg
= parent_mem_cgroup(memcg
))) {
918 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
919 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
920 for (i
= 0; i
<= DEF_PRIORITY
; i
++) {
922 cmpxchg(&iter
->position
,
931 * Iteration constructs for visiting all cgroups (under a tree). If
932 * loops are exited prematurely (break), mem_cgroup_iter_break() must
933 * be used for reference counting.
935 #define for_each_mem_cgroup_tree(iter, root) \
936 for (iter = mem_cgroup_iter(root, NULL, NULL); \
938 iter = mem_cgroup_iter(root, iter, NULL))
940 #define for_each_mem_cgroup(iter) \
941 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
943 iter = mem_cgroup_iter(NULL, iter, NULL))
946 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
947 * @zone: zone of the wanted lruvec
948 * @memcg: memcg of the wanted lruvec
950 * Returns the lru list vector holding pages for the given @zone and
951 * @mem. This can be the global zone lruvec, if the memory controller
954 struct lruvec
*mem_cgroup_zone_lruvec(struct zone
*zone
,
955 struct mem_cgroup
*memcg
)
957 struct mem_cgroup_per_zone
*mz
;
958 struct lruvec
*lruvec
;
960 if (mem_cgroup_disabled()) {
961 lruvec
= &zone
->lruvec
;
965 mz
= mem_cgroup_zone_zoneinfo(memcg
, zone
);
966 lruvec
= &mz
->lruvec
;
969 * Since a node can be onlined after the mem_cgroup was created,
970 * we have to be prepared to initialize lruvec->zone here;
971 * and if offlined then reonlined, we need to reinitialize it.
973 if (unlikely(lruvec
->zone
!= zone
))
979 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981 * @zone: zone of the page
983 * This function is only safe when following the LRU page isolation
984 * and putback protocol: the LRU lock must be held, and the page must
985 * either be PageLRU() or the caller must have isolated/allocated it.
987 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct zone
*zone
)
989 struct mem_cgroup_per_zone
*mz
;
990 struct mem_cgroup
*memcg
;
991 struct lruvec
*lruvec
;
993 if (mem_cgroup_disabled()) {
994 lruvec
= &zone
->lruvec
;
998 memcg
= page
->mem_cgroup
;
1000 * Swapcache readahead pages are added to the LRU - and
1001 * possibly migrated - before they are charged.
1004 memcg
= root_mem_cgroup
;
1006 mz
= mem_cgroup_page_zoneinfo(memcg
, page
);
1007 lruvec
= &mz
->lruvec
;
1010 * Since a node can be onlined after the mem_cgroup was created,
1011 * we have to be prepared to initialize lruvec->zone here;
1012 * and if offlined then reonlined, we need to reinitialize it.
1014 if (unlikely(lruvec
->zone
!= zone
))
1015 lruvec
->zone
= zone
;
1020 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1021 * @lruvec: mem_cgroup per zone lru vector
1022 * @lru: index of lru list the page is sitting on
1023 * @nr_pages: positive when adding or negative when removing
1025 * This function must be called when a page is added to or removed from an
1028 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1031 struct mem_cgroup_per_zone
*mz
;
1032 unsigned long *lru_size
;
1034 if (mem_cgroup_disabled())
1037 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
1038 lru_size
= mz
->lru_size
+ lru
;
1039 *lru_size
+= nr_pages
;
1040 VM_BUG_ON((long)(*lru_size
) < 0);
1043 bool task_in_mem_cgroup(struct task_struct
*task
, struct mem_cgroup
*memcg
)
1045 struct mem_cgroup
*task_memcg
;
1046 struct task_struct
*p
;
1049 p
= find_lock_task_mm(task
);
1051 task_memcg
= get_mem_cgroup_from_mm(p
->mm
);
1055 * All threads may have already detached their mm's, but the oom
1056 * killer still needs to detect if they have already been oom
1057 * killed to prevent needlessly killing additional tasks.
1060 task_memcg
= mem_cgroup_from_task(task
);
1061 css_get(&task_memcg
->css
);
1064 ret
= mem_cgroup_is_descendant(task_memcg
, memcg
);
1065 css_put(&task_memcg
->css
);
1070 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1071 * @memcg: the memory cgroup
1073 * Returns the maximum amount of memory @mem can be charged with, in
1076 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1078 unsigned long margin
= 0;
1079 unsigned long count
;
1080 unsigned long limit
;
1082 count
= page_counter_read(&memcg
->memory
);
1083 limit
= READ_ONCE(memcg
->memory
.limit
);
1085 margin
= limit
- count
;
1087 if (do_memsw_account()) {
1088 count
= page_counter_read(&memcg
->memsw
);
1089 limit
= READ_ONCE(memcg
->memsw
.limit
);
1091 margin
= min(margin
, limit
- count
);
1098 * A routine for checking "mem" is under move_account() or not.
1100 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1101 * moving cgroups. This is for waiting at high-memory pressure
1104 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1106 struct mem_cgroup
*from
;
1107 struct mem_cgroup
*to
;
1110 * Unlike task_move routines, we access mc.to, mc.from not under
1111 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 spin_lock(&mc
.lock
);
1119 ret
= mem_cgroup_is_descendant(from
, memcg
) ||
1120 mem_cgroup_is_descendant(to
, memcg
);
1122 spin_unlock(&mc
.lock
);
1126 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1128 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1129 if (mem_cgroup_under_move(memcg
)) {
1131 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1132 /* moving charge context might have finished. */
1135 finish_wait(&mc
.waitq
, &wait
);
1142 #define K(x) ((x) << (PAGE_SHIFT-10))
1144 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1145 * @memcg: The memory cgroup that went over limit
1146 * @p: Task that is going to be killed
1148 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1151 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1153 struct mem_cgroup
*iter
;
1159 pr_info("Task in ");
1160 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1161 pr_cont(" killed as a result of limit of ");
1163 pr_info("Memory limit reached of cgroup ");
1166 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1171 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1172 K((u64
)page_counter_read(&memcg
->memory
)),
1173 K((u64
)memcg
->memory
.limit
), memcg
->memory
.failcnt
);
1174 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1175 K((u64
)page_counter_read(&memcg
->memsw
)),
1176 K((u64
)memcg
->memsw
.limit
), memcg
->memsw
.failcnt
);
1177 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1178 K((u64
)page_counter_read(&memcg
->kmem
)),
1179 K((u64
)memcg
->kmem
.limit
), memcg
->kmem
.failcnt
);
1181 for_each_mem_cgroup_tree(iter
, memcg
) {
1182 pr_info("Memory cgroup stats for ");
1183 pr_cont_cgroup_path(iter
->css
.cgroup
);
1186 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
1187 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
1189 pr_cont(" %s:%luKB", mem_cgroup_stat_names
[i
],
1190 K(mem_cgroup_read_stat(iter
, i
)));
1193 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1194 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1195 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1202 * This function returns the number of memcg under hierarchy tree. Returns
1203 * 1(self count) if no children.
1205 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1208 struct mem_cgroup
*iter
;
1210 for_each_mem_cgroup_tree(iter
, memcg
)
1216 * Return the memory (and swap, if configured) limit for a memcg.
1218 static unsigned long mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1220 unsigned long limit
;
1222 limit
= memcg
->memory
.limit
;
1223 if (mem_cgroup_swappiness(memcg
)) {
1224 unsigned long memsw_limit
;
1225 unsigned long swap_limit
;
1227 memsw_limit
= memcg
->memsw
.limit
;
1228 swap_limit
= memcg
->swap
.limit
;
1229 swap_limit
= min(swap_limit
, (unsigned long)total_swap_pages
);
1230 limit
= min(limit
+ swap_limit
, memsw_limit
);
1235 static bool mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1238 struct oom_control oc
= {
1241 .gfp_mask
= gfp_mask
,
1244 struct mem_cgroup
*iter
;
1245 unsigned long chosen_points
= 0;
1246 unsigned long totalpages
;
1247 unsigned int points
= 0;
1248 struct task_struct
*chosen
= NULL
;
1250 mutex_lock(&oom_lock
);
1253 * If current has a pending SIGKILL or is exiting, then automatically
1254 * select it. The goal is to allow it to allocate so that it may
1255 * quickly exit and free its memory.
1257 if (fatal_signal_pending(current
) || task_will_free_mem(current
)) {
1258 mark_oom_victim(current
);
1262 check_panic_on_oom(&oc
, CONSTRAINT_MEMCG
, memcg
);
1263 totalpages
= mem_cgroup_get_limit(memcg
) ? : 1;
1264 for_each_mem_cgroup_tree(iter
, memcg
) {
1265 struct css_task_iter it
;
1266 struct task_struct
*task
;
1268 css_task_iter_start(&iter
->css
, &it
);
1269 while ((task
= css_task_iter_next(&it
))) {
1270 switch (oom_scan_process_thread(&oc
, task
, totalpages
)) {
1271 case OOM_SCAN_SELECT
:
1273 put_task_struct(chosen
);
1275 chosen_points
= ULONG_MAX
;
1276 get_task_struct(chosen
);
1278 case OOM_SCAN_CONTINUE
:
1280 case OOM_SCAN_ABORT
:
1281 css_task_iter_end(&it
);
1282 mem_cgroup_iter_break(memcg
, iter
);
1284 put_task_struct(chosen
);
1289 points
= oom_badness(task
, memcg
, NULL
, totalpages
);
1290 if (!points
|| points
< chosen_points
)
1292 /* Prefer thread group leaders for display purposes */
1293 if (points
== chosen_points
&&
1294 thread_group_leader(chosen
))
1298 put_task_struct(chosen
);
1300 chosen_points
= points
;
1301 get_task_struct(chosen
);
1303 css_task_iter_end(&it
);
1307 points
= chosen_points
* 1000 / totalpages
;
1308 oom_kill_process(&oc
, chosen
, points
, totalpages
, memcg
,
1309 "Memory cgroup out of memory");
1312 mutex_unlock(&oom_lock
);
1316 #if MAX_NUMNODES > 1
1319 * test_mem_cgroup_node_reclaimable
1320 * @memcg: the target memcg
1321 * @nid: the node ID to be checked.
1322 * @noswap : specify true here if the user wants flle only information.
1324 * This function returns whether the specified memcg contains any
1325 * reclaimable pages on a node. Returns true if there are any reclaimable
1326 * pages in the node.
1328 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1329 int nid
, bool noswap
)
1331 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1333 if (noswap
|| !total_swap_pages
)
1335 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1342 * Always updating the nodemask is not very good - even if we have an empty
1343 * list or the wrong list here, we can start from some node and traverse all
1344 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1347 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1351 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1352 * pagein/pageout changes since the last update.
1354 if (!atomic_read(&memcg
->numainfo_events
))
1356 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1359 /* make a nodemask where this memcg uses memory from */
1360 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1362 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1364 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1365 node_clear(nid
, memcg
->scan_nodes
);
1368 atomic_set(&memcg
->numainfo_events
, 0);
1369 atomic_set(&memcg
->numainfo_updating
, 0);
1373 * Selecting a node where we start reclaim from. Because what we need is just
1374 * reducing usage counter, start from anywhere is O,K. Considering
1375 * memory reclaim from current node, there are pros. and cons.
1377 * Freeing memory from current node means freeing memory from a node which
1378 * we'll use or we've used. So, it may make LRU bad. And if several threads
1379 * hit limits, it will see a contention on a node. But freeing from remote
1380 * node means more costs for memory reclaim because of memory latency.
1382 * Now, we use round-robin. Better algorithm is welcomed.
1384 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1388 mem_cgroup_may_update_nodemask(memcg
);
1389 node
= memcg
->last_scanned_node
;
1391 node
= next_node(node
, memcg
->scan_nodes
);
1392 if (node
== MAX_NUMNODES
)
1393 node
= first_node(memcg
->scan_nodes
);
1395 * We call this when we hit limit, not when pages are added to LRU.
1396 * No LRU may hold pages because all pages are UNEVICTABLE or
1397 * memcg is too small and all pages are not on LRU. In that case,
1398 * we use curret node.
1400 if (unlikely(node
== MAX_NUMNODES
))
1401 node
= numa_node_id();
1403 memcg
->last_scanned_node
= node
;
1407 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1413 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1416 unsigned long *total_scanned
)
1418 struct mem_cgroup
*victim
= NULL
;
1421 unsigned long excess
;
1422 unsigned long nr_scanned
;
1423 struct mem_cgroup_reclaim_cookie reclaim
= {
1428 excess
= soft_limit_excess(root_memcg
);
1431 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1436 * If we have not been able to reclaim
1437 * anything, it might because there are
1438 * no reclaimable pages under this hierarchy
1443 * We want to do more targeted reclaim.
1444 * excess >> 2 is not to excessive so as to
1445 * reclaim too much, nor too less that we keep
1446 * coming back to reclaim from this cgroup
1448 if (total
>= (excess
>> 2) ||
1449 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1454 total
+= mem_cgroup_shrink_node_zone(victim
, gfp_mask
, false,
1456 *total_scanned
+= nr_scanned
;
1457 if (!soft_limit_excess(root_memcg
))
1460 mem_cgroup_iter_break(root_memcg
, victim
);
1464 #ifdef CONFIG_LOCKDEP
1465 static struct lockdep_map memcg_oom_lock_dep_map
= {
1466 .name
= "memcg_oom_lock",
1470 static DEFINE_SPINLOCK(memcg_oom_lock
);
1473 * Check OOM-Killer is already running under our hierarchy.
1474 * If someone is running, return false.
1476 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1478 struct mem_cgroup
*iter
, *failed
= NULL
;
1480 spin_lock(&memcg_oom_lock
);
1482 for_each_mem_cgroup_tree(iter
, memcg
) {
1483 if (iter
->oom_lock
) {
1485 * this subtree of our hierarchy is already locked
1486 * so we cannot give a lock.
1489 mem_cgroup_iter_break(memcg
, iter
);
1492 iter
->oom_lock
= true;
1497 * OK, we failed to lock the whole subtree so we have
1498 * to clean up what we set up to the failing subtree
1500 for_each_mem_cgroup_tree(iter
, memcg
) {
1501 if (iter
== failed
) {
1502 mem_cgroup_iter_break(memcg
, iter
);
1505 iter
->oom_lock
= false;
1508 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
1510 spin_unlock(&memcg_oom_lock
);
1515 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1517 struct mem_cgroup
*iter
;
1519 spin_lock(&memcg_oom_lock
);
1520 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
1521 for_each_mem_cgroup_tree(iter
, memcg
)
1522 iter
->oom_lock
= false;
1523 spin_unlock(&memcg_oom_lock
);
1526 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1528 struct mem_cgroup
*iter
;
1530 spin_lock(&memcg_oom_lock
);
1531 for_each_mem_cgroup_tree(iter
, memcg
)
1533 spin_unlock(&memcg_oom_lock
);
1536 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1538 struct mem_cgroup
*iter
;
1541 * When a new child is created while the hierarchy is under oom,
1542 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1544 spin_lock(&memcg_oom_lock
);
1545 for_each_mem_cgroup_tree(iter
, memcg
)
1546 if (iter
->under_oom
> 0)
1548 spin_unlock(&memcg_oom_lock
);
1551 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1553 struct oom_wait_info
{
1554 struct mem_cgroup
*memcg
;
1558 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1559 unsigned mode
, int sync
, void *arg
)
1561 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1562 struct mem_cgroup
*oom_wait_memcg
;
1563 struct oom_wait_info
*oom_wait_info
;
1565 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1566 oom_wait_memcg
= oom_wait_info
->memcg
;
1568 if (!mem_cgroup_is_descendant(wake_memcg
, oom_wait_memcg
) &&
1569 !mem_cgroup_is_descendant(oom_wait_memcg
, wake_memcg
))
1571 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1574 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1577 * For the following lockless ->under_oom test, the only required
1578 * guarantee is that it must see the state asserted by an OOM when
1579 * this function is called as a result of userland actions
1580 * triggered by the notification of the OOM. This is trivially
1581 * achieved by invoking mem_cgroup_mark_under_oom() before
1582 * triggering notification.
