2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/completion.h>
15 #include <linux/buffer_head.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/prefetch.h>
19 #include <linux/blkdev.h>
20 #include <linux/rbtree.h>
21 #include <linux/random.h>
36 #include "trace_gfs2.h"
38 #define BFITNOENT ((u32)~0)
39 #define NO_BLOCK ((u64)~0)
41 #if BITS_PER_LONG == 32
42 #define LBITMASK (0x55555555UL)
43 #define LBITSKIP55 (0x55555555UL)
44 #define LBITSKIP00 (0x00000000UL)
46 #define LBITMASK (0x5555555555555555UL)
47 #define LBITSKIP55 (0x5555555555555555UL)
48 #define LBITSKIP00 (0x0000000000000000UL)
52 * These routines are used by the resource group routines (rgrp.c)
53 * to keep track of block allocation. Each block is represented by two
54 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
57 * 1 = Used (not metadata)
58 * 2 = Unlinked (still in use) inode
67 static const char valid_change
[16] = {
75 static int gfs2_rbm_find(struct gfs2_rbm
*rbm
, u8 state
, u32
*minext
,
76 const struct gfs2_inode
*ip
, bool nowrap
,
77 const struct gfs2_alloc_parms
*ap
);
81 * gfs2_setbit - Set a bit in the bitmaps
82 * @rbm: The position of the bit to set
83 * @do_clone: Also set the clone bitmap, if it exists
84 * @new_state: the new state of the block
88 static inline void gfs2_setbit(const struct gfs2_rbm
*rbm
, bool do_clone
,
89 unsigned char new_state
)
91 unsigned char *byte1
, *byte2
, *end
, cur_state
;
92 struct gfs2_bitmap
*bi
= rbm_bi(rbm
);
93 unsigned int buflen
= bi
->bi_len
;
94 const unsigned int bit
= (rbm
->offset
% GFS2_NBBY
) * GFS2_BIT_SIZE
;
96 byte1
= bi
->bi_bh
->b_data
+ bi
->bi_offset
+ (rbm
->offset
/ GFS2_NBBY
);
97 end
= bi
->bi_bh
->b_data
+ bi
->bi_offset
+ buflen
;
101 cur_state
= (*byte1
>> bit
) & GFS2_BIT_MASK
;
103 if (unlikely(!valid_change
[new_state
* 4 + cur_state
])) {
104 pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
105 rbm
->offset
, cur_state
, new_state
);
106 pr_warn("rgrp=0x%llx bi_start=0x%x\n",
107 (unsigned long long)rbm
->rgd
->rd_addr
, bi
->bi_start
);
108 pr_warn("bi_offset=0x%x bi_len=0x%x\n",
109 bi
->bi_offset
, bi
->bi_len
);
111 gfs2_consist_rgrpd(rbm
->rgd
);
114 *byte1
^= (cur_state
^ new_state
) << bit
;
116 if (do_clone
&& bi
->bi_clone
) {
117 byte2
= bi
->bi_clone
+ bi
->bi_offset
+ (rbm
->offset
/ GFS2_NBBY
);
118 cur_state
= (*byte2
>> bit
) & GFS2_BIT_MASK
;
119 *byte2
^= (cur_state
^ new_state
) << bit
;
124 * gfs2_testbit - test a bit in the bitmaps
125 * @rbm: The bit to test
127 * Returns: The two bit block state of the requested bit
130 static inline u8
gfs2_testbit(const struct gfs2_rbm
*rbm
)
132 struct gfs2_bitmap
*bi
= rbm_bi(rbm
);
133 const u8
*buffer
= bi
->bi_bh
->b_data
+ bi
->bi_offset
;
137 byte
= buffer
+ (rbm
->offset
/ GFS2_NBBY
);
138 bit
= (rbm
->offset
% GFS2_NBBY
) * GFS2_BIT_SIZE
;
140 return (*byte
>> bit
) & GFS2_BIT_MASK
;
145 * @ptr: Pointer to bitmap data
146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
147 * @state: The state we are searching for
149 * We xor the bitmap data with a patter which is the bitwise opposite
150 * of what we are looking for, this gives rise to a pattern of ones
151 * wherever there is a match. Since we have two bits per entry, we
152 * take this pattern, shift it down by one place and then and it with
153 * the original. All the even bit positions (0,2,4, etc) then represent
154 * successful matches, so we mask with 0x55555..... to remove the unwanted
157 * This allows searching of a whole u64 at once (32 blocks) with a
158 * single test (on 64 bit arches).
161 static inline u64
gfs2_bit_search(const __le64
*ptr
, u64 mask
, u8 state
)
164 static const u64 search
[] = {
165 [0] = 0xffffffffffffffffULL
,
166 [1] = 0xaaaaaaaaaaaaaaaaULL
,
167 [2] = 0x5555555555555555ULL
,
168 [3] = 0x0000000000000000ULL
,
170 tmp
= le64_to_cpu(*ptr
) ^ search
[state
];
177 * rs_cmp - multi-block reservation range compare
178 * @blk: absolute file system block number of the new reservation
179 * @len: number of blocks in the new reservation
180 * @rs: existing reservation to compare against
182 * returns: 1 if the block range is beyond the reach of the reservation
183 * -1 if the block range is before the start of the reservation
184 * 0 if the block range overlaps with the reservation
186 static inline int rs_cmp(u64 blk
, u32 len
, struct gfs2_blkreserv
*rs
)
188 u64 startblk
= gfs2_rbm_to_block(&rs
->rs_rbm
);
190 if (blk
>= startblk
+ rs
->rs_free
)
192 if (blk
+ len
- 1 < startblk
)
198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
199 * a block in a given allocation state.
200 * @buf: the buffer that holds the bitmaps
201 * @len: the length (in bytes) of the buffer
202 * @goal: start search at this block's bit-pair (within @buffer)
203 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
205 * Scope of @goal and returned block number is only within this bitmap buffer,
206 * not entire rgrp or filesystem. @buffer will be offset from the actual
207 * beginning of a bitmap block buffer, skipping any header structures, but
208 * headers are always a multiple of 64 bits long so that the buffer is
209 * always aligned to a 64 bit boundary.
211 * The size of the buffer is in bytes, but is it assumed that it is
212 * always ok to read a complete multiple of 64 bits at the end
213 * of the block in case the end is no aligned to a natural boundary.
215 * Return: the block number (bitmap buffer scope) that was found
218 static u32
gfs2_bitfit(const u8
*buf
, const unsigned int len
,
221 u32 spoint
= (goal
<< 1) & ((8*sizeof(u64
)) - 1);
222 const __le64
*ptr
= ((__le64
*)buf
) + (goal
>> 5);
223 const __le64
*end
= (__le64
*)(buf
+ ALIGN(len
, sizeof(u64
)));
225 u64 mask
= 0x5555555555555555ULL
;
228 /* Mask off bits we don't care about at the start of the search */
230 tmp
= gfs2_bit_search(ptr
, mask
, state
);
232 while(tmp
== 0 && ptr
< end
) {
233 tmp
= gfs2_bit_search(ptr
, 0x5555555555555555ULL
, state
);
236 /* Mask off any bits which are more than len bytes from the start */
237 if (ptr
== end
&& (len
& (sizeof(u64
) - 1)))
238 tmp
&= (((u64
)~0) >> (64 - 8*(len
& (sizeof(u64
) - 1))));
239 /* Didn't find anything, so return */
244 bit
/= 2; /* two bits per entry in the bitmap */
245 return (((const unsigned char *)ptr
- buf
) * GFS2_NBBY
) + bit
;
249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
250 * @rbm: The rbm with rgd already set correctly
251 * @block: The block number (filesystem relative)
253 * This sets the bi and offset members of an rbm based on a
254 * resource group and a filesystem relative block number. The
255 * resource group must be set in the rbm on entry, the bi and
256 * offset members will be set by this function.
258 * Returns: 0 on success, or an error code
261 static int gfs2_rbm_from_block(struct gfs2_rbm
*rbm
, u64 block
)
263 u64 rblock
= block
- rbm
->rgd
->rd_data0
;
265 if (WARN_ON_ONCE(rblock
> UINT_MAX
))
267 if (block
>= rbm
->rgd
->rd_data0
+ rbm
->rgd
->rd_data
)
271 rbm
->offset
= (u32
)(rblock
);
272 /* Check if the block is within the first block */
273 if (rbm
->offset
< rbm_bi(rbm
)->bi_blocks
)
276 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
277 rbm
->offset
+= (sizeof(struct gfs2_rgrp
) -
278 sizeof(struct gfs2_meta_header
)) * GFS2_NBBY
;
279 rbm
->bii
= rbm
->offset
/ rbm
->rgd
->rd_sbd
->sd_blocks_per_bitmap
;
280 rbm
->offset
-= rbm
->bii
* rbm
->rgd
->rd_sbd
->sd_blocks_per_bitmap
;
285 * gfs2_rbm_incr - increment an rbm structure
286 * @rbm: The rbm with rgd already set correctly
288 * This function takes an existing rbm structure and increments it to the next
289 * viable block offset.
291 * Returns: If incrementing the offset would cause the rbm to go past the
292 * end of the rgrp, true is returned, otherwise false.
