USB: add a "remove hardware" sysfs attribute
[linux/fpc-iii.git] / kernel / futex.c
blobfb65e822fc41ae698c282aeadc6933b411aa8a78
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
63 #include <asm/futex.h>
65 #include "rtmutex_common.h"
67 int __read_mostly futex_cmpxchg_enabled;
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
72 * Priority Inheritance state:
74 struct futex_pi_state {
76 * list of 'owned' pi_state instances - these have to be
77 * cleaned up in do_exit() if the task exits prematurely:
79 struct list_head list;
82 * The PI object:
84 struct rt_mutex pi_mutex;
86 struct task_struct *owner;
87 atomic_t refcount;
89 union futex_key key;
92 /**
93 * struct futex_q - The hashed futex queue entry, one per waiting task
94 * @task: the task waiting on the futex
95 * @lock_ptr: the hash bucket lock
96 * @key: the key the futex is hashed on
97 * @pi_state: optional priority inheritance state
98 * @rt_waiter: rt_waiter storage for use with requeue_pi
99 * @requeue_pi_key: the requeue_pi target futex key
100 * @bitset: bitset for the optional bitmasked wakeup
102 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
103 * we can wake only the relevant ones (hashed queues may be shared).
105 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
106 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
107 * The order of wakup is always to make the first condition true, then
108 * the second.
110 * PI futexes are typically woken before they are removed from the hash list via
111 * the rt_mutex code. See unqueue_me_pi().
113 struct futex_q {
114 struct plist_node list;
116 struct task_struct *task;
117 spinlock_t *lock_ptr;
118 union futex_key key;
119 struct futex_pi_state *pi_state;
120 struct rt_mutex_waiter *rt_waiter;
121 union futex_key *requeue_pi_key;
122 u32 bitset;
126 * Hash buckets are shared by all the futex_keys that hash to the same
127 * location. Each key may have multiple futex_q structures, one for each task
128 * waiting on a futex.
130 struct futex_hash_bucket {
131 spinlock_t lock;
132 struct plist_head chain;
135 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
138 * We hash on the keys returned from get_futex_key (see below).
140 static struct futex_hash_bucket *hash_futex(union futex_key *key)
142 u32 hash = jhash2((u32*)&key->both.word,
143 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
144 key->both.offset);
145 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
149 * Return 1 if two futex_keys are equal, 0 otherwise.
151 static inline int match_futex(union futex_key *key1, union futex_key *key2)
153 return (key1 && key2
154 && key1->both.word == key2->both.word
155 && key1->both.ptr == key2->both.ptr
156 && key1->both.offset == key2->both.offset);
160 * Take a reference to the resource addressed by a key.
161 * Can be called while holding spinlocks.
164 static void get_futex_key_refs(union futex_key *key)
166 if (!key->both.ptr)
167 return;
169 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
170 case FUT_OFF_INODE:
171 atomic_inc(&key->shared.inode->i_count);
172 break;
173 case FUT_OFF_MMSHARED:
174 atomic_inc(&key->private.mm->mm_count);
175 break;
180 * Drop a reference to the resource addressed by a key.
181 * The hash bucket spinlock must not be held.
183 static void drop_futex_key_refs(union futex_key *key)
185 if (!key->both.ptr) {
186 /* If we're here then we tried to put a key we failed to get */
187 WARN_ON_ONCE(1);
188 return;
191 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
192 case FUT_OFF_INODE:
193 iput(key->shared.inode);
194 break;
195 case FUT_OFF_MMSHARED:
196 mmdrop(key->private.mm);
197 break;
202 * get_futex_key() - Get parameters which are the keys for a futex
203 * @uaddr: virtual address of the futex
204 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
205 * @key: address where result is stored.
206 * @rw: mapping needs to be read/write (values: VERIFY_READ,
207 * VERIFY_WRITE)
209 * Returns a negative error code or 0
210 * The key words are stored in *key on success.
212 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
213 * offset_within_page). For private mappings, it's (uaddr, current->mm).
214 * We can usually work out the index without swapping in the page.
216 * lock_page() might sleep, the caller should not hold a spinlock.
218 static int
219 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
221 unsigned long address = (unsigned long)uaddr;
222 struct mm_struct *mm = current->mm;
223 struct page *page;
224 int err;
227 * The futex address must be "naturally" aligned.
229 key->both.offset = address % PAGE_SIZE;
230 if (unlikely((address % sizeof(u32)) != 0))
231 return -EINVAL;
232 address -= key->both.offset;
235 * PROCESS_PRIVATE futexes are fast.
236 * As the mm cannot disappear under us and the 'key' only needs
237 * virtual address, we dont even have to find the underlying vma.
238 * Note : We do have to check 'uaddr' is a valid user address,
239 * but access_ok() should be faster than find_vma()
241 if (!fshared) {
242 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
243 return -EFAULT;
244 key->private.mm = mm;
245 key->private.address = address;
246 get_futex_key_refs(key);
247 return 0;
250 again:
251 err = get_user_pages_fast(address, 1, rw == VERIFY_WRITE, &page);
252 if (err < 0)
253 return err;
255 page = compound_head(page);
256 lock_page(page);
257 if (!page->mapping) {
258 unlock_page(page);
259 put_page(page);
260 goto again;
264 * Private mappings are handled in a simple way.
266 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
267 * it's a read-only handle, it's expected that futexes attach to
268 * the object not the particular process.
270 if (PageAnon(page)) {
271 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
272 key->private.mm = mm;
273 key->private.address = address;
274 } else {
275 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
276 key->shared.inode = page->mapping->host;
277 key->shared.pgoff = page->index;
280 get_futex_key_refs(key);
282 unlock_page(page);
283 put_page(page);
284 return 0;
287 static inline
288 void put_futex_key(int fshared, union futex_key *key)
290 drop_futex_key_refs(key);
294 * fault_in_user_writeable() - Fault in user address and verify RW access
295 * @uaddr: pointer to faulting user space address
297 * Slow path to fixup the fault we just took in the atomic write
298 * access to @uaddr.
300 * We have no generic implementation of a non destructive write to the
301 * user address. We know that we faulted in the atomic pagefault
302 * disabled section so we can as well avoid the #PF overhead by
303 * calling get_user_pages() right away.
305 static int fault_in_user_writeable(u32 __user *uaddr)
307 int ret = get_user_pages(current, current->mm, (unsigned long)uaddr,
308 1, 1, 0, NULL, NULL);
309 return ret < 0 ? ret : 0;
313 * futex_top_waiter() - Return the highest priority waiter on a futex
314 * @hb: the hash bucket the futex_q's reside in
315 * @key: the futex key (to distinguish it from other futex futex_q's)
317 * Must be called with the hb lock held.
319 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
320 union futex_key *key)
322 struct futex_q *this;
324 plist_for_each_entry(this, &hb->chain, list) {
325 if (match_futex(&this->key, key))
326 return this;
328 return NULL;
331 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
333 u32 curval;
335 pagefault_disable();
336 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
337 pagefault_enable();
339 return curval;
342 static int get_futex_value_locked(u32 *dest, u32 __user *from)
344 int ret;
346 pagefault_disable();
347 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
348 pagefault_enable();
350 return ret ? -EFAULT : 0;
355 * PI code:
357 static int refill_pi_state_cache(void)
359 struct futex_pi_state *pi_state;
361 if (likely(current->pi_state_cache))
362 return 0;
364 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
366 if (!pi_state)
367 return -ENOMEM;
369 INIT_LIST_HEAD(&pi_state->list);
370 /* pi_mutex gets initialized later */
371 pi_state->owner = NULL;
372 atomic_set(&pi_state->refcount, 1);
373 pi_state->key = FUTEX_KEY_INIT;
375 current->pi_state_cache = pi_state;
377 return 0;
380 static struct futex_pi_state * alloc_pi_state(void)
382 struct futex_pi_state *pi_state = current->pi_state_cache;
384 WARN_ON(!pi_state);
385 current->pi_state_cache = NULL;
387 return pi_state;
390 static void free_pi_state(struct futex_pi_state *pi_state)
392 if (!atomic_dec_and_test(&pi_state->refcount))
393 return;
396 * If pi_state->owner is NULL, the owner is most probably dying
397 * and has cleaned up the pi_state already
399 if (pi_state->owner) {
400 spin_lock_irq(&pi_state->owner->pi_lock);
401 list_del_init(&pi_state->list);
402 spin_unlock_irq(&pi_state->owner->pi_lock);
404 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
407 if (current->pi_state_cache)
408 kfree(pi_state);
409 else {
411 * pi_state->list is already empty.
412 * clear pi_state->owner.
413 * refcount is at 0 - put it back to 1.