1584 if (memcg
&& memcg
->under_oom
)
1585 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1588 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
1590 if (!current
->memcg_may_oom
)
1593 * We are in the middle of the charge context here, so we
1594 * don't want to block when potentially sitting on a callstack
1595 * that holds all kinds of filesystem and mm locks.
1597 * Also, the caller may handle a failed allocation gracefully
1598 * (like optional page cache readahead) and so an OOM killer
1599 * invocation might not even be necessary.
1601 * That's why we don't do anything here except remember the
1602 * OOM context and then deal with it at the end of the page
1603 * fault when the stack is unwound, the locks are released,
1604 * and when we know whether the fault was overall successful.
1606 css_get(&memcg
->css
);
1607 current
->memcg_in_oom
= memcg
;
1608 current
->memcg_oom_gfp_mask
= mask
;
1609 current
->memcg_oom_order
= order
;
1613 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1614 * @handle: actually kill/wait or just clean up the OOM state
1616 * This has to be called at the end of a page fault if the memcg OOM
1617 * handler was enabled.
1619 * Memcg supports userspace OOM handling where failed allocations must
1620 * sleep on a waitqueue until the userspace task resolves the
1621 * situation. Sleeping directly in the charge context with all kinds
1622 * of locks held is not a good idea, instead we remember an OOM state
1623 * in the task and mem_cgroup_oom_synchronize() has to be called at
1624 * the end of the page fault to complete the OOM handling.
1626 * Returns %true if an ongoing memcg OOM situation was detected and
1627 * completed, %false otherwise.
1629 bool mem_cgroup_oom_synchronize(bool handle
)
1631 struct mem_cgroup
*memcg
= current
->memcg_in_oom
;
1632 struct oom_wait_info owait
;
1635 /* OOM is global, do not handle */
1639 if (!handle
|| oom_killer_disabled
)
1642 owait
.memcg
= memcg
;
1643 owait
.wait
.flags
= 0;
1644 owait
.wait
.func
= memcg_oom_wake_function
;
1645 owait
.wait
.private = current
;
1646 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1648 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1649 mem_cgroup_mark_under_oom(memcg
);
1651 locked
= mem_cgroup_oom_trylock(memcg
);
1654 mem_cgroup_oom_notify(memcg
);
1656 if (locked
&& !memcg
->oom_kill_disable
) {
1657 mem_cgroup_unmark_under_oom(memcg
);
1658 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1659 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom_gfp_mask
,
1660 current
->memcg_oom_order
);
1663 mem_cgroup_unmark_under_oom(memcg
);
1664 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1668 mem_cgroup_oom_unlock(memcg
);
1670 * There is no guarantee that an OOM-lock contender
1671 * sees the wakeups triggered by the OOM kill
1672 * uncharges. Wake any sleepers explicitely.
1674 memcg_oom_recover(memcg
);
1677 current
->memcg_in_oom
= NULL
;
1678 css_put(&memcg
->css
);
1683 * lock_page_memcg - lock a page->mem_cgroup binding
1686 * This function protects unlocked LRU pages from being moved to
1687 * another cgroup and stabilizes their page->mem_cgroup binding.
1689 void lock_page_memcg(struct page
*page
)
1691 struct mem_cgroup
*memcg
;
1692 unsigned long flags
;
1695 * The RCU lock is held throughout the transaction. The fast
1696 * path can get away without acquiring the memcg->move_lock
1697 * because page moving starts with an RCU grace period.
1701 if (mem_cgroup_disabled())
1704 memcg
= page
->mem_cgroup
;
1705 if (unlikely(!memcg
))
1708 if (atomic_read(&memcg
->moving_account
) <= 0)
1711 spin_lock_irqsave(&memcg
->move_lock
, flags
);
1712 if (memcg
!= page
->mem_cgroup
) {
1713 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1718 * When charge migration first begins, we can have locked and
1719 * unlocked page stat updates happening concurrently. Track
1720 * the task who has the lock for unlock_page_memcg().
1722 memcg
->move_lock_task
= current
;
1723 memcg
->move_lock_flags
= flags
;
1727 EXPORT_SYMBOL(lock_page_memcg
);
1730 * unlock_page_memcg - unlock a page->mem_cgroup binding
1733 void unlock_page_memcg(struct page
*page
)
1735 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
1737 if (memcg
&& memcg
->move_lock_task
== current
) {
1738 unsigned long flags
= memcg
->move_lock_flags
;
1740 memcg
->move_lock_task
= NULL
;
1741 memcg
->move_lock_flags
= 0;
1743 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1748 EXPORT_SYMBOL(unlock_page_memcg
);
1751 * size of first charge trial. "32" comes from vmscan.c's magic value.
1752 * TODO: maybe necessary to use big numbers in big irons.
1754 #define CHARGE_BATCH 32U
1755 struct memcg_stock_pcp
{
1756 struct mem_cgroup
*cached
; /* this never be root cgroup */
1757 unsigned int nr_pages
;
1758 struct work_struct work
;
1759 unsigned long flags
;
1760 #define FLUSHING_CACHED_CHARGE 0
1762 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1763 static DEFINE_MUTEX(percpu_charge_mutex
);
1766 * consume_stock: Try to consume stocked charge on this cpu.
1767 * @memcg: memcg to consume from.
1768 * @nr_pages: how many pages to charge.
1770 * The charges will only happen if @memcg matches the current cpu's memcg
1771 * stock, and at least @nr_pages are available in that stock. Failure to
1772 * service an allocation will refill the stock.
1774 * returns true if successful, false otherwise.
1776 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1778 struct memcg_stock_pcp
*stock
;
1781 if (nr_pages
> CHARGE_BATCH
)
1784 stock
= &get_cpu_var(memcg_stock
);
1785 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
) {
1786 stock
->nr_pages
-= nr_pages
;
1789 put_cpu_var(memcg_stock
);
1794 * Returns stocks cached in percpu and reset cached information.
1796 static void drain_stock(struct memcg_stock_pcp
*stock
)
1798 struct mem_cgroup
*old
= stock
->cached
;
1800 if (stock
->nr_pages
) {
1801 page_counter_uncharge(&old
->memory
, stock
->nr_pages
);
1802 if (do_memsw_account())
1803 page_counter_uncharge(&old
->memsw
, stock
->nr_pages
);
1804 css_put_many(&old
->css
, stock
->nr_pages
);
1805 stock
->nr_pages
= 0;
1807 stock
->cached
= NULL
;
1811 * This must be called under preempt disabled or must be called by
1812 * a thread which is pinned to local cpu.
1814 static void drain_local_stock(struct work_struct
*dummy
)
1816 struct memcg_stock_pcp
*stock
= this_cpu_ptr(&memcg_stock
);
1818 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
1822 * Cache charges(val) to local per_cpu area.
1823 * This will be consumed by consume_stock() function, later.
1825 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1827 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
1829 if (stock
->cached
!= memcg
) { /* reset if necessary */
1831 stock
->cached
= memcg
;
1833 stock
->nr_pages
+= nr_pages
;
1834 put_cpu_var(memcg_stock
);
1838 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1839 * of the hierarchy under it.
1841 static void drain_all_stock(struct mem_cgroup
*root_memcg
)
1845 /* If someone's already draining, avoid adding running more workers. */
1846 if (!mutex_trylock(&percpu_charge_mutex
))
1848 /* Notify other cpus that system-wide "drain" is running */
1851 for_each_online_cpu(cpu
) {
1852 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1853 struct mem_cgroup
*memcg
;
1855 memcg
= stock
->cached
;
1856 if (!memcg
|| !stock
->nr_pages
)
1858 if (!mem_cgroup_is_descendant(memcg
, root_memcg
))
1860 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
1862 drain_local_stock(&stock
->work
);
1864 schedule_work_on(cpu
, &stock
->work
);
1869 mutex_unlock(&percpu_charge_mutex
);
1872 static int memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
1873 unsigned long action
,
1876 int cpu
= (unsigned long)hcpu
;
1877 struct memcg_stock_pcp
*stock
;
1879 if (action
== CPU_ONLINE
)
1882 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
1885 stock
= &per_cpu(memcg_stock
, cpu
);
1890 static void reclaim_high(struct mem_cgroup
*memcg
,
1891 unsigned int nr_pages
,
1895 if (page_counter_read(&memcg
->memory
) <= memcg
->high
)
1897 mem_cgroup_events(memcg
, MEMCG_HIGH
, 1);
1898 try_to_free_mem_cgroup_pages(memcg
, nr_pages
, gfp_mask
, true);
1899 } while ((memcg
= parent_mem_cgroup(memcg
)));
1902 static void high_work_func(struct work_struct
*work
)
1904 struct mem_cgroup
*memcg
;
1906 memcg
= container_of(work
, struct mem_cgroup
, high_work
);
1907 reclaim_high(memcg
, CHARGE_BATCH
, GFP_KERNEL
);
1911 * Scheduled by try_charge() to be executed from the userland return path
1912 * and reclaims memory over the high limit.
1914 void mem_cgroup_handle_over_high(void)
1916 unsigned int nr_pages
= current
->memcg_nr_pages_over_high
;
1917 struct mem_cgroup
*memcg
;
1919 if (likely(!nr_pages
))
1922 memcg
= get_mem_cgroup_from_mm(current
->mm
);
1923 reclaim_high(memcg
, nr_pages
, GFP_KERNEL
);
1924 css_put(&memcg
->css
);
1925 current
->memcg_nr_pages_over_high
= 0;
1928 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1929 unsigned int nr_pages
)
1931 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
1932 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1933 struct mem_cgroup
*mem_over_limit
;
1934 struct page_counter
*counter
;
1935 unsigned long nr_reclaimed
;
1936 bool may_swap
= true;
1937 bool drained
= false;
1939 if (mem_cgroup_is_root(memcg
))
1942 if (consume_stock(memcg
, nr_pages
))
1945 if (!do_memsw_account() ||
1946 page_counter_try_charge(&memcg
->memsw
, batch
, &counter
)) {
1947 if (page_counter_try_charge(&memcg
->memory
, batch
, &counter
))
1949 if (do_memsw_account())
1950 page_counter_uncharge(&memcg
->memsw
, batch
);
1951 mem_over_limit
= mem_cgroup_from_counter(counter
, memory
);
1953 mem_over_limit
= mem_cgroup_from_counter(counter
, memsw
);
1957 if (batch
> nr_pages
) {
1963 * Unlike in global OOM situations, memcg is not in a physical
1964 * memory shortage. Allow dying and OOM-killed tasks to
1965 * bypass the last charges so that they can exit quickly and
1966 * free their memory.
1968 if (unlikely(test_thread_flag(TIF_MEMDIE
) ||
1969 fatal_signal_pending(current
) ||
1970 current
->flags
& PF_EXITING
))
1973 if (unlikely(task_in_memcg_oom(current
)))
1976 if (!gfpflags_allow_blocking(gfp_mask
))
1979 mem_cgroup_events(mem_over_limit
, MEMCG_MAX
, 1);
1981 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
1982 gfp_mask
, may_swap
);
1984 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
1988 drain_all_stock(mem_over_limit
);
1993 if (gfp_mask
& __GFP_NORETRY
)
1996 * Even though the limit is exceeded at this point, reclaim
1997 * may have been able to free some pages. Retry the charge
1998 * before killing the task.
2000 * Only for regular pages, though: huge pages are rather
2001 * unlikely to succeed so close to the limit, and we fall back
2002 * to regular pages anyway in case of failure.
2004 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
2007 * At task move, charge accounts can be doubly counted. So, it's
2008 * better to wait until the end of task_move if something is going on.
2010 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2016 if (gfp_mask
& __GFP_NOFAIL
)
2019 if (fatal_signal_pending(current
))
2022 mem_cgroup_events(mem_over_limit
, MEMCG_OOM
, 1);
2024 mem_cgroup_oom(mem_over_limit
, gfp_mask
,
2025 get_order(nr_pages
* PAGE_SIZE
));
2027 if (!(gfp_mask
& __GFP_NOFAIL
))
2031 * The allocation either can't fail or will lead to more memory
2032 * being freed very soon. Allow memory usage go over the limit
2033 * temporarily by force charging it.
2035 page_counter_charge(&memcg
->memory
, nr_pages
);
2036 if (do_memsw_account())
2037 page_counter_charge(&memcg
->memsw
, nr_pages
);
2038 css_get_many(&memcg
->css
, nr_pages
);
2043 css_get_many(&memcg
->css
, batch
);
2044 if (batch
> nr_pages
)
2045 refill_stock(memcg
, batch
- nr_pages
);
2048 * If the hierarchy is above the normal consumption range, schedule
2049 * reclaim on returning to userland. We can perform reclaim here
2050 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2051 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2052 * not recorded as it most likely matches current's and won't
2053 * change in the meantime. As high limit is checked again before
2054 * reclaim, the cost of mismatch is negligible.
2057 if (page_counter_read(&memcg
->memory
) > memcg
->high
) {
2058 /* Don't bother a random interrupted task */
2059 if (in_interrupt()) {
2060 schedule_work(&memcg
->high_work
);
2063 current
->memcg_nr_pages_over_high
+= batch
;
2064 set_notify_resume(current
);
2067 } while ((memcg
= parent_mem_cgroup(memcg
)));
2072 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2074 if (mem_cgroup_is_root(memcg
))
2077 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2078 if (do_memsw_account())
2079 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2081 css_put_many(&memcg
->css
, nr_pages
);
2084 static void lock_page_lru(struct page
*page
, int *isolated
)
2086 struct zone
*zone
= page_zone(page
);
2088 spin_lock_irq(&zone
->lru_lock
);
2089 if (PageLRU(page
)) {
2090 struct lruvec
*lruvec
;
2092 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
2094 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2100 static void unlock_page_lru(struct page
*page
, int isolated
)
2102 struct zone
*zone
= page_zone(page
);
2105 struct lruvec
*lruvec
;
2107 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
2108 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2110 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2112 spin_unlock_irq(&zone
->lru_lock
);
2115 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2120 VM_BUG_ON_PAGE(page
->mem_cgroup
, page
);
2123 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2124 * may already be on some other mem_cgroup's LRU. Take care of it.
2127 lock_page_lru(page
, &isolated
);
2130 * Nobody should be changing or seriously looking at
2131 * page->mem_cgroup at this point:
2133 * - the page is uncharged
2135 * - the page is off-LRU
2137 * - an anonymous fault has exclusive page access, except for
2138 * a locked page table
2140 * - a page cache insertion, a swapin fault, or a migration
2141 * have the page locked
2143 page
->mem_cgroup
= memcg
;
2146 unlock_page_lru(page
, isolated
);
2150 static int memcg_alloc_cache_id(void)
2155 id
= ida_simple_get(&memcg_cache_ida
,
2156 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2160 if (id
< memcg_nr_cache_ids
)
2164 * There's no space for the new id in memcg_caches arrays,
2165 * so we have to grow them.