296 static bool gfs2_rbm_incr(struct gfs2_rbm
*rbm
)
298 if (rbm
->offset
+ 1 < rbm_bi(rbm
)->bi_blocks
) { /* in the same bitmap */
302 if (rbm
->bii
== rbm
->rgd
->rd_length
- 1) /* at the last bitmap */
311 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
312 * @rbm: Position to search (value/result)
313 * @n_unaligned: Number of unaligned blocks to check
314 * @len: Decremented for each block found (terminate on zero)
316 * Returns: true if a non-free block is encountered
319 static bool gfs2_unaligned_extlen(struct gfs2_rbm
*rbm
, u32 n_unaligned
, u32
*len
)
324 for (n
= 0; n
< n_unaligned
; n
++) {
325 res
= gfs2_testbit(rbm
);
326 if (res
!= GFS2_BLKST_FREE
)
331 if (gfs2_rbm_incr(rbm
))
339 * gfs2_free_extlen - Return extent length of free blocks
340 * @rrbm: Starting position
341 * @len: Max length to check
343 * Starting at the block specified by the rbm, see how many free blocks
344 * there are, not reading more than len blocks ahead. This can be done
345 * using memchr_inv when the blocks are byte aligned, but has to be done
346 * on a block by block basis in case of unaligned blocks. Also this
347 * function can cope with bitmap boundaries (although it must stop on
348 * a resource group boundary)
350 * Returns: Number of free blocks in the extent
353 static u32
gfs2_free_extlen(const struct gfs2_rbm
*rrbm
, u32 len
)
355 struct gfs2_rbm rbm
= *rrbm
;
356 u32 n_unaligned
= rbm
.offset
& 3;
360 u8
*ptr
, *start
, *end
;
362 struct gfs2_bitmap
*bi
;
365 gfs2_unaligned_extlen(&rbm
, 4 - n_unaligned
, &len
))
368 n_unaligned
= len
& 3;
369 /* Start is now byte aligned */
372 start
= bi
->bi_bh
->b_data
;
374 start
= bi
->bi_clone
;
375 end
= start
+ bi
->bi_bh
->b_size
;
376 start
+= bi
->bi_offset
;
377 BUG_ON(rbm
.offset
& 3);
378 start
+= (rbm
.offset
/ GFS2_NBBY
);
379 bytes
= min_t(u32
, len
/ GFS2_NBBY
, (end
- start
));
380 ptr
= memchr_inv(start
, 0, bytes
);
381 chunk_size
= ((ptr
== NULL
) ? bytes
: (ptr
- start
));
382 chunk_size
*= GFS2_NBBY
;
383 BUG_ON(len
< chunk_size
);
385 block
= gfs2_rbm_to_block(&rbm
);
386 if (gfs2_rbm_from_block(&rbm
, block
+ chunk_size
)) {
394 n_unaligned
= len
& 3;
397 /* Deal with any bits left over at the end */
399 gfs2_unaligned_extlen(&rbm
, n_unaligned
, &len
);
405 * gfs2_bitcount - count the number of bits in a certain state
406 * @rgd: the resource group descriptor
407 * @buffer: the buffer that holds the bitmaps
408 * @buflen: the length (in bytes) of the buffer
409 * @state: the state of the block we're looking for
411 * Returns: The number of bits
414 static u32
gfs2_bitcount(struct gfs2_rgrpd
*rgd
, const u8
*buffer
,
415 unsigned int buflen
, u8 state
)
417 const u8
*byte
= buffer
;
418 const u8
*end
= buffer
+ buflen
;
419 const u8 state1
= state
<< 2;
420 const u8 state2
= state
<< 4;
421 const u8 state3
= state
<< 6;
424 for (; byte
< end
; byte
++) {
425 if (((*byte
) & 0x03) == state
)
427 if (((*byte
) & 0x0C) == state1
)
429 if (((*byte
) & 0x30) == state2
)
431 if (((*byte
) & 0xC0) == state3
)
439 * gfs2_rgrp_verify - Verify that a resource group is consistent
444 void gfs2_rgrp_verify(struct gfs2_rgrpd
*rgd
)
446 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
447 struct gfs2_bitmap
*bi
= NULL
;
448 u32 length
= rgd
->rd_length
;
452 memset(count
, 0, 4 * sizeof(u32
));
454 /* Count # blocks in each of 4 possible allocation states */
455 for (buf
= 0; buf
< length
; buf
++) {
456 bi
= rgd
->rd_bits
+ buf
;
457 for (x
= 0; x
< 4; x
++)
458 count
[x
] += gfs2_bitcount(rgd
,
464 if (count
[0] != rgd
->rd_free
) {
465 if (gfs2_consist_rgrpd(rgd
))
466 fs_err(sdp
, "free data mismatch: %u != %u\n",
467 count
[0], rgd
->rd_free
);
471 tmp
= rgd
->rd_data
- rgd
->rd_free
- rgd
->rd_dinodes
;
472 if (count
[1] != tmp
) {
473 if (gfs2_consist_rgrpd(rgd
))
474 fs_err(sdp
, "used data mismatch: %u != %u\n",
479 if (count
[2] + count
[3] != rgd
->rd_dinodes
) {
480 if (gfs2_consist_rgrpd(rgd
))
481 fs_err(sdp
, "used metadata mismatch: %u != %u\n",
482 count
[2] + count
[3], rgd
->rd_dinodes
);
487 static inline int rgrp_contains_block(struct gfs2_rgrpd
*rgd
, u64 block
)
489 u64 first
= rgd
->rd_data0
;
490 u64 last
= first
+ rgd
->rd_data
;
491 return first
<= block
&& block
< last
;
495 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
496 * @sdp: The GFS2 superblock
497 * @blk: The data block number
498 * @exact: True if this needs to be an exact match
500 * Returns: The resource group, or NULL if not found
503 struct gfs2_rgrpd
*gfs2_blk2rgrpd(struct gfs2_sbd
*sdp
, u64 blk
, bool exact
)
505 struct rb_node
*n
, *next
;
506 struct gfs2_rgrpd
*cur
;
508 spin_lock(&sdp
->sd_rindex_spin
);
509 n
= sdp
->sd_rindex_tree
.rb_node
;
511 cur
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
513 if (blk
< cur
->rd_addr
)
515 else if (blk
>= cur
->rd_data0
+ cur
->rd_data
)
518 spin_unlock(&sdp
->sd_rindex_spin
);
520 if (blk
< cur
->rd_addr
)
522 if (blk
>= cur
->rd_data0
+ cur
->rd_data
)
529 spin_unlock(&sdp
->sd_rindex_spin
);
535 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
536 * @sdp: The GFS2 superblock
538 * Returns: The first rgrp in the filesystem
541 struct gfs2_rgrpd
*gfs2_rgrpd_get_first(struct gfs2_sbd
*sdp
)
543 const struct rb_node
*n
;
544 struct gfs2_rgrpd
*rgd
;
546 spin_lock(&sdp
->sd_rindex_spin
);
547 n
= rb_first(&sdp
->sd_rindex_tree
);
548 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
549 spin_unlock(&sdp
->sd_rindex_spin
);
555 * gfs2_rgrpd_get_next - get the next RG
556 * @rgd: the resource group descriptor
558 * Returns: The next rgrp
561 struct gfs2_rgrpd
*gfs2_rgrpd_get_next(struct gfs2_rgrpd
*rgd
)
563 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
564 const struct rb_node
*n
;
566 spin_lock(&sdp
->sd_rindex_spin
);
567 n
= rb_next(&rgd
->rd_node
);
569 n
= rb_first(&sdp
->sd_rindex_tree
);
571 if (unlikely(&rgd
->rd_node
== n
)) {
572 spin_unlock(&sdp
->sd_rindex_spin
);
575 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
576 spin_unlock(&sdp
->sd_rindex_spin
);
580 void check_and_update_goal(struct gfs2_inode
*ip
)
582 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
583 if (!ip
->i_goal
|| gfs2_blk2rgrpd(sdp
, ip
->i_goal
, 1) == NULL
)
584 ip
->i_goal
= ip
->i_no_addr
;
587 void gfs2_free_clones(struct gfs2_rgrpd
*rgd
)
591 for (x
= 0; x
< rgd
->rd_length
; x
++) {
592 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
599 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
600 * @ip: the inode for this reservation
602 int gfs2_rs_alloc(struct gfs2_inode
*ip
)
606 down_write(&ip
->i_rw_mutex
);
610 ip
->i_res
= kmem_cache_zalloc(gfs2_rsrv_cachep
, GFP_NOFS
);
616 RB_CLEAR_NODE(&ip
->i_res
->rs_node
);
618 up_write(&ip
->i_rw_mutex
);
622 static void dump_rs(struct seq_file
*seq
, const struct gfs2_blkreserv
*rs
)
624 gfs2_print_dbg(seq
, " B: n:%llu s:%llu b:%u f:%u\n",
625 (unsigned long long)rs
->rs_inum
,
626 (unsigned long long)gfs2_rbm_to_block(&rs
->rs_rbm
),
627 rs
->rs_rbm
.offset
, rs
->rs_free
);
631 * __rs_deltree - remove a multi-block reservation from the rgd tree
632 * @rs: The reservation to remove
635 static void __rs_deltree(struct gfs2_blkreserv
*rs
)
637 struct gfs2_rgrpd
*rgd
;
639 if (!gfs2_rs_active(rs
))
642 rgd
= rs
->rs_rbm
.rgd
;
643 trace_gfs2_rs(rs
, TRACE_RS_TREEDEL
);
644 rb_erase(&rs
->rs_node
, &rgd
->rd_rstree
);
645 RB_CLEAR_NODE(&rs
->rs_node
);
648 struct gfs2_bitmap
*bi
= rbm_bi(&rs
->rs_rbm
);
650 /* return reserved blocks to the rgrp */
651 BUG_ON(rs
->rs_rbm
.rgd
->rd_reserved
< rs
->rs_free
);
652 rs
->rs_rbm
.rgd
->rd_reserved
-= rs
->rs_free
;
653 /* The rgrp extent failure point is likely not to increase;
654 it will only do so if the freed blocks are somehow
655 contiguous with a span of free blocks that follows. Still,
656 it will force the number to be recalculated later. */
657 rgd
->rd_extfail_pt
+= rs
->rs_free
;
659 clear_bit(GBF_FULL
, &bi
->bi_flags
);
664 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
665 * @rs: The reservation to remove
668 void gfs2_rs_deltree(struct gfs2_blkreserv
*rs
)
670 struct gfs2_rgrpd
*rgd
;
672 rgd
= rs
->rs_rbm
.rgd
;
674 spin_lock(&rgd
->rd_rsspin
);
676 spin_unlock(&rgd
->rd_rsspin
);
681 * gfs2_rs_delete - delete a multi-block reservation
682 * @ip: The inode for this reservation
683 * @wcount: The inode's write count, or NULL
686 void gfs2_rs_delete(struct gfs2_inode
*ip
, atomic_t
*wcount
)
688 down_write(&ip
->i_rw_mutex
);
689 if (ip
->i_res
&& ((wcount
== NULL
) || (atomic_read(wcount
) <= 1))) {
690 gfs2_rs_deltree(ip
->i_res
);
691 BUG_ON(ip
->i_res
->rs_free
);
692 kmem_cache_free(gfs2_rsrv_cachep
, ip
->i_res
);
695 up_write(&ip
->i_rw_mutex
);
699 * return_all_reservations - return all reserved blocks back to the rgrp.
700 * @rgd: the rgrp that needs its space back
702 * We previously reserved a bunch of blocks for allocation. Now we need to
703 * give them back. This leave the reservation structures in tact, but removes
704 * all of their corresponding "no-fly zones".
