4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 #include <linux/userfaultfd_k.h>
67 #include <asm/pgalloc.h>
68 #include <asm/uaccess.h>
70 #include <asm/tlbflush.h>
71 #include <asm/pgtable.h>
75 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
76 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
79 #ifndef CONFIG_NEED_MULTIPLE_NODES
80 /* use the per-pgdat data instead for discontigmem - mbligh */
81 unsigned long max_mapnr
;
84 EXPORT_SYMBOL(max_mapnr
);
85 EXPORT_SYMBOL(mem_map
);
89 * A number of key systems in x86 including ioremap() rely on the assumption
90 * that high_memory defines the upper bound on direct map memory, then end
91 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
92 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
97 EXPORT_SYMBOL(high_memory
);
100 * Randomize the address space (stacks, mmaps, brk, etc.).
102 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
103 * as ancient (libc5 based) binaries can segfault. )
105 int randomize_va_space __read_mostly
=
106 #ifdef CONFIG_COMPAT_BRK
112 static int __init
disable_randmaps(char *s
)
114 randomize_va_space
= 0;
117 __setup("norandmaps", disable_randmaps
);
119 unsigned long zero_pfn __read_mostly
;
120 unsigned long highest_memmap_pfn __read_mostly
;
122 EXPORT_SYMBOL(zero_pfn
);
125 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
127 static int __init
init_zero_pfn(void)
129 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
132 core_initcall(init_zero_pfn
);
135 #if defined(SPLIT_RSS_COUNTING)
137 void sync_mm_rss(struct mm_struct
*mm
)
141 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
142 if (current
->rss_stat
.count
[i
]) {
143 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
144 current
->rss_stat
.count
[i
] = 0;
147 current
->rss_stat
.events
= 0;
150 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
152 struct task_struct
*task
= current
;
154 if (likely(task
->mm
== mm
))
155 task
->rss_stat
.count
[member
] += val
;
157 add_mm_counter(mm
, member
, val
);
159 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
160 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
162 /* sync counter once per 64 page faults */
163 #define TASK_RSS_EVENTS_THRESH (64)
164 static void check_sync_rss_stat(struct task_struct
*task
)
166 if (unlikely(task
!= current
))
168 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
169 sync_mm_rss(task
->mm
);
171 #else /* SPLIT_RSS_COUNTING */
173 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
174 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
176 static void check_sync_rss_stat(struct task_struct
*task
)
180 #endif /* SPLIT_RSS_COUNTING */
182 #ifdef HAVE_GENERIC_MMU_GATHER
184 static bool tlb_next_batch(struct mmu_gather
*tlb
)
186 struct mmu_gather_batch
*batch
;
190 tlb
->active
= batch
->next
;
194 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
197 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
204 batch
->max
= MAX_GATHER_BATCH
;
206 tlb
->active
->next
= batch
;
213 * Called to initialize an (on-stack) mmu_gather structure for page-table
214 * tear-down from @mm. The @fullmm argument is used when @mm is without
215 * users and we're going to destroy the full address space (exit/execve).
217 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, unsigned long start
, unsigned long end
)
221 /* Is it from 0 to ~0? */
222 tlb
->fullmm
= !(start
| (end
+1));
223 tlb
->need_flush_all
= 0;
224 tlb
->local
.next
= NULL
;
226 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
227 tlb
->active
= &tlb
->local
;
228 tlb
->batch_count
= 0;
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 __tlb_reset_range(tlb
);
237 static void tlb_flush_mmu_tlbonly(struct mmu_gather
*tlb
)
243 mmu_notifier_invalidate_range(tlb
->mm
, tlb
->start
, tlb
->end
);
244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
245 tlb_table_flush(tlb
);
247 __tlb_reset_range(tlb
);
250 static void tlb_flush_mmu_free(struct mmu_gather
*tlb
)
252 struct mmu_gather_batch
*batch
;
254 for (batch
= &tlb
->local
; batch
&& batch
->nr
; batch
= batch
->next
) {
255 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
258 tlb
->active
= &tlb
->local
;
261 void tlb_flush_mmu(struct mmu_gather
*tlb
)
263 tlb_flush_mmu_tlbonly(tlb
);
264 tlb_flush_mmu_free(tlb
);
268 * Called at the end of the shootdown operation to free up any resources
269 * that were required.
