x86/xen: set regions above the end of RAM as 1:1
[linux/fpc-iii.git] / mm / util.c
blobf380af7ea7797e287b222cd57b665fad02b6132e
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/security.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
11 #include <linux/mman.h>
12 #include <linux/hugetlb.h>
14 #include <asm/uaccess.h>
16 #include "internal.h"
18 #define CREATE_TRACE_POINTS
19 #include <trace/events/kmem.h>
21 /**
22 * kstrdup - allocate space for and copy an existing string
23 * @s: the string to duplicate
24 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
26 char *kstrdup(const char *s, gfp_t gfp)
28 size_t len;
29 char *buf;
31 if (!s)
32 return NULL;
34 len = strlen(s) + 1;
35 buf = kmalloc_track_caller(len, gfp);
36 if (buf)
37 memcpy(buf, s, len);
38 return buf;
40 EXPORT_SYMBOL(kstrdup);
42 /**
43 * kstrndup - allocate space for and copy an existing string
44 * @s: the string to duplicate
45 * @max: read at most @max chars from @s
46 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
48 char *kstrndup(const char *s, size_t max, gfp_t gfp)
50 size_t len;
51 char *buf;
53 if (!s)
54 return NULL;
56 len = strnlen(s, max);
57 buf = kmalloc_track_caller(len+1, gfp);
58 if (buf) {
59 memcpy(buf, s, len);
60 buf[len] = '\0';
62 return buf;
64 EXPORT_SYMBOL(kstrndup);
66 /**
67 * kmemdup - duplicate region of memory
69 * @src: memory region to duplicate
70 * @len: memory region length
71 * @gfp: GFP mask to use
73 void *kmemdup(const void *src, size_t len, gfp_t gfp)
75 void *p;
77 p = kmalloc_track_caller(len, gfp);
78 if (p)
79 memcpy(p, src, len);
80 return p;
82 EXPORT_SYMBOL(kmemdup);
84 /**
85 * memdup_user - duplicate memory region from user space
87 * @src: source address in user space
88 * @len: number of bytes to copy
90 * Returns an ERR_PTR() on failure.
92 void *memdup_user(const void __user *src, size_t len)
94 void *p;
97 * Always use GFP_KERNEL, since copy_from_user() can sleep and
98 * cause pagefault, which makes it pointless to use GFP_NOFS
99 * or GFP_ATOMIC.
101 p = kmalloc_track_caller(len, GFP_KERNEL);
102 if (!p)
103 return ERR_PTR(-ENOMEM);
105 if (copy_from_user(p, src, len)) {
106 kfree(p);
107 return ERR_PTR(-EFAULT);
110 return p;
112 EXPORT_SYMBOL(memdup_user);
114 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
115 gfp_t flags)
117 void *ret;
118 size_t ks = 0;
120 if (p)
121 ks = ksize(p);
123 if (ks >= new_size)
124 return (void *)p;
126 ret = kmalloc_track_caller(new_size, flags);
127 if (ret && p)
128 memcpy(ret, p, ks);
130 return ret;
134 * __krealloc - like krealloc() but don't free @p.
135 * @p: object to reallocate memory for.
136 * @new_size: how many bytes of memory are required.
137 * @flags: the type of memory to allocate.
139 * This function is like krealloc() except it never frees the originally
140 * allocated buffer. Use this if you don't want to free the buffer immediately
141 * like, for example, with RCU.
143 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
145 if (unlikely(!new_size))
146 return ZERO_SIZE_PTR;
148 return __do_krealloc(p, new_size, flags);
151 EXPORT_SYMBOL(__krealloc);
154 * krealloc - reallocate memory. The contents will remain unchanged.
155 * @p: object to reallocate memory for.
156 * @new_size: how many bytes of memory are required.
157 * @flags: the type of memory to allocate.
159 * The contents of the object pointed to are preserved up to the
160 * lesser of the new and old sizes. If @p is %NULL, krealloc()
161 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
162 * %NULL pointer, the object pointed to is freed.
164 void *krealloc(const void *p, size_t new_size, gfp_t flags)
166 void *ret;
168 if (unlikely(!new_size)) {
169 kfree(p);
170 return ZERO_SIZE_PTR;
173 ret = __do_krealloc(p, new_size, flags);
174 if (ret && p != ret)
175 kfree(p);
177 return ret;
179 EXPORT_SYMBOL(krealloc);
182 * kzfree - like kfree but zero memory
183 * @p: object to free memory of
185 * The memory of the object @p points to is zeroed before freed.