706 static void return_all_reservations(struct gfs2_rgrpd
*rgd
)
709 struct gfs2_blkreserv
*rs
;
711 spin_lock(&rgd
->rd_rsspin
);
712 while ((n
= rb_first(&rgd
->rd_rstree
))) {
713 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
716 spin_unlock(&rgd
->rd_rsspin
);
719 void gfs2_clear_rgrpd(struct gfs2_sbd
*sdp
)
722 struct gfs2_rgrpd
*rgd
;
723 struct gfs2_glock
*gl
;
725 while ((n
= rb_first(&sdp
->sd_rindex_tree
))) {
726 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
729 rb_erase(n
, &sdp
->sd_rindex_tree
);
732 spin_lock(&gl
->gl_spin
);
733 gl
->gl_object
= NULL
;
734 spin_unlock(&gl
->gl_spin
);
735 gfs2_glock_add_to_lru(gl
);
739 gfs2_free_clones(rgd
);
741 return_all_reservations(rgd
);
742 kmem_cache_free(gfs2_rgrpd_cachep
, rgd
);
746 static void gfs2_rindex_print(const struct gfs2_rgrpd
*rgd
)
748 pr_info("ri_addr = %llu\n", (unsigned long long)rgd
->rd_addr
);
749 pr_info("ri_length = %u\n", rgd
->rd_length
);
750 pr_info("ri_data0 = %llu\n", (unsigned long long)rgd
->rd_data0
);
751 pr_info("ri_data = %u\n", rgd
->rd_data
);
752 pr_info("ri_bitbytes = %u\n", rgd
->rd_bitbytes
);
756 * gfs2_compute_bitstructs - Compute the bitmap sizes
757 * @rgd: The resource group descriptor
759 * Calculates bitmap descriptors, one for each block that contains bitmap data
764 static int compute_bitstructs(struct gfs2_rgrpd
*rgd
)
766 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
767 struct gfs2_bitmap
*bi
;
768 u32 length
= rgd
->rd_length
; /* # blocks in hdr & bitmap */
769 u32 bytes_left
, bytes
;
775 rgd
->rd_bits
= kcalloc(length
, sizeof(struct gfs2_bitmap
), GFP_NOFS
);
779 bytes_left
= rgd
->rd_bitbytes
;
781 for (x
= 0; x
< length
; x
++) {
782 bi
= rgd
->rd_bits
+ x
;
785 /* small rgrp; bitmap stored completely in header block */
788 bi
->bi_offset
= sizeof(struct gfs2_rgrp
);
791 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
794 bytes
= sdp
->sd_sb
.sb_bsize
- sizeof(struct gfs2_rgrp
);
795 bi
->bi_offset
= sizeof(struct gfs2_rgrp
);
798 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
800 } else if (x
+ 1 == length
) {
802 bi
->bi_offset
= sizeof(struct gfs2_meta_header
);
803 bi
->bi_start
= rgd
->rd_bitbytes
- bytes_left
;
805 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
808 bytes
= sdp
->sd_sb
.sb_bsize
-
809 sizeof(struct gfs2_meta_header
);
810 bi
->bi_offset
= sizeof(struct gfs2_meta_header
);
811 bi
->bi_start
= rgd
->rd_bitbytes
- bytes_left
;
813 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
820 gfs2_consist_rgrpd(rgd
);
823 bi
= rgd
->rd_bits
+ (length
- 1);
824 if ((bi
->bi_start
+ bi
->bi_len
) * GFS2_NBBY
!= rgd
->rd_data
) {
825 if (gfs2_consist_rgrpd(rgd
)) {
826 gfs2_rindex_print(rgd
);
827 fs_err(sdp
, "start=%u len=%u offset=%u\n",
828 bi
->bi_start
, bi
->bi_len
, bi
->bi_offset
);
837 * gfs2_ri_total - Total up the file system space, according to the rindex.
838 * @sdp: the filesystem
841 u64
gfs2_ri_total(struct gfs2_sbd
*sdp
)
844 struct inode
*inode
= sdp
->sd_rindex
;
845 struct gfs2_inode
*ip
= GFS2_I(inode
);
846 char buf
[sizeof(struct gfs2_rindex
)];
849 for (rgrps
= 0;; rgrps
++) {
850 loff_t pos
= rgrps
* sizeof(struct gfs2_rindex
);
852 if (pos
+ sizeof(struct gfs2_rindex
) > i_size_read(inode
))
854 error
= gfs2_internal_read(ip
, buf
, &pos
,
855 sizeof(struct gfs2_rindex
));
856 if (error
!= sizeof(struct gfs2_rindex
))
858 total_data
+= be32_to_cpu(((struct gfs2_rindex
*)buf
)->ri_data
);
863 static int rgd_insert(struct gfs2_rgrpd
*rgd
)
865 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
866 struct rb_node
**newn
= &sdp
->sd_rindex_tree
.rb_node
, *parent
= NULL
;
868 /* Figure out where to put new node */
870 struct gfs2_rgrpd
*cur
= rb_entry(*newn
, struct gfs2_rgrpd
,
874 if (rgd
->rd_addr
< cur
->rd_addr
)
875 newn
= &((*newn
)->rb_left
);
876 else if (rgd
->rd_addr
> cur
->rd_addr
)
877 newn
= &((*newn
)->rb_right
);
882 rb_link_node(&rgd
->rd_node
, parent
, newn
);
883 rb_insert_color(&rgd
->rd_node
, &sdp
->sd_rindex_tree
);
889 * read_rindex_entry - Pull in a new resource index entry from the disk
890 * @ip: Pointer to the rindex inode
892 * Returns: 0 on success, > 0 on EOF, error code otherwise
895 static int read_rindex_entry(struct gfs2_inode
*ip
)
897 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
898 const unsigned bsize
= sdp
->sd_sb
.sb_bsize
;
899 loff_t pos
= sdp
->sd_rgrps
* sizeof(struct gfs2_rindex
);
900 struct gfs2_rindex buf
;
902 struct gfs2_rgrpd
*rgd
;
904 if (pos
>= i_size_read(&ip
->i_inode
))
907 error
= gfs2_internal_read(ip
, (char *)&buf
, &pos
,
908 sizeof(struct gfs2_rindex
));
910 if (error
!= sizeof(struct gfs2_rindex
))
911 return (error
== 0) ? 1 : error
;
913 rgd
= kmem_cache_zalloc(gfs2_rgrpd_cachep
, GFP_NOFS
);
919 rgd
->rd_addr
= be64_to_cpu(buf
.ri_addr
);
920 rgd
->rd_length
= be32_to_cpu(buf
.ri_length
);
921 rgd
->rd_data0
= be64_to_cpu(buf
.ri_data0
);
922 rgd
->rd_data
= be32_to_cpu(buf
.ri_data
);
923 rgd
->rd_bitbytes
= be32_to_cpu(buf
.ri_bitbytes
);
924 spin_lock_init(&rgd
->rd_rsspin
);
926 error
= compute_bitstructs(rgd
);
930 error
= gfs2_glock_get(sdp
, rgd
->rd_addr
,
931 &gfs2_rgrp_glops
, CREATE
, &rgd
->rd_gl
);
935 rgd
->rd_gl
->gl_object
= rgd
;
936 rgd
->rd_gl
->gl_vm
.start
= rgd
->rd_addr
* bsize
;
937 rgd
->rd_gl
->gl_vm
.end
= rgd
->rd_gl
->gl_vm
.start
+ (rgd
->rd_length
* bsize
) - 1;
938 rgd
->rd_rgl
= (struct gfs2_rgrp_lvb
*)rgd
->rd_gl
->gl_lksb
.sb_lvbptr
;
939 rgd
->rd_flags
&= ~(GFS2_RDF_UPTODATE
| GFS2_RDF_PREFERRED
);
940 if (rgd
->rd_data
> sdp
->sd_max_rg_data
)
941 sdp
->sd_max_rg_data
= rgd
->rd_data
;
942 spin_lock(&sdp
->sd_rindex_spin
);
943 error
= rgd_insert(rgd
);
944 spin_unlock(&sdp
->sd_rindex_spin
);
948 error
= 0; /* someone else read in the rgrp; free it and ignore it */
949 gfs2_glock_put(rgd
->rd_gl
);
953 kmem_cache_free(gfs2_rgrpd_cachep
, rgd
);
958 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
959 * @sdp: the GFS2 superblock
961 * The purpose of this function is to select a subset of the resource groups
962 * and mark them as PREFERRED. We do it in such a way that each node prefers
963 * to use a unique set of rgrps to minimize glock contention.
965 static void set_rgrp_preferences(struct gfs2_sbd
*sdp
)
967 struct gfs2_rgrpd
*rgd
, *first
;
970 /* Skip an initial number of rgrps, based on this node's journal ID.
971 That should start each node out on its own set. */
972 rgd
= gfs2_rgrpd_get_first(sdp
);
973 for (i
= 0; i
< sdp
->sd_lockstruct
.ls_jid
; i
++)
974 rgd
= gfs2_rgrpd_get_next(rgd
);
978 rgd
->rd_flags
|= GFS2_RDF_PREFERRED
;
979 for (i
= 0; i
< sdp
->sd_journals
; i
++) {
980 rgd
= gfs2_rgrpd_get_next(rgd
);
981 if (!rgd
|| rgd
== first
)
984 } while (rgd
&& rgd
!= first
);
988 * gfs2_ri_update - Pull in a new resource index from the disk
989 * @ip: pointer to the rindex inode
991 * Returns: 0 on successful update, error code otherwise
994 static int gfs2_ri_update(struct gfs2_inode
*ip
)
996 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
1000 error
= read_rindex_entry(ip
);
1001 } while (error
== 0);
1006 set_rgrp_preferences(sdp
);
1008 sdp
->sd_rindex_uptodate
= 1;
1013 * gfs2_rindex_update - Update the rindex if required
1014 * @sdp: The GFS2 superblock
1016 * We grab a lock on the rindex inode to make sure that it doesn't
1017 * change whilst we are performing an operation. We keep this lock
1018 * for quite long periods of time compared to other locks. This
1019 * doesn't matter, since it is shared and it is very, very rarely
1020 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1022 * This makes sure that we're using the latest copy of the resource index
1023 * special file, which might have been updated if someone expanded the
1024 * filesystem (via gfs2_grow utility), which adds new resource groups.