271 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
273 struct mmu_gather_batch
*batch
, *next
;
277 /* keep the page table cache within bounds */
280 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
282 free_pages((unsigned long)batch
, 0);
284 tlb
->local
.next
= NULL
;
288 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
289 * handling the additional races in SMP caused by other CPUs caching valid
290 * mappings in their TLBs. Returns the number of free page slots left.
291 * When out of page slots we must call tlb_flush_mmu().
293 int __tlb_remove_page(struct mmu_gather
*tlb
, struct page
*page
)
295 struct mmu_gather_batch
*batch
;
297 VM_BUG_ON(!tlb
->end
);
300 batch
->pages
[batch
->nr
++] = page
;
301 if (batch
->nr
== batch
->max
) {
302 if (!tlb_next_batch(tlb
))
306 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
308 return batch
->max
- batch
->nr
;
311 #endif /* HAVE_GENERIC_MMU_GATHER */
313 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
316 * See the comment near struct mmu_table_batch.
319 static void tlb_remove_table_smp_sync(void *arg
)
321 /* Simply deliver the interrupt */
324 static void tlb_remove_table_one(void *table
)
327 * This isn't an RCU grace period and hence the page-tables cannot be
328 * assumed to be actually RCU-freed.
330 * It is however sufficient for software page-table walkers that rely on
331 * IRQ disabling. See the comment near struct mmu_table_batch.
333 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
334 __tlb_remove_table(table
);
337 static void tlb_remove_table_rcu(struct rcu_head
*head
)
339 struct mmu_table_batch
*batch
;
342 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
344 for (i
= 0; i
< batch
->nr
; i
++)
345 __tlb_remove_table(batch
->tables
[i
]);
347 free_page((unsigned long)batch
);
350 void tlb_table_flush(struct mmu_gather
*tlb
)
352 struct mmu_table_batch
**batch
= &tlb
->batch
;
355 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
360 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
362 struct mmu_table_batch
**batch
= &tlb
->batch
;
365 * When there's less then two users of this mm there cannot be a
366 * concurrent page-table walk.
368 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
369 __tlb_remove_table(table
);
373 if (*batch
== NULL
) {
374 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
375 if (*batch
== NULL
) {
376 tlb_remove_table_one(table
);
381 (*batch
)->tables
[(*batch
)->nr
++] = table
;
382 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
383 tlb_table_flush(tlb
);
386 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
389 * Note: this doesn't free the actual pages themselves. That
390 * has been handled earlier when unmapping all the memory regions.
392 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
395 pgtable_t token
= pmd_pgtable(*pmd
);
397 pte_free_tlb(tlb
, token
, addr
);
398 atomic_long_dec(&tlb
->mm
->nr_ptes
);
401 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
402 unsigned long addr
, unsigned long end
,
403 unsigned long floor
, unsigned long ceiling
)
410 pmd
= pmd_offset(pud
, addr
);
412 next
= pmd_addr_end(addr
, end
);
413 if (pmd_none_or_clear_bad(pmd
))
415 free_pte_range(tlb
, pmd
, addr
);
416 } while (pmd
++, addr
= next
, addr
!= end
);
426 if (end
- 1 > ceiling
- 1)
429 pmd
= pmd_offset(pud
, start
);
431 pmd_free_tlb(tlb
, pmd
, start
);
432 mm_dec_nr_pmds(tlb
->mm
);
435 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
436 unsigned long addr
, unsigned long end
,
437 unsigned long floor
, unsigned long ceiling
)
444 pud
= pud_offset(pgd
, addr
);
446 next
= pud_addr_end(addr
, end
);
447 if (pud_none_or_clear_bad(pud
))
449 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
450 } while (pud
++, addr
= next
, addr
!= end
);
456 ceiling
&= PGDIR_MASK
;
460 if (end
- 1 > ceiling
- 1)
463 pud
= pud_offset(pgd
, start
);
465 pud_free_tlb(tlb
, pud
, start
);
469 * This function frees user-level page tables of a process.