2167 down_write(&memcg_cache_ids_sem
);
2169 size
= 2 * (id
+ 1);
2170 if (size
< MEMCG_CACHES_MIN_SIZE
)
2171 size
= MEMCG_CACHES_MIN_SIZE
;
2172 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2173 size
= MEMCG_CACHES_MAX_SIZE
;
2175 err
= memcg_update_all_caches(size
);
2177 err
= memcg_update_all_list_lrus(size
);
2179 memcg_nr_cache_ids
= size
;
2181 up_write(&memcg_cache_ids_sem
);
2184 ida_simple_remove(&memcg_cache_ida
, id
);
2190 static void memcg_free_cache_id(int id
)
2192 ida_simple_remove(&memcg_cache_ida
, id
);
2195 struct memcg_kmem_cache_create_work
{
2196 struct mem_cgroup
*memcg
;
2197 struct kmem_cache
*cachep
;
2198 struct work_struct work
;
2201 static void memcg_kmem_cache_create_func(struct work_struct
*w
)
2203 struct memcg_kmem_cache_create_work
*cw
=
2204 container_of(w
, struct memcg_kmem_cache_create_work
, work
);
2205 struct mem_cgroup
*memcg
= cw
->memcg
;
2206 struct kmem_cache
*cachep
= cw
->cachep
;
2208 memcg_create_kmem_cache(memcg
, cachep
);
2210 css_put(&memcg
->css
);
2215 * Enqueue the creation of a per-memcg kmem_cache.
2217 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2218 struct kmem_cache
*cachep
)
2220 struct memcg_kmem_cache_create_work
*cw
;
2222 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
);
2226 css_get(&memcg
->css
);
2229 cw
->cachep
= cachep
;
2230 INIT_WORK(&cw
->work
, memcg_kmem_cache_create_func
);
2232 schedule_work(&cw
->work
);
2235 static void memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2236 struct kmem_cache
*cachep
)
2239 * We need to stop accounting when we kmalloc, because if the
2240 * corresponding kmalloc cache is not yet created, the first allocation
2241 * in __memcg_schedule_kmem_cache_create will recurse.
2243 * However, it is better to enclose the whole function. Depending on
2244 * the debugging options enabled, INIT_WORK(), for instance, can
2245 * trigger an allocation. This too, will make us recurse. Because at
2246 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2247 * the safest choice is to do it like this, wrapping the whole function.
2249 current
->memcg_kmem_skip_account
= 1;
2250 __memcg_schedule_kmem_cache_create(memcg
, cachep
);
2251 current
->memcg_kmem_skip_account
= 0;
2255 * Return the kmem_cache we're supposed to use for a slab allocation.
2256 * We try to use the current memcg's version of the cache.
2258 * If the cache does not exist yet, if we are the first user of it,
2259 * we either create it immediately, if possible, or create it asynchronously
2261 * In the latter case, we will let the current allocation go through with
2262 * the original cache.
2264 * Can't be called in interrupt context or from kernel threads.
2265 * This function needs to be called with rcu_read_lock() held.
2267 struct kmem_cache
*__memcg_kmem_get_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2269 struct mem_cgroup
*memcg
;
2270 struct kmem_cache
*memcg_cachep
;
2273 VM_BUG_ON(!is_root_cache(cachep
));
2275 if (cachep
->flags
& SLAB_ACCOUNT
)
2276 gfp
|= __GFP_ACCOUNT
;
2278 if (!(gfp
& __GFP_ACCOUNT
))
2281 if (current
->memcg_kmem_skip_account
)
2284 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2285 kmemcg_id
= READ_ONCE(memcg
->kmemcg_id
);
2289 memcg_cachep
= cache_from_memcg_idx(cachep
, kmemcg_id
);
2290 if (likely(memcg_cachep
))
2291 return memcg_cachep
;
2294 * If we are in a safe context (can wait, and not in interrupt
2295 * context), we could be be predictable and return right away.
2296 * This would guarantee that the allocation being performed
2297 * already belongs in the new cache.
2299 * However, there are some clashes that can arrive from locking.
2300 * For instance, because we acquire the slab_mutex while doing
2301 * memcg_create_kmem_cache, this means no further allocation
2302 * could happen with the slab_mutex held. So it's better to
2305 memcg_schedule_kmem_cache_create(memcg
, cachep
);
2307 css_put(&memcg
->css
);
2311 void __memcg_kmem_put_cache(struct kmem_cache
*cachep
)
2313 if (!is_root_cache(cachep
))
2314 css_put(&cachep
->memcg_params
.memcg
->css
);
2317 int __memcg_kmem_charge_memcg(struct page
*page
, gfp_t gfp
, int order
,
2318 struct mem_cgroup
*memcg
)
2320 unsigned int nr_pages
= 1 << order
;
2321 struct page_counter
*counter
;
2324 ret
= try_charge(memcg
, gfp
, nr_pages
);
2328 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) &&
2329 !page_counter_try_charge(&memcg
->kmem
, nr_pages
, &counter
)) {
2330 cancel_charge(memcg
, nr_pages
);
2334 page
->mem_cgroup
= memcg
;
2339 int __memcg_kmem_charge(struct page
*page
, gfp_t gfp
, int order
)
2341 struct mem_cgroup
*memcg
;
2344 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2345 if (!mem_cgroup_is_root(memcg
))
2346 ret
= __memcg_kmem_charge_memcg(page
, gfp
, order
, memcg
);
2347 css_put(&memcg
->css
);
2351 void __memcg_kmem_uncharge(struct page
*page
, int order
)
2353 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
2354 unsigned int nr_pages
= 1 << order
;
2359 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
2361 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
2362 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2364 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2365 if (do_memsw_account())
2366 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2368 page
->mem_cgroup
= NULL
;
2369 css_put_many(&memcg
->css
, nr_pages
);
2371 #endif /* !CONFIG_SLOB */
2373 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2376 * Because tail pages are not marked as "used", set it. We're under
2377 * zone->lru_lock and migration entries setup in all page mappings.
2379 void mem_cgroup_split_huge_fixup(struct page
*head
)
2383 if (mem_cgroup_disabled())
2386 for (i
= 1; i
< HPAGE_PMD_NR
; i
++)
2387 head
[i
].mem_cgroup
= head
->mem_cgroup
;
2389 __this_cpu_sub(head
->mem_cgroup
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
2392 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2394 #ifdef CONFIG_MEMCG_SWAP
2395 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
2398 int val
= (charge
) ? 1 : -1;
2399 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAP
], val
);
2403 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2404 * @entry: swap entry to be moved
2405 * @from: mem_cgroup which the entry is moved from
2406 * @to: mem_cgroup which the entry is moved to
2408 * It succeeds only when the swap_cgroup's record for this entry is the same
2409 * as the mem_cgroup's id of @from.
2411 * Returns 0 on success, -EINVAL on failure.
2413 * The caller must have charged to @to, IOW, called page_counter_charge() about
2414 * both res and memsw, and called css_get().
2416 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2417 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2419 unsigned short old_id
, new_id
;
2421 old_id
= mem_cgroup_id(from
);
2422 new_id
= mem_cgroup_id(to
);
2424 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2425 mem_cgroup_swap_statistics(from
, false);
2426 mem_cgroup_swap_statistics(to
, true);
2432 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2433 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2439 static DEFINE_MUTEX(memcg_limit_mutex
);
2441 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2442 unsigned long limit
)
2444 unsigned long curusage
;
2445 unsigned long oldusage
;
2446 bool enlarge
= false;
2451 * For keeping hierarchical_reclaim simple, how long we should retry
2452 * is depends on callers. We set our retry-count to be function
2453 * of # of children which we should visit in this loop.
2455 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2456 mem_cgroup_count_children(memcg
);
2458 oldusage
= page_counter_read(&memcg
->memory
);
2461 if (signal_pending(current
)) {
2466 mutex_lock(&memcg_limit_mutex
);
2467 if (limit
> memcg
->memsw
.limit
) {
2468 mutex_unlock(&memcg_limit_mutex
);
2472 if (limit
> memcg
->memory
.limit
)
2474 ret
= page_counter_limit(&memcg
->memory
, limit
);
2475 mutex_unlock(&memcg_limit_mutex
);
2480 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, true);
2482 curusage
= page_counter_read(&memcg
->memory
);
2483 /* Usage is reduced ? */
2484 if (curusage
>= oldusage
)
2487 oldusage
= curusage
;
2488 } while (retry_count
);
2490 if (!ret
&& enlarge
)
2491 memcg_oom_recover(memcg
);
2496 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
2497 unsigned long limit
)
2499 unsigned long curusage
;
2500 unsigned long oldusage
;
2501 bool enlarge
= false;
2505 /* see mem_cgroup_resize_res_limit */
2506 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2507 mem_cgroup_count_children(memcg
);
2509 oldusage
= page_counter_read(&memcg
->memsw
);
2512 if (signal_pending(current
)) {
2517 mutex_lock(&memcg_limit_mutex
);
2518 if (limit
< memcg
->memory
.limit
) {
2519 mutex_unlock(&memcg_limit_mutex
);
2523 if (limit
> memcg
->memsw
.limit
)
2525 ret
= page_counter_limit(&memcg
->memsw
, limit
);
2526 mutex_unlock(&memcg_limit_mutex
);
2531 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, false);
2533 curusage
= page_counter_read(&memcg
->memsw
);
2534 /* Usage is reduced ? */
2535 if (curusage
>= oldusage
)
2538 oldusage
= curusage
;
2539 } while (retry_count
);
2541 if (!ret
&& enlarge
)
2542 memcg_oom_recover(memcg
);
2547 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
2549 unsigned long *total_scanned
)
2551 unsigned long nr_reclaimed
= 0;
2552 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
2553 unsigned long reclaimed
;
2555 struct mem_cgroup_tree_per_zone
*mctz
;
2556 unsigned long excess
;
2557 unsigned long nr_scanned
;
2562 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
2564 * This loop can run a while, specially if mem_cgroup's continuously
2565 * keep exceeding their soft limit and putting the system under
2572 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2577 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, zone
,
2578 gfp_mask
, &nr_scanned
);
2579 nr_reclaimed
+= reclaimed
;
2580 *total_scanned
+= nr_scanned
;
2581 spin_lock_irq(&mctz
->lock
);
2582 __mem_cgroup_remove_exceeded(mz
, mctz
);
2585 * If we failed to reclaim anything from this memory cgroup
2586 * it is time to move on to the next cgroup
2590 next_mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
2592 excess
= soft_limit_excess(mz
->memcg
);
2594 * One school of thought says that we should not add
2595 * back the node to the tree if reclaim returns 0.
2596 * But our reclaim could return 0, simply because due
2597 * to priority we are exposing a smaller subset of
2598 * memory to reclaim from. Consider this as a longer
2601 /* If excess == 0, no tree ops */
2602 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
2603 spin_unlock_irq(&mctz
->lock
);
2604 css_put(&mz
->memcg
->css
);
2607 * Could not reclaim anything and there are no more
2608 * mem cgroups to try or we seem to be looping without
2609 * reclaiming anything.
2611 if (!nr_reclaimed
&&
2613 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
2615 } while (!nr_reclaimed
);
2617 css_put(&next_mz
->memcg
->css
);
2618 return nr_reclaimed
;
2622 * Test whether @memcg has children, dead or alive. Note that this
2623 * function doesn't care whether @memcg has use_hierarchy enabled and
2624 * returns %true if there are child csses according to the cgroup
2625 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2627 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
2632 ret
= css_next_child(NULL
, &memcg
->css
);
2638 * Reclaims as many pages from the given memcg as possible and moves
2639 * the rest to the parent.
2641 * Caller is responsible for holding css reference for memcg.
2643 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
2645 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2647 /* we call try-to-free pages for make this cgroup empty */
2648 lru_add_drain_all();
2649 /* try to free all pages in this cgroup */
2650 while (nr_retries
&& page_counter_read(&memcg
->memory
)) {
2653 if (signal_pending(current
))
2656 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
2660 /* maybe some writeback is necessary */
2661 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2669 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
2670 char *buf
, size_t nbytes
,
2673 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2675 if (mem_cgroup_is_root(memcg
))
2677 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
2680 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
2683 return mem_cgroup_from_css(css
)->use_hierarchy
;
2686 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
2687 struct cftype
*cft
, u64 val
)
2690 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2691 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
2693 if (memcg
->use_hierarchy
== val
)
2697 * If parent's use_hierarchy is set, we can't make any modifications
2698 * in the child subtrees. If it is unset, then the change can
2699 * occur, provided the current cgroup has no children.
2701 * For the root cgroup, parent_mem is NULL, we allow value to be
2702 * set if there are no children.
2704 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
2705 (val
== 1 || val
== 0)) {
2706 if (!memcg_has_children(memcg
))
2707 memcg
->use_hierarchy
= val
;
2716 static void tree_stat(struct mem_cgroup
*memcg
, unsigned long *stat
)
2718 struct mem_cgroup
*iter
;
2721 memset(stat
, 0, sizeof(*stat
) * MEMCG_NR_STAT
);
2723 for_each_mem_cgroup_tree(iter
, memcg
) {
2724 for (i
= 0; i
< MEMCG_NR_STAT
; i
++)
2725 stat
[i
] += mem_cgroup_read_stat(iter
, i
);
2729 static void tree_events(struct mem_cgroup
*memcg
, unsigned long *events
)
2731 struct mem_cgroup
*iter
;
2734 memset(events
, 0, sizeof(*events
) * MEMCG_NR_EVENTS
);
2736 for_each_mem_cgroup_tree(iter
, memcg
) {
2737 for (i
= 0; i
< MEMCG_NR_EVENTS
; i
++)
2738 events
[i
] += mem_cgroup_read_events(iter
, i
);
2742 static unsigned long mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
2744 unsigned long val
= 0;
2746 if (mem_cgroup_is_root(memcg
)) {
2747 struct mem_cgroup
*iter
;
2749 for_each_mem_cgroup_tree(iter
, memcg
) {
2750 val
+= mem_cgroup_read_stat(iter
,
2751 MEM_CGROUP_STAT_CACHE
);
2752 val
+= mem_cgroup_read_stat(iter
,
2753 MEM_CGROUP_STAT_RSS
);
2755 val
+= mem_cgroup_read_stat(iter
,
2756 MEM_CGROUP_STAT_SWAP
);
2760 val
= page_counter_read(&memcg
->memory
);
2762 val
= page_counter_read(&memcg
->memsw
);
2775 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
2778 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2779 struct page_counter
*counter
;
2781 switch (MEMFILE_TYPE(cft
->private)) {
2783 counter
= &memcg
->memory
;
2786 counter
= &memcg
->memsw
;
2789 counter
= &memcg
->kmem
;
2792 counter
= &memcg
->tcpmem
;
2798 switch (MEMFILE_ATTR(cft
->private)) {
2800 if (counter
== &memcg
->memory
)
2801 return (u64
)mem_cgroup_usage(memcg
, false) * PAGE_SIZE
;
2802 if (counter
== &memcg
->memsw
)
2803 return (u64
)mem_cgroup_usage(memcg
, true) * PAGE_SIZE
;
2804 return (u64
)page_counter_read(counter
) * PAGE_SIZE
;
2806 return (u64
)counter
->limit
* PAGE_SIZE
;
2808 return (u64
)counter
->watermark
* PAGE_SIZE
;
2810 return counter
->failcnt
;
2811 case RES_SOFT_LIMIT
:
2812 return (u64
)memcg
->soft_limit
* PAGE_SIZE
;
2819 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2823 if (cgroup_memory_nokmem
)
2826 BUG_ON(memcg
->kmemcg_id
>= 0);
2827 BUG_ON(memcg
->kmem_state
);
2829 memcg_id
= memcg_alloc_cache_id();
2833 static_branch_inc(&memcg_kmem_enabled_key
);
2835 * A memory cgroup is considered kmem-online as soon as it gets
2836 * kmemcg_id. Setting the id after enabling static branching will
2837 * guarantee no one starts accounting before all call sites are
2840 memcg
->kmemcg_id
= memcg_id
;
2841 memcg
->kmem_state
= KMEM_ONLINE
;
2846 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2848 struct cgroup_subsys_state
*css
;
2849 struct mem_cgroup
*parent
, *child
;
2852 if (memcg
->kmem_state
!= KMEM_ONLINE
)
2855 * Clear the online state before clearing memcg_caches array
2856 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2857 * guarantees that no cache will be created for this cgroup
2858 * after we are done (see memcg_create_kmem_cache()).