1026 * Returns: 0 on succeess, error code otherwise
1029 int gfs2_rindex_update(struct gfs2_sbd
*sdp
)
1031 struct gfs2_inode
*ip
= GFS2_I(sdp
->sd_rindex
);
1032 struct gfs2_glock
*gl
= ip
->i_gl
;
1033 struct gfs2_holder ri_gh
;
1035 int unlock_required
= 0;
1037 /* Read new copy from disk if we don't have the latest */
1038 if (!sdp
->sd_rindex_uptodate
) {
1039 if (!gfs2_glock_is_locked_by_me(gl
)) {
1040 error
= gfs2_glock_nq_init(gl
, LM_ST_SHARED
, 0, &ri_gh
);
1043 unlock_required
= 1;
1045 if (!sdp
->sd_rindex_uptodate
)
1046 error
= gfs2_ri_update(ip
);
1047 if (unlock_required
)
1048 gfs2_glock_dq_uninit(&ri_gh
);
1054 static void gfs2_rgrp_in(struct gfs2_rgrpd
*rgd
, const void *buf
)
1056 const struct gfs2_rgrp
*str
= buf
;
1059 rg_flags
= be32_to_cpu(str
->rg_flags
);
1060 rg_flags
&= ~GFS2_RDF_MASK
;
1061 rgd
->rd_flags
&= GFS2_RDF_MASK
;
1062 rgd
->rd_flags
|= rg_flags
;
1063 rgd
->rd_free
= be32_to_cpu(str
->rg_free
);
1064 rgd
->rd_dinodes
= be32_to_cpu(str
->rg_dinodes
);
1065 rgd
->rd_igeneration
= be64_to_cpu(str
->rg_igeneration
);
1068 static void gfs2_rgrp_out(struct gfs2_rgrpd
*rgd
, void *buf
)
1070 struct gfs2_rgrp
*str
= buf
;
1072 str
->rg_flags
= cpu_to_be32(rgd
->rd_flags
& ~GFS2_RDF_MASK
);
1073 str
->rg_free
= cpu_to_be32(rgd
->rd_free
);
1074 str
->rg_dinodes
= cpu_to_be32(rgd
->rd_dinodes
);
1075 str
->__pad
= cpu_to_be32(0);
1076 str
->rg_igeneration
= cpu_to_be64(rgd
->rd_igeneration
);
1077 memset(&str
->rg_reserved
, 0, sizeof(str
->rg_reserved
));
1080 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd
*rgd
)
1082 struct gfs2_rgrp_lvb
*rgl
= rgd
->rd_rgl
;
1083 struct gfs2_rgrp
*str
= (struct gfs2_rgrp
*)rgd
->rd_bits
[0].bi_bh
->b_data
;
1085 if (rgl
->rl_flags
!= str
->rg_flags
|| rgl
->rl_free
!= str
->rg_free
||
1086 rgl
->rl_dinodes
!= str
->rg_dinodes
||
1087 rgl
->rl_igeneration
!= str
->rg_igeneration
)
1092 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb
*rgl
, const void *buf
)
1094 const struct gfs2_rgrp
*str
= buf
;
1096 rgl
->rl_magic
= cpu_to_be32(GFS2_MAGIC
);
1097 rgl
->rl_flags
= str
->rg_flags
;
1098 rgl
->rl_free
= str
->rg_free
;
1099 rgl
->rl_dinodes
= str
->rg_dinodes
;
1100 rgl
->rl_igeneration
= str
->rg_igeneration
;
1104 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd
*rgd
, u32 change
)
1106 struct gfs2_rgrp_lvb
*rgl
= rgd
->rd_rgl
;
1107 u32 unlinked
= be32_to_cpu(rgl
->rl_unlinked
) + change
;
1108 rgl
->rl_unlinked
= cpu_to_be32(unlinked
);
1111 static u32
count_unlinked(struct gfs2_rgrpd
*rgd
)
1113 struct gfs2_bitmap
*bi
;
1114 const u32 length
= rgd
->rd_length
;
1115 const u8
*buffer
= NULL
;
1116 u32 i
, goal
, count
= 0;
1118 for (i
= 0, bi
= rgd
->rd_bits
; i
< length
; i
++, bi
++) {
1120 buffer
= bi
->bi_bh
->b_data
+ bi
->bi_offset
;
1121 WARN_ON(!buffer_uptodate(bi
->bi_bh
));
1122 while (goal
< bi
->bi_len
* GFS2_NBBY
) {
1123 goal
= gfs2_bitfit(buffer
, bi
->bi_len
, goal
,
1124 GFS2_BLKST_UNLINKED
);
1125 if (goal
== BFITNOENT
)
1137 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1138 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1140 * Read in all of a Resource Group's header and bitmap blocks.
1141 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1146 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd
*rgd
)
1148 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1149 struct gfs2_glock
*gl
= rgd
->rd_gl
;
1150 unsigned int length
= rgd
->rd_length
;
1151 struct gfs2_bitmap
*bi
;
1155 if (rgd
->rd_bits
[0].bi_bh
!= NULL
)
1158 for (x
= 0; x
< length
; x
++) {
1159 bi
= rgd
->rd_bits
+ x
;
1160 error
= gfs2_meta_read(gl
, rgd
->rd_addr
+ x
, 0, &bi
->bi_bh
);
1165 for (y
= length
; y
--;) {
1166 bi
= rgd
->rd_bits
+ y
;
1167 error
= gfs2_meta_wait(sdp
, bi
->bi_bh
);
1170 if (gfs2_metatype_check(sdp
, bi
->bi_bh
, y
? GFS2_METATYPE_RB
:
1171 GFS2_METATYPE_RG
)) {
1177 if (!(rgd
->rd_flags
& GFS2_RDF_UPTODATE
)) {
1178 for (x
= 0; x
< length
; x
++)
1179 clear_bit(GBF_FULL
, &rgd
->rd_bits
[x
].bi_flags
);
1180 gfs2_rgrp_in(rgd
, (rgd
->rd_bits
[0].bi_bh
)->b_data
);
1181 rgd
->rd_flags
|= (GFS2_RDF_UPTODATE
| GFS2_RDF_CHECK
);
1182 rgd
->rd_free_clone
= rgd
->rd_free
;
1183 /* max out the rgrp allocation failure point */
1184 rgd
->rd_extfail_pt
= rgd
->rd_free
;
1186 if (cpu_to_be32(GFS2_MAGIC
) != rgd
->rd_rgl
->rl_magic
) {
1187 rgd
->rd_rgl
->rl_unlinked
= cpu_to_be32(count_unlinked(rgd
));
1188 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
,
1189 rgd
->rd_bits
[0].bi_bh
->b_data
);
1191 else if (sdp
->sd_args
.ar_rgrplvb
) {
1192 if (!gfs2_rgrp_lvb_valid(rgd
)){
1193 gfs2_consist_rgrpd(rgd
);
1197 if (rgd
->rd_rgl
->rl_unlinked
== 0)
1198 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1204 bi
= rgd
->rd_bits
+ x
;
1207 gfs2_assert_warn(sdp
, !bi
->bi_clone
);
1213 static int update_rgrp_lvb(struct gfs2_rgrpd
*rgd
)
1217 if (rgd
->rd_flags
& GFS2_RDF_UPTODATE
)
1220 if (cpu_to_be32(GFS2_MAGIC
) != rgd
->rd_rgl
->rl_magic
)
1221 return gfs2_rgrp_bh_get(rgd
);
1223 rl_flags
= be32_to_cpu(rgd
->rd_rgl
->rl_flags
);
1224 rl_flags
&= ~GFS2_RDF_MASK
;
1225 rgd
->rd_flags
&= GFS2_RDF_MASK
;
1226 rgd
->rd_flags
|= (rl_flags
| GFS2_RDF_UPTODATE
| GFS2_RDF_CHECK
);
1227 if (rgd
->rd_rgl
->rl_unlinked
== 0)
1228 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1229 rgd
->rd_free
= be32_to_cpu(rgd
->rd_rgl
->rl_free
);
1230 rgd
->rd_free_clone
= rgd
->rd_free
;
1231 rgd
->rd_dinodes
= be32_to_cpu(rgd
->rd_rgl
->rl_dinodes
);
1232 rgd
->rd_igeneration
= be64_to_cpu(rgd
->rd_rgl
->rl_igeneration
);
1236 int gfs2_rgrp_go_lock(struct gfs2_holder
*gh
)
1238 struct gfs2_rgrpd
*rgd
= gh
->gh_gl
->gl_object
;
1239 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1241 if (gh
->gh_flags
& GL_SKIP
&& sdp
->sd_args
.ar_rgrplvb
)
1243 return gfs2_rgrp_bh_get(rgd
);
1247 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1248 * @rgd: The resource group
1252 void gfs2_rgrp_brelse(struct gfs2_rgrpd
*rgd
)
1254 int x
, length
= rgd
->rd_length
;
1256 for (x
= 0; x
< length
; x
++) {
1257 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
1267 * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1268 * @gh: The glock holder for the resource group
1272 void gfs2_rgrp_go_unlock(struct gfs2_holder
*gh
)
1274 struct gfs2_rgrpd
*rgd
= gh
->gh_gl
->gl_object
;
1275 int demote_requested
= test_bit(GLF_DEMOTE
, &gh
->gh_gl
->gl_flags
) |
1276 test_bit(GLF_PENDING_DEMOTE
, &gh
->gh_gl
->gl_flags
);
1278 if (rgd
&& demote_requested
)
1279 gfs2_rgrp_brelse(rgd
);
1282 int gfs2_rgrp_send_discards(struct gfs2_sbd
*sdp
, u64 offset
,
1283 struct buffer_head
*bh
,
1284 const struct gfs2_bitmap
*bi
, unsigned minlen
, u64
*ptrimmed
)
1286 struct super_block
*sb
= sdp
->sd_vfs
;
1289 sector_t nr_blks
= 0;
1295 for (x
= 0; x
< bi
->bi_len
; x
++) {
1296 const u8
*clone
= bi
->bi_clone
? bi
->bi_clone
: bi
->bi_bh
->b_data
;
1297 clone
+= bi
->bi_offset
;
1300 const u8
*orig
= bh
->b_data
+ bi
->bi_offset
+ x
;
1301 diff
= ~(*orig
| (*orig
>> 1)) & (*clone
| (*clone
>> 1));
1303 diff
= ~(*clone
| (*clone
>> 1));
1308 blk
= offset
+ ((bi
->bi_start
+ x
) * GFS2_NBBY
);
1312 goto start_new_extent
;
1313 if ((start
+ nr_blks
) != blk
) {
1314 if (nr_blks
>= minlen
) {
1315 rv
= sb_issue_discard(sb
,
1332 if (nr_blks
>= minlen
) {
1333 rv
= sb_issue_discard(sb
, start
, nr_blks
, GFP_NOFS
, 0);
1339 *ptrimmed
= trimmed
;
1343 if (sdp
->sd_args
.ar_discard
)
1344 fs_warn(sdp
, "error %d on discard request, turning discards off for this filesystem", rv
);
1345 sdp
->sd_args
.ar_discard
= 0;
1350 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1351 * @filp: Any file on the filesystem
1352 * @argp: Pointer to the arguments (also used to pass result)
1354 * Returns: 0 on success, otherwise error code
1357 int gfs2_fitrim(struct file
*filp
, void __user
*argp
)
1359 struct inode
*inode
= file_inode(filp
);
1360 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