471 void free_pgd_range(struct mmu_gather
*tlb
,
472 unsigned long addr
, unsigned long end
,
473 unsigned long floor
, unsigned long ceiling
)
479 * The next few lines have given us lots of grief...
481 * Why are we testing PMD* at this top level? Because often
482 * there will be no work to do at all, and we'd prefer not to
483 * go all the way down to the bottom just to discover that.
485 * Why all these "- 1"s? Because 0 represents both the bottom
486 * of the address space and the top of it (using -1 for the
487 * top wouldn't help much: the masks would do the wrong thing).
488 * The rule is that addr 0 and floor 0 refer to the bottom of
489 * the address space, but end 0 and ceiling 0 refer to the top
490 * Comparisons need to use "end - 1" and "ceiling - 1" (though
491 * that end 0 case should be mythical).
493 * Wherever addr is brought up or ceiling brought down, we must
494 * be careful to reject "the opposite 0" before it confuses the
495 * subsequent tests. But what about where end is brought down
496 * by PMD_SIZE below? no, end can't go down to 0 there.
498 * Whereas we round start (addr) and ceiling down, by different
499 * masks at different levels, in order to test whether a table
500 * now has no other vmas using it, so can be freed, we don't
501 * bother to round floor or end up - the tests don't need that.
515 if (end
- 1 > ceiling
- 1)
520 pgd
= pgd_offset(tlb
->mm
, addr
);
522 next
= pgd_addr_end(addr
, end
);
523 if (pgd_none_or_clear_bad(pgd
))
525 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
526 } while (pgd
++, addr
= next
, addr
!= end
);
529 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
530 unsigned long floor
, unsigned long ceiling
)
533 struct vm_area_struct
*next
= vma
->vm_next
;
534 unsigned long addr
= vma
->vm_start
;
537 * Hide vma from rmap and truncate_pagecache before freeing
540 unlink_anon_vmas(vma
);
541 unlink_file_vma(vma
);
543 if (is_vm_hugetlb_page(vma
)) {
544 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
545 floor
, next
? next
->vm_start
: ceiling
);
548 * Optimization: gather nearby vmas into one call down
550 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
551 && !is_vm_hugetlb_page(next
)) {
554 unlink_anon_vmas(vma
);
555 unlink_file_vma(vma
);
557 free_pgd_range(tlb
, addr
, vma
->vm_end
,
558 floor
, next
? next
->vm_start
: ceiling
);
564 int __pte_alloc(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
565 pmd_t
*pmd
, unsigned long address
)
568 pgtable_t
new = pte_alloc_one(mm
, address
);
569 int wait_split_huge_page
;
574 * Ensure all pte setup (eg. pte page lock and page clearing) are
575 * visible before the pte is made visible to other CPUs by being
576 * put into page tables.
578 * The other side of the story is the pointer chasing in the page
579 * table walking code (when walking the page table without locking;
580 * ie. most of the time). Fortunately, these data accesses consist
581 * of a chain of data-dependent loads, meaning most CPUs (alpha
582 * being the notable exception) will already guarantee loads are
583 * seen in-order. See the alpha page table accessors for the
584 * smp_read_barrier_depends() barriers in page table walking code.
586 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
588 ptl
= pmd_lock(mm
, pmd
);
589 wait_split_huge_page
= 0;
590 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
591 atomic_long_inc(&mm
->nr_ptes
);
592 pmd_populate(mm
, pmd
, new);
594 } else if (unlikely(pmd_trans_splitting(*pmd
)))
595 wait_split_huge_page
= 1;
599 if (wait_split_huge_page
)
600 wait_split_huge_page(vma
->anon_vma
, pmd
);
604 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
606 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
610 smp_wmb(); /* See comment in __pte_alloc */
612 spin_lock(&init_mm
.page_table_lock
);
613 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
614 pmd_populate_kernel(&init_mm
, pmd
, new);
617 VM_BUG_ON(pmd_trans_splitting(*pmd
));
618 spin_unlock(&init_mm
.page_table_lock
);
620 pte_free_kernel(&init_mm
, new);
624 static inline void init_rss_vec(int *rss
)
626 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
629 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
633 if (current
->mm
== mm
)
635 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
637 add_mm_counter(mm
, i
, rss
[i
]);
641 * This function is called to print an error when a bad pte
642 * is found. For example, we might have a PFN-mapped pte in
643 * a region that doesn't allow it.