415 pi_state->owner = NULL;
416 atomic_set(&pi_state->refcount, 1);
417 current->pi_state_cache = pi_state;
422 * Look up the task based on what TID userspace gave us.
423 * We dont trust it.
425 static struct task_struct * futex_find_get_task(pid_t pid)
427 struct task_struct *p;
428 const struct cred *cred = current_cred(), *pcred;
430 rcu_read_lock();
431 p = find_task_by_vpid(pid);
432 if (!p) {
433 p = ERR_PTR(-ESRCH);
434 } else {
435 pcred = __task_cred(p);
436 if (cred->euid != pcred->euid &&
437 cred->euid != pcred->uid)
438 p = ERR_PTR(-ESRCH);
439 else
440 get_task_struct(p);
443 rcu_read_unlock();
445 return p;
449 * This task is holding PI mutexes at exit time => bad.
450 * Kernel cleans up PI-state, but userspace is likely hosed.
451 * (Robust-futex cleanup is separate and might save the day for userspace.)
453 void exit_pi_state_list(struct task_struct *curr)
455 struct list_head *next, *head = &curr->pi_state_list;
456 struct futex_pi_state *pi_state;
457 struct futex_hash_bucket *hb;
458 union futex_key key = FUTEX_KEY_INIT;
460 if (!futex_cmpxchg_enabled)
461 return;
463 * We are a ZOMBIE and nobody can enqueue itself on
464 * pi_state_list anymore, but we have to be careful
465 * versus waiters unqueueing themselves:
467 spin_lock_irq(&curr->pi_lock);
468 while (!list_empty(head)) {
470 next = head->next;
471 pi_state = list_entry(next, struct futex_pi_state, list);
472 key = pi_state->key;
473 hb = hash_futex(&key);
474 spin_unlock_irq(&curr->pi_lock);
476 spin_lock(&hb->lock);
478 spin_lock_irq(&curr->pi_lock);
480 * We dropped the pi-lock, so re-check whether this
481 * task still owns the PI-state:
483 if (head->next != next) {
484 spin_unlock(&hb->lock);
485 continue;
488 WARN_ON(pi_state->owner != curr);
489 WARN_ON(list_empty(&pi_state->list));
490 list_del_init(&pi_state->list);
491 pi_state->owner = NULL;
492 spin_unlock_irq(&curr->pi_lock);
494 rt_mutex_unlock(&pi_state->pi_mutex);
496 spin_unlock(&hb->lock);
498 spin_lock_irq(&curr->pi_lock);
500 spin_unlock_irq(&curr->pi_lock);
503 static int
504 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
505 union futex_key *key, struct futex_pi_state **ps)
507 struct futex_pi_state *pi_state = NULL;
508 struct futex_q *this, *next;
509 struct plist_head *head;
510 struct task_struct *p;
511 pid_t pid = uval & FUTEX_TID_MASK;
513 head = &hb->chain;
515 plist_for_each_entry_safe(this, next, head, list) {
516 if (match_futex(&this->key, key)) {
518 * Another waiter already exists - bump up
519 * the refcount and return its pi_state:
521 pi_state = this->pi_state;
523 * Userspace might have messed up non PI and PI futexes
525 if (unlikely(!pi_state))
526 return -EINVAL;
528 WARN_ON(!atomic_read(&pi_state->refcount));
529 WARN_ON(pid && pi_state->owner &&
530 pi_state->owner->pid != pid);
532 atomic_inc(&pi_state->refcount);
533 *ps = pi_state;
535 return 0;
540 * We are the first waiter - try to look up the real owner and attach
541 * the new pi_state to it, but bail out when TID = 0
543 if (!pid)
544 return -ESRCH;
545 p = futex_find_get_task(pid);
546 if (IS_ERR(p))
547 return PTR_ERR(p);
550 * We need to look at the task state flags to figure out,
551 * whether the task is exiting. To protect against the do_exit
552 * change of the task flags, we do this protected by
553 * p->pi_lock:
555 spin_lock_irq(&p->pi_lock);
556 if (unlikely(p->flags & PF_EXITING)) {
558 * The task is on the way out. When PF_EXITPIDONE is
559 * set, we know that the task has finished the
560 * cleanup:
562 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
564 spin_unlock_irq(&p->pi_lock);
565 put_task_struct(p);
566 return ret;
569 pi_state = alloc_pi_state();
572 * Initialize the pi_mutex in locked state and make 'p'
573 * the owner of it:
575 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
577 /* Store the key for possible exit cleanups: */
578 pi_state->key = *key;
580 WARN_ON(!list_empty(&pi_state->list));
581 list_add(&pi_state->list, &p->pi_state_list);
582 pi_state->owner = p;
583 spin_unlock_irq(&p->pi_lock);
585 put_task_struct(p);
587 *ps = pi_state;
589 return 0;
593 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
594 * @uaddr: the pi futex user address
595 * @hb: the pi futex hash bucket
596 * @key: the futex key associated with uaddr and hb
597 * @ps: the pi_state pointer where we store the result of the
598 * lookup
599 * @task: the task to perform the atomic lock work for. This will
600 * be "current" except in the case of requeue pi.
601 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
603 * Returns:
604 * 0 - ready to wait
605 * 1 - acquired the lock
606 * <0 - error
608 * The hb->lock and futex_key refs shall be held by the caller.
610 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
611 union futex_key *key,
612 struct futex_pi_state **ps,
613 struct task_struct *task, int set_waiters)
615 int lock_taken, ret, ownerdied = 0;
616 u32 uval, newval, curval;
618 retry:
619 ret = lock_taken = 0;
622 * To avoid races, we attempt to take the lock here again
623 * (by doing a 0 -> TID atomic cmpxchg), while holding all
624 * the locks. It will most likely not succeed.
626 newval = task_pid_vnr(task);
627 if (set_waiters)
628 newval |= FUTEX_WAITERS;
630 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
632 if (unlikely(curval == -EFAULT))
633 return -EFAULT;
636 * Detect deadlocks.
638 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
639 return -EDEADLK;
642 * Surprise - we got the lock. Just return to userspace:
644 if (unlikely(!curval))
645 return 1;
647 uval = curval;
650 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
651 * to wake at the next unlock.
653 newval = curval | FUTEX_WAITERS;
656 * There are two cases, where a futex might have no owner (the
657 * owner TID is 0): OWNER_DIED. We take over the futex in this
658 * case. We also do an unconditional take over, when the owner
659 * of the futex died.
661 * This is safe as we are protected by the hash bucket lock !
663 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
664 /* Keep the OWNER_DIED bit */
665 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
666 ownerdied = 0;
667 lock_taken = 1;
670 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
672 if (unlikely(curval == -EFAULT))
673 return -EFAULT;
674 if (unlikely(curval != uval))
675 goto retry;
678 * We took the lock due to owner died take over.
680 if (unlikely(lock_taken))
681 return 1;
684 * We dont have the lock. Look up the PI state (or create it if
685 * we are the first waiter):
687 ret = lookup_pi_state(uval, hb, key, ps);
689 if (unlikely(ret)) {
690 switch (ret) {
691 case -ESRCH:
693 * No owner found for this futex. Check if the
694 * OWNER_DIED bit is set to figure out whether
695 * this is a robust futex or not.
697 if (get_futex_value_locked(&curval, uaddr))
698 return -EFAULT;
701 * We simply start over in case of a robust
702 * futex. The code above will take the futex
703 * and return happy.
705 if (curval & FUTEX_OWNER_DIED) {
706 ownerdied = 1;
707 goto retry;
709 default:
710 break;
714 return ret;
718 * The hash bucket lock must be held when this is called.
719 * Afterwards, the futex_q must not be accessed.
721 static void wake_futex(struct futex_q *q)
723 struct task_struct *p = q->task;
726 * We set q->lock_ptr = NULL _before_ we wake up the task. If
727 * a non futex wake up happens on another CPU then the task
728 * might exit and p would dereference a non existing task
729 * struct. Prevent this by holding a reference on p across the
730 * wake up.
732 get_task_struct(p);
734 plist_del(&q->list, &q->list.plist);
736 * The waiting task can free the futex_q as soon as
737 * q->lock_ptr = NULL is written, without taking any locks. A
738 * memory barrier is required here to prevent the following
739 * store to lock_ptr from getting ahead of the plist_del.
741 smp_wmb();
742 q->lock_ptr = NULL;
744 wake_up_state(p, TASK_NORMAL);
745 put_task_struct(p);
748 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
750 struct task_struct *new_owner;
751 struct futex_pi_state *pi_state = this->pi_state;
752 u32 curval, newval;
754 if (!pi_state)
755 return -EINVAL;
757 spin_lock(&pi_state->pi_mutex.wait_lock);
758 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
761 * This happens when we have stolen the lock and the original
762 * pending owner did not enqueue itself back on the rt_mutex.