1361 struct request_queue
*q
= bdev_get_queue(sdp
->sd_vfs
->s_bdev
);
1362 struct buffer_head
*bh
;
1363 struct gfs2_rgrpd
*rgd
;
1364 struct gfs2_rgrpd
*rgd_end
;
1365 struct gfs2_holder gh
;
1366 struct fstrim_range r
;
1370 u64 start
, end
, minlen
;
1372 unsigned bs_shift
= sdp
->sd_sb
.sb_bsize_shift
;
1374 if (!capable(CAP_SYS_ADMIN
))
1377 if (!blk_queue_discard(q
))
1380 if (copy_from_user(&r
, argp
, sizeof(r
)))
1383 ret
= gfs2_rindex_update(sdp
);
1387 start
= r
.start
>> bs_shift
;
1388 end
= start
+ (r
.len
>> bs_shift
);
1389 minlen
= max_t(u64
, r
.minlen
,
1390 q
->limits
.discard_granularity
) >> bs_shift
;
1392 if (end
<= start
|| minlen
> sdp
->sd_max_rg_data
)
1395 rgd
= gfs2_blk2rgrpd(sdp
, start
, 0);
1396 rgd_end
= gfs2_blk2rgrpd(sdp
, end
, 0);
1398 if ((gfs2_rgrpd_get_first(sdp
) == gfs2_rgrpd_get_next(rgd_end
))
1399 && (start
> rgd_end
->rd_data0
+ rgd_end
->rd_data
))
1400 return -EINVAL
; /* start is beyond the end of the fs */
1404 ret
= gfs2_glock_nq_init(rgd
->rd_gl
, LM_ST_EXCLUSIVE
, 0, &gh
);
1408 if (!(rgd
->rd_flags
& GFS2_RGF_TRIMMED
)) {
1409 /* Trim each bitmap in the rgrp */
1410 for (x
= 0; x
< rgd
->rd_length
; x
++) {
1411 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
1412 ret
= gfs2_rgrp_send_discards(sdp
,
1413 rgd
->rd_data0
, NULL
, bi
, minlen
,
1416 gfs2_glock_dq_uninit(&gh
);
1422 /* Mark rgrp as having been trimmed */
1423 ret
= gfs2_trans_begin(sdp
, RES_RG_HDR
, 0);
1425 bh
= rgd
->rd_bits
[0].bi_bh
;
1426 rgd
->rd_flags
|= GFS2_RGF_TRIMMED
;
1427 gfs2_trans_add_meta(rgd
->rd_gl
, bh
);
1428 gfs2_rgrp_out(rgd
, bh
->b_data
);
1429 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
, bh
->b_data
);
1430 gfs2_trans_end(sdp
);
1433 gfs2_glock_dq_uninit(&gh
);
1438 rgd
= gfs2_rgrpd_get_next(rgd
);
1442 r
.len
= trimmed
<< bs_shift
;
1443 if (copy_to_user(argp
, &r
, sizeof(r
)))
1450 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1451 * @ip: the inode structure
1454 static void rs_insert(struct gfs2_inode
*ip
)
1456 struct rb_node
**newn
, *parent
= NULL
;
1458 struct gfs2_blkreserv
*rs
= ip
->i_res
;
1459 struct gfs2_rgrpd
*rgd
= rs
->rs_rbm
.rgd
;
1460 u64 fsblock
= gfs2_rbm_to_block(&rs
->rs_rbm
);
1462 BUG_ON(gfs2_rs_active(rs
));
1464 spin_lock(&rgd
->rd_rsspin
);
1465 newn
= &rgd
->rd_rstree
.rb_node
;
1467 struct gfs2_blkreserv
*cur
=
1468 rb_entry(*newn
, struct gfs2_blkreserv
, rs_node
);
1471 rc
= rs_cmp(fsblock
, rs
->rs_free
, cur
);
1473 newn
= &((*newn
)->rb_right
);
1475 newn
= &((*newn
)->rb_left
);
1477 spin_unlock(&rgd
->rd_rsspin
);
1483 rb_link_node(&rs
->rs_node
, parent
, newn
);
1484 rb_insert_color(&rs
->rs_node
, &rgd
->rd_rstree
);
1486 /* Do our rgrp accounting for the reservation */
1487 rgd
->rd_reserved
+= rs
->rs_free
; /* blocks reserved */
1488 spin_unlock(&rgd
->rd_rsspin
);
1489 trace_gfs2_rs(rs
, TRACE_RS_INSERT
);
1493 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1494 * @rgd: the resource group descriptor
1495 * @ip: pointer to the inode for which we're reserving blocks
1496 * @ap: the allocation parameters
1500 static void rg_mblk_search(struct gfs2_rgrpd
*rgd
, struct gfs2_inode
*ip
,
1501 const struct gfs2_alloc_parms
*ap
)
1503 struct gfs2_rbm rbm
= { .rgd
= rgd
, };
1505 struct gfs2_blkreserv
*rs
= ip
->i_res
;
1507 u32 free_blocks
= rgd
->rd_free_clone
- rgd
->rd_reserved
;
1509 struct inode
*inode
= &ip
->i_inode
;
1511 if (S_ISDIR(inode
->i_mode
))
1514 extlen
= max_t(u32
, atomic_read(&rs
->rs_sizehint
), ap
->target
);
1515 extlen
= clamp(extlen
, RGRP_RSRV_MINBLKS
, free_blocks
);
1517 if ((rgd
->rd_free_clone
< rgd
->rd_reserved
) || (free_blocks
< extlen
))
1520 /* Find bitmap block that contains bits for goal block */
1521 if (rgrp_contains_block(rgd
, ip
->i_goal
))
1524 goal
= rgd
->rd_last_alloc
+ rgd
->rd_data0
;
1526 if (WARN_ON(gfs2_rbm_from_block(&rbm
, goal
)))
1529 ret
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, &extlen
, ip
, true, ap
);
1532 rs
->rs_free
= extlen
;
1533 rs
->rs_inum
= ip
->i_no_addr
;
1536 if (goal
== rgd
->rd_last_alloc
+ rgd
->rd_data0
)
1537 rgd
->rd_last_alloc
= 0;
1542 * gfs2_next_unreserved_block - Return next block that is not reserved
1543 * @rgd: The resource group
1544 * @block: The starting block
1545 * @length: The required length
1546 * @ip: Ignore any reservations for this inode
1548 * If the block does not appear in any reservation, then return the
1549 * block number unchanged. If it does appear in the reservation, then
1550 * keep looking through the tree of reservations in order to find the
1551 * first block number which is not reserved.
1554 static u64
gfs2_next_unreserved_block(struct gfs2_rgrpd
*rgd
, u64 block
,
1556 const struct gfs2_inode
*ip
)
1558 struct gfs2_blkreserv
*rs
;
1562 spin_lock(&rgd
->rd_rsspin
);
1563 n
= rgd
->rd_rstree
.rb_node
;
1565 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
1566 rc
= rs_cmp(block
, length
, rs
);
1576 while ((rs_cmp(block
, length
, rs
) == 0) && (ip
->i_res
!= rs
)) {
1577 block
= gfs2_rbm_to_block(&rs
->rs_rbm
) + rs
->rs_free
;
1581 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
1585 spin_unlock(&rgd
->rd_rsspin
);
1590 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1591 * @rbm: The current position in the resource group
1592 * @ip: The inode for which we are searching for blocks
1593 * @minext: The minimum extent length
1594 * @maxext: A pointer to the maximum extent structure
1596 * This checks the current position in the rgrp to see whether there is
1597 * a reservation covering this block. If not then this function is a
1598 * no-op. If there is, then the position is moved to the end of the
1599 * contiguous reservation(s) so that we are pointing at the first
1600 * non-reserved block.
1602 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1605 static int gfs2_reservation_check_and_update(struct gfs2_rbm
*rbm
,
1606 const struct gfs2_inode
*ip
,
1608 struct gfs2_extent
*maxext
)
1610 u64 block
= gfs2_rbm_to_block(rbm
);
1616 * If we have a minimum extent length, then skip over any extent
1617 * which is less than the min extent length in size.
1620 extlen
= gfs2_free_extlen(rbm
, minext
);
1621 if (extlen
<= maxext
->len
)
1626 * Check the extent which has been found against the reservations
1627 * and skip if parts of it are already reserved
1629 nblock
= gfs2_next_unreserved_block(rbm
->rgd
, block
, extlen
, ip
);
1630 if (nblock
== block
) {
1631 if (!minext
|| extlen
>= minext
)
1634 if (extlen
> maxext
->len
) {
1635 maxext
->len
= extlen
;
1639 nblock
= block
+ extlen
;
1641 ret
= gfs2_rbm_from_block(rbm
, nblock
);
1648 * gfs2_rbm_find - Look for blocks of a particular state
1649 * @rbm: Value/result starting position and final position
1650 * @state: The state which we want to find
1651 * @minext: Pointer to the requested extent length (NULL for a single block)
1652 * This is updated to be the actual reservation size.
1653 * @ip: If set, check for reservations
1654 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1655 * around until we've reached the starting point.
1656 * @ap: the allocation parameters
1659 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1660 * has no free blocks in it.
1661 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1662 * has come up short on a free block search.
1664 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1667 static int gfs2_rbm_find(struct gfs2_rbm
*rbm
, u8 state
, u32
*minext
,
1668 const struct gfs2_inode
*ip
, bool nowrap
,
1669 const struct gfs2_alloc_parms
*ap
)
1671 struct buffer_head
*bh
;
1674 int first_bii
= rbm
->bii
;
1675 u32 first_offset
= rbm
->offset
;
1679 int iters
= rbm
->rgd
->rd_length
;
1681 struct gfs2_bitmap
*bi
;
1682 struct gfs2_extent maxext
= { .rbm
.rgd
= rbm
->rgd
, };
1684 /* If we are not starting at the beginning of a bitmap, then we
1685 * need to add one to the bitmap count to ensure that we search
1686 * the starting bitmap twice.