645 * The calling function must still handle the error.
647 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
648 pte_t pte
, struct page
*page
)
650 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
651 pud_t
*pud
= pud_offset(pgd
, addr
);
652 pmd_t
*pmd
= pmd_offset(pud
, addr
);
653 struct address_space
*mapping
;
655 static unsigned long resume
;
656 static unsigned long nr_shown
;
657 static unsigned long nr_unshown
;
660 * Allow a burst of 60 reports, then keep quiet for that minute;
661 * or allow a steady drip of one report per second.
663 if (nr_shown
== 60) {
664 if (time_before(jiffies
, resume
)) {
670 "BUG: Bad page map: %lu messages suppressed\n",
677 resume
= jiffies
+ 60 * HZ
;
679 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
680 index
= linear_page_index(vma
, addr
);
683 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
685 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
687 dump_page(page
, "bad pte");
689 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
690 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
692 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
694 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
696 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
697 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
698 mapping
? mapping
->a_ops
->readpage
: NULL
);
700 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
704 * vm_normal_page -- This function gets the "struct page" associated with a pte.
706 * "Special" mappings do not wish to be associated with a "struct page" (either
707 * it doesn't exist, or it exists but they don't want to touch it). In this
708 * case, NULL is returned here. "Normal" mappings do have a struct page.
710 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711 * pte bit, in which case this function is trivial. Secondly, an architecture
712 * may not have a spare pte bit, which requires a more complicated scheme,
715 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716 * special mapping (even if there are underlying and valid "struct pages").
717 * COWed pages of a VM_PFNMAP are always normal.
719 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
721 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722 * mapping will always honor the rule
724 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
726 * And for normal mappings this is false.
728 * This restricts such mappings to be a linear translation from virtual address
729 * to pfn. To get around this restriction, we allow arbitrary mappings so long
730 * as the vma is not a COW mapping; in that case, we know that all ptes are
731 * special (because none can have been COWed).
734 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
736 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737 * page" backing, however the difference is that _all_ pages with a struct
738 * page (that is, those where pfn_valid is true) are refcounted and considered
739 * normal pages by the VM. The disadvantage is that pages are refcounted
740 * (which can be slower and simply not an option for some PFNMAP users). The
741 * advantage is that we don't have to follow the strict linearity rule of
742 * PFNMAP mappings in order to support COWable mappings.
745 #ifdef __HAVE_ARCH_PTE_SPECIAL
746 # define HAVE_PTE_SPECIAL 1
748 # define HAVE_PTE_SPECIAL 0
750 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
753 unsigned long pfn
= pte_pfn(pte
);
755 if (HAVE_PTE_SPECIAL
) {
756 if (likely(!pte_special(pte
)))
758 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
759 return vma
->vm_ops
->find_special_page(vma
, addr
);
760 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
762 if (!is_zero_pfn(pfn
))
763 print_bad_pte(vma
, addr
, pte
, NULL
);
767 /* !HAVE_PTE_SPECIAL case follows: */
769 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
770 if (vma
->vm_flags
& VM_MIXEDMAP
) {
776 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
777 if (pfn
== vma
->vm_pgoff
+ off
)
779 if (!is_cow_mapping(vma
->vm_flags
))
784 if (is_zero_pfn(pfn
))
787 if (unlikely(pfn
> highest_memmap_pfn
)) {
788 print_bad_pte(vma
, addr
, pte
, NULL
);
793 * NOTE! We still have PageReserved() pages in the page tables.
794 * eg. VDSO mappings can cause them to exist.