2860 memcg
->kmem_state
= KMEM_ALLOCATED
;
2862 memcg_deactivate_kmem_caches(memcg
);
2864 kmemcg_id
= memcg
->kmemcg_id
;
2865 BUG_ON(kmemcg_id
< 0);
2867 parent
= parent_mem_cgroup(memcg
);
2869 parent
= root_mem_cgroup
;
2872 * Change kmemcg_id of this cgroup and all its descendants to the
2873 * parent's id, and then move all entries from this cgroup's list_lrus
2874 * to ones of the parent. After we have finished, all list_lrus
2875 * corresponding to this cgroup are guaranteed to remain empty. The
2876 * ordering is imposed by list_lru_node->lock taken by
2877 * memcg_drain_all_list_lrus().
2879 css_for_each_descendant_pre(css
, &memcg
->css
) {
2880 child
= mem_cgroup_from_css(css
);
2881 BUG_ON(child
->kmemcg_id
!= kmemcg_id
);
2882 child
->kmemcg_id
= parent
->kmemcg_id
;
2883 if (!memcg
->use_hierarchy
)
2886 memcg_drain_all_list_lrus(kmemcg_id
, parent
->kmemcg_id
);
2888 memcg_free_cache_id(kmemcg_id
);
2891 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2893 /* css_alloc() failed, offlining didn't happen */
2894 if (unlikely(memcg
->kmem_state
== KMEM_ONLINE
))
2895 memcg_offline_kmem(memcg
);
2897 if (memcg
->kmem_state
== KMEM_ALLOCATED
) {
2898 memcg_destroy_kmem_caches(memcg
);
2899 static_branch_dec(&memcg_kmem_enabled_key
);
2900 WARN_ON(page_counter_read(&memcg
->kmem
));
2904 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2908 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2911 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2914 #endif /* !CONFIG_SLOB */
2916 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
2917 unsigned long limit
)
2921 mutex_lock(&memcg_limit_mutex
);
2922 ret
= page_counter_limit(&memcg
->kmem
, limit
);
2923 mutex_unlock(&memcg_limit_mutex
);
2927 static int memcg_update_tcp_limit(struct mem_cgroup
*memcg
, unsigned long limit
)
2931 mutex_lock(&memcg_limit_mutex
);
2933 ret
= page_counter_limit(&memcg
->tcpmem
, limit
);
2937 if (!memcg
->tcpmem_active
) {
2939 * The active flag needs to be written after the static_key
2940 * update. This is what guarantees that the socket activation
2941 * function is the last one to run. See sock_update_memcg() for
2942 * details, and note that we don't mark any socket as belonging
2943 * to this memcg until that flag is up.
2945 * We need to do this, because static_keys will span multiple
2946 * sites, but we can't control their order. If we mark a socket
2947 * as accounted, but the accounting functions are not patched in
2948 * yet, we'll lose accounting.
2950 * We never race with the readers in sock_update_memcg(),
2951 * because when this value change, the code to process it is not
2954 static_branch_inc(&memcg_sockets_enabled_key
);
2955 memcg
->tcpmem_active
= true;
2958 mutex_unlock(&memcg_limit_mutex
);
2963 * The user of this function is...
2966 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
2967 char *buf
, size_t nbytes
, loff_t off
)
2969 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2970 unsigned long nr_pages
;
2973 buf
= strstrip(buf
);
2974 ret
= page_counter_memparse(buf
, "-1", &nr_pages
);
2978 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
2980 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
2984 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
2986 ret
= mem_cgroup_resize_limit(memcg
, nr_pages
);
2989 ret
= mem_cgroup_resize_memsw_limit(memcg
, nr_pages
);
2992 ret
= memcg_update_kmem_limit(memcg
, nr_pages
);
2995 ret
= memcg_update_tcp_limit(memcg
, nr_pages
);
2999 case RES_SOFT_LIMIT
:
3000 memcg
->soft_limit
= nr_pages
;
3004 return ret
?: nbytes
;
3007 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
3008 size_t nbytes
, loff_t off
)
3010 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3011 struct page_counter
*counter
;
3013 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3015 counter
= &memcg
->memory
;
3018 counter
= &memcg
->memsw
;
3021 counter
= &memcg
->kmem
;
3024 counter
= &memcg
->tcpmem
;
3030 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3032 page_counter_reset_watermark(counter
);
3035 counter
->failcnt
= 0;
3044 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
3047 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
3051 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3052 struct cftype
*cft
, u64 val
)
3054 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3056 if (val
& ~MOVE_MASK
)
3060 * No kind of locking is needed in here, because ->can_attach() will
3061 * check this value once in the beginning of the process, and then carry
3062 * on with stale data. This means that changes to this value will only
3063 * affect task migrations starting after the change.
3065 memcg
->move_charge_at_immigrate
= val
;
3069 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3070 struct cftype
*cft
, u64 val
)
3077 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
3081 unsigned int lru_mask
;
3084 static const struct numa_stat stats
[] = {
3085 { "total", LRU_ALL
},
3086 { "file", LRU_ALL_FILE
},
3087 { "anon", LRU_ALL_ANON
},
3088 { "unevictable", BIT(LRU_UNEVICTABLE
) },
3090 const struct numa_stat
*stat
;
3093 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3095 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3096 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
3097 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
3098 for_each_node_state(nid
, N_MEMORY
) {
3099 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
3101 seq_printf(m
, " N%d=%lu", nid
, nr
);
3106 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3107 struct mem_cgroup
*iter
;
3110 for_each_mem_cgroup_tree(iter
, memcg
)
3111 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
3112 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
3113 for_each_node_state(nid
, N_MEMORY
) {
3115 for_each_mem_cgroup_tree(iter
, memcg
)
3116 nr
+= mem_cgroup_node_nr_lru_pages(
3117 iter
, nid
, stat
->lru_mask
);
3118 seq_printf(m
, " N%d=%lu", nid
, nr
);
3125 #endif /* CONFIG_NUMA */
3127 static int memcg_stat_show(struct seq_file
*m
, void *v
)
3129 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3130 unsigned long memory
, memsw
;
3131 struct mem_cgroup
*mi
;
3134 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names
) !=
3135 MEM_CGROUP_STAT_NSTATS
);
3136 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names
) !=
3137 MEM_CGROUP_EVENTS_NSTATS
);
3138 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
3140 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
3141 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_memsw_account())
3143 seq_printf(m
, "%s %lu\n", mem_cgroup_stat_names
[i
],
3144 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
3147 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
3148 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
3149 mem_cgroup_read_events(memcg
, i
));
3151 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3152 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
3153 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
3155 /* Hierarchical information */
3156 memory
= memsw
= PAGE_COUNTER_MAX
;
3157 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
)) {
3158 memory
= min(memory
, mi
->memory
.limit
);
3159 memsw
= min(memsw
, mi
->memsw
.limit
);
3161 seq_printf(m
, "hierarchical_memory_limit %llu\n",
3162 (u64
)memory
* PAGE_SIZE
);
3163 if (do_memsw_account())
3164 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
3165 (u64
)memsw
* PAGE_SIZE
);
3167 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
3168 unsigned long long val
= 0;
3170 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_memsw_account())
3172 for_each_mem_cgroup_tree(mi
, memcg
)
3173 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
3174 seq_printf(m
, "total_%s %llu\n", mem_cgroup_stat_names
[i
], val
);
3177 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
3178 unsigned long long val
= 0;
3180 for_each_mem_cgroup_tree(mi
, memcg
)
3181 val
+= mem_cgroup_read_events(mi
, i
);
3182 seq_printf(m
, "total_%s %llu\n",
3183 mem_cgroup_events_names
[i
], val
);
3186 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
3187 unsigned long long val
= 0;
3189 for_each_mem_cgroup_tree(mi
, memcg
)
3190 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
3191 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
3194 #ifdef CONFIG_DEBUG_VM
3197 struct mem_cgroup_per_zone
*mz
;
3198 struct zone_reclaim_stat
*rstat
;
3199 unsigned long recent_rotated
[2] = {0, 0};
3200 unsigned long recent_scanned
[2] = {0, 0};
3202 for_each_online_node(nid
)
3203 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
3204 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
3205 rstat
= &mz
->lruvec
.reclaim_stat
;
3207 recent_rotated
[0] += rstat
->recent_rotated
[0];
3208 recent_rotated
[1] += rstat
->recent_rotated
[1];
3209 recent_scanned
[0] += rstat
->recent_scanned
[0];
3210 recent_scanned
[1] += rstat
->recent_scanned
[1];
3212 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
3213 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
3214 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
3215 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
3222 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
3225 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3227 return mem_cgroup_swappiness(memcg
);
3230 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
3231 struct cftype
*cft
, u64 val
)
3233 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3239 memcg
->swappiness
= val
;
3241 vm_swappiness
= val
;
3246 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3248 struct mem_cgroup_threshold_ary
*t
;
3249 unsigned long usage
;
3254 t
= rcu_dereference(memcg
->thresholds
.primary
);
3256 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3261 usage
= mem_cgroup_usage(memcg
, swap
);
3264 * current_threshold points to threshold just below or equal to usage.
3265 * If it's not true, a threshold was crossed after last
3266 * call of __mem_cgroup_threshold().
3268 i
= t
->current_threshold
;
3271 * Iterate backward over array of thresholds starting from
3272 * current_threshold and check if a threshold is crossed.
3273 * If none of thresholds below usage is crossed, we read
3274 * only one element of the array here.
3276 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3277 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3279 /* i = current_threshold + 1 */
3283 * Iterate forward over array of thresholds starting from
3284 * current_threshold+1 and check if a threshold is crossed.
3285 * If none of thresholds above usage is crossed, we read
3286 * only one element of the array here.
3288 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3289 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3291 /* Update current_threshold */
3292 t
->current_threshold
= i
- 1;
3297 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3300 __mem_cgroup_threshold(memcg
, false);
3301 if (do_memsw_account())
3302 __mem_cgroup_threshold(memcg
, true);
3304 memcg
= parent_mem_cgroup(memcg
);
3308 static int compare_thresholds(const void *a
, const void *b
)
3310 const struct mem_cgroup_threshold
*_a
= a
;
3311 const struct mem_cgroup_threshold
*_b
= b
;
3313 if (_a
->threshold
> _b
->threshold
)
3316 if (_a
->threshold
< _b
->threshold
)
3322 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
3324 struct mem_cgroup_eventfd_list
*ev
;
3326 spin_lock(&memcg_oom_lock
);
3328 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
3329 eventfd_signal(ev
->eventfd
, 1);
3331 spin_unlock(&memcg_oom_lock
);
3335 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
3337 struct mem_cgroup
*iter
;
3339 for_each_mem_cgroup_tree(iter
, memcg
)
3340 mem_cgroup_oom_notify_cb(iter
);
3343 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3344 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
3346 struct mem_cgroup_thresholds
*thresholds
;
3347 struct mem_cgroup_threshold_ary
*new;
3348 unsigned long threshold
;
3349 unsigned long usage
;
3352 ret
= page_counter_memparse(args
, "-1", &threshold
);
3356 mutex_lock(&memcg
->thresholds_lock
);
3359 thresholds
= &memcg
->thresholds
;
3360 usage
= mem_cgroup_usage(memcg
, false);
3361 } else if (type
== _MEMSWAP
) {
3362 thresholds
= &memcg
->memsw_thresholds
;
3363 usage
= mem_cgroup_usage(memcg
, true);
3367 /* Check if a threshold crossed before adding a new one */
3368 if (thresholds
->primary
)
3369 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3371 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3373 /* Allocate memory for new array of thresholds */
3374 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3382 /* Copy thresholds (if any) to new array */
3383 if (thresholds
->primary
) {
3384 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3385 sizeof(struct mem_cgroup_threshold
));
3388 /* Add new threshold */
3389 new->entries
[size
- 1].eventfd
= eventfd
;
3390 new->entries
[size
- 1].threshold
= threshold
;
3392 /* Sort thresholds. Registering of new threshold isn't time-critical */
3393 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3394 compare_thresholds
, NULL
);
3396 /* Find current threshold */
3397 new->current_threshold
= -1;
3398 for (i
= 0; i
< size
; i
++) {
3399 if (new->entries
[i
].threshold
<= usage
) {
3401 * new->current_threshold will not be used until
3402 * rcu_assign_pointer(), so it's safe to increment
3405 ++new->current_threshold
;
3410 /* Free old spare buffer and save old primary buffer as spare */
3411 kfree(thresholds
->spare
);
3412 thresholds
->spare
= thresholds
->primary
;
3414 rcu_assign_pointer(thresholds
->primary
, new);
3416 /* To be sure that nobody uses thresholds */
3420 mutex_unlock(&memcg
->thresholds_lock
);
3425 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3426 struct eventfd_ctx
*eventfd
, const char *args
)
3428 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
3431 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3432 struct eventfd_ctx
*eventfd
, const char *args
)
3434 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
3437 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3438 struct eventfd_ctx
*eventfd
, enum res_type type
)
3440 struct mem_cgroup_thresholds
*thresholds
;
3441 struct mem_cgroup_threshold_ary
*new;
3442 unsigned long usage
;
3445 mutex_lock(&memcg
->thresholds_lock
);
3448 thresholds
= &memcg
->thresholds
;
3449 usage
= mem_cgroup_usage(memcg
, false);
3450 } else if (type
== _MEMSWAP
) {
3451 thresholds
= &memcg
->memsw_thresholds
;
3452 usage
= mem_cgroup_usage(memcg
, true);
3456 if (!thresholds
->primary
)
3459 /* Check if a threshold crossed before removing */
3460 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3462 /* Calculate new number of threshold */
3464 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3465 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3469 new = thresholds
->spare
;
3471 /* Set thresholds array to NULL if we don't have thresholds */
3480 /* Copy thresholds and find current threshold */
3481 new->current_threshold
= -1;
3482 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3483 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3486 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3487 if (new->entries
[j
].threshold
<= usage
) {
3489 * new->current_threshold will not be used
3490 * until rcu_assign_pointer(), so it's safe to increment
3493 ++new->current_threshold
;
3499 /* Swap primary and spare array */
3500 thresholds
->spare
= thresholds
->primary
;
3502 rcu_assign_pointer(thresholds
->primary
, new);
3504 /* To be sure that nobody uses thresholds */
3507 /* If all events are unregistered, free the spare array */
3509 kfree(thresholds
->spare
);
3510 thresholds
->spare
= NULL
;
3513 mutex_unlock(&memcg
->thresholds_lock
);
3516 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3517 struct eventfd_ctx
*eventfd
)
3519 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
3522 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3523 struct eventfd_ctx
*eventfd
)
3525 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
3528 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
3529 struct eventfd_ctx
*eventfd
, const char *args
)
3531 struct mem_cgroup_eventfd_list
*event
;
3533 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
3537 spin_lock(&memcg_oom_lock
);
3539 event
->eventfd
= eventfd
;
3540 list_add(&event
->list
, &memcg
->oom_notify
);
3542 /* already in OOM ? */
3543 if (memcg
->under_oom
)
3544 eventfd_signal(eventfd
, 1);
3545 spin_unlock(&memcg_oom_lock
);
3550 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
3551 struct eventfd_ctx
*eventfd
)
3553 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
3555 spin_lock(&memcg_oom_lock
);
3557 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
3558 if (ev
->eventfd
== eventfd
) {
3559 list_del(&ev
->list
);
3564 spin_unlock(&memcg_oom_lock
);
3567 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
3569 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(sf
));
3571 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
3572 seq_printf(sf
, "under_oom %d\n", (bool)memcg
->under_oom
);
3576 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
3577 struct cftype
*cft
, u64 val
)
3579 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3581 /* cannot set to root cgroup and only 0 and 1 are allowed */
3582 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
3585 memcg
->oom_kill_disable
= val
;
3587 memcg_oom_recover(memcg
);
3592 #ifdef CONFIG_CGROUP_WRITEBACK
3594 struct list_head
*mem_cgroup_cgwb_list(struct mem_cgroup
*memcg
)
3596 return &memcg
->cgwb_list
;
3599 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3601 return wb_domain_init(&memcg
->cgwb_domain
, gfp
);
3604 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3606 wb_domain_exit(&memcg
->cgwb_domain
);
3609 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3611 wb_domain_size_changed(&memcg
->cgwb_domain
);
3614 struct wb_domain
*mem_cgroup_wb_domain(struct bdi_writeback
*wb
)
3616 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3618 if (!memcg
->css
.parent
)
3621 return &memcg
->cgwb_domain
;
3625 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3626 * @wb: bdi_writeback in question
3627 * @pfilepages: out parameter for number of file pages
3628 * @pheadroom: out parameter for number of allocatable pages according to memcg
3629 * @pdirty: out parameter for number of dirty pages
3630 * @pwriteback: out parameter for number of pages under writeback
3632 * Determine the numbers of file, headroom, dirty, and writeback pages in
3633 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3634 * is a bit more involved.