1688 if (rbm
->offset
!= 0)
1693 if (test_bit(GBF_FULL
, &bi
->bi_flags
) &&
1694 (state
== GFS2_BLKST_FREE
))
1698 buffer
= bh
->b_data
+ bi
->bi_offset
;
1699 WARN_ON(!buffer_uptodate(bh
));
1700 if (state
!= GFS2_BLKST_UNLINKED
&& bi
->bi_clone
)
1701 buffer
= bi
->bi_clone
+ bi
->bi_offset
;
1702 initial_offset
= rbm
->offset
;
1703 offset
= gfs2_bitfit(buffer
, bi
->bi_len
, rbm
->offset
, state
);
1704 if (offset
== BFITNOENT
)
1706 rbm
->offset
= offset
;
1710 initial_bii
= rbm
->bii
;
1711 ret
= gfs2_reservation_check_and_update(rbm
, ip
,
1712 minext
? *minext
: 0,
1717 n
+= (rbm
->bii
- initial_bii
);
1720 if (ret
== -E2BIG
) {
1723 n
+= (rbm
->bii
- initial_bii
);
1724 goto res_covered_end_of_rgrp
;
1728 bitmap_full
: /* Mark bitmap as full and fall through */
1729 if ((state
== GFS2_BLKST_FREE
) && initial_offset
== 0)
1730 set_bit(GBF_FULL
, &bi
->bi_flags
);
1732 next_bitmap
: /* Find next bitmap in the rgrp */
1735 if (rbm
->bii
== rbm
->rgd
->rd_length
)
1737 res_covered_end_of_rgrp
:
1738 if ((rbm
->bii
== 0) && nowrap
)
1746 if (minext
== NULL
|| state
!= GFS2_BLKST_FREE
)
1749 /* If the extent was too small, and it's smaller than the smallest
1750 to have failed before, remember for future reference that it's
1751 useless to search this rgrp again for this amount or more. */
1752 if ((first_offset
== 0) && (first_bii
== 0) &&
1753 (*minext
< rbm
->rgd
->rd_extfail_pt
))
1754 rbm
->rgd
->rd_extfail_pt
= *minext
;
1756 /* If the maximum extent we found is big enough to fulfill the
1757 minimum requirements, use it anyway. */
1760 *minext
= maxext
.len
;
1768 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1770 * @last_unlinked: block address of the last dinode we unlinked
1771 * @skip: block address we should explicitly not unlink
1773 * Returns: 0 if no error
1774 * The inode, if one has been found, in inode.
1777 static void try_rgrp_unlink(struct gfs2_rgrpd
*rgd
, u64
*last_unlinked
, u64 skip
)
1780 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1781 struct gfs2_glock
*gl
;
1782 struct gfs2_inode
*ip
;
1785 struct gfs2_rbm rbm
= { .rgd
= rgd
, .bii
= 0, .offset
= 0 };
1788 down_write(&sdp
->sd_log_flush_lock
);
1789 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_UNLINKED
, NULL
, NULL
,
1791 up_write(&sdp
->sd_log_flush_lock
);
1792 if (error
== -ENOSPC
)
1794 if (WARN_ON_ONCE(error
))
1797 block
= gfs2_rbm_to_block(&rbm
);
1798 if (gfs2_rbm_from_block(&rbm
, block
+ 1))
1800 if (*last_unlinked
!= NO_BLOCK
&& block
<= *last_unlinked
)
1804 *last_unlinked
= block
;
1806 error
= gfs2_glock_get(sdp
, block
, &gfs2_inode_glops
, CREATE
, &gl
);
1810 /* If the inode is already in cache, we can ignore it here
1811 * because the existing inode disposal code will deal with
1812 * it when all refs have gone away. Accessing gl_object like
1813 * this is not safe in general. Here it is ok because we do
1814 * not dereference the pointer, and we only need an approx
1815 * answer to whether it is NULL or not.
1819 if (ip
|| queue_work(gfs2_delete_workqueue
, &gl
->gl_delete
) == 0)
1824 /* Limit reclaim to sensible number of tasks */
1825 if (found
> NR_CPUS
)
1829 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1834 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1835 * @rgd: The rgrp in question
1836 * @loops: An indication of how picky we can be (0=very, 1=less so)
1838 * This function uses the recently added glock statistics in order to
1839 * figure out whether a parciular resource group is suffering from
1840 * contention from multiple nodes. This is done purely on the basis
1841 * of timings, since this is the only data we have to work with and
1842 * our aim here is to reject a resource group which is highly contended
1843 * but (very important) not to do this too often in order to ensure that
1844 * we do not land up introducing fragmentation by changing resource
1845 * groups when not actually required.
1847 * The calculation is fairly simple, we want to know whether the SRTTB
1848 * (i.e. smoothed round trip time for blocking operations) to acquire
1849 * the lock for this rgrp's glock is significantly greater than the
1850 * time taken for resource groups on average. We introduce a margin in
1851 * the form of the variable @var which is computed as the sum of the two
1852 * respective variences, and multiplied by a factor depending on @loops
1853 * and whether we have a lot of data to base the decision on. This is
1854 * then tested against the square difference of the means in order to
1855 * decide whether the result is statistically significant or not.
1857 * Returns: A boolean verdict on the congestion status
1860 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd
*rgd
, int loops
)
1862 const struct gfs2_glock
*gl
= rgd
->rd_gl
;
1863 const struct gfs2_sbd
*sdp
= gl
->gl_name
.ln_sbd
;
1864 struct gfs2_lkstats
*st
;
1865 u64 r_dcount
, l_dcount
;
1866 u64 l_srttb
, a_srttb
= 0;
1870 int cpu
, nonzero
= 0;
1873 for_each_present_cpu(cpu
) {
1874 st
= &per_cpu_ptr(sdp
->sd_lkstats
, cpu
)->lkstats
[LM_TYPE_RGRP
];
1875 if (st
->stats
[GFS2_LKS_SRTTB
]) {
1876 a_srttb
+= st
->stats
[GFS2_LKS_SRTTB
];
1880 st
= &this_cpu_ptr(sdp
->sd_lkstats
)->lkstats
[LM_TYPE_RGRP
];
1882 do_div(a_srttb
, nonzero
);
1883 r_dcount
= st
->stats
[GFS2_LKS_DCOUNT
];
1884 var
= st
->stats
[GFS2_LKS_SRTTVARB
] +
1885 gl
->gl_stats
.stats
[GFS2_LKS_SRTTVARB
];
1888 l_srttb
= gl
->gl_stats
.stats
[GFS2_LKS_SRTTB
];
1889 l_dcount
= gl
->gl_stats
.stats
[GFS2_LKS_DCOUNT
];
1891 if ((l_dcount
< 1) || (r_dcount
< 1) || (a_srttb
== 0))
1894 srttb_diff
= a_srttb
- l_srttb
;
1895 sqr_diff
= srttb_diff
* srttb_diff
;
1898 if (l_dcount
< 8 || r_dcount
< 8)
1903 return ((srttb_diff
< 0) && (sqr_diff
> var
));
1907 * gfs2_rgrp_used_recently
1908 * @rs: The block reservation with the rgrp to test
1909 * @msecs: The time limit in milliseconds
1911 * Returns: True if the rgrp glock has been used within the time limit
1913 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv
*rs
,
1918 tdiff
= ktime_to_ns(ktime_sub(ktime_get_real(),
1919 rs
->rs_rbm
.rgd
->rd_gl
->gl_dstamp
));
1921 return tdiff
> (msecs
* 1000 * 1000);
1924 static u32
gfs2_orlov_skip(const struct gfs2_inode
*ip
)
1926 const struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
1929 get_random_bytes(&skip
, sizeof(skip
));
1930 return skip
% sdp
->sd_rgrps
;
1933 static bool gfs2_select_rgrp(struct gfs2_rgrpd
**pos
, const struct gfs2_rgrpd
*begin
)
1935 struct gfs2_rgrpd
*rgd
= *pos
;
1936 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1938 rgd
= gfs2_rgrpd_get_next(rgd
);
1940 rgd
= gfs2_rgrpd_get_first(sdp
);
1942 if (rgd
!= begin
) /* If we didn't wrap */
1948 * fast_to_acquire - determine if a resource group will be fast to acquire
1950 * If this is one of our preferred rgrps, it should be quicker to acquire,
1951 * because we tried to set ourselves up as dlm lock master.
1953 static inline int fast_to_acquire(struct gfs2_rgrpd
*rgd
)
1955 struct gfs2_glock
*gl
= rgd
->rd_gl
;
1957 if (gl
->gl_state
!= LM_ST_UNLOCKED
&& list_empty(&gl
->gl_holders
) &&
1958 !test_bit(GLF_DEMOTE_IN_PROGRESS
, &gl
->gl_flags
) &&
1959 !test_bit(GLF_DEMOTE
, &gl
->gl_flags
))
1961 if (rgd
->rd_flags
& GFS2_RDF_PREFERRED
)
1967 * gfs2_inplace_reserve - Reserve space in the filesystem
1968 * @ip: the inode to reserve space for
1969 * @ap: the allocation parameters
1971 * We try our best to find an rgrp that has at least ap->target blocks
1972 * available. After a couple of passes (loops == 2), the prospects of finding
1973 * such an rgrp diminish. At this stage, we return the first rgrp that has
1974 * atleast ap->min_target blocks available. Either way, we set ap->allowed to
1975 * the number of blocks available in the chosen rgrp.