797 return pfn_to_page(pfn
);
801 * copy one vm_area from one task to the other. Assumes the page tables
802 * already present in the new task to be cleared in the whole range
803 * covered by this vma.
806 static inline unsigned long
807 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
808 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
809 unsigned long addr
, int *rss
)
811 unsigned long vm_flags
= vma
->vm_flags
;
812 pte_t pte
= *src_pte
;
815 /* pte contains position in swap or file, so copy. */
816 if (unlikely(!pte_present(pte
))) {
817 swp_entry_t entry
= pte_to_swp_entry(pte
);
819 if (likely(!non_swap_entry(entry
))) {
820 if (swap_duplicate(entry
) < 0)
823 /* make sure dst_mm is on swapoff's mmlist. */
824 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
825 spin_lock(&mmlist_lock
);
826 if (list_empty(&dst_mm
->mmlist
))
827 list_add(&dst_mm
->mmlist
,
829 spin_unlock(&mmlist_lock
);
832 } else if (is_migration_entry(entry
)) {
833 page
= migration_entry_to_page(entry
);
840 if (is_write_migration_entry(entry
) &&
841 is_cow_mapping(vm_flags
)) {
843 * COW mappings require pages in both
844 * parent and child to be set to read.
846 make_migration_entry_read(&entry
);
847 pte
= swp_entry_to_pte(entry
);
848 if (pte_swp_soft_dirty(*src_pte
))
849 pte
= pte_swp_mksoft_dirty(pte
);
850 set_pte_at(src_mm
, addr
, src_pte
, pte
);
857 * If it's a COW mapping, write protect it both
858 * in the parent and the child
860 if (is_cow_mapping(vm_flags
)) {
861 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
862 pte
= pte_wrprotect(pte
);
866 * If it's a shared mapping, mark it clean in
869 if (vm_flags
& VM_SHARED
)
870 pte
= pte_mkclean(pte
);
871 pte
= pte_mkold(pte
);
873 page
= vm_normal_page(vma
, addr
, pte
);
884 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
888 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
889 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
890 unsigned long addr
, unsigned long end
)
892 pte_t
*orig_src_pte
, *orig_dst_pte
;
893 pte_t
*src_pte
, *dst_pte
;
894 spinlock_t
*src_ptl
, *dst_ptl
;
896 int rss
[NR_MM_COUNTERS
];
897 swp_entry_t entry
= (swp_entry_t
){0};
902 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
905 src_pte
= pte_offset_map(src_pmd
, addr
);
906 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
907 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
908 orig_src_pte
= src_pte
;
909 orig_dst_pte
= dst_pte
;
910 arch_enter_lazy_mmu_mode();
914 * We are holding two locks at this point - either of them
915 * could generate latencies in another task on another CPU.
917 if (progress
>= 32) {
919 if (need_resched() ||
920 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
923 if (pte_none(*src_pte
)) {
927 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
932 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
934 arch_leave_lazy_mmu_mode();
935 spin_unlock(src_ptl
);
936 pte_unmap(orig_src_pte
);
937 add_mm_rss_vec(dst_mm
, rss
);
938 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
942 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
951 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
952 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
953 unsigned long addr
, unsigned long end
)
955 pmd_t
*src_pmd
, *dst_pmd
;
958 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
961 src_pmd
= pmd_offset(src_pud
, addr
);
963 next
= pmd_addr_end(addr
, end
);
964 if (pmd_trans_huge(*src_pmd
)) {
966 VM_BUG_ON(next
-addr
!= HPAGE_PMD_SIZE
);
967 err
= copy_huge_pmd(dst_mm
, src_mm
,
968 dst_pmd
, src_pmd
, addr
, vma
);
975 if (pmd_none_or_clear_bad(src_pmd
))
977 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
980 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
984 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
985 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
986 unsigned long addr
, unsigned long end
)
988 pud_t
*src_pud
, *dst_pud
;
991 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
994 src_pud
= pud_offset(src_pgd
, addr
);
996 next
= pud_addr_end(addr
, end
);
997 if (pud_none_or_clear_bad(src_pud
))
999 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1002 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1006 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1007 struct vm_area_struct
*vma
)
1009 pgd_t
*src_pgd
, *dst_pgd
;
1011 unsigned long addr
= vma
->vm_start
;
1012 unsigned long end
= vma
->vm_end
;
1013 unsigned long mmun_start
; /* For mmu_notifiers */
1014 unsigned long mmun_end
; /* For mmu_notifiers */
1019 * Don't copy ptes where a page fault will fill them correctly.