3636 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3637 * headroom is calculated as the lowest headroom of itself and the
3638 * ancestors. Note that this doesn't consider the actual amount of
3639 * available memory in the system. The caller should further cap
3640 * *@pheadroom accordingly.
3642 void mem_cgroup_wb_stats(struct bdi_writeback
*wb
, unsigned long *pfilepages
,
3643 unsigned long *pheadroom
, unsigned long *pdirty
,
3644 unsigned long *pwriteback
)
3646 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3647 struct mem_cgroup
*parent
;
3649 *pdirty
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_DIRTY
);
3651 /* this should eventually include NR_UNSTABLE_NFS */
3652 *pwriteback
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_WRITEBACK
);
3653 *pfilepages
= mem_cgroup_nr_lru_pages(memcg
, (1 << LRU_INACTIVE_FILE
) |
3654 (1 << LRU_ACTIVE_FILE
));
3655 *pheadroom
= PAGE_COUNTER_MAX
;
3657 while ((parent
= parent_mem_cgroup(memcg
))) {
3658 unsigned long ceiling
= min(memcg
->memory
.limit
, memcg
->high
);
3659 unsigned long used
= page_counter_read(&memcg
->memory
);
3661 *pheadroom
= min(*pheadroom
, ceiling
- min(ceiling
, used
));
3666 #else /* CONFIG_CGROUP_WRITEBACK */
3668 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3673 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3677 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3681 #endif /* CONFIG_CGROUP_WRITEBACK */
3684 * DO NOT USE IN NEW FILES.
3686 * "cgroup.event_control" implementation.
3688 * This is way over-engineered. It tries to support fully configurable
3689 * events for each user. Such level of flexibility is completely
3690 * unnecessary especially in the light of the planned unified hierarchy.
3692 * Please deprecate this and replace with something simpler if at all
3697 * Unregister event and free resources.
3699 * Gets called from workqueue.
3701 static void memcg_event_remove(struct work_struct
*work
)
3703 struct mem_cgroup_event
*event
=
3704 container_of(work
, struct mem_cgroup_event
, remove
);
3705 struct mem_cgroup
*memcg
= event
->memcg
;
3707 remove_wait_queue(event
->wqh
, &event
->wait
);
3709 event
->unregister_event(memcg
, event
->eventfd
);
3711 /* Notify userspace the event is going away. */
3712 eventfd_signal(event
->eventfd
, 1);
3714 eventfd_ctx_put(event
->eventfd
);
3716 css_put(&memcg
->css
);
3720 * Gets called on POLLHUP on eventfd when user closes it.
3722 * Called with wqh->lock held and interrupts disabled.
3724 static int memcg_event_wake(wait_queue_t
*wait
, unsigned mode
,
3725 int sync
, void *key
)
3727 struct mem_cgroup_event
*event
=
3728 container_of(wait
, struct mem_cgroup_event
, wait
);
3729 struct mem_cgroup
*memcg
= event
->memcg
;
3730 unsigned long flags
= (unsigned long)key
;
3732 if (flags
& POLLHUP
) {
3734 * If the event has been detached at cgroup removal, we
3735 * can simply return knowing the other side will cleanup
3738 * We can't race against event freeing since the other
3739 * side will require wqh->lock via remove_wait_queue(),
3742 spin_lock(&memcg
->event_list_lock
);
3743 if (!list_empty(&event
->list
)) {
3744 list_del_init(&event
->list
);
3746 * We are in atomic context, but cgroup_event_remove()
3747 * may sleep, so we have to call it in workqueue.
3749 schedule_work(&event
->remove
);
3751 spin_unlock(&memcg
->event_list_lock
);
3757 static void memcg_event_ptable_queue_proc(struct file
*file
,
3758 wait_queue_head_t
*wqh
, poll_table
*pt
)
3760 struct mem_cgroup_event
*event
=
3761 container_of(pt
, struct mem_cgroup_event
, pt
);
3764 add_wait_queue(wqh
, &event
->wait
);
3768 * DO NOT USE IN NEW FILES.
3770 * Parse input and register new cgroup event handler.
3772 * Input must be in format '<event_fd> <control_fd> <args>'.
3773 * Interpretation of args is defined by control file implementation.
3775 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
3776 char *buf
, size_t nbytes
, loff_t off
)
3778 struct cgroup_subsys_state
*css
= of_css(of
);
3779 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3780 struct mem_cgroup_event
*event
;
3781 struct cgroup_subsys_state
*cfile_css
;
3782 unsigned int efd
, cfd
;
3789 buf
= strstrip(buf
);
3791 efd
= simple_strtoul(buf
, &endp
, 10);
3796 cfd
= simple_strtoul(buf
, &endp
, 10);
3797 if ((*endp
!= ' ') && (*endp
!= '\0'))
3801 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3805 event
->memcg
= memcg
;
3806 INIT_LIST_HEAD(&event
->list
);
3807 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
3808 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
3809 INIT_WORK(&event
->remove
, memcg_event_remove
);
3817 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
3818 if (IS_ERR(event
->eventfd
)) {
3819 ret
= PTR_ERR(event
->eventfd
);
3826 goto out_put_eventfd
;
3829 /* the process need read permission on control file */
3830 /* AV: shouldn't we check that it's been opened for read instead? */
3831 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
3836 * Determine the event callbacks and set them in @event. This used
3837 * to be done via struct cftype but cgroup core no longer knows
3838 * about these events. The following is crude but the whole thing
3839 * is for compatibility anyway.
3841 * DO NOT ADD NEW FILES.
3843 name
= cfile
.file
->f_path
.dentry
->d_name
.name
;
3845 if (!strcmp(name
, "memory.usage_in_bytes")) {
3846 event
->register_event
= mem_cgroup_usage_register_event
;
3847 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
3848 } else if (!strcmp(name
, "memory.oom_control")) {
3849 event
->register_event
= mem_cgroup_oom_register_event
;
3850 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
3851 } else if (!strcmp(name
, "memory.pressure_level")) {
3852 event
->register_event
= vmpressure_register_event
;
3853 event
->unregister_event
= vmpressure_unregister_event
;
3854 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
3855 event
->register_event
= memsw_cgroup_usage_register_event
;
3856 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
3863 * Verify @cfile should belong to @css. Also, remaining events are
3864 * automatically removed on cgroup destruction but the removal is
3865 * asynchronous, so take an extra ref on @css.
3867 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_path
.dentry
->d_parent
,
3868 &memory_cgrp_subsys
);
3870 if (IS_ERR(cfile_css
))
3872 if (cfile_css
!= css
) {
3877 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
3881 efile
.file
->f_op
->poll(efile
.file
, &event
->pt
);
3883 spin_lock(&memcg
->event_list_lock
);
3884 list_add(&event
->list
, &memcg
->event_list
);
3885 spin_unlock(&memcg
->event_list_lock
);
3897 eventfd_ctx_put(event
->eventfd
);
3906 static struct cftype mem_cgroup_legacy_files
[] = {
3908 .name
= "usage_in_bytes",
3909 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
3910 .read_u64
= mem_cgroup_read_u64
,
3913 .name
= "max_usage_in_bytes",
3914 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
3915 .write
= mem_cgroup_reset
,
3916 .read_u64
= mem_cgroup_read_u64
,
3919 .name
= "limit_in_bytes",
3920 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
3921 .write
= mem_cgroup_write
,
3922 .read_u64
= mem_cgroup_read_u64
,
3925 .name
= "soft_limit_in_bytes",
3926 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
3927 .write
= mem_cgroup_write
,
3928 .read_u64
= mem_cgroup_read_u64
,
3932 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
3933 .write
= mem_cgroup_reset
,
3934 .read_u64
= mem_cgroup_read_u64
,
3938 .seq_show
= memcg_stat_show
,
3941 .name
= "force_empty",
3942 .write
= mem_cgroup_force_empty_write
,
3945 .name
= "use_hierarchy",
3946 .write_u64
= mem_cgroup_hierarchy_write
,
3947 .read_u64
= mem_cgroup_hierarchy_read
,
3950 .name
= "cgroup.event_control", /* XXX: for compat */
3951 .write
= memcg_write_event_control
,
3952 .flags
= CFTYPE_NO_PREFIX
| CFTYPE_WORLD_WRITABLE
,
3955 .name
= "swappiness",
3956 .read_u64
= mem_cgroup_swappiness_read
,
3957 .write_u64
= mem_cgroup_swappiness_write
,
3960 .name
= "move_charge_at_immigrate",
3961 .read_u64
= mem_cgroup_move_charge_read
,
3962 .write_u64
= mem_cgroup_move_charge_write
,
3965 .name
= "oom_control",
3966 .seq_show
= mem_cgroup_oom_control_read
,
3967 .write_u64
= mem_cgroup_oom_control_write
,
3968 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
3971 .name
= "pressure_level",
3975 .name
= "numa_stat",
3976 .seq_show
= memcg_numa_stat_show
,
3980 .name
= "kmem.limit_in_bytes",
3981 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
3982 .write
= mem_cgroup_write
,
3983 .read_u64
= mem_cgroup_read_u64
,
3986 .name
= "kmem.usage_in_bytes",
3987 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
3988 .read_u64
= mem_cgroup_read_u64
,
3991 .name
= "kmem.failcnt",
3992 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
3993 .write
= mem_cgroup_reset
,
3994 .read_u64
= mem_cgroup_read_u64
,
3997 .name
= "kmem.max_usage_in_bytes",
3998 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
3999 .write
= mem_cgroup_reset
,
4000 .read_u64
= mem_cgroup_read_u64
,
4002 #ifdef CONFIG_SLABINFO
4004 .name
= "kmem.slabinfo",
4005 .seq_start
= slab_start
,
4006 .seq_next
= slab_next
,
4007 .seq_stop
= slab_stop
,
4008 .seq_show
= memcg_slab_show
,
4012 .name
= "kmem.tcp.limit_in_bytes",
4013 .private = MEMFILE_PRIVATE(_TCP
, RES_LIMIT
),
4014 .write
= mem_cgroup_write
,
4015 .read_u64
= mem_cgroup_read_u64
,
4018 .name
= "kmem.tcp.usage_in_bytes",
4019 .private = MEMFILE_PRIVATE(_TCP
, RES_USAGE
),
4020 .read_u64
= mem_cgroup_read_u64
,
4023 .name
= "kmem.tcp.failcnt",
4024 .private = MEMFILE_PRIVATE(_TCP
, RES_FAILCNT
),
4025 .write
= mem_cgroup_reset
,
4026 .read_u64
= mem_cgroup_read_u64
,
4029 .name
= "kmem.tcp.max_usage_in_bytes",
4030 .private = MEMFILE_PRIVATE(_TCP
, RES_MAX_USAGE
),
4031 .write
= mem_cgroup_reset
,
4032 .read_u64
= mem_cgroup_read_u64
,
4034 { }, /* terminate */
4037 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4039 struct mem_cgroup_per_node
*pn
;
4040 struct mem_cgroup_per_zone
*mz
;
4041 int zone
, tmp
= node
;
4043 * This routine is called against possible nodes.
4044 * But it's BUG to call kmalloc() against offline node.
4046 * TODO: this routine can waste much memory for nodes which will
4047 * never be onlined. It's better to use memory hotplug callback
4050 if (!node_state(node
, N_NORMAL_MEMORY
))
4052 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4056 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4057 mz
= &pn
->zoneinfo
[zone
];
4058 lruvec_init(&mz
->lruvec
);
4059 mz
->usage_in_excess
= 0;
4060 mz
->on_tree
= false;
4063 memcg
->nodeinfo
[node
] = pn
;
4067 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4069 kfree(memcg
->nodeinfo
[node
]);
4072 static void mem_cgroup_free(struct mem_cgroup
*memcg
)
4076 memcg_wb_domain_exit(memcg
);
4078 free_mem_cgroup_per_zone_info(memcg
, node
);
4079 free_percpu(memcg
->stat
);
4083 static struct mem_cgroup
*mem_cgroup_alloc(void)
4085 struct mem_cgroup
*memcg
;
4089 size
= sizeof(struct mem_cgroup
);
4090 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
4092 memcg
= kzalloc(size
, GFP_KERNEL
);
4096 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4101 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
4104 if (memcg_wb_domain_init(memcg
, GFP_KERNEL
))
4107 INIT_WORK(&memcg
->high_work
, high_work_func
);
4108 memcg
->last_scanned_node
= MAX_NUMNODES
;
4109 INIT_LIST_HEAD(&memcg
->oom_notify
);
4110 mutex_init(&memcg
->thresholds_lock
);
4111 spin_lock_init(&memcg
->move_lock
);
4112 vmpressure_init(&memcg
->vmpressure
);
4113 INIT_LIST_HEAD(&memcg
->event_list
);
4114 spin_lock_init(&memcg
->event_list_lock
);
4115 memcg
->socket_pressure
= jiffies
;
4117 memcg
->kmemcg_id
= -1;
4119 #ifdef CONFIG_CGROUP_WRITEBACK
4120 INIT_LIST_HEAD(&memcg
->cgwb_list
);
4124 mem_cgroup_free(memcg
);
4128 static struct cgroup_subsys_state
* __ref
4129 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
4131 struct mem_cgroup
*parent
= mem_cgroup_from_css(parent_css
);
4132 struct mem_cgroup
*memcg
;
4133 long error
= -ENOMEM
;
4135 memcg
= mem_cgroup_alloc();
4137 return ERR_PTR(error
);
4139 memcg
->high
= PAGE_COUNTER_MAX
;
4140 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4142 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4143 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4145 if (parent
&& parent
->use_hierarchy
) {
4146 memcg
->use_hierarchy
= true;
4147 page_counter_init(&memcg
->memory
, &parent
->memory
);
4148 page_counter_init(&memcg
->swap
, &parent
->swap
);
4149 page_counter_init(&memcg
->memsw
, &parent
->memsw
);
4150 page_counter_init(&memcg
->kmem
, &parent
->kmem
);
4151 page_counter_init(&memcg
->tcpmem
, &parent
->tcpmem
);
4153 page_counter_init(&memcg
->memory
, NULL
);
4154 page_counter_init(&memcg
->swap
, NULL
);
4155 page_counter_init(&memcg
->memsw
, NULL
);
4156 page_counter_init(&memcg
->kmem
, NULL
);
4157 page_counter_init(&memcg
->tcpmem
, NULL
);
4159 * Deeper hierachy with use_hierarchy == false doesn't make
4160 * much sense so let cgroup subsystem know about this
4161 * unfortunate state in our controller.