763 * Thats not a tragedy. We know that way, that a lock waiter
764 * is on the fly. We make the futex_q waiter the pending owner.
766 if (!new_owner)
767 new_owner = this->task;
770 * We pass it to the next owner. (The WAITERS bit is always
771 * kept enabled while there is PI state around. We must also
772 * preserve the owner died bit.)
774 if (!(uval & FUTEX_OWNER_DIED)) {
775 int ret = 0;
777 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
779 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
781 if (curval == -EFAULT)
782 ret = -EFAULT;
783 else if (curval != uval)
784 ret = -EINVAL;
785 if (ret) {
786 spin_unlock(&pi_state->pi_mutex.wait_lock);
787 return ret;
791 spin_lock_irq(&pi_state->owner->pi_lock);
792 WARN_ON(list_empty(&pi_state->list));
793 list_del_init(&pi_state->list);
794 spin_unlock_irq(&pi_state->owner->pi_lock);
796 spin_lock_irq(&new_owner->pi_lock);
797 WARN_ON(!list_empty(&pi_state->list));
798 list_add(&pi_state->list, &new_owner->pi_state_list);
799 pi_state->owner = new_owner;
800 spin_unlock_irq(&new_owner->pi_lock);
802 spin_unlock(&pi_state->pi_mutex.wait_lock);
803 rt_mutex_unlock(&pi_state->pi_mutex);
805 return 0;
808 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
810 u32 oldval;
813 * There is no waiter, so we unlock the futex. The owner died
814 * bit has not to be preserved here. We are the owner:
816 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
818 if (oldval == -EFAULT)
819 return oldval;
820 if (oldval != uval)
821 return -EAGAIN;
823 return 0;
827 * Express the locking dependencies for lockdep:
829 static inline void
830 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
832 if (hb1 <= hb2) {
833 spin_lock(&hb1->lock);
834 if (hb1 < hb2)
835 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
836 } else { /* hb1 > hb2 */
837 spin_lock(&hb2->lock);
838 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
842 static inline void
843 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
845 spin_unlock(&hb1->lock);
846 if (hb1 != hb2)
847 spin_unlock(&hb2->lock);
851 * Wake up waiters matching bitset queued on this futex (uaddr).
853 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
855 struct futex_hash_bucket *hb;
856 struct futex_q *this, *next;
857 struct plist_head *head;
858 union futex_key key = FUTEX_KEY_INIT;
859 int ret;
861 if (!bitset)
862 return -EINVAL;
864 ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
865 if (unlikely(ret != 0))
866 goto out;
868 hb = hash_futex(&key);
869 spin_lock(&hb->lock);
870 head = &hb->chain;
872 plist_for_each_entry_safe(this, next, head, list) {
873 if (match_futex (&this->key, &key)) {
874 if (this->pi_state || this->rt_waiter) {
875 ret = -EINVAL;
876 break;
879 /* Check if one of the bits is set in both bitsets */
880 if (!(this->bitset & bitset))
881 continue;
883 wake_futex(this);
884 if (++ret >= nr_wake)
885 break;
889 spin_unlock(&hb->lock);
890 put_futex_key(fshared, &key);
891 out:
892 return ret;
896 * Wake up all waiters hashed on the physical page that is mapped
897 * to this virtual address:
899 static int
900 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
901 int nr_wake, int nr_wake2, int op)
903 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
904 struct futex_hash_bucket *hb1, *hb2;
905 struct plist_head *head;
906 struct futex_q *this, *next;
907 int ret, op_ret;
909 retry:
910 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
911 if (unlikely(ret != 0))
912 goto out;
913 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
914 if (unlikely(ret != 0))
915 goto out_put_key1;
917 hb1 = hash_futex(&key1);
918 hb2 = hash_futex(&key2);
920 retry_private:
921 double_lock_hb(hb1, hb2);
922 op_ret = futex_atomic_op_inuser(op, uaddr2);
923 if (unlikely(op_ret < 0)) {
925 double_unlock_hb(hb1, hb2);
927 #ifndef CONFIG_MMU
929 * we don't get EFAULT from MMU faults if we don't have an MMU,
930 * but we might get them from range checking
932 ret = op_ret;
933 goto out_put_keys;
934 #endif
936 if (unlikely(op_ret != -EFAULT)) {
937 ret = op_ret;
938 goto out_put_keys;
941 ret = fault_in_user_writeable(uaddr2);
942 if (ret)
943 goto out_put_keys;
945 if (!fshared)
946 goto retry_private;
948 put_futex_key(fshared, &key2);
949 put_futex_key(fshared, &key1);
950 goto retry;
953 head = &hb1->chain;
955 plist_for_each_entry_safe(this, next, head, list) {
956 if (match_futex (&this->key, &key1)) {
957 wake_futex(this);
958 if (++ret >= nr_wake)
959 break;
963 if (op_ret > 0) {
964 head = &hb2->chain;
966 op_ret = 0;
967 plist_for_each_entry_safe(this, next, head, list) {
968 if (match_futex (&this->key, &key2)) {
969 wake_futex(this);
970 if (++op_ret >= nr_wake2)
971 break;
974 ret += op_ret;
977 double_unlock_hb(hb1, hb2);
978 out_put_keys:
979 put_futex_key(fshared, &key2);
980 out_put_key1:
981 put_futex_key(fshared, &key1);
982 out:
983 return ret;
987 * requeue_futex() - Requeue a futex_q from one hb to another
988 * @q: the futex_q to requeue
989 * @hb1: the source hash_bucket
990 * @hb2: the target hash_bucket
991 * @key2: the new key for the requeued futex_q
993 static inline
994 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
995 struct futex_hash_bucket *hb2, union futex_key *key2)
999 * If key1 and key2 hash to the same bucket, no need to
1000 * requeue.
1002 if (likely(&hb1->chain != &hb2->chain)) {
1003 plist_del(&q->list, &hb1->chain);
1004 plist_add(&q->list, &hb2->chain);
1005 q->lock_ptr = &hb2->lock;
1006 #ifdef CONFIG_DEBUG_PI_LIST
1007 q->list.plist.lock = &hb2->lock;
1008 #endif
1010 get_futex_key_refs(key2);
1011 q->key = *key2;
1015 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1016 * @q: the futex_q
1017 * @key: the key of the requeue target futex
1018 * @hb: the hash_bucket of the requeue target futex
1020 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1021 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1022 * to the requeue target futex so the waiter can detect the wakeup on the right
1023 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1024 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1025 * to protect access to the pi_state to fixup the owner later. Must be called
1026 * with both q->lock_ptr and hb->lock held.
1028 static inline
1029 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1030 struct futex_hash_bucket *hb)
1032 get_futex_key_refs(key);
1033 q->key = *key;
1035 WARN_ON(plist_node_empty(&q->list));
1036 plist_del(&q->list, &q->list.plist);
1038 WARN_ON(!q->rt_waiter);
1039 q->rt_waiter = NULL;
1041 q->lock_ptr = &hb->lock;
1042 #ifdef CONFIG_DEBUG_PI_LIST
1043 q->list.plist.lock = &hb->lock;
1044 #endif
1046 wake_up_state(q->task, TASK_NORMAL);
1050 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1051 * @pifutex: the user address of the to futex
1052 * @hb1: the from futex hash bucket, must be locked by the caller
1053 * @hb2: the to futex hash bucket, must be locked by the caller
1054 * @key1: the from futex key
1055 * @key2: the to futex key
1056 * @ps: address to store the pi_state pointer
1057 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1059 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1060 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1061 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1062 * hb1 and hb2 must be held by the caller.
1064 * Returns:
1065 * 0 - failed to acquire the lock atomicly
1066 * 1 - acquired the lock
1067 * <0 - error
1069 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1070 struct futex_hash_bucket *hb1,
1071 struct futex_hash_bucket *hb2,
1072 union futex_key *key1, union futex_key *key2,
1073 struct futex_pi_state **ps, int set_waiters)
1075 struct futex_q *top_waiter = NULL;
1076 u32 curval;
1077 int ret;
1079 if (get_futex_value_locked(&curval, pifutex))
1080 return -EFAULT;
1083 * Find the top_waiter and determine if there are additional waiters.
1084 * If the caller intends to requeue more than 1 waiter to pifutex,
1085 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1086 * as we have means to handle the possible fault. If not, don't set
1087 * the bit unecessarily as it will force the subsequent unlock to enter
1088 * the kernel.