1020 * Fork becomes much lighter when there are big shared or private
1021 * readonly mappings. The tradeoff is that copy_page_range is more
1022 * efficient than faulting.
1024 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
1028 if (is_vm_hugetlb_page(vma
))
1029 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1031 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1033 * We do not free on error cases below as remove_vma
1034 * gets called on error from higher level routine
1036 ret
= track_pfn_copy(vma
);
1042 * We need to invalidate the secondary MMU mappings only when
1043 * there could be a permission downgrade on the ptes of the
1044 * parent mm. And a permission downgrade will only happen if
1045 * is_cow_mapping() returns true.
1047 is_cow
= is_cow_mapping(vma
->vm_flags
);
1051 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1055 dst_pgd
= pgd_offset(dst_mm
, addr
);
1056 src_pgd
= pgd_offset(src_mm
, addr
);
1058 next
= pgd_addr_end(addr
, end
);
1059 if (pgd_none_or_clear_bad(src_pgd
))
1061 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1062 vma
, addr
, next
))) {
1066 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1069 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1073 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1074 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1075 unsigned long addr
, unsigned long end
,
1076 struct zap_details
*details
)
1078 struct mm_struct
*mm
= tlb
->mm
;
1079 int force_flush
= 0;
1080 int rss
[NR_MM_COUNTERS
];
1088 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1090 arch_enter_lazy_mmu_mode();
1093 if (pte_none(ptent
)) {
1097 if (pte_present(ptent
)) {
1100 page
= vm_normal_page(vma
, addr
, ptent
);
1101 if (unlikely(details
) && page
) {
1103 * unmap_shared_mapping_pages() wants to
1104 * invalidate cache without truncating:
1105 * unmap shared but keep private pages.
1107 if (details
->check_mapping
&&
1108 details
->check_mapping
!= page
->mapping
)
1111 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1113 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1114 if (unlikely(!page
))
1117 rss
[MM_ANONPAGES
]--;
1119 if (pte_dirty(ptent
)) {
1121 set_page_dirty(page
);
1123 if (pte_young(ptent
) &&
1124 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1125 mark_page_accessed(page
);
1126 rss
[MM_FILEPAGES
]--;
1128 page_remove_rmap(page
);
1129 if (unlikely(page_mapcount(page
) < 0))
1130 print_bad_pte(vma
, addr
, ptent
, page
);
1131 if (unlikely(!__tlb_remove_page(tlb
, page
))) {
1138 /* If details->check_mapping, we leave swap entries. */
1139 if (unlikely(details
))
1142 entry
= pte_to_swp_entry(ptent
);
1143 if (!non_swap_entry(entry
))
1145 else if (is_migration_entry(entry
)) {
1148 page
= migration_entry_to_page(entry
);
1151 rss
[MM_ANONPAGES
]--;
1153 rss
[MM_FILEPAGES
]--;
1155 if (unlikely(!free_swap_and_cache(entry
)))
1156 print_bad_pte(vma
, addr
, ptent
, NULL
);
1157 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1158 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1160 add_mm_rss_vec(mm
, rss
);
1161 arch_leave_lazy_mmu_mode();
1163 /* Do the actual TLB flush before dropping ptl */
1165 tlb_flush_mmu_tlbonly(tlb
);
1166 pte_unmap_unlock(start_pte
, ptl
);
1169 * If we forced a TLB flush (either due to running out of
1170 * batch buffers or because we needed to flush dirty TLB
1171 * entries before releasing the ptl), free the batched
1172 * memory too. Restart if we didn't do everything.