1977 * Returns: 0 on success,
1978 * -ENOMEM if a suitable rgrp can't be found
1982 int gfs2_inplace_reserve(struct gfs2_inode
*ip
, struct gfs2_alloc_parms
*ap
)
1984 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
1985 struct gfs2_rgrpd
*begin
= NULL
;
1986 struct gfs2_blkreserv
*rs
= ip
->i_res
;
1987 int error
= 0, rg_locked
, flags
= 0;
1988 u64 last_unlinked
= NO_BLOCK
;
1992 if (sdp
->sd_args
.ar_rgrplvb
)
1994 if (gfs2_assert_warn(sdp
, ap
->target
))
1996 if (gfs2_rs_active(rs
)) {
1997 begin
= rs
->rs_rbm
.rgd
;
1998 } else if (ip
->i_rgd
&& rgrp_contains_block(ip
->i_rgd
, ip
->i_goal
)) {
1999 rs
->rs_rbm
.rgd
= begin
= ip
->i_rgd
;
2001 check_and_update_goal(ip
);
2002 rs
->rs_rbm
.rgd
= begin
= gfs2_blk2rgrpd(sdp
, ip
->i_goal
, 1);
2004 if (S_ISDIR(ip
->i_inode
.i_mode
) && (ap
->aflags
& GFS2_AF_ORLOV
))
2005 skip
= gfs2_orlov_skip(ip
);
2006 if (rs
->rs_rbm
.rgd
== NULL
)
2012 if (!gfs2_glock_is_locked_by_me(rs
->rs_rbm
.rgd
->rd_gl
)) {
2016 if (!gfs2_rs_active(rs
)) {
2018 !fast_to_acquire(rs
->rs_rbm
.rgd
))
2021 gfs2_rgrp_used_recently(rs
, 1000) &&
2022 gfs2_rgrp_congested(rs
->rs_rbm
.rgd
, loops
))
2025 error
= gfs2_glock_nq_init(rs
->rs_rbm
.rgd
->rd_gl
,
2026 LM_ST_EXCLUSIVE
, flags
,
2028 if (unlikely(error
))
2030 if (!gfs2_rs_active(rs
) && (loops
< 2) &&
2031 gfs2_rgrp_congested(rs
->rs_rbm
.rgd
, loops
))
2033 if (sdp
->sd_args
.ar_rgrplvb
) {
2034 error
= update_rgrp_lvb(rs
->rs_rbm
.rgd
);
2035 if (unlikely(error
)) {
2036 gfs2_glock_dq_uninit(&rs
->rs_rgd_gh
);
2042 /* Skip unuseable resource groups */
2043 if ((rs
->rs_rbm
.rgd
->rd_flags
& (GFS2_RGF_NOALLOC
|
2045 (loops
== 0 && ap
->target
> rs
->rs_rbm
.rgd
->rd_extfail_pt
))
2048 if (sdp
->sd_args
.ar_rgrplvb
)
2049 gfs2_rgrp_bh_get(rs
->rs_rbm
.rgd
);
2051 /* Get a reservation if we don't already have one */
2052 if (!gfs2_rs_active(rs
))
2053 rg_mblk_search(rs
->rs_rbm
.rgd
, ip
, ap
);
2055 /* Skip rgrps when we can't get a reservation on first pass */
2056 if (!gfs2_rs_active(rs
) && (loops
< 1))
2059 /* If rgrp has enough free space, use it */
2060 if (rs
->rs_rbm
.rgd
->rd_free_clone
>= ap
->target
||
2061 (loops
== 2 && ap
->min_target
&&
2062 rs
->rs_rbm
.rgd
->rd_free_clone
>= ap
->min_target
)) {
2063 ip
->i_rgd
= rs
->rs_rbm
.rgd
;
2064 ap
->allowed
= ip
->i_rgd
->rd_free_clone
;
2068 /* Check for unlinked inodes which can be reclaimed */
2069 if (rs
->rs_rbm
.rgd
->rd_flags
& GFS2_RDF_CHECK
)
2070 try_rgrp_unlink(rs
->rs_rbm
.rgd
, &last_unlinked
,
2073 /* Drop reservation, if we couldn't use reserved rgrp */
2074 if (gfs2_rs_active(rs
))
2075 gfs2_rs_deltree(rs
);
2077 /* Unlock rgrp if required */
2079 gfs2_glock_dq_uninit(&rs
->rs_rgd_gh
);
2081 /* Find the next rgrp, and continue looking */
2082 if (gfs2_select_rgrp(&rs
->rs_rbm
.rgd
, begin
))
2087 /* If we've scanned all the rgrps, but found no free blocks
2088 * then this checks for some less likely conditions before
2092 /* Check that fs hasn't grown if writing to rindex */
2093 if (ip
== GFS2_I(sdp
->sd_rindex
) && !sdp
->sd_rindex_uptodate
) {
2094 error
= gfs2_ri_update(ip
);
2098 /* Flushing the log may release space */
2100 gfs2_log_flush(sdp
, NULL
, NORMAL_FLUSH
);
2107 * gfs2_inplace_release - release an inplace reservation
2108 * @ip: the inode the reservation was taken out on
2110 * Release a reservation made by gfs2_inplace_reserve().
2113 void gfs2_inplace_release(struct gfs2_inode
*ip
)
2115 struct gfs2_blkreserv
*rs
= ip
->i_res
;
2117 if (rs
->rs_rgd_gh
.gh_gl
)
2118 gfs2_glock_dq_uninit(&rs
->rs_rgd_gh
);
2122 * gfs2_get_block_type - Check a block in a RG is of given type
2123 * @rgd: the resource group holding the block
2124 * @block: the block number
2126 * Returns: The block type (GFS2_BLKST_*)
2129 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd
*rgd
, u64 block
)
2131 struct gfs2_rbm rbm
= { .rgd
= rgd
, };
2134 ret
= gfs2_rbm_from_block(&rbm
, block
);
2135 WARN_ON_ONCE(ret
!= 0);
2137 return gfs2_testbit(&rbm
);
2142 * gfs2_alloc_extent - allocate an extent from a given bitmap
2143 * @rbm: the resource group information
2144 * @dinode: TRUE if the first block we allocate is for a dinode
2145 * @n: The extent length (value/result)
2147 * Add the bitmap buffer to the transaction.
2148 * Set the found bits to @new_state to change block's allocation state.
2150 static void gfs2_alloc_extent(const struct gfs2_rbm
*rbm
, bool dinode
,
2153 struct gfs2_rbm pos
= { .rgd
= rbm
->rgd
, };
2154 const unsigned int elen
= *n
;
2159 block
= gfs2_rbm_to_block(rbm
);
2160 gfs2_trans_add_meta(rbm
->rgd
->rd_gl
, rbm_bi(rbm
)->bi_bh
);
2161 gfs2_setbit(rbm
, true, dinode
? GFS2_BLKST_DINODE
: GFS2_BLKST_USED
);
2164 ret
= gfs2_rbm_from_block(&pos
, block
);
2165 if (ret
|| gfs2_testbit(&pos
) != GFS2_BLKST_FREE
)
2167 gfs2_trans_add_meta(pos
.rgd
->rd_gl
, rbm_bi(&pos
)->bi_bh
);
2168 gfs2_setbit(&pos
, true, GFS2_BLKST_USED
);
2175 * rgblk_free - Change alloc state of given block(s)
2176 * @sdp: the filesystem
2177 * @bstart: the start of a run of blocks to free
2178 * @blen: the length of the block run (all must lie within ONE RG!)
2179 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2181 * Returns: Resource group containing the block(s)
2184 static struct gfs2_rgrpd
*rgblk_free(struct gfs2_sbd
*sdp
, u64 bstart
,
2185 u32 blen
, unsigned char new_state
)
2187 struct gfs2_rbm rbm
;
2188 struct gfs2_bitmap
*bi
, *bi_prev
= NULL
;
2190 rbm
.rgd
= gfs2_blk2rgrpd(sdp
, bstart
, 1);
2192 if (gfs2_consist(sdp
))
2193 fs_err(sdp
, "block = %llu\n", (unsigned long long)bstart
);
2197 gfs2_rbm_from_block(&rbm
, bstart
);
2200 if (bi
!= bi_prev
) {
2201 if (!bi
->bi_clone
) {
2202 bi
->bi_clone
= kmalloc(bi
->bi_bh
->b_size
,
2203 GFP_NOFS
| __GFP_NOFAIL
);
2204 memcpy(bi
->bi_clone
+ bi
->bi_offset
,
2205 bi
->bi_bh
->b_data
+ bi
->bi_offset
,
2208 gfs2_trans_add_meta(rbm
.rgd
->rd_gl
, bi
->bi_bh
);
2211 gfs2_setbit(&rbm
, false, new_state
);
2212 gfs2_rbm_incr(&rbm
);
2219 * gfs2_rgrp_dump - print out an rgrp
2220 * @seq: The iterator
2221 * @gl: The glock in question
2225 void gfs2_rgrp_dump(struct seq_file
*seq
, const struct gfs2_glock
*gl
)
2227 struct gfs2_rgrpd
*rgd
= gl
->gl_object
;
2228 struct gfs2_blkreserv
*trs
;
2229 const struct rb_node
*n
;
2233 gfs2_print_dbg(seq
, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2234 (unsigned long long)rgd
->rd_addr
, rgd
->rd_flags
,
2235 rgd
->rd_free
, rgd
->rd_free_clone
, rgd
->rd_dinodes
,
2236 rgd
->rd_reserved
, rgd
->rd_extfail_pt
);
2237 spin_lock(&rgd
->rd_rsspin
);
2238 for (n
= rb_first(&rgd
->rd_rstree
); n
; n
= rb_next(&trs
->rs_node
)) {
2239 trs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
2242 spin_unlock(&rgd
->rd_rsspin
);
2245 static void gfs2_rgrp_error(struct gfs2_rgrpd
*rgd
)
2247 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
2248 fs_warn(sdp
, "rgrp %llu has an error, marking it readonly until umount\n",
2249 (unsigned long long)rgd
->rd_addr
);
2250 fs_warn(sdp
, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2251 gfs2_rgrp_dump(NULL
, rgd
->rd_gl
);
2252 rgd
->rd_flags
|= GFS2_RDF_ERROR
;
2256 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2257 * @ip: The inode we have just allocated blocks for
2258 * @rbm: The start of the allocated blocks
2259 * @len: The extent length
2261 * Adjusts a reservation after an allocation has taken place. If the
2262 * reservation does not match the allocation, or if it is now empty
2263 * then it is removed.
2266 static void gfs2_adjust_reservation(struct gfs2_inode
*ip
,
2267 const struct gfs2_rbm
*rbm
, unsigned len
)
2269 struct gfs2_blkreserv
*rs
= ip
->i_res
;
2270 struct gfs2_rgrpd
*rgd
= rbm
->rgd
;
2275 spin_lock(&rgd
->rd_rsspin
);
2276 if (gfs2_rs_active(rs
)) {
2277 if (gfs2_rbm_eq(&rs
->rs_rbm
, rbm
)) {
2278 block
= gfs2_rbm_to_block(rbm
);
2279 ret
= gfs2_rbm_from_block(&rs
->rs_rbm
, block
+ len
);
2280 rlen
= min(rs
->rs_free
, len
);
2281 rs
->rs_free
-= rlen
;
2282 rgd
->rd_reserved
-= rlen
;
2283 trace_gfs2_rs(rs
, TRACE_RS_CLAIM
);
2284 if (rs
->rs_free
&& !ret
)
2286 /* We used up our block reservation, so we should
2287 reserve more blocks next time. */
2288 atomic_add(RGRP_RSRV_ADDBLKS
, &rs
->rs_sizehint
);
2293 spin_unlock(&rgd
->rd_rsspin
);
2297 * gfs2_set_alloc_start - Set starting point for block allocation
2298 * @rbm: The rbm which will be set to the required location
2299 * @ip: The gfs2 inode
2300 * @dinode: Flag to say if allocation includes a new inode
2302 * This sets the starting point from the reservation if one is active
2303 * otherwise it falls back to guessing a start point based on the
2304 * inode's goal block or the last allocation point in the rgrp.