1090 top_waiter = futex_top_waiter(hb1, key1);
1092 /* There are no waiters, nothing for us to do. */
1093 if (!top_waiter)
1094 return 0;
1096 /* Ensure we requeue to the expected futex. */
1097 if (!match_futex(top_waiter->requeue_pi_key, key2))
1098 return -EINVAL;
1101 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1102 * the contended case or if set_waiters is 1. The pi_state is returned
1103 * in ps in contended cases.
1105 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1106 set_waiters);
1107 if (ret == 1)
1108 requeue_pi_wake_futex(top_waiter, key2, hb2);
1110 return ret;
1114 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1115 * uaddr1: source futex user address
1116 * uaddr2: target futex user address
1117 * nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1118 * nr_requeue: number of waiters to requeue (0-INT_MAX)
1119 * requeue_pi: if we are attempting to requeue from a non-pi futex to a
1120 * pi futex (pi to pi requeue is not supported)
1122 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1123 * uaddr2 atomically on behalf of the top waiter.
1125 * Returns:
1126 * >=0 - on success, the number of tasks requeued or woken
1127 * <0 - on error
1129 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1130 int nr_wake, int nr_requeue, u32 *cmpval,
1131 int requeue_pi)
1133 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1134 int drop_count = 0, task_count = 0, ret;
1135 struct futex_pi_state *pi_state = NULL;
1136 struct futex_hash_bucket *hb1, *hb2;
1137 struct plist_head *head1;
1138 struct futex_q *this, *next;
1139 u32 curval2;
1141 if (requeue_pi) {
1143 * requeue_pi requires a pi_state, try to allocate it now
1144 * without any locks in case it fails.
1146 if (refill_pi_state_cache())
1147 return -ENOMEM;
1149 * requeue_pi must wake as many tasks as it can, up to nr_wake
1150 * + nr_requeue, since it acquires the rt_mutex prior to
1151 * returning to userspace, so as to not leave the rt_mutex with
1152 * waiters and no owner. However, second and third wake-ups
1153 * cannot be predicted as they involve race conditions with the
1154 * first wake and a fault while looking up the pi_state. Both
1155 * pthread_cond_signal() and pthread_cond_broadcast() should
1156 * use nr_wake=1.
1158 if (nr_wake != 1)
1159 return -EINVAL;
1162 retry:
1163 if (pi_state != NULL) {
1165 * We will have to lookup the pi_state again, so free this one
1166 * to keep the accounting correct.
1168 free_pi_state(pi_state);
1169 pi_state = NULL;
1172 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
1173 if (unlikely(ret != 0))
1174 goto out;
1175 ret = get_futex_key(uaddr2, fshared, &key2,
1176 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1177 if (unlikely(ret != 0))
1178 goto out_put_key1;
1180 hb1 = hash_futex(&key1);
1181 hb2 = hash_futex(&key2);
1183 retry_private:
1184 double_lock_hb(hb1, hb2);
1186 if (likely(cmpval != NULL)) {
1187 u32 curval;
1189 ret = get_futex_value_locked(&curval, uaddr1);
1191 if (unlikely(ret)) {
1192 double_unlock_hb(hb1, hb2);
1194 ret = get_user(curval, uaddr1);
1195 if (ret)
1196 goto out_put_keys;
1198 if (!fshared)
1199 goto retry_private;
1201 put_futex_key(fshared, &key2);
1202 put_futex_key(fshared, &key1);
1203 goto retry;
1205 if (curval != *cmpval) {
1206 ret = -EAGAIN;
1207 goto out_unlock;
1211 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1213 * Attempt to acquire uaddr2 and wake the top waiter. If we
1214 * intend to requeue waiters, force setting the FUTEX_WAITERS
1215 * bit. We force this here where we are able to easily handle
1216 * faults rather in the requeue loop below.
1218 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1219 &key2, &pi_state, nr_requeue);
1222 * At this point the top_waiter has either taken uaddr2 or is
1223 * waiting on it. If the former, then the pi_state will not
1224 * exist yet, look it up one more time to ensure we have a
1225 * reference to it.
1227 if (ret == 1) {
1228 WARN_ON(pi_state);
1229 drop_count++;
1230 task_count++;
1231 ret = get_futex_value_locked(&curval2, uaddr2);
1232 if (!ret)
1233 ret = lookup_pi_state(curval2, hb2, &key2,
1234 &pi_state);
1237 switch (ret) {
1238 case 0:
1239 break;
1240 case -EFAULT:
1241 double_unlock_hb(hb1, hb2);
1242 put_futex_key(fshared, &key2);
1243 put_futex_key(fshared, &key1);
1244 ret = fault_in_user_writeable(uaddr2);
1245 if (!ret)
1246 goto retry;
1247 goto out;
1248 case -EAGAIN:
1249 /* The owner was exiting, try again. */
1250 double_unlock_hb(hb1, hb2);
1251 put_futex_key(fshared, &key2);
1252 put_futex_key(fshared, &key1);
1253 cond_resched();
1254 goto retry;
1255 default:
1256 goto out_unlock;
1260 head1 = &hb1->chain;
1261 plist_for_each_entry_safe(this, next, head1, list) {
1262 if (task_count - nr_wake >= nr_requeue)
1263 break;
1265 if (!match_futex(&this->key, &key1))
1266 continue;
1269 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1270 * be paired with each other and no other futex ops.
1272 if ((requeue_pi && !this->rt_waiter) ||
1273 (!requeue_pi && this->rt_waiter)) {
1274 ret = -EINVAL;
1275 break;
1279 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1280 * lock, we already woke the top_waiter. If not, it will be
1281 * woken by futex_unlock_pi().
1283 if (++task_count <= nr_wake && !requeue_pi) {
1284 wake_futex(this);
1285 continue;
1288 /* Ensure we requeue to the expected futex for requeue_pi. */
1289 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1290 ret = -EINVAL;
1291 break;
1295 * Requeue nr_requeue waiters and possibly one more in the case
1296 * of requeue_pi if we couldn't acquire the lock atomically.
1298 if (requeue_pi) {
1299 /* Prepare the waiter to take the rt_mutex. */
1300 atomic_inc(&pi_state->refcount);
1301 this->pi_state = pi_state;
1302 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1303 this->rt_waiter,
1304 this->task, 1);
1305 if (ret == 1) {
1306 /* We got the lock. */
1307 requeue_pi_wake_futex(this, &key2, hb2);
1308 drop_count++;
1309 continue;
1310 } else if (ret) {
1311 /* -EDEADLK */
1312 this->pi_state = NULL;
1313 free_pi_state(pi_state);
1314 goto out_unlock;
1317 requeue_futex(this, hb1, hb2, &key2);
1318 drop_count++;
1321 out_unlock:
1322 double_unlock_hb(hb1, hb2);
1325 * drop_futex_key_refs() must be called outside the spinlocks. During
1326 * the requeue we moved futex_q's from the hash bucket at key1 to the
1327 * one at key2 and updated their key pointer. We no longer need to
1328 * hold the references to key1.
1330 while (--drop_count >= 0)
1331 drop_futex_key_refs(&key1);
1333 out_put_keys:
1334 put_futex_key(fshared, &key2);
1335 out_put_key1:
1336 put_futex_key(fshared, &key1);
1337 out:
1338 if (pi_state != NULL)
1339 free_pi_state(pi_state);
1340 return ret ? ret : task_count;
1343 /* The key must be already stored in q->key. */
1344 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1346 struct futex_hash_bucket *hb;
1348 get_futex_key_refs(&q->key);
1349 hb = hash_futex(&q->key);
1350 q->lock_ptr = &hb->lock;
1352 spin_lock(&hb->lock);
1353 return hb;
1356 static inline void
1357 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1359 spin_unlock(&hb->lock);
1360 drop_futex_key_refs(&q->key);
1364 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1365 * @q: The futex_q to enqueue
1366 * @hb: The destination hash bucket
1368 * The hb->lock must be held by the caller, and is released here. A call to
1369 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1370 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1371 * or nothing if the unqueue is done as part of the wake process and the unqueue
1372 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1373 * an example).
1375 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1377 int prio;
1380 * The priority used to register this element is
1381 * - either the real thread-priority for the real-time threads
1382 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1383 * - or MAX_RT_PRIO for non-RT threads.
1384 * Thus, all RT-threads are woken first in priority order, and
1385 * the others are woken last, in FIFO order.
1387 prio = min(current->normal_prio, MAX_RT_PRIO);
1389 plist_node_init(&q->list, prio);
1390 #ifdef CONFIG_DEBUG_PI_LIST
1391 q->list.plist.lock = &hb->lock;
1392 #endif
1393 plist_add(&q->list, &hb->chain);
1394 q->task = current;
1395 spin_unlock(&hb->lock);
1399 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1400 * @q: The futex_q to unqueue
1402 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1403 * be paired with exactly one earlier call to queue_me().