1176 tlb_flush_mmu_free(tlb
);
1185 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1186 struct vm_area_struct
*vma
, pud_t
*pud
,
1187 unsigned long addr
, unsigned long end
,
1188 struct zap_details
*details
)
1193 pmd
= pmd_offset(pud
, addr
);
1195 next
= pmd_addr_end(addr
, end
);
1196 if (pmd_trans_huge(*pmd
)) {
1197 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1198 #ifdef CONFIG_DEBUG_VM
1199 if (!rwsem_is_locked(&tlb
->mm
->mmap_sem
)) {
1200 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1201 __func__
, addr
, end
,
1207 split_huge_page_pmd(vma
, addr
, pmd
);
1208 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1213 * Here there can be other concurrent MADV_DONTNEED or
1214 * trans huge page faults running, and if the pmd is
1215 * none or trans huge it can change under us. This is
1216 * because MADV_DONTNEED holds the mmap_sem in read
1219 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1221 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1224 } while (pmd
++, addr
= next
, addr
!= end
);
1229 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1230 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1231 unsigned long addr
, unsigned long end
,
1232 struct zap_details
*details
)
1237 pud
= pud_offset(pgd
, addr
);
1239 next
= pud_addr_end(addr
, end
);
1240 if (pud_none_or_clear_bad(pud
))
1242 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1243 } while (pud
++, addr
= next
, addr
!= end
);
1248 static void unmap_page_range(struct mmu_gather
*tlb
,
1249 struct vm_area_struct
*vma
,
1250 unsigned long addr
, unsigned long end
,
1251 struct zap_details
*details
)
1256 if (details
&& !details
->check_mapping
)
1259 BUG_ON(addr
>= end
);
1260 tlb_start_vma(tlb
, vma
);
1261 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1263 next
= pgd_addr_end(addr
, end
);
1264 if (pgd_none_or_clear_bad(pgd
))
1266 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1267 } while (pgd
++, addr
= next
, addr
!= end
);
1268 tlb_end_vma(tlb
, vma
);
1272 static void unmap_single_vma(struct mmu_gather
*tlb
,
1273 struct vm_area_struct
*vma
, unsigned long start_addr
,
1274 unsigned long end_addr
,
1275 struct zap_details
*details
)
1277 unsigned long start
= max(vma
->vm_start
, start_addr
);
1280 if (start
>= vma
->vm_end
)
1282 end
= min(vma
->vm_end
, end_addr
);
1283 if (end
<= vma
->vm_start
)
1287 uprobe_munmap(vma
, start
, end
);
1289 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1290 untrack_pfn(vma
, 0, 0);
1293 if (unlikely(is_vm_hugetlb_page(vma
))) {
1295 * It is undesirable to test vma->vm_file as it
1296 * should be non-null for valid hugetlb area.
1297 * However, vm_file will be NULL in the error
1298 * cleanup path of mmap_region. When
1299 * hugetlbfs ->mmap method fails,
1300 * mmap_region() nullifies vma->vm_file
1301 * before calling this function to clean up.
1302 * Since no pte has actually been setup, it is
1303 * safe to do nothing in this case.
1306 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1307 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1308 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1311 unmap_page_range(tlb
, vma
, start
, end
, details
);
1316 * unmap_vmas - unmap a range of memory covered by a list of vma's
1317 * @tlb: address of the caller's struct mmu_gather
1318 * @vma: the starting vma
1319 * @start_addr: virtual address at which to start unmapping
1320 * @end_addr: virtual address at which to end unmapping
1322 * Unmap all pages in the vma list.
1324 * Only addresses between `start' and `end' will be unmapped.
1326 * The VMA list must be sorted in ascending virtual address order.
1328 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329 * range after unmap_vmas() returns. So the only responsibility here is to
1330 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331 * drops the lock and schedules.