4163 if (parent
!= root_mem_cgroup
)
4164 memory_cgrp_subsys
.broken_hierarchy
= true;
4167 /* The following stuff does not apply to the root */
4169 root_mem_cgroup
= memcg
;
4173 error
= memcg_online_kmem(memcg
);
4177 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4178 static_branch_inc(&memcg_sockets_enabled_key
);
4182 mem_cgroup_free(memcg
);
4187 mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
4189 if (css
->id
> MEM_CGROUP_ID_MAX
)
4195 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
4197 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4198 struct mem_cgroup_event
*event
, *tmp
;
4201 * Unregister events and notify userspace.
4202 * Notify userspace about cgroup removing only after rmdir of cgroup
4203 * directory to avoid race between userspace and kernelspace.
4205 spin_lock(&memcg
->event_list_lock
);
4206 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
4207 list_del_init(&event
->list
);
4208 schedule_work(&event
->remove
);
4210 spin_unlock(&memcg
->event_list_lock
);
4212 memcg_offline_kmem(memcg
);
4213 wb_memcg_offline(memcg
);
4216 static void mem_cgroup_css_released(struct cgroup_subsys_state
*css
)
4218 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4220 invalidate_reclaim_iterators(memcg
);
4223 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
4225 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4227 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4228 static_branch_dec(&memcg_sockets_enabled_key
);
4230 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && memcg
->tcpmem_active
)
4231 static_branch_dec(&memcg_sockets_enabled_key
);
4233 vmpressure_cleanup(&memcg
->vmpressure
);
4234 cancel_work_sync(&memcg
->high_work
);
4235 mem_cgroup_remove_from_trees(memcg
);
4236 memcg_free_kmem(memcg
);
4237 mem_cgroup_free(memcg
);
4241 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4242 * @css: the target css
4244 * Reset the states of the mem_cgroup associated with @css. This is
4245 * invoked when the userland requests disabling on the default hierarchy
4246 * but the memcg is pinned through dependency. The memcg should stop
4247 * applying policies and should revert to the vanilla state as it may be
4248 * made visible again.
4250 * The current implementation only resets the essential configurations.
4251 * This needs to be expanded to cover all the visible parts.
4253 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
4255 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4257 page_counter_limit(&memcg
->memory
, PAGE_COUNTER_MAX
);
4258 page_counter_limit(&memcg
->swap
, PAGE_COUNTER_MAX
);
4259 page_counter_limit(&memcg
->memsw
, PAGE_COUNTER_MAX
);
4260 page_counter_limit(&memcg
->kmem
, PAGE_COUNTER_MAX
);
4261 page_counter_limit(&memcg
->tcpmem
, PAGE_COUNTER_MAX
);
4263 memcg
->high
= PAGE_COUNTER_MAX
;
4264 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4265 memcg_wb_domain_size_changed(memcg
);
4269 /* Handlers for move charge at task migration. */
4270 static int mem_cgroup_do_precharge(unsigned long count
)
4274 /* Try a single bulk charge without reclaim first, kswapd may wake */
4275 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_DIRECT_RECLAIM
, count
);
4277 mc
.precharge
+= count
;
4281 /* Try charges one by one with reclaim */
4283 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_NORETRY
, 1);
4293 * get_mctgt_type - get target type of moving charge
4294 * @vma: the vma the pte to be checked belongs
4295 * @addr: the address corresponding to the pte to be checked
4296 * @ptent: the pte to be checked
4297 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4300 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4301 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4302 * move charge. if @target is not NULL, the page is stored in target->page
4303 * with extra refcnt got(Callers should handle it).
4304 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4305 * target for charge migration. if @target is not NULL, the entry is stored
4308 * Called with pte lock held.
4315 enum mc_target_type
{
4321 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4322 unsigned long addr
, pte_t ptent
)
4324 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
4326 if (!page
|| !page_mapped(page
))
4328 if (PageAnon(page
)) {
4329 if (!(mc
.flags
& MOVE_ANON
))
4332 if (!(mc
.flags
& MOVE_FILE
))
4335 if (!get_page_unless_zero(page
))
4342 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4343 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4345 struct page
*page
= NULL
;
4346 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4348 if (!(mc
.flags
& MOVE_ANON
) || non_swap_entry(ent
))
4351 * Because lookup_swap_cache() updates some statistics counter,
4352 * we call find_get_page() with swapper_space directly.
4354 page
= find_get_page(swap_address_space(ent
), ent
.val
);
4355 if (do_memsw_account())
4356 entry
->val
= ent
.val
;
4361 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4362 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4368 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4369 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4371 struct page
*page
= NULL
;
4372 struct address_space
*mapping
;
4375 if (!vma
->vm_file
) /* anonymous vma */
4377 if (!(mc
.flags
& MOVE_FILE
))
4380 mapping
= vma
->vm_file
->f_mapping
;
4381 pgoff
= linear_page_index(vma
, addr
);
4383 /* page is moved even if it's not RSS of this task(page-faulted). */
4385 /* shmem/tmpfs may report page out on swap: account for that too. */
4386 if (shmem_mapping(mapping
)) {
4387 page
= find_get_entry(mapping
, pgoff
);
4388 if (radix_tree_exceptional_entry(page
)) {
4389 swp_entry_t swp
= radix_to_swp_entry(page
);
4390 if (do_memsw_account())
4392 page
= find_get_page(swap_address_space(swp
), swp
.val
);
4395 page
= find_get_page(mapping
, pgoff
);
4397 page
= find_get_page(mapping
, pgoff
);
4403 * mem_cgroup_move_account - move account of the page
4405 * @nr_pages: number of regular pages (>1 for huge pages)
4406 * @from: mem_cgroup which the page is moved from.
4407 * @to: mem_cgroup which the page is moved to. @from != @to.
4409 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4411 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4414 static int mem_cgroup_move_account(struct page
*page
,
4416 struct mem_cgroup
*from
,
4417 struct mem_cgroup
*to
)
4419 unsigned long flags
;
4420 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
4424 VM_BUG_ON(from
== to
);
4425 VM_BUG_ON_PAGE(PageLRU(page
), page
);
4426 VM_BUG_ON(compound
&& !PageTransHuge(page
));
4429 * Prevent mem_cgroup_migrate() from looking at
4430 * page->mem_cgroup of its source page while we change it.
4433 if (!trylock_page(page
))
4437 if (page
->mem_cgroup
!= from
)
4440 anon
= PageAnon(page
);
4442 spin_lock_irqsave(&from
->move_lock
, flags
);
4444 if (!anon
&& page_mapped(page
)) {
4445 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
4447 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
4452 * move_lock grabbed above and caller set from->moving_account, so
4453 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4454 * So mapping should be stable for dirty pages.
4456 if (!anon
&& PageDirty(page
)) {
4457 struct address_space
*mapping
= page_mapping(page
);
4459 if (mapping_cap_account_dirty(mapping
)) {
4460 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_DIRTY
],
4462 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_DIRTY
],
4467 if (PageWriteback(page
)) {
4468 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
4470 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
4475 * It is safe to change page->mem_cgroup here because the page
4476 * is referenced, charged, and isolated - we can't race with
4477 * uncharging, charging, migration, or LRU putback.
4480 /* caller should have done css_get */
4481 page
->mem_cgroup
= to
;
4482 spin_unlock_irqrestore(&from
->move_lock
, flags
);
4486 local_irq_disable();
4487 mem_cgroup_charge_statistics(to
, page
, compound
, nr_pages
);
4488 memcg_check_events(to
, page
);
4489 mem_cgroup_charge_statistics(from
, page
, compound
, -nr_pages
);
4490 memcg_check_events(from
, page
);
4498 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
4499 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4501 struct page
*page
= NULL
;
4502 enum mc_target_type ret
= MC_TARGET_NONE
;
4503 swp_entry_t ent
= { .val
= 0 };
4505 if (pte_present(ptent
))
4506 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4507 else if (is_swap_pte(ptent
))
4508 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
4509 else if (pte_none(ptent
))
4510 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4512 if (!page
&& !ent
.val
)
4516 * Do only loose check w/o serialization.
4517 * mem_cgroup_move_account() checks the page is valid or
4518 * not under LRU exclusion.
4520 if (page
->mem_cgroup
== mc
.from
) {
4521 ret
= MC_TARGET_PAGE
;
4523 target
->page
= page
;
4525 if (!ret
|| !target
)
4528 /* There is a swap entry and a page doesn't exist or isn't charged */
4529 if (ent
.val
&& !ret
&&
4530 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
4531 ret
= MC_TARGET_SWAP
;
4538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4540 * We don't consider swapping or file mapped pages because THP does not
4541 * support them for now.
4542 * Caller should make sure that pmd_trans_huge(pmd) is true.
4544 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4545 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4547 struct page
*page
= NULL
;
4548 enum mc_target_type ret
= MC_TARGET_NONE
;
4550 page
= pmd_page(pmd
);
4551 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
4552 if (!(mc
.flags
& MOVE_ANON
))
4554 if (page
->mem_cgroup
== mc
.from
) {
4555 ret
= MC_TARGET_PAGE
;
4558 target
->page
= page
;
4564 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4565 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4567 return MC_TARGET_NONE
;
4571 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4572 unsigned long addr
, unsigned long end
,
4573 struct mm_walk
*walk
)
4575 struct vm_area_struct
*vma
= walk
->vma
;
4579 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4581 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
4582 mc
.precharge
+= HPAGE_PMD_NR
;
4587 if (pmd_trans_unstable(pmd
))
4589 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4590 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4591 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
4592 mc
.precharge
++; /* increment precharge temporarily */
4593 pte_unmap_unlock(pte
- 1, ptl
);
4599 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4601 unsigned long precharge
;
4603 struct mm_walk mem_cgroup_count_precharge_walk
= {
4604 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4607 down_read(&mm
->mmap_sem
);
4608 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk
);
4609 up_read(&mm
->mmap_sem
);
4611 precharge
= mc
.precharge
;
4617 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4619 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
4621 VM_BUG_ON(mc
.moving_task
);
4622 mc
.moving_task
= current
;
4623 return mem_cgroup_do_precharge(precharge
);
4626 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4627 static void __mem_cgroup_clear_mc(void)
4629 struct mem_cgroup
*from
= mc
.from
;
4630 struct mem_cgroup
*to
= mc
.to
;
4632 /* we must uncharge all the leftover precharges from mc.to */
4634 cancel_charge(mc
.to
, mc
.precharge
);
4638 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4639 * we must uncharge here.
4641 if (mc
.moved_charge
) {
4642 cancel_charge(mc
.from
, mc
.moved_charge
);
4643 mc
.moved_charge
= 0;
4645 /* we must fixup refcnts and charges */
4646 if (mc
.moved_swap
) {
4647 /* uncharge swap account from the old cgroup */
4648 if (!mem_cgroup_is_root(mc
.from
))
4649 page_counter_uncharge(&mc
.from
->memsw
, mc
.moved_swap
);
4652 * we charged both to->memory and to->memsw, so we
4653 * should uncharge to->memory.
4655 if (!mem_cgroup_is_root(mc
.to
))
4656 page_counter_uncharge(&mc
.to
->memory
, mc
.moved_swap
);
4658 css_put_many(&mc
.from
->css
, mc
.moved_swap
);
4660 /* we've already done css_get(mc.to) */
4663 memcg_oom_recover(from
);
4664 memcg_oom_recover(to
);
4665 wake_up_all(&mc
.waitq
);
4668 static void mem_cgroup_clear_mc(void)
4671 * we must clear moving_task before waking up waiters at the end of
4674 mc
.moving_task
= NULL
;
4675 __mem_cgroup_clear_mc();
4676 spin_lock(&mc
.lock
);
4679 spin_unlock(&mc
.lock
);
4682 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
4684 struct cgroup_subsys_state
*css
;
4685 struct mem_cgroup
*memcg
= NULL
; /* unneeded init to make gcc happy */
4686 struct mem_cgroup
*from
;
4687 struct task_struct
*leader
, *p
;
4688 struct mm_struct
*mm
;
4689 unsigned long move_flags
;
4692 /* charge immigration isn't supported on the default hierarchy */
4693 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
4697 * Multi-process migrations only happen on the default hierarchy
4698 * where charge immigration is not used. Perform charge
4699 * immigration if @tset contains a leader and whine if there are
4703 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
4706 memcg
= mem_cgroup_from_css(css
);
4712 * We are now commited to this value whatever it is. Changes in this
4713 * tunable will only affect upcoming migrations, not the current one.
4714 * So we need to save it, and keep it going.
4716 move_flags
= READ_ONCE(memcg
->move_charge_at_immigrate
);
4720 from
= mem_cgroup_from_task(p
);
4722 VM_BUG_ON(from
== memcg
);
4724 mm
= get_task_mm(p
);
4727 /* We move charges only when we move a owner of the mm */
4728 if (mm
->owner
== p
) {
4731 VM_BUG_ON(mc
.precharge
);
4732 VM_BUG_ON(mc
.moved_charge
);
4733 VM_BUG_ON(mc
.moved_swap
);
4735 spin_lock(&mc
.lock
);
4738 mc
.flags
= move_flags
;
4739 spin_unlock(&mc
.lock
);
4740 /* We set mc.moving_task later */
4742 ret
= mem_cgroup_precharge_mc(mm
);
4744 mem_cgroup_clear_mc();
4750 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
4753 mem_cgroup_clear_mc();
4756 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4757 unsigned long addr
, unsigned long end
,
4758 struct mm_walk
*walk
)
4761 struct vm_area_struct
*vma
= walk
->vma
;
4764 enum mc_target_type target_type
;
4765 union mc_target target
;
4768 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4770 if (mc
.precharge
< HPAGE_PMD_NR
) {
4774 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
4775 if (target_type
== MC_TARGET_PAGE
) {
4777 if (!isolate_lru_page(page
)) {
4778 if (!mem_cgroup_move_account(page
, true,
4780 mc
.precharge
-= HPAGE_PMD_NR
;
4781 mc
.moved_charge
+= HPAGE_PMD_NR
;
4783 putback_lru_page(page
);
4791 if (pmd_trans_unstable(pmd
))
4794 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4795 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
4796 pte_t ptent
= *(pte
++);
4802 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
4803 case MC_TARGET_PAGE
:
4806 * We can have a part of the split pmd here. Moving it
4807 * can be done but it would be too convoluted so simply
4808 * ignore such a partial THP and keep it in original
4809 * memcg. There should be somebody mapping the head.