1405 * Returns:
1406 * 1 - if the futex_q was still queued (and we removed unqueued it)
1407 * 0 - if the futex_q was already removed by the waking thread
1409 static int unqueue_me(struct futex_q *q)
1411 spinlock_t *lock_ptr;
1412 int ret = 0;
1414 /* In the common case we don't take the spinlock, which is nice. */
1415 retry:
1416 lock_ptr = q->lock_ptr;
1417 barrier();
1418 if (lock_ptr != NULL) {
1419 spin_lock(lock_ptr);
1421 * q->lock_ptr can change between reading it and
1422 * spin_lock(), causing us to take the wrong lock. This
1423 * corrects the race condition.
1425 * Reasoning goes like this: if we have the wrong lock,
1426 * q->lock_ptr must have changed (maybe several times)
1427 * between reading it and the spin_lock(). It can
1428 * change again after the spin_lock() but only if it was
1429 * already changed before the spin_lock(). It cannot,
1430 * however, change back to the original value. Therefore
1431 * we can detect whether we acquired the correct lock.
1433 if (unlikely(lock_ptr != q->lock_ptr)) {
1434 spin_unlock(lock_ptr);
1435 goto retry;
1437 WARN_ON(plist_node_empty(&q->list));
1438 plist_del(&q->list, &q->list.plist);
1440 BUG_ON(q->pi_state);
1442 spin_unlock(lock_ptr);
1443 ret = 1;
1446 drop_futex_key_refs(&q->key);
1447 return ret;
1451 * PI futexes can not be requeued and must remove themself from the
1452 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1453 * and dropped here.
1455 static void unqueue_me_pi(struct futex_q *q)
1457 WARN_ON(plist_node_empty(&q->list));
1458 plist_del(&q->list, &q->list.plist);
1460 BUG_ON(!q->pi_state);
1461 free_pi_state(q->pi_state);
1462 q->pi_state = NULL;
1464 spin_unlock(q->lock_ptr);
1466 drop_futex_key_refs(&q->key);
1470 * Fixup the pi_state owner with the new owner.
1472 * Must be called with hash bucket lock held and mm->sem held for non
1473 * private futexes.
1475 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1476 struct task_struct *newowner, int fshared)
1478 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1479 struct futex_pi_state *pi_state = q->pi_state;
1480 struct task_struct *oldowner = pi_state->owner;
1481 u32 uval, curval, newval;
1482 int ret;
1484 /* Owner died? */
1485 if (!pi_state->owner)
1486 newtid |= FUTEX_OWNER_DIED;
1489 * We are here either because we stole the rtmutex from the
1490 * pending owner or we are the pending owner which failed to
1491 * get the rtmutex. We have to replace the pending owner TID
1492 * in the user space variable. This must be atomic as we have
1493 * to preserve the owner died bit here.
1495 * Note: We write the user space value _before_ changing the pi_state
1496 * because we can fault here. Imagine swapped out pages or a fork
1497 * that marked all the anonymous memory readonly for cow.
1499 * Modifying pi_state _before_ the user space value would
1500 * leave the pi_state in an inconsistent state when we fault
1501 * here, because we need to drop the hash bucket lock to
1502 * handle the fault. This might be observed in the PID check
1503 * in lookup_pi_state.
1505 retry:
1506 if (get_futex_value_locked(&uval, uaddr))
1507 goto handle_fault;
1509 while (1) {
1510 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1512 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1514 if (curval == -EFAULT)
1515 goto handle_fault;
1516 if (curval == uval)
1517 break;
1518 uval = curval;
1522 * We fixed up user space. Now we need to fix the pi_state
1523 * itself.
1525 if (pi_state->owner != NULL) {
1526 spin_lock_irq(&pi_state->owner->pi_lock);
1527 WARN_ON(list_empty(&pi_state->list));
1528 list_del_init(&pi_state->list);
1529 spin_unlock_irq(&pi_state->owner->pi_lock);
1532 pi_state->owner = newowner;
1534 spin_lock_irq(&newowner->pi_lock);
1535 WARN_ON(!list_empty(&pi_state->list));
1536 list_add(&pi_state->list, &newowner->pi_state_list);
1537 spin_unlock_irq(&newowner->pi_lock);
1538 return 0;
1541 * To handle the page fault we need to drop the hash bucket
1542 * lock here. That gives the other task (either the pending
1543 * owner itself or the task which stole the rtmutex) the
1544 * chance to try the fixup of the pi_state. So once we are
1545 * back from handling the fault we need to check the pi_state
1546 * after reacquiring the hash bucket lock and before trying to
1547 * do another fixup. When the fixup has been done already we
1548 * simply return.
1550 handle_fault:
1551 spin_unlock(q->lock_ptr);
1553 ret = fault_in_user_writeable(uaddr);
1555 spin_lock(q->lock_ptr);
1558 * Check if someone else fixed it for us:
1560 if (pi_state->owner != oldowner)
1561 return 0;
1563 if (ret)
1564 return ret;
1566 goto retry;
1570 * In case we must use restart_block to restart a futex_wait,
1571 * we encode in the 'flags' shared capability
1573 #define FLAGS_SHARED 0x01
1574 #define FLAGS_CLOCKRT 0x02
1575 #define FLAGS_HAS_TIMEOUT 0x04
1577 static long futex_wait_restart(struct restart_block *restart);
1580 * fixup_owner() - Post lock pi_state and corner case management
1581 * @uaddr: user address of the futex
1582 * @fshared: whether the futex is shared (1) or not (0)
1583 * @q: futex_q (contains pi_state and access to the rt_mutex)
1584 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1586 * After attempting to lock an rt_mutex, this function is called to cleanup
1587 * the pi_state owner as well as handle race conditions that may allow us to
1588 * acquire the lock. Must be called with the hb lock held.
1590 * Returns:
1591 * 1 - success, lock taken
1592 * 0 - success, lock not taken
1593 * <0 - on error (-EFAULT)
1595 static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1596 int locked)
1598 struct task_struct *owner;
1599 int ret = 0;
1601 if (locked) {
1603 * Got the lock. We might not be the anticipated owner if we
1604 * did a lock-steal - fix up the PI-state in that case:
1606 if (q->pi_state->owner != current)
1607 ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1608 goto out;
1612 * Catch the rare case, where the lock was released when we were on the
1613 * way back before we locked the hash bucket.
1615 if (q->pi_state->owner == current) {
1617 * Try to get the rt_mutex now. This might fail as some other
1618 * task acquired the rt_mutex after we removed ourself from the
1619 * rt_mutex waiters list.
1621 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1622 locked = 1;
1623 goto out;
1627 * pi_state is incorrect, some other task did a lock steal and
1628 * we returned due to timeout or signal without taking the
1629 * rt_mutex. Too late. We can access the rt_mutex_owner without
1630 * locking, as the other task is now blocked on the hash bucket
1631 * lock. Fix the state up.
1633 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1634 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1635 goto out;
1639 * Paranoia check. If we did not take the lock, then we should not be
1640 * the owner, nor the pending owner, of the rt_mutex.
1642 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1643 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1644 "pi-state %p\n", ret,
1645 q->pi_state->pi_mutex.owner,
1646 q->pi_state->owner);
1648 out:
1649 return ret ? ret : locked;
1653 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1654 * @hb: the futex hash bucket, must be locked by the caller
1655 * @q: the futex_q to queue up on
1656 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1658 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1659 struct hrtimer_sleeper *timeout)
1662 * The task state is guaranteed to be set before another task can
1663 * wake it. set_current_state() is implemented using set_mb() and
1664 * queue_me() calls spin_unlock() upon completion, both serializing
1665 * access to the hash list and forcing another memory barrier.
1667 set_current_state(TASK_INTERRUPTIBLE);
1668 queue_me(q, hb);
1670 /* Arm the timer */
1671 if (timeout) {
1672 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1673 if (!hrtimer_active(&timeout->timer))
1674 timeout->task = NULL;
1678 * If we have been removed from the hash list, then another task
1679 * has tried to wake us, and we can skip the call to schedule().
1681 if (likely(!plist_node_empty(&q->list))) {
1683 * If the timer has already expired, current will already be
1684 * flagged for rescheduling. Only call schedule if there
1685 * is no timeout, or if it has yet to expire.