2307 static void gfs2_set_alloc_start(struct gfs2_rbm
*rbm
,
2308 const struct gfs2_inode
*ip
, bool dinode
)
2312 if (gfs2_rs_active(ip
->i_res
)) {
2313 *rbm
= ip
->i_res
->rs_rbm
;
2317 if (!dinode
&& rgrp_contains_block(rbm
->rgd
, ip
->i_goal
))
2320 goal
= rbm
->rgd
->rd_last_alloc
+ rbm
->rgd
->rd_data0
;
2322 gfs2_rbm_from_block(rbm
, goal
);
2326 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2327 * @ip: the inode to allocate the block for
2328 * @bn: Used to return the starting block number
2329 * @nblocks: requested number of blocks/extent length (value/result)
2330 * @dinode: 1 if we're allocating a dinode block, else 0
2331 * @generation: the generation number of the inode
2333 * Returns: 0 or error
2336 int gfs2_alloc_blocks(struct gfs2_inode
*ip
, u64
*bn
, unsigned int *nblocks
,
2337 bool dinode
, u64
*generation
)
2339 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2340 struct buffer_head
*dibh
;
2341 struct gfs2_rbm rbm
= { .rgd
= ip
->i_rgd
, };
2343 u64 block
; /* block, within the file system scope */
2346 gfs2_set_alloc_start(&rbm
, ip
, dinode
);
2347 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, NULL
, ip
, false, NULL
);
2349 if (error
== -ENOSPC
) {
2350 gfs2_set_alloc_start(&rbm
, ip
, dinode
);
2351 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, NULL
, NULL
, false,
2355 /* Since all blocks are reserved in advance, this shouldn't happen */
2357 fs_warn(sdp
, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2358 (unsigned long long)ip
->i_no_addr
, error
, *nblocks
,
2359 test_bit(GBF_FULL
, &rbm
.rgd
->rd_bits
->bi_flags
),
2360 rbm
.rgd
->rd_extfail_pt
);
2364 gfs2_alloc_extent(&rbm
, dinode
, nblocks
);
2365 block
= gfs2_rbm_to_block(&rbm
);
2366 rbm
.rgd
->rd_last_alloc
= block
- rbm
.rgd
->rd_data0
;
2367 if (gfs2_rs_active(ip
->i_res
))
2368 gfs2_adjust_reservation(ip
, &rbm
, *nblocks
);
2374 ip
->i_goal
= block
+ ndata
- 1;
2375 error
= gfs2_meta_inode_buffer(ip
, &dibh
);
2377 struct gfs2_dinode
*di
=
2378 (struct gfs2_dinode
*)dibh
->b_data
;
2379 gfs2_trans_add_meta(ip
->i_gl
, dibh
);
2380 di
->di_goal_meta
= di
->di_goal_data
=
2381 cpu_to_be64(ip
->i_goal
);
2385 if (rbm
.rgd
->rd_free
< *nblocks
) {
2386 pr_warn("nblocks=%u\n", *nblocks
);
2390 rbm
.rgd
->rd_free
-= *nblocks
;
2392 rbm
.rgd
->rd_dinodes
++;
2393 *generation
= rbm
.rgd
->rd_igeneration
++;
2394 if (*generation
== 0)
2395 *generation
= rbm
.rgd
->rd_igeneration
++;
2398 gfs2_trans_add_meta(rbm
.rgd
->rd_gl
, rbm
.rgd
->rd_bits
[0].bi_bh
);
2399 gfs2_rgrp_out(rbm
.rgd
, rbm
.rgd
->rd_bits
[0].bi_bh
->b_data
);
2400 gfs2_rgrp_ondisk2lvb(rbm
.rgd
->rd_rgl
, rbm
.rgd
->rd_bits
[0].bi_bh
->b_data
);
2402 gfs2_statfs_change(sdp
, 0, -(s64
)*nblocks
, dinode
? 1 : 0);
2404 gfs2_trans_add_unrevoke(sdp
, block
, *nblocks
);
2406 gfs2_quota_change(ip
, *nblocks
, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2408 rbm
.rgd
->rd_free_clone
-= *nblocks
;
2409 trace_gfs2_block_alloc(ip
, rbm
.rgd
, block
, *nblocks
,
2410 dinode
? GFS2_BLKST_DINODE
: GFS2_BLKST_USED
);
2415 gfs2_rgrp_error(rbm
.rgd
);
2420 * __gfs2_free_blocks - free a contiguous run of block(s)
2421 * @ip: the inode these blocks are being freed from
2422 * @bstart: first block of a run of contiguous blocks
2423 * @blen: the length of the block run
2424 * @meta: 1 if the blocks represent metadata
2428 void __gfs2_free_blocks(struct gfs2_inode
*ip
, u64 bstart
, u32 blen
, int meta
)
2430 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2431 struct gfs2_rgrpd
*rgd
;
2433 rgd
= rgblk_free(sdp
, bstart
, blen
, GFS2_BLKST_FREE
);
2436 trace_gfs2_block_alloc(ip
, rgd
, bstart
, blen
, GFS2_BLKST_FREE
);
2437 rgd
->rd_free
+= blen
;
2438 rgd
->rd_flags
&= ~GFS2_RGF_TRIMMED
;
2439 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2440 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2441 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2443 /* Directories keep their data in the metadata address space */
2444 if (meta
|| ip
->i_depth
)
2445 gfs2_meta_wipe(ip
, bstart
, blen
);
2449 * gfs2_free_meta - free a contiguous run of data block(s)
2450 * @ip: the inode these blocks are being freed from
2451 * @bstart: first block of a run of contiguous blocks
2452 * @blen: the length of the block run
2456 void gfs2_free_meta(struct gfs2_inode
*ip
, u64 bstart
, u32 blen
)
2458 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2460 __gfs2_free_blocks(ip
, bstart
, blen
, 1);
2461 gfs2_statfs_change(sdp
, 0, +blen
, 0);
2462 gfs2_quota_change(ip
, -(s64
)blen
, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2465 void gfs2_unlink_di(struct inode
*inode
)
2467 struct gfs2_inode
*ip
= GFS2_I(inode
);
2468 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
2469 struct gfs2_rgrpd
*rgd
;
2470 u64 blkno
= ip
->i_no_addr
;
2472 rgd
= rgblk_free(sdp
, blkno
, 1, GFS2_BLKST_UNLINKED
);
2475 trace_gfs2_block_alloc(ip
, rgd
, blkno
, 1, GFS2_BLKST_UNLINKED
);
2476 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2477 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2478 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2479 update_rgrp_lvb_unlinked(rgd
, 1);
2482 static void gfs2_free_uninit_di(struct gfs2_rgrpd
*rgd
, u64 blkno
)
2484 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
2485 struct gfs2_rgrpd
*tmp_rgd
;
2487 tmp_rgd
= rgblk_free(sdp
, blkno
, 1, GFS2_BLKST_FREE
);
2490 gfs2_assert_withdraw(sdp
, rgd
== tmp_rgd
);
2492 if (!rgd
->rd_dinodes
)
2493 gfs2_consist_rgrpd(rgd
);
2497 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2498 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2499 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2500 update_rgrp_lvb_unlinked(rgd
, -1);
2502 gfs2_statfs_change(sdp
, 0, +1, -1);
2506 void gfs2_free_di(struct gfs2_rgrpd
*rgd
, struct gfs2_inode
*ip
)
2508 gfs2_free_uninit_di(rgd
, ip
->i_no_addr
);
2509 trace_gfs2_block_alloc(ip
, rgd
, ip
->i_no_addr
, 1, GFS2_BLKST_FREE
);
2510 gfs2_quota_change(ip
, -1, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2511 gfs2_meta_wipe(ip
, ip
->i_no_addr
, 1);
2515 * gfs2_check_blk_type - Check the type of a block
2516 * @sdp: The superblock
2517 * @no_addr: The block number to check
2518 * @type: The block type we are looking for
2520 * Returns: 0 if the block type matches the expected type
2521 * -ESTALE if it doesn't match
2522 * or -ve errno if something went wrong while checking
2525 int gfs2_check_blk_type(struct gfs2_sbd
*sdp
, u64 no_addr
, unsigned int type
)
2527 struct gfs2_rgrpd
*rgd
;
2528 struct gfs2_holder rgd_gh
;
2529 int error
= -EINVAL
;
2531 rgd
= gfs2_blk2rgrpd(sdp
, no_addr
, 1);
2535 error
= gfs2_glock_nq_init(rgd
->rd_gl
, LM_ST_SHARED
, 0, &rgd_gh
);
2539 if (gfs2_get_block_type(rgd
, no_addr
) != type
)
2542 gfs2_glock_dq_uninit(&rgd_gh
);
2548 * gfs2_rlist_add - add a RG to a list of RGs
2550 * @rlist: the list of resource groups
2553 * Figure out what RG a block belongs to and add that RG to the list
2555 * FIXME: Don't use NOFAIL
2559 void gfs2_rlist_add(struct gfs2_inode
*ip
, struct gfs2_rgrp_list
*rlist
,
2562 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2563 struct gfs2_rgrpd
*rgd
;
2564 struct gfs2_rgrpd
**tmp
;
2565 unsigned int new_space
;
2568 if (gfs2_assert_warn(sdp
, !rlist
->rl_ghs
))
2571 if (ip
->i_rgd
&& rgrp_contains_block(ip
->i_rgd
, block
))
2574 rgd
= gfs2_blk2rgrpd(sdp
, block
, 1);
2576 fs_err(sdp
, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block
);
2581 for (x
= 0; x
< rlist
->rl_rgrps
; x
++)
2582 if (rlist
->rl_rgd
[x
] == rgd
)
2585 if (rlist
->rl_rgrps
== rlist
->rl_space
) {
2586 new_space
= rlist
->rl_space
+ 10;
2588 tmp
= kcalloc(new_space
, sizeof(struct gfs2_rgrpd
*),
2589 GFP_NOFS
| __GFP_NOFAIL
);
2591 if (rlist
->rl_rgd
) {
2592 memcpy(tmp
, rlist
->rl_rgd
,
2593 rlist
->rl_space
* sizeof(struct gfs2_rgrpd
*));
2594 kfree(rlist
->rl_rgd
);
2597 rlist
->rl_space
= new_space
;
2598 rlist
->rl_rgd
= tmp
;
2601 rlist
->rl_rgd
[rlist
->rl_rgrps
++] = rgd
;
2605 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2606 * and initialize an array of glock holders for them
2607 * @rlist: the list of resource groups
2608 * @state: the lock state to acquire the RG lock in
2610 * FIXME: Don't use NOFAIL
2614 void gfs2_rlist_alloc(struct gfs2_rgrp_list
*rlist
, unsigned int state
)
2618 rlist
->rl_ghs
= kcalloc(rlist
->rl_rgrps
, sizeof(struct gfs2_holder
),
2619 GFP_NOFS
| __GFP_NOFAIL
);
2620 for (x
= 0; x
< rlist
->rl_rgrps
; x
++)
2621 gfs2_holder_init(rlist
->rl_rgd
[x
]->rd_gl
,
2627 * gfs2_rlist_free - free a resource group list
2628 * @rlist: the list of resource groups
2632 void gfs2_rlist_free(struct gfs2_rgrp_list
*rlist
)
2636 kfree(rlist
->rl_rgd
);
2638 if (rlist
->rl_ghs
) {
2639 for (x
= 0; x
< rlist
->rl_rgrps
; x
++)
2640 gfs2_holder_uninit(&rlist
->rl_ghs
[x
]);
2641 kfree(rlist
->rl_ghs
);
2642 rlist
->rl_ghs
= NULL
;