4811 if (PageTransCompound(page
))
4813 if (isolate_lru_page(page
))
4815 if (!mem_cgroup_move_account(page
, false,
4818 /* we uncharge from mc.from later. */
4821 putback_lru_page(page
);
4822 put
: /* get_mctgt_type() gets the page */
4825 case MC_TARGET_SWAP
:
4827 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
4829 /* we fixup refcnts and charges later. */
4837 pte_unmap_unlock(pte
- 1, ptl
);
4842 * We have consumed all precharges we got in can_attach().
4843 * We try charge one by one, but don't do any additional
4844 * charges to mc.to if we have failed in charge once in attach()
4847 ret
= mem_cgroup_do_precharge(1);
4855 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
4857 struct mm_walk mem_cgroup_move_charge_walk
= {
4858 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
4862 lru_add_drain_all();
4864 * Signal lock_page_memcg() to take the memcg's move_lock
4865 * while we're moving its pages to another memcg. Then wait
4866 * for already started RCU-only updates to finish.
4868 atomic_inc(&mc
.from
->moving_account
);
4871 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
4873 * Someone who are holding the mmap_sem might be waiting in
4874 * waitq. So we cancel all extra charges, wake up all waiters,
4875 * and retry. Because we cancel precharges, we might not be able
4876 * to move enough charges, but moving charge is a best-effort
4877 * feature anyway, so it wouldn't be a big problem.
4879 __mem_cgroup_clear_mc();
4884 * When we have consumed all precharges and failed in doing
4885 * additional charge, the page walk just aborts.
4887 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk
);
4888 up_read(&mm
->mmap_sem
);
4889 atomic_dec(&mc
.from
->moving_account
);
4892 static void mem_cgroup_move_task(struct cgroup_taskset
*tset
)
4894 struct cgroup_subsys_state
*css
;
4895 struct task_struct
*p
= cgroup_taskset_first(tset
, &css
);
4896 struct mm_struct
*mm
= get_task_mm(p
);
4900 mem_cgroup_move_charge(mm
);
4904 mem_cgroup_clear_mc();
4906 #else /* !CONFIG_MMU */
4907 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
4911 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
4914 static void mem_cgroup_move_task(struct cgroup_taskset
*tset
)
4920 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4921 * to verify whether we're attached to the default hierarchy on each mount
4924 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
4927 * use_hierarchy is forced on the default hierarchy. cgroup core
4928 * guarantees that @root doesn't have any children, so turning it
4929 * on for the root memcg is enough.
4931 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
4932 root_mem_cgroup
->use_hierarchy
= true;
4934 root_mem_cgroup
->use_hierarchy
= false;
4937 static u64
memory_current_read(struct cgroup_subsys_state
*css
,
4940 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4942 return (u64
)page_counter_read(&memcg
->memory
) * PAGE_SIZE
;
4945 static int memory_low_show(struct seq_file
*m
, void *v
)
4947 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
4948 unsigned long low
= READ_ONCE(memcg
->low
);
4950 if (low
== PAGE_COUNTER_MAX
)
4951 seq_puts(m
, "max\n");
4953 seq_printf(m
, "%llu\n", (u64
)low
* PAGE_SIZE
);
4958 static ssize_t
memory_low_write(struct kernfs_open_file
*of
,
4959 char *buf
, size_t nbytes
, loff_t off
)
4961 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
4965 buf
= strstrip(buf
);
4966 err
= page_counter_memparse(buf
, "max", &low
);
4975 static int memory_high_show(struct seq_file
*m
, void *v
)
4977 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
4978 unsigned long high
= READ_ONCE(memcg
->high
);
4980 if (high
== PAGE_COUNTER_MAX
)
4981 seq_puts(m
, "max\n");
4983 seq_printf(m
, "%llu\n", (u64
)high
* PAGE_SIZE
);
4988 static ssize_t
memory_high_write(struct kernfs_open_file
*of
,
4989 char *buf
, size_t nbytes
, loff_t off
)
4991 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
4992 unsigned long nr_pages
;
4996 buf
= strstrip(buf
);
4997 err
= page_counter_memparse(buf
, "max", &high
);
5003 nr_pages
= page_counter_read(&memcg
->memory
);
5004 if (nr_pages
> high
)
5005 try_to_free_mem_cgroup_pages(memcg
, nr_pages
- high
,
5008 memcg_wb_domain_size_changed(memcg
);
5012 static int memory_max_show(struct seq_file
*m
, void *v
)
5014 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5015 unsigned long max
= READ_ONCE(memcg
->memory
.limit
);
5017 if (max
== PAGE_COUNTER_MAX
)
5018 seq_puts(m
, "max\n");
5020 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
5025 static ssize_t
memory_max_write(struct kernfs_open_file
*of
,
5026 char *buf
, size_t nbytes
, loff_t off
)
5028 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5029 unsigned int nr_reclaims
= MEM_CGROUP_RECLAIM_RETRIES
;
5030 bool drained
= false;
5034 buf
= strstrip(buf
);
5035 err
= page_counter_memparse(buf
, "max", &max
);
5039 xchg(&memcg
->memory
.limit
, max
);
5042 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
5044 if (nr_pages
<= max
)
5047 if (signal_pending(current
)) {
5053 drain_all_stock(memcg
);
5059 if (!try_to_free_mem_cgroup_pages(memcg
, nr_pages
- max
,
5065 mem_cgroup_events(memcg
, MEMCG_OOM
, 1);
5066 if (!mem_cgroup_out_of_memory(memcg
, GFP_KERNEL
, 0))
5070 memcg_wb_domain_size_changed(memcg
);
5074 static int memory_events_show(struct seq_file
*m
, void *v
)
5076 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5078 seq_printf(m
, "low %lu\n", mem_cgroup_read_events(memcg
, MEMCG_LOW
));
5079 seq_printf(m
, "high %lu\n", mem_cgroup_read_events(memcg
, MEMCG_HIGH
));
5080 seq_printf(m
, "max %lu\n", mem_cgroup_read_events(memcg
, MEMCG_MAX
));
5081 seq_printf(m
, "oom %lu\n", mem_cgroup_read_events(memcg
, MEMCG_OOM
));
5086 static int memory_stat_show(struct seq_file
*m
, void *v
)
5088 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5089 unsigned long stat
[MEMCG_NR_STAT
];
5090 unsigned long events
[MEMCG_NR_EVENTS
];
5094 * Provide statistics on the state of the memory subsystem as
5095 * well as cumulative event counters that show past behavior.
5097 * This list is ordered following a combination of these gradients:
5098 * 1) generic big picture -> specifics and details
5099 * 2) reflecting userspace activity -> reflecting kernel heuristics
5101 * Current memory state:
5104 tree_stat(memcg
, stat
);
5105 tree_events(memcg
, events
);
5107 seq_printf(m
, "anon %llu\n",
5108 (u64
)stat
[MEM_CGROUP_STAT_RSS
] * PAGE_SIZE
);
5109 seq_printf(m
, "file %llu\n",
5110 (u64
)stat
[MEM_CGROUP_STAT_CACHE
] * PAGE_SIZE
);
5111 seq_printf(m
, "kernel_stack %llu\n",
5112 (u64
)stat
[MEMCG_KERNEL_STACK
] * PAGE_SIZE
);
5113 seq_printf(m
, "slab %llu\n",
5114 (u64
)(stat
[MEMCG_SLAB_RECLAIMABLE
] +
5115 stat
[MEMCG_SLAB_UNRECLAIMABLE
]) * PAGE_SIZE
);
5116 seq_printf(m
, "sock %llu\n",
5117 (u64
)stat
[MEMCG_SOCK
] * PAGE_SIZE
);
5119 seq_printf(m
, "file_mapped %llu\n",
5120 (u64
)stat
[MEM_CGROUP_STAT_FILE_MAPPED
] * PAGE_SIZE
);
5121 seq_printf(m
, "file_dirty %llu\n",
5122 (u64
)stat
[MEM_CGROUP_STAT_DIRTY
] * PAGE_SIZE
);
5123 seq_printf(m
, "file_writeback %llu\n",
5124 (u64
)stat
[MEM_CGROUP_STAT_WRITEBACK
] * PAGE_SIZE
);
5126 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
5127 struct mem_cgroup
*mi
;
5128 unsigned long val
= 0;
5130 for_each_mem_cgroup_tree(mi
, memcg
)
5131 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
));
5132 seq_printf(m
, "%s %llu\n",
5133 mem_cgroup_lru_names
[i
], (u64
)val
* PAGE_SIZE
);
5136 seq_printf(m
, "slab_reclaimable %llu\n",
5137 (u64
)stat
[MEMCG_SLAB_RECLAIMABLE
] * PAGE_SIZE
);
5138 seq_printf(m
, "slab_unreclaimable %llu\n",
5139 (u64
)stat
[MEMCG_SLAB_UNRECLAIMABLE
] * PAGE_SIZE
);
5141 /* Accumulated memory events */
5143 seq_printf(m
, "pgfault %lu\n",
5144 events
[MEM_CGROUP_EVENTS_PGFAULT
]);
5145 seq_printf(m
, "pgmajfault %lu\n",
5146 events
[MEM_CGROUP_EVENTS_PGMAJFAULT
]);
5151 static struct cftype memory_files
[] = {
5154 .flags
= CFTYPE_NOT_ON_ROOT
,
5155 .read_u64
= memory_current_read
,
5159 .flags
= CFTYPE_NOT_ON_ROOT
,
5160 .seq_show
= memory_low_show
,
5161 .write
= memory_low_write
,
5165 .flags
= CFTYPE_NOT_ON_ROOT
,
5166 .seq_show
= memory_high_show
,
5167 .write
= memory_high_write
,
5171 .flags
= CFTYPE_NOT_ON_ROOT
,
5172 .seq_show
= memory_max_show
,
5173 .write
= memory_max_write
,
5177 .flags
= CFTYPE_NOT_ON_ROOT
,
5178 .file_offset
= offsetof(struct mem_cgroup
, events_file
),
5179 .seq_show
= memory_events_show
,
5183 .flags
= CFTYPE_NOT_ON_ROOT
,
5184 .seq_show
= memory_stat_show
,
5189 struct cgroup_subsys memory_cgrp_subsys
= {
5190 .css_alloc
= mem_cgroup_css_alloc
,
5191 .css_online
= mem_cgroup_css_online
,
5192 .css_offline
= mem_cgroup_css_offline
,
5193 .css_released
= mem_cgroup_css_released
,
5194 .css_free
= mem_cgroup_css_free
,
5195 .css_reset
= mem_cgroup_css_reset
,
5196 .can_attach
= mem_cgroup_can_attach
,
5197 .cancel_attach
= mem_cgroup_cancel_attach
,
5198 .attach
= mem_cgroup_move_task
,
5199 .bind
= mem_cgroup_bind
,
5200 .dfl_cftypes
= memory_files
,
5201 .legacy_cftypes
= mem_cgroup_legacy_files
,
5206 * mem_cgroup_low - check if memory consumption is below the normal range
5207 * @root: the highest ancestor to consider
5208 * @memcg: the memory cgroup to check
5210 * Returns %true if memory consumption of @memcg, and that of all
5211 * configurable ancestors up to @root, is below the normal range.
5213 bool mem_cgroup_low(struct mem_cgroup
*root
, struct mem_cgroup
*memcg
)
5215 if (mem_cgroup_disabled())
5219 * The toplevel group doesn't have a configurable range, so
5220 * it's never low when looked at directly, and it is not
5221 * considered an ancestor when assessing the hierarchy.
5224 if (memcg
== root_mem_cgroup
)
5227 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5230 while (memcg
!= root
) {
5231 memcg
= parent_mem_cgroup(memcg
);
5233 if (memcg
== root_mem_cgroup
)
5236 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5243 * mem_cgroup_try_charge - try charging a page
5244 * @page: page to charge
5245 * @mm: mm context of the victim
5246 * @gfp_mask: reclaim mode
5247 * @memcgp: charged memcg return
5249 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5250 * pages according to @gfp_mask if necessary.
5252 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5253 * Otherwise, an error code is returned.
5255 * After page->mapping has been set up, the caller must finalize the
5256 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5257 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5259 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
5260 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
5263 struct mem_cgroup
*memcg
= NULL
;
5264 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5267 if (mem_cgroup_disabled())
5270 if (PageSwapCache(page
)) {
5272 * Every swap fault against a single page tries to charge the
5273 * page, bail as early as possible. shmem_unuse() encounters
5274 * already charged pages, too. The USED bit is protected by
5275 * the page lock, which serializes swap cache removal, which
5276 * in turn serializes uncharging.
5278 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5279 if (page
->mem_cgroup
)
5282 if (do_swap_account
) {
5283 swp_entry_t ent
= { .val
= page_private(page
), };
5284 unsigned short id
= lookup_swap_cgroup_id(ent
);
5287 memcg
= mem_cgroup_from_id(id
);
5288 if (memcg
&& !css_tryget_online(&memcg
->css
))
5295 memcg
= get_mem_cgroup_from_mm(mm
);
5297 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
5299 css_put(&memcg
->css
);
5306 * mem_cgroup_commit_charge - commit a page charge
5307 * @page: page to charge
5308 * @memcg: memcg to charge the page to
5309 * @lrucare: page might be on LRU already
5311 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5312 * after page->mapping has been set up. This must happen atomically
5313 * as part of the page instantiation, i.e. under the page table lock
5314 * for anonymous pages, under the page lock for page and swap cache.
5316 * In addition, the page must not be on the LRU during the commit, to
5317 * prevent racing with task migration. If it might be, use @lrucare.
5319 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5321 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5322 bool lrucare
, bool compound
)
5324 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5326 VM_BUG_ON_PAGE(!page
->mapping
, page
);
5327 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
5329 if (mem_cgroup_disabled())
5332 * Swap faults will attempt to charge the same page multiple
5333 * times. But reuse_swap_page() might have removed the page
5334 * from swapcache already, so we can't check PageSwapCache().
5339 commit_charge(page
, memcg
, lrucare
);
5341 local_irq_disable();
5342 mem_cgroup_charge_statistics(memcg
, page
, compound
, nr_pages
);
5343 memcg_check_events(memcg
, page
);
5346 if (do_memsw_account() && PageSwapCache(page
)) {
5347 swp_entry_t entry
= { .val
= page_private(page
) };
5349 * The swap entry might not get freed for a long time,
5350 * let's not wait for it. The page already received a
5351 * memory+swap charge, drop the swap entry duplicate.
5353 mem_cgroup_uncharge_swap(entry
);
5358 * mem_cgroup_cancel_charge - cancel a page charge
5359 * @page: page to charge
5360 * @memcg: memcg to charge the page to
5362 * Cancel a charge transaction started by mem_cgroup_try_charge().