1687 if (!timeout || timeout->task)
1688 schedule();
1690 __set_current_state(TASK_RUNNING);
1694 * futex_wait_setup() - Prepare to wait on a futex
1695 * @uaddr: the futex userspace address
1696 * @val: the expected value
1697 * @fshared: whether the futex is shared (1) or not (0)
1698 * @q: the associated futex_q
1699 * @hb: storage for hash_bucket pointer to be returned to caller
1701 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1702 * compare it with the expected value. Handle atomic faults internally.
1703 * Return with the hb lock held and a q.key reference on success, and unlocked
1704 * with no q.key reference on failure.
1706 * Returns:
1707 * 0 - uaddr contains val and hb has been locked
1708 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1710 static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1711 struct futex_q *q, struct futex_hash_bucket **hb)
1713 u32 uval;
1714 int ret;
1717 * Access the page AFTER the hash-bucket is locked.
1718 * Order is important:
1720 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1721 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1723 * The basic logical guarantee of a futex is that it blocks ONLY
1724 * if cond(var) is known to be true at the time of blocking, for
1725 * any cond. If we queued after testing *uaddr, that would open
1726 * a race condition where we could block indefinitely with
1727 * cond(var) false, which would violate the guarantee.
1729 * A consequence is that futex_wait() can return zero and absorb
1730 * a wakeup when *uaddr != val on entry to the syscall. This is
1731 * rare, but normal.
1733 retry:
1734 q->key = FUTEX_KEY_INIT;
1735 ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
1736 if (unlikely(ret != 0))
1737 return ret;
1739 retry_private:
1740 *hb = queue_lock(q);
1742 ret = get_futex_value_locked(&uval, uaddr);
1744 if (ret) {
1745 queue_unlock(q, *hb);
1747 ret = get_user(uval, uaddr);
1748 if (ret)
1749 goto out;
1751 if (!fshared)
1752 goto retry_private;
1754 put_futex_key(fshared, &q->key);
1755 goto retry;
1758 if (uval != val) {
1759 queue_unlock(q, *hb);
1760 ret = -EWOULDBLOCK;
1763 out:
1764 if (ret)
1765 put_futex_key(fshared, &q->key);
1766 return ret;
1769 static int futex_wait(u32 __user *uaddr, int fshared,
1770 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1772 struct hrtimer_sleeper timeout, *to = NULL;
1773 struct restart_block *restart;
1774 struct futex_hash_bucket *hb;
1775 struct futex_q q;
1776 int ret;
1778 if (!bitset)
1779 return -EINVAL;
1781 q.pi_state = NULL;
1782 q.bitset = bitset;
1783 q.rt_waiter = NULL;
1784 q.requeue_pi_key = NULL;
1786 if (abs_time) {
1787 to = &timeout;
1789 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1790 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1791 hrtimer_init_sleeper(to, current);
1792 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1793 current->timer_slack_ns);
1796 retry:
1797 /* Prepare to wait on uaddr. */
1798 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1799 if (ret)
1800 goto out;
1802 /* queue_me and wait for wakeup, timeout, or a signal. */
1803 futex_wait_queue_me(hb, &q, to);
1805 /* If we were woken (and unqueued), we succeeded, whatever. */
1806 ret = 0;
1807 if (!unqueue_me(&q))
1808 goto out_put_key;
1809 ret = -ETIMEDOUT;
1810 if (to && !to->task)
1811 goto out_put_key;
1814 * We expect signal_pending(current), but we might be the
1815 * victim of a spurious wakeup as well.
1817 if (!signal_pending(current)) {
1818 put_futex_key(fshared, &q.key);
1819 goto retry;
1822 ret = -ERESTARTSYS;
1823 if (!abs_time)
1824 goto out_put_key;
1826 restart = &current_thread_info()->restart_block;
1827 restart->fn = futex_wait_restart;
1828 restart->futex.uaddr = (u32 *)uaddr;
1829 restart->futex.val = val;
1830 restart->futex.time = abs_time->tv64;
1831 restart->futex.bitset = bitset;
1832 restart->futex.flags = FLAGS_HAS_TIMEOUT;
1834 if (fshared)
1835 restart->futex.flags |= FLAGS_SHARED;
1836 if (clockrt)
1837 restart->futex.flags |= FLAGS_CLOCKRT;
1839 ret = -ERESTART_RESTARTBLOCK;
1841 out_put_key:
1842 put_futex_key(fshared, &q.key);
1843 out:
1844 if (to) {
1845 hrtimer_cancel(&to->timer);
1846 destroy_hrtimer_on_stack(&to->timer);
1848 return ret;
1852 static long futex_wait_restart(struct restart_block *restart)
1854 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1855 int fshared = 0;
1856 ktime_t t, *tp = NULL;
1858 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1859 t.tv64 = restart->futex.time;
1860 tp = &t;
1862 restart->fn = do_no_restart_syscall;
1863 if (restart->futex.flags & FLAGS_SHARED)
1864 fshared = 1;
1865 return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1866 restart->futex.bitset,
1867 restart->futex.flags & FLAGS_CLOCKRT);
1872 * Userspace tried a 0 -> TID atomic transition of the futex value
1873 * and failed. The kernel side here does the whole locking operation:
1874 * if there are waiters then it will block, it does PI, etc. (Due to
1875 * races the kernel might see a 0 value of the futex too.)
1877 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1878 int detect, ktime_t *time, int trylock)
1880 struct hrtimer_sleeper timeout, *to = NULL;
1881 struct futex_hash_bucket *hb;
1882 struct futex_q q;
1883 int res, ret;
1885 if (refill_pi_state_cache())
1886 return -ENOMEM;
1888 if (time) {
1889 to = &timeout;
1890 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1891 HRTIMER_MODE_ABS);
1892 hrtimer_init_sleeper(to, current);
1893 hrtimer_set_expires(&to->timer, *time);
1896 q.pi_state = NULL;
1897 q.rt_waiter = NULL;
1898 q.requeue_pi_key = NULL;
1899 retry:
1900 q.key = FUTEX_KEY_INIT;
1901 ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
1902 if (unlikely(ret != 0))
1903 goto out;
1905 retry_private:
1906 hb = queue_lock(&q);
1908 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1909 if (unlikely(ret)) {
1910 switch (ret) {
1911 case 1:
1912 /* We got the lock. */
1913 ret = 0;
1914 goto out_unlock_put_key;
1915 case -EFAULT:
1916 goto uaddr_faulted;
1917 case -EAGAIN:
1919 * Task is exiting and we just wait for the
1920 * exit to complete.
1922 queue_unlock(&q, hb);
1923 put_futex_key(fshared, &q.key);
1924 cond_resched();
1925 goto retry;
1926 default:
1927 goto out_unlock_put_key;
1932 * Only actually queue now that the atomic ops are done:
1934 queue_me(&q, hb);
1936 WARN_ON(!q.pi_state);
1938 * Block on the PI mutex:
1940 if (!trylock)
1941 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1942 else {
1943 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1944 /* Fixup the trylock return value: */
1945 ret = ret ? 0 : -EWOULDBLOCK;
1948 spin_lock(q.lock_ptr);
1950 * Fixup the pi_state owner and possibly acquire the lock if we
1951 * haven't already.
1953 res = fixup_owner(uaddr, fshared, &q, !ret);
1955 * If fixup_owner() returned an error, proprogate that. If it acquired
1956 * the lock, clear our -ETIMEDOUT or -EINTR.
1958 if (res)
1959 ret = (res < 0) ? res : 0;
1962 * If fixup_owner() faulted and was unable to handle the fault, unlock
1963 * it and return the fault to userspace.
1965 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1966 rt_mutex_unlock(&q.pi_state->pi_mutex);
1968 /* Unqueue and drop the lock */
1969 unqueue_me_pi(&q);
1971 goto out;
1973 out_unlock_put_key:
1974 queue_unlock(&q, hb);
1976 out_put_key:
1977 put_futex_key(fshared, &q.key);
1978 out:
1979 if (to)
1980 destroy_hrtimer_on_stack(&to->timer);
1981 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1983 uaddr_faulted:
1984 queue_unlock(&q, hb);
1986 ret = fault_in_user_writeable(uaddr);
1987 if (ret)
1988 goto out_put_key;
1990 if (!fshared)
1991 goto retry_private;
1993 put_futex_key(fshared, &q.key);
1994 goto retry;
1998 * Userspace attempted a TID -> 0 atomic transition, and failed.
1999 * This is the in-kernel slowpath: we look up the PI state (if any),
2000 * and do the rt-mutex unlock.