186 * If @p is %NULL, kzfree() does nothing.
188 * Note: this function zeroes the whole allocated buffer which can be a good
189 * deal bigger than the requested buffer size passed to kmalloc(). So be
190 * careful when using this function in performance sensitive code.
192 void kzfree(const void *p)
194 size_t ks;
195 void *mem = (void *)p;
197 if (unlikely(ZERO_OR_NULL_PTR(mem)))
198 return;
199 ks = ksize(mem);
200 memset(mem, 0, ks);
201 kfree(mem);
203 EXPORT_SYMBOL(kzfree);
206 * strndup_user - duplicate an existing string from user space
207 * @s: The string to duplicate
208 * @n: Maximum number of bytes to copy, including the trailing NUL.
210 char *strndup_user(const char __user *s, long n)
212 char *p;
213 long length;
215 length = strnlen_user(s, n);
217 if (!length)
218 return ERR_PTR(-EFAULT);
220 if (length > n)
221 return ERR_PTR(-EINVAL);
223 p = memdup_user(s, length);
225 if (IS_ERR(p))
226 return p;
228 p[length - 1] = '\0';
230 return p;
232 EXPORT_SYMBOL(strndup_user);
234 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
235 struct vm_area_struct *prev, struct rb_node *rb_parent)
237 struct vm_area_struct *next;
239 vma->vm_prev = prev;
240 if (prev) {
241 next = prev->vm_next;
242 prev->vm_next = vma;
243 } else {
244 mm->mmap = vma;
245 if (rb_parent)
246 next = rb_entry(rb_parent,
247 struct vm_area_struct, vm_rb);
248 else
249 next = NULL;
251 vma->vm_next = next;
252 if (next)
253 next->vm_prev = vma;
256 /* Check if the vma is being used as a stack by this task */
257 static int vm_is_stack_for_task(struct task_struct *t,
258 struct vm_area_struct *vma)
260 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
264 * Check if the vma is being used as a stack.
265 * If is_group is non-zero, check in the entire thread group or else
266 * just check in the current task. Returns the pid of the task that
267 * the vma is stack for.
269 pid_t vm_is_stack(struct task_struct *task,
270 struct vm_area_struct *vma, int in_group)
272 pid_t ret = 0;
274 if (vm_is_stack_for_task(task, vma))
275 return task->pid;
277 if (in_group) {
278 struct task_struct *t;
279 rcu_read_lock();
280 if (!pid_alive(task))
281 goto done;
283 t = task;
284 do {
285 if (vm_is_stack_for_task(t, vma)) {
286 ret = t->pid;
287 goto done;
289 } while_each_thread(task, t);
290 done:
291 rcu_read_unlock();
294 return ret;
297 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
298 void arch_pick_mmap_layout(struct mm_struct *mm)
300 mm->mmap_base = TASK_UNMAPPED_BASE;
301 mm->get_unmapped_area = arch_get_unmapped_area;
303 #endif
306 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
307 * back to the regular GUP.
308 * If the architecture not support this function, simply return with no
309 * page pinned
311 int __weak __get_user_pages_fast(unsigned long start,
312 int nr_pages, int write, struct page **pages)
314 return 0;
316 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
319 * get_user_pages_fast() - pin user pages in memory
320 * @start: starting user address
321 * @nr_pages: number of pages from start to pin
322 * @write: whether pages will be written to
323 * @pages: array that receives pointers to the pages pinned.
324 * Should be at least nr_pages long.
326 * Returns number of pages pinned. This may be fewer than the number
327 * requested. If nr_pages is 0 or negative, returns 0. If no pages
328 * were pinned, returns -errno.
330 * get_user_pages_fast provides equivalent functionality to get_user_pages,
331 * operating on current and current->mm, with force=0 and vma=NULL. However
332 * unlike get_user_pages, it must be called without mmap_sem held.
334 * get_user_pages_fast may take mmap_sem and page table locks, so no
335 * assumptions can be made about lack of locking. get_user_pages_fast is to be
336 * implemented in a way that is advantageous (vs get_user_pages()) when the
337 * user memory area is already faulted in and present in ptes. However if the
338 * pages have to be faulted in, it may turn out to be slightly slower so
339 * callers need to carefully consider what to use. On many architectures,
340 * get_user_pages_fast simply falls back to get_user_pages.