5364 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5367 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5369 if (mem_cgroup_disabled())
5372 * Swap faults will attempt to charge the same page multiple
5373 * times. But reuse_swap_page() might have removed the page
5374 * from swapcache already, so we can't check PageSwapCache().
5379 cancel_charge(memcg
, nr_pages
);
5382 static void uncharge_batch(struct mem_cgroup
*memcg
, unsigned long pgpgout
,
5383 unsigned long nr_anon
, unsigned long nr_file
,
5384 unsigned long nr_huge
, struct page
*dummy_page
)
5386 unsigned long nr_pages
= nr_anon
+ nr_file
;
5387 unsigned long flags
;
5389 if (!mem_cgroup_is_root(memcg
)) {
5390 page_counter_uncharge(&memcg
->memory
, nr_pages
);
5391 if (do_memsw_account())
5392 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
5393 memcg_oom_recover(memcg
);
5396 local_irq_save(flags
);
5397 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
], nr_anon
);
5398 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
], nr_file
);
5399 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
], nr_huge
);
5400 __this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
], pgpgout
);
5401 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
5402 memcg_check_events(memcg
, dummy_page
);
5403 local_irq_restore(flags
);
5405 if (!mem_cgroup_is_root(memcg
))
5406 css_put_many(&memcg
->css
, nr_pages
);
5409 static void uncharge_list(struct list_head
*page_list
)
5411 struct mem_cgroup
*memcg
= NULL
;
5412 unsigned long nr_anon
= 0;
5413 unsigned long nr_file
= 0;
5414 unsigned long nr_huge
= 0;
5415 unsigned long pgpgout
= 0;
5416 struct list_head
*next
;
5420 * Note that the list can be a single page->lru; hence the
5421 * do-while loop instead of a simple list_for_each_entry().
5423 next
= page_list
->next
;
5425 unsigned int nr_pages
= 1;
5427 page
= list_entry(next
, struct page
, lru
);
5428 next
= page
->lru
.next
;
5430 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5431 VM_BUG_ON_PAGE(page_count(page
), page
);
5433 if (!page
->mem_cgroup
)
5437 * Nobody should be changing or seriously looking at
5438 * page->mem_cgroup at this point, we have fully
5439 * exclusive access to the page.
5442 if (memcg
!= page
->mem_cgroup
) {
5444 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5446 pgpgout
= nr_anon
= nr_file
= nr_huge
= 0;
5448 memcg
= page
->mem_cgroup
;
5451 if (PageTransHuge(page
)) {
5452 nr_pages
<<= compound_order(page
);
5453 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
5454 nr_huge
+= nr_pages
;
5458 nr_anon
+= nr_pages
;
5460 nr_file
+= nr_pages
;
5462 page
->mem_cgroup
= NULL
;
5465 } while (next
!= page_list
);
5468 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5473 * mem_cgroup_uncharge - uncharge a page
5474 * @page: page to uncharge
5476 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5477 * mem_cgroup_commit_charge().
5479 void mem_cgroup_uncharge(struct page
*page
)
5481 if (mem_cgroup_disabled())
5484 /* Don't touch page->lru of any random page, pre-check: */
5485 if (!page
->mem_cgroup
)
5488 INIT_LIST_HEAD(&page
->lru
);
5489 uncharge_list(&page
->lru
);
5493 * mem_cgroup_uncharge_list - uncharge a list of page
5494 * @page_list: list of pages to uncharge
5496 * Uncharge a list of pages previously charged with
5497 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5499 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
5501 if (mem_cgroup_disabled())
5504 if (!list_empty(page_list
))
5505 uncharge_list(page_list
);
5509 * mem_cgroup_migrate - charge a page's replacement
5510 * @oldpage: currently circulating page
5511 * @newpage: replacement page
5513 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5514 * be uncharged upon free.
5516 * Both pages must be locked, @newpage->mapping must be set up.
5518 void mem_cgroup_migrate(struct page
*oldpage
, struct page
*newpage
)
5520 struct mem_cgroup
*memcg
;
5521 unsigned int nr_pages
;
5524 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
5525 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
5526 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
5527 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
5530 if (mem_cgroup_disabled())
5533 /* Page cache replacement: new page already charged? */
5534 if (newpage
->mem_cgroup
)
5537 /* Swapcache readahead pages can get replaced before being charged */
5538 memcg
= oldpage
->mem_cgroup
;
5542 /* Force-charge the new page. The old one will be freed soon */
5543 compound
= PageTransHuge(newpage
);
5544 nr_pages
= compound
? hpage_nr_pages(newpage
) : 1;
5546 page_counter_charge(&memcg
->memory
, nr_pages
);
5547 if (do_memsw_account())
5548 page_counter_charge(&memcg
->memsw
, nr_pages
);
5549 css_get_many(&memcg
->css
, nr_pages
);
5551 commit_charge(newpage
, memcg
, false);
5553 local_irq_disable();
5554 mem_cgroup_charge_statistics(memcg
, newpage
, compound
, nr_pages
);
5555 memcg_check_events(memcg
, newpage
);
5559 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key
);
5560 EXPORT_SYMBOL(memcg_sockets_enabled_key
);
5562 void sock_update_memcg(struct sock
*sk
)
5564 struct mem_cgroup
*memcg
;
5566 /* Socket cloning can throw us here with sk_cgrp already
5567 * filled. It won't however, necessarily happen from
5568 * process context. So the test for root memcg given
5569 * the current task's memcg won't help us in this case.
5571 * Respecting the original socket's memcg is a better
5572 * decision in this case.
5575 BUG_ON(mem_cgroup_is_root(sk
->sk_memcg
));
5576 css_get(&sk
->sk_memcg
->css
);
5581 memcg
= mem_cgroup_from_task(current
);
5582 if (memcg
== root_mem_cgroup
)
5584 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !memcg
->tcpmem_active
)
5586 if (css_tryget_online(&memcg
->css
))
5587 sk
->sk_memcg
= memcg
;
5591 EXPORT_SYMBOL(sock_update_memcg
);
5593 void sock_release_memcg(struct sock
*sk
)
5595 WARN_ON(!sk
->sk_memcg
);
5596 css_put(&sk
->sk_memcg
->css
);
5600 * mem_cgroup_charge_skmem - charge socket memory
5601 * @memcg: memcg to charge
5602 * @nr_pages: number of pages to charge
5604 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5605 * @memcg's configured limit, %false if the charge had to be forced.
5607 bool mem_cgroup_charge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5609 gfp_t gfp_mask
= GFP_KERNEL
;
5611 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5612 struct page_counter
*fail
;
5614 if (page_counter_try_charge(&memcg
->tcpmem
, nr_pages
, &fail
)) {
5615 memcg
->tcpmem_pressure
= 0;
5618 page_counter_charge(&memcg
->tcpmem
, nr_pages
);
5619 memcg
->tcpmem_pressure
= 1;
5623 /* Don't block in the packet receive path */
5625 gfp_mask
= GFP_NOWAIT
;
5627 this_cpu_add(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5629 if (try_charge(memcg
, gfp_mask
, nr_pages
) == 0)
5632 try_charge(memcg
, gfp_mask
|__GFP_NOFAIL
, nr_pages
);
5637 * mem_cgroup_uncharge_skmem - uncharge socket memory
5638 * @memcg - memcg to uncharge
5639 * @nr_pages - number of pages to uncharge
5641 void mem_cgroup_uncharge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5643 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5644 page_counter_uncharge(&memcg
->tcpmem
, nr_pages
);
5648 this_cpu_sub(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5650 page_counter_uncharge(&memcg
->memory
, nr_pages
);
5651 css_put_many(&memcg
->css
, nr_pages
);
5654 static int __init
cgroup_memory(char *s
)
5658 while ((token
= strsep(&s
, ",")) != NULL
) {
5661 if (!strcmp(token
, "nosocket"))
5662 cgroup_memory_nosocket
= true;
5663 if (!strcmp(token
, "nokmem"))
5664 cgroup_memory_nokmem
= true;
5668 __setup("cgroup.memory=", cgroup_memory
);
5671 * subsys_initcall() for memory controller.
5673 * Some parts like hotcpu_notifier() have to be initialized from this context
5674 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5675 * everything that doesn't depend on a specific mem_cgroup structure should
5676 * be initialized from here.
5678 static int __init
mem_cgroup_init(void)
5682 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
5684 for_each_possible_cpu(cpu
)
5685 INIT_WORK(&per_cpu_ptr(&memcg_stock
, cpu
)->work
,
5688 for_each_node(node
) {
5689 struct mem_cgroup_tree_per_node
*rtpn
;
5692 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
,
5693 node_online(node
) ? node
: NUMA_NO_NODE
);
5695 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
5696 struct mem_cgroup_tree_per_zone
*rtpz
;
5698 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
5699 rtpz
->rb_root
= RB_ROOT
;
5700 spin_lock_init(&rtpz
->lock
);
5702 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
5707 subsys_initcall(mem_cgroup_init
);
5709 #ifdef CONFIG_MEMCG_SWAP
5711 * mem_cgroup_swapout - transfer a memsw charge to swap
5712 * @page: page whose memsw charge to transfer
5713 * @entry: swap entry to move the charge to
5715 * Transfer the memsw charge of @page to @entry.
5717 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
5719 struct mem_cgroup
*memcg
;
5720 unsigned short oldid
;
5722 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5723 VM_BUG_ON_PAGE(page_count(page
), page
);
5725 if (!do_memsw_account())
5728 memcg
= page
->mem_cgroup
;
5730 /* Readahead page, never charged */
5734 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
));
5735 VM_BUG_ON_PAGE(oldid
, page
);
5736 mem_cgroup_swap_statistics(memcg
, true);
5738 page
->mem_cgroup
= NULL
;
5740 if (!mem_cgroup_is_root(memcg
))
5741 page_counter_uncharge(&memcg
->memory
, 1);
5744 * Interrupts should be disabled here because the caller holds the
5745 * mapping->tree_lock lock which is taken with interrupts-off. It is
5746 * important here to have the interrupts disabled because it is the
5747 * only synchronisation we have for udpating the per-CPU variables.
5749 VM_BUG_ON(!irqs_disabled());
5750 mem_cgroup_charge_statistics(memcg
, page
, false, -1);
5751 memcg_check_events(memcg
, page
);
5755 * mem_cgroup_try_charge_swap - try charging a swap entry
5756 * @page: page being added to swap
5757 * @entry: swap entry to charge
5759 * Try to charge @entry to the memcg that @page belongs to.
5761 * Returns 0 on success, -ENOMEM on failure.
5763 int mem_cgroup_try_charge_swap(struct page
*page
, swp_entry_t entry
)
5765 struct mem_cgroup
*memcg
;
5766 struct page_counter
*counter
;
5767 unsigned short oldid
;
5769 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) || !do_swap_account
)
5772 memcg
= page
->mem_cgroup
;
5774 /* Readahead page, never charged */
5778 if (!mem_cgroup_is_root(memcg
) &&
5779 !page_counter_try_charge(&memcg
->swap
, 1, &counter
))
5782 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
));
5783 VM_BUG_ON_PAGE(oldid
, page
);
5784 mem_cgroup_swap_statistics(memcg
, true);
5786 css_get(&memcg
->css
);
5791 * mem_cgroup_uncharge_swap - uncharge a swap entry
5792 * @entry: swap entry to uncharge
5794 * Drop the swap charge associated with @entry.
5796 void mem_cgroup_uncharge_swap(swp_entry_t entry
)
5798 struct mem_cgroup
*memcg
;
5801 if (!do_swap_account
)
5804 id
= swap_cgroup_record(entry
, 0);
5806 memcg
= mem_cgroup_from_id(id
);
5808 if (!mem_cgroup_is_root(memcg
)) {
5809 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5810 page_counter_uncharge(&memcg
->swap
, 1);
5812 page_counter_uncharge(&memcg
->memsw
, 1);
5814 mem_cgroup_swap_statistics(memcg
, false);
5815 css_put(&memcg
->css
);
5820 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup
*memcg
)
5822 long nr_swap_pages
= get_nr_swap_pages();
5824 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5825 return nr_swap_pages
;
5826 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
5827 nr_swap_pages
= min_t(long, nr_swap_pages
,
5828 READ_ONCE(memcg
->swap
.limit
) -
5829 page_counter_read(&memcg
->swap
));
5830 return nr_swap_pages
;
5833 bool mem_cgroup_swap_full(struct page
*page
)
5835 struct mem_cgroup
*memcg
;
5837 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5841 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5844 memcg
= page
->mem_cgroup
;
5848 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
5849 if (page_counter_read(&memcg
->swap
) * 2 >= memcg
->swap
.limit
)
5855 /* for remember boot option*/
5856 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5857 static int really_do_swap_account __initdata
= 1;
5859 static int really_do_swap_account __initdata
;
5862 static int __init
enable_swap_account(char *s
)
5864 if (!strcmp(s
, "1"))
5865 really_do_swap_account
= 1;
5866 else if (!strcmp(s
, "0"))
5867 really_do_swap_account
= 0;
5870 __setup("swapaccount=", enable_swap_account
);
5872 static u64
swap_current_read(struct cgroup_subsys_state
*css
,
5875 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5877 return (u64
)page_counter_read(&memcg
->swap
) * PAGE_SIZE
;
5880 static int swap_max_show(struct seq_file
*m
, void *v
)
5882 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5883 unsigned long max
= READ_ONCE(memcg
->swap
.limit
);
5885 if (max
== PAGE_COUNTER_MAX
)
5886 seq_puts(m
, "max\n");
5888 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
5893 static ssize_t
swap_max_write(struct kernfs_open_file
*of
,
5894 char *buf
, size_t nbytes
, loff_t off
)
5896 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5900 buf
= strstrip(buf
);
5901 err
= page_counter_memparse(buf
, "max", &max
);
5905 mutex_lock(&memcg_limit_mutex
);
5906 err
= page_counter_limit(&memcg
->swap
, max
);
5907 mutex_unlock(&memcg_limit_mutex
);
5914 static struct cftype swap_files
[] = {
5916 .name
= "swap.current",
5917 .flags
= CFTYPE_NOT_ON_ROOT
,
5918 .read_u64
= swap_current_read
,
5922 .flags
= CFTYPE_NOT_ON_ROOT
,
5923 .seq_show
= swap_max_show
,
5924 .write
= swap_max_write
,
5929 static struct cftype memsw_cgroup_files
[] = {
5931 .name
= "memsw.usage_in_bytes",
5932 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
5933 .read_u64
= mem_cgroup_read_u64
,
5936 .name
= "memsw.max_usage_in_bytes",
5937 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
5938 .write
= mem_cgroup_reset
,
5939 .read_u64
= mem_cgroup_read_u64
,
5942 .name
= "memsw.limit_in_bytes",
5943 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
5944 .write
= mem_cgroup_write
,
5945 .read_u64
= mem_cgroup_read_u64
,
5948 .name
= "memsw.failcnt",
5949 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
5950 .write
= mem_cgroup_reset
,
5951 .read_u64
= mem_cgroup_read_u64
,
5953 { }, /* terminate */
5956 static int __init
mem_cgroup_swap_init(void)
5958 if (!mem_cgroup_disabled() && really_do_swap_account
) {
5959 do_swap_account
= 1;
5960 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys
,
5962 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
5963 memsw_cgroup_files
));
5967 subsys_initcall(mem_cgroup_swap_init
);
5969 #endif /* CONFIG_MEMCG_SWAP */