2002 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
2004 struct futex_hash_bucket *hb;
2005 struct futex_q *this, *next;
2006 u32 uval;
2007 struct plist_head *head;
2008 union futex_key key = FUTEX_KEY_INIT;
2009 int ret;
2011 retry:
2012 if (get_user(uval, uaddr))
2013 return -EFAULT;
2015 * We release only a lock we actually own:
2017 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2018 return -EPERM;
2020 ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
2021 if (unlikely(ret != 0))
2022 goto out;
2024 hb = hash_futex(&key);
2025 spin_lock(&hb->lock);
2028 * To avoid races, try to do the TID -> 0 atomic transition
2029 * again. If it succeeds then we can return without waking
2030 * anyone else up:
2032 if (!(uval & FUTEX_OWNER_DIED))
2033 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
2036 if (unlikely(uval == -EFAULT))
2037 goto pi_faulted;
2039 * Rare case: we managed to release the lock atomically,
2040 * no need to wake anyone else up:
2042 if (unlikely(uval == task_pid_vnr(current)))
2043 goto out_unlock;
2046 * Ok, other tasks may need to be woken up - check waiters
2047 * and do the wakeup if necessary:
2049 head = &hb->chain;
2051 plist_for_each_entry_safe(this, next, head, list) {
2052 if (!match_futex (&this->key, &key))
2053 continue;
2054 ret = wake_futex_pi(uaddr, uval, this);
2056 * The atomic access to the futex value
2057 * generated a pagefault, so retry the
2058 * user-access and the wakeup:
2060 if (ret == -EFAULT)
2061 goto pi_faulted;
2062 goto out_unlock;
2065 * No waiters - kernel unlocks the futex:
2067 if (!(uval & FUTEX_OWNER_DIED)) {
2068 ret = unlock_futex_pi(uaddr, uval);
2069 if (ret == -EFAULT)
2070 goto pi_faulted;
2073 out_unlock:
2074 spin_unlock(&hb->lock);
2075 put_futex_key(fshared, &key);
2077 out:
2078 return ret;
2080 pi_faulted:
2081 spin_unlock(&hb->lock);
2082 put_futex_key(fshared, &key);
2084 ret = fault_in_user_writeable(uaddr);
2085 if (!ret)
2086 goto retry;
2088 return ret;
2092 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2093 * @hb: the hash_bucket futex_q was original enqueued on
2094 * @q: the futex_q woken while waiting to be requeued
2095 * @key2: the futex_key of the requeue target futex
2096 * @timeout: the timeout associated with the wait (NULL if none)
2098 * Detect if the task was woken on the initial futex as opposed to the requeue
2099 * target futex. If so, determine if it was a timeout or a signal that caused
2100 * the wakeup and return the appropriate error code to the caller. Must be
2101 * called with the hb lock held.
2103 * Returns
2104 * 0 - no early wakeup detected
2105 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2107 static inline
2108 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2109 struct futex_q *q, union futex_key *key2,
2110 struct hrtimer_sleeper *timeout)
2112 int ret = 0;
2115 * With the hb lock held, we avoid races while we process the wakeup.
2116 * We only need to hold hb (and not hb2) to ensure atomicity as the
2117 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2118 * It can't be requeued from uaddr2 to something else since we don't
2119 * support a PI aware source futex for requeue.
2121 if (!match_futex(&q->key, key2)) {
2122 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2124 * We were woken prior to requeue by a timeout or a signal.
2125 * Unqueue the futex_q and determine which it was.
2127 plist_del(&q->list, &q->list.plist);
2129 /* Handle spurious wakeups gracefully */
2130 ret = -EWOULDBLOCK;
2131 if (timeout && !timeout->task)
2132 ret = -ETIMEDOUT;
2133 else if (signal_pending(current))
2134 ret = -ERESTARTNOINTR;
2136 return ret;
2140 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2141 * @uaddr: the futex we initially wait on (non-pi)
2142 * @fshared: whether the futexes are shared (1) or not (0). They must be
2143 * the same type, no requeueing from private to shared, etc.
2144 * @val: the expected value of uaddr
2145 * @abs_time: absolute timeout
2146 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2147 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2148 * @uaddr2: the pi futex we will take prior to returning to user-space
2150 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2151 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2152 * complete the acquisition of the rt_mutex prior to returning to userspace.
2153 * This ensures the rt_mutex maintains an owner when it has waiters; without
2154 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2155 * need to.
2157 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2158 * via the following:
2159 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2160 * 2) wakeup on uaddr2 after a requeue
2161 * 3) signal
2162 * 4) timeout
2164 * If 3, cleanup and return -ERESTARTNOINTR.
2166 * If 2, we may then block on trying to take the rt_mutex and return via:
2167 * 5) successful lock
2168 * 6) signal
2169 * 7) timeout
2170 * 8) other lock acquisition failure
2172 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2174 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2176 * Returns:
2177 * 0 - On success
2178 * <0 - On error
2180 static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2181 u32 val, ktime_t *abs_time, u32 bitset,
2182 int clockrt, u32 __user *uaddr2)
2184 struct hrtimer_sleeper timeout, *to = NULL;
2185 struct rt_mutex_waiter rt_waiter;
2186 struct rt_mutex *pi_mutex = NULL;
2187 struct futex_hash_bucket *hb;
2188 union futex_key key2;
2189 struct futex_q q;
2190 int res, ret;
2192 if (!bitset)
2193 return -EINVAL;
2195 if (abs_time) {
2196 to = &timeout;
2197 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2198 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2199 hrtimer_init_sleeper(to, current);
2200 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2201 current->timer_slack_ns);
2205 * The waiter is allocated on our stack, manipulated by the requeue
2206 * code while we sleep on uaddr.
2208 debug_rt_mutex_init_waiter(&rt_waiter);
2209 rt_waiter.task = NULL;
2211 key2 = FUTEX_KEY_INIT;
2212 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
2213 if (unlikely(ret != 0))
2214 goto out;
2216 q.pi_state = NULL;
2217 q.bitset = bitset;
2218 q.rt_waiter = &rt_waiter;
2219 q.requeue_pi_key = &key2;
2221 /* Prepare to wait on uaddr. */
2222 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2223 if (ret)
2224 goto out_key2;
2226 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2227 futex_wait_queue_me(hb, &q, to);
2229 spin_lock(&hb->lock);
2230 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2231 spin_unlock(&hb->lock);
2232 if (ret)
2233 goto out_put_keys;
2236 * In order for us to be here, we know our q.key == key2, and since
2237 * we took the hb->lock above, we also know that futex_requeue() has
2238 * completed and we no longer have to concern ourselves with a wakeup
2239 * race with the atomic proxy lock acquition by the requeue code.
2242 /* Check if the requeue code acquired the second futex for us. */
2243 if (!q.rt_waiter) {
2245 * Got the lock. We might not be the anticipated owner if we
2246 * did a lock-steal - fix up the PI-state in that case.
2248 if (q.pi_state && (q.pi_state->owner != current)) {
2249 spin_lock(q.lock_ptr);
2250 ret = fixup_pi_state_owner(uaddr2, &q, current,
2251 fshared);
2252 spin_unlock(q.lock_ptr);
2254 } else {
2256 * We have been woken up by futex_unlock_pi(), a timeout, or a
2257 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2258 * the pi_state.
2260 WARN_ON(!&q.pi_state);
2261 pi_mutex = &q.pi_state->pi_mutex;
2262 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2263 debug_rt_mutex_free_waiter(&rt_waiter);
2265 spin_lock(q.lock_ptr);
2267 * Fixup the pi_state owner and possibly acquire the lock if we
2268 * haven't already.
2270 res = fixup_owner(uaddr2, fshared, &q, !ret);
2272 * If fixup_owner() returned an error, proprogate that. If it
2273 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2275 if (res)
2276 ret = (res < 0) ? res : 0;
2278 /* Unqueue and drop the lock. */
2279 unqueue_me_pi(&q);
2283 * If fixup_pi_state_owner() faulted and was unable to handle the
2284 * fault, unlock the rt_mutex and return the fault to userspace.
2286 if (ret == -EFAULT) {
2287 if (rt_mutex_owner(pi_mutex) == current)
2288 rt_mutex_unlock(pi_mutex);
2289 } else if (ret == -EINTR) {
2291 * We've already been requeued, but cannot restart by calling
2292 * futex_lock_pi() directly. We could restart this syscall, but
2293 * it would detect that the user space "val" changed and return
2294 * -EWOULDBLOCK. Save the overhead of the restart and return
2295 * -EWOULDBLOCK directly.
2297 ret = -EWOULDBLOCK;
2300 out_put_keys:
2301 put_futex_key(fshared, &q.key);
2302 out_key2:
2303 put_futex_key(fshared, &key2);
2305 out:
2306 if (to) {
2307 hrtimer_cancel(&to->timer);
2308 destroy_hrtimer_on_stack(&to->timer);
2310 return ret;
2314 * Support for robust futexes: the kernel cleans up held futexes at
2315 * thread exit time.