342 int __weak get_user_pages_fast(unsigned long start,
343 int nr_pages, int write, struct page **pages)
345 struct mm_struct *mm = current->mm;
346 int ret;
348 down_read(&mm->mmap_sem);
349 ret = get_user_pages(current, mm, start, nr_pages,
350 write, 0, pages, NULL);
351 up_read(&mm->mmap_sem);
353 return ret;
355 EXPORT_SYMBOL_GPL(get_user_pages_fast);
357 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
358 unsigned long len, unsigned long prot,
359 unsigned long flag, unsigned long pgoff)
361 unsigned long ret;
362 struct mm_struct *mm = current->mm;
363 unsigned long populate;
365 ret = security_mmap_file(file, prot, flag);
366 if (!ret) {
367 down_write(&mm->mmap_sem);
368 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
369 &populate);
370 up_write(&mm->mmap_sem);
371 if (populate)
372 mm_populate(ret, populate);
374 return ret;
377 unsigned long vm_mmap(struct file *file, unsigned long addr,
378 unsigned long len, unsigned long prot,
379 unsigned long flag, unsigned long offset)
381 if (unlikely(offset + PAGE_ALIGN(len) < offset))
382 return -EINVAL;
383 if (unlikely(offset & ~PAGE_MASK))
384 return -EINVAL;
386 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
388 EXPORT_SYMBOL(vm_mmap);
390 struct address_space *page_mapping(struct page *page)
392 struct address_space *mapping = page->mapping;
394 /* This happens if someone calls flush_dcache_page on slab page */
395 if (unlikely(PageSlab(page)))
396 return NULL;
398 if (unlikely(PageSwapCache(page))) {
399 swp_entry_t entry;
401 entry.val = page_private(page);
402 mapping = swap_address_space(entry);
403 } else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
404 mapping = NULL;
405 return mapping;
408 int overcommit_ratio_handler(struct ctl_table *table, int write,
409 void __user *buffer, size_t *lenp,
410 loff_t *ppos)
412 int ret;
414 ret = proc_dointvec(table, write, buffer, lenp, ppos);
415 if (ret == 0 && write)
416 sysctl_overcommit_kbytes = 0;
417 return ret;
420 int overcommit_kbytes_handler(struct ctl_table *table, int write,
421 void __user *buffer, size_t *lenp,
422 loff_t *ppos)
424 int ret;
426 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
427 if (ret == 0 && write)
428 sysctl_overcommit_ratio = 0;
429 return ret;
433 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
435 unsigned long vm_commit_limit(void)
437 unsigned long allowed;
439 if (sysctl_overcommit_kbytes)
440 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
441 else
442 allowed = ((totalram_pages - hugetlb_total_pages())
443 * sysctl_overcommit_ratio / 100);
444 allowed += total_swap_pages;
446 return allowed;
450 * get_cmdline() - copy the cmdline value to a buffer.
451 * @task: the task whose cmdline value to copy.
452 * @buffer: the buffer to copy to.
453 * @buflen: the length of the buffer. Larger cmdline values are truncated
454 * to this length.
455 * Returns the size of the cmdline field copied. Note that the copy does
456 * not guarantee an ending NULL byte.
458 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
460 int res = 0;
461 unsigned int len;
462 struct mm_struct *mm = get_task_mm(task);
463 if (!mm)
464 goto out;
465 if (!mm->arg_end)
466 goto out_mm; /* Shh! No looking before we're done */
468 len = mm->arg_end - mm->arg_start;
470 if (len > buflen)
471 len = buflen;
473 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
476 * If the nul at the end of args has been overwritten, then
477 * assume application is using setproctitle(3).
479 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
480 len = strnlen(buffer, res);
481 if (len < res) {
482 res = len;
483 } else {
484 len = mm->env_end - mm->env_start;
485 if (len > buflen - res)
486 len = buflen - res;
487 res += access_process_vm(task, mm->env_start,
488 buffer+res, len, 0);
489 res = strnlen(buffer, res);
492 out_mm:
493 mmput(mm);
494 out:
495 return res;
498 /* Tracepoints definitions. */
499 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
500 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
501 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
502 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
503 EXPORT_TRACEPOINT_SYMBOL(kfree);
504 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);