2317 * Implementation: user-space maintains a per-thread list of locks it
2318 * is holding. Upon do_exit(), the kernel carefully walks this list,
2319 * and marks all locks that are owned by this thread with the
2320 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2321 * always manipulated with the lock held, so the list is private and
2322 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2323 * field, to allow the kernel to clean up if the thread dies after
2324 * acquiring the lock, but just before it could have added itself to
2325 * the list. There can only be one such pending lock.
2329 * sys_set_robust_list() - Set the robust-futex list head of a task
2330 * @head: pointer to the list-head
2331 * @len: length of the list-head, as userspace expects
2333 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2334 size_t, len)
2336 if (!futex_cmpxchg_enabled)
2337 return -ENOSYS;
2339 * The kernel knows only one size for now:
2341 if (unlikely(len != sizeof(*head)))
2342 return -EINVAL;
2344 current->robust_list = head;
2346 return 0;
2350 * sys_get_robust_list() - Get the robust-futex list head of a task
2351 * @pid: pid of the process [zero for current task]
2352 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2353 * @len_ptr: pointer to a length field, the kernel fills in the header size
2355 SYSCALL_DEFINE3(get_robust_list, int, pid,
2356 struct robust_list_head __user * __user *, head_ptr,
2357 size_t __user *, len_ptr)
2359 struct robust_list_head __user *head;
2360 unsigned long ret;
2361 const struct cred *cred = current_cred(), *pcred;
2363 if (!futex_cmpxchg_enabled)
2364 return -ENOSYS;
2366 if (!pid)
2367 head = current->robust_list;
2368 else {
2369 struct task_struct *p;
2371 ret = -ESRCH;
2372 rcu_read_lock();
2373 p = find_task_by_vpid(pid);
2374 if (!p)
2375 goto err_unlock;
2376 ret = -EPERM;
2377 pcred = __task_cred(p);
2378 if (cred->euid != pcred->euid &&
2379 cred->euid != pcred->uid &&
2380 !capable(CAP_SYS_PTRACE))
2381 goto err_unlock;
2382 head = p->robust_list;
2383 rcu_read_unlock();
2386 if (put_user(sizeof(*head), len_ptr))
2387 return -EFAULT;
2388 return put_user(head, head_ptr);
2390 err_unlock:
2391 rcu_read_unlock();
2393 return ret;
2397 * Process a futex-list entry, check whether it's owned by the
2398 * dying task, and do notification if so:
2400 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2402 u32 uval, nval, mval;
2404 retry:
2405 if (get_user(uval, uaddr))
2406 return -1;
2408 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2410 * Ok, this dying thread is truly holding a futex
2411 * of interest. Set the OWNER_DIED bit atomically
2412 * via cmpxchg, and if the value had FUTEX_WAITERS
2413 * set, wake up a waiter (if any). (We have to do a
2414 * futex_wake() even if OWNER_DIED is already set -
2415 * to handle the rare but possible case of recursive
2416 * thread-death.) The rest of the cleanup is done in
2417 * userspace.
2419 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2420 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2422 if (nval == -EFAULT)
2423 return -1;
2425 if (nval != uval)
2426 goto retry;
2429 * Wake robust non-PI futexes here. The wakeup of
2430 * PI futexes happens in exit_pi_state():
2432 if (!pi && (uval & FUTEX_WAITERS))
2433 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2435 return 0;
2439 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2441 static inline int fetch_robust_entry(struct robust_list __user **entry,
2442 struct robust_list __user * __user *head,
2443 int *pi)
2445 unsigned long uentry;
2447 if (get_user(uentry, (unsigned long __user *)head))
2448 return -EFAULT;
2450 *entry = (void __user *)(uentry & ~1UL);
2451 *pi = uentry & 1;
2453 return 0;
2457 * Walk curr->robust_list (very carefully, it's a userspace list!)
2458 * and mark any locks found there dead, and notify any waiters.
2460 * We silently return on any sign of list-walking problem.
2462 void exit_robust_list(struct task_struct *curr)
2464 struct robust_list_head __user *head = curr->robust_list;
2465 struct robust_list __user *entry, *next_entry, *pending;
2466 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2467 unsigned long futex_offset;
2468 int rc;
2470 if (!futex_cmpxchg_enabled)
2471 return;
2474 * Fetch the list head (which was registered earlier, via
2475 * sys_set_robust_list()):
2477 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2478 return;
2480 * Fetch the relative futex offset:
2482 if (get_user(futex_offset, &head->futex_offset))
2483 return;
2485 * Fetch any possibly pending lock-add first, and handle it
2486 * if it exists:
2488 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2489 return;
2491 next_entry = NULL; /* avoid warning with gcc */
2492 while (entry != &head->list) {
2494 * Fetch the next entry in the list before calling
2495 * handle_futex_death:
2497 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2499 * A pending lock might already be on the list, so
2500 * don't process it twice:
2502 if (entry != pending)
2503 if (handle_futex_death((void __user *)entry + futex_offset,
2504 curr, pi))
2505 return;
2506 if (rc)
2507 return;
2508 entry = next_entry;
2509 pi = next_pi;
2511 * Avoid excessively long or circular lists:
2513 if (!--limit)
2514 break;
2516 cond_resched();
2519 if (pending)
2520 handle_futex_death((void __user *)pending + futex_offset,
2521 curr, pip);
2524 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2525 u32 __user *uaddr2, u32 val2, u32 val3)
2527 int clockrt, ret = -ENOSYS;
2528 int cmd = op & FUTEX_CMD_MASK;
2529 int fshared = 0;
2531 if (!(op & FUTEX_PRIVATE_FLAG))
2532 fshared = 1;
2534 clockrt = op & FUTEX_CLOCK_REALTIME;
2535 if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2536 return -ENOSYS;
2538 switch (cmd) {
2539 case FUTEX_WAIT:
2540 val3 = FUTEX_BITSET_MATCH_ANY;
2541 case FUTEX_WAIT_BITSET:
2542 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
2543 break;
2544 case FUTEX_WAKE:
2545 val3 = FUTEX_BITSET_MATCH_ANY;
2546 case FUTEX_WAKE_BITSET:
2547 ret = futex_wake(uaddr, fshared, val, val3);
2548 break;
2549 case FUTEX_REQUEUE:
2550 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
2551 break;
2552 case FUTEX_CMP_REQUEUE:
2553 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2555 break;
2556 case FUTEX_WAKE_OP:
2557 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2558 break;
2559 case FUTEX_LOCK_PI:
2560 if (futex_cmpxchg_enabled)
2561 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2562 break;
2563 case FUTEX_UNLOCK_PI:
2564 if (futex_cmpxchg_enabled)
2565 ret = futex_unlock_pi(uaddr, fshared);
2566 break;
2567 case FUTEX_TRYLOCK_PI:
2568 if (futex_cmpxchg_enabled)
2569 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2570 break;
2571 case FUTEX_WAIT_REQUEUE_PI:
2572 val3 = FUTEX_BITSET_MATCH_ANY;
2573 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2574 clockrt, uaddr2);
2575 break;
2576 case FUTEX_CMP_REQUEUE_PI:
2577 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2579 break;
2580 default:
2581 ret = -ENOSYS;
2583 return ret;
2587 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2588 struct timespec __user *, utime, u32 __user *, uaddr2,
2589 u32, val3)
2591 struct timespec ts;
2592 ktime_t t, *tp = NULL;
2593 u32 val2 = 0;
2594 int cmd = op & FUTEX_CMD_MASK;
2596 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2597 cmd == FUTEX_WAIT_BITSET ||
2598 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2599 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2600 return -EFAULT;
2601 if (!timespec_valid(&ts))
2602 return -EINVAL;
2604 t = timespec_to_ktime(ts);
2605 if (cmd == FUTEX_WAIT)
2606 t = ktime_add_safe(ktime_get(), t);
2607 tp = &t;
2610 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2611 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2613 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2614 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2615 val2 = (u32) (unsigned long) utime;
2617 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2620 static int __init futex_init(void)
2622 u32 curval;
2623 int i;
2626 * This will fail and we want it. Some arch implementations do
2627 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2628 * functionality. We want to know that before we call in any
2629 * of the complex code paths. Also we want to prevent
2630 * registration of robust lists in that case. NULL is
2631 * guaranteed to fault and we get -EFAULT on functional
2632 * implementation, the non functional ones will return
2633 * -ENOSYS.
2635 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2636 if (curval == -EFAULT)
2637 futex_cmpxchg_enabled = 1;
2639 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2640 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2641 spin_lock_init(&futex_queues[i].lock);
2644 return 0;
2646 __initcall(futex_init);