1333 void unmap_vmas(struct mmu_gather
*tlb
,
1334 struct vm_area_struct
*vma
, unsigned long start_addr
,
1335 unsigned long end_addr
)
1337 struct mm_struct
*mm
= vma
->vm_mm
;
1339 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1340 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1341 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1342 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1346 * zap_page_range - remove user pages in a given range
1347 * @vma: vm_area_struct holding the applicable pages
1348 * @start: starting address of pages to zap
1349 * @size: number of bytes to zap
1350 * @details: details of shared cache invalidation
1352 * Caller must protect the VMA list
1354 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1355 unsigned long size
, struct zap_details
*details
)
1357 struct mm_struct
*mm
= vma
->vm_mm
;
1358 struct mmu_gather tlb
;
1359 unsigned long end
= start
+ size
;
1362 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1363 update_hiwater_rss(mm
);
1364 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1365 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1366 unmap_single_vma(&tlb
, vma
, start
, end
, details
);
1367 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1368 tlb_finish_mmu(&tlb
, start
, end
);
1372 * zap_page_range_single - remove user pages in a given range
1373 * @vma: vm_area_struct holding the applicable pages
1374 * @address: starting address of pages to zap
1375 * @size: number of bytes to zap
1376 * @details: details of shared cache invalidation
1378 * The range must fit into one VMA.
1380 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1381 unsigned long size
, struct zap_details
*details
)
1383 struct mm_struct
*mm
= vma
->vm_mm
;
1384 struct mmu_gather tlb
;
1385 unsigned long end
= address
+ size
;
1388 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1389 update_hiwater_rss(mm
);
1390 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1391 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1392 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1393 tlb_finish_mmu(&tlb
, address
, end
);
1397 * zap_vma_ptes - remove ptes mapping the vma
1398 * @vma: vm_area_struct holding ptes to be zapped
1399 * @address: starting address of pages to zap
1400 * @size: number of bytes to zap
1402 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1404 * The entire address range must be fully contained within the vma.
1406 * Returns 0 if successful.
1408 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1411 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1412 !(vma
->vm_flags
& VM_PFNMAP
))
1414 zap_page_range_single(vma
, address
, size
, NULL
);
1417 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1419 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1422 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1423 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1425 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1427 VM_BUG_ON(pmd_trans_huge(*pmd
));
1428 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1435 * This is the old fallback for page remapping.
1437 * For historical reasons, it only allows reserved pages. Only
1438 * old drivers should use this, and they needed to mark their
1439 * pages reserved for the old functions anyway.
1441 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1442 struct page
*page
, pgprot_t prot
)
1444 struct mm_struct
*mm
= vma
->vm_mm
;
1453 flush_dcache_page(page
);
1454 pte
= get_locked_pte(mm
, addr
, &ptl
);
1458 if (!pte_none(*pte
))
1461 /* Ok, finally just insert the thing.. */
1463 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
1464 page_add_file_rmap(page
);
1465 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1468 pte_unmap_unlock(pte
, ptl
);
1471 pte_unmap_unlock(pte
, ptl
);
1477 * vm_insert_page - insert single page into user vma
1478 * @vma: user vma to map to
1479 * @addr: target user address of this page
1480 * @page: source kernel page
1482 * This allows drivers to insert individual pages they've allocated
1485 * The page has to be a nice clean _individual_ kernel allocation.
1486 * If you allocate a compound page, you need to have marked it as
1487 * such (__GFP_COMP), or manually just split the page up yourself
1488 * (see split_page()).
1490 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1491 * took an arbitrary page protection parameter. This doesn't allow
1492 * that. Your vma protection will have to be set up correctly, which
1493 * means that if you want a shared writable mapping, you'd better
1494 * ask for a shared writable mapping!
1496 * The page does not need to be reserved.
1498 * Usually this function is called from f_op->mmap() handler
1499 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1500 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1501 * function from other places, for example from page-fault handler.
1503 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1506 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1508 if (!page_count(page
))
1510 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1511 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1512 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1513 vma
->vm_flags
|= VM_MIXEDMAP
;
1515 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1517 EXPORT_SYMBOL(vm_insert_page
);
1519 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1520 unsigned long pfn
, pgprot_t prot
)
1522 struct mm_struct
*mm
= vma
->vm_mm
;
1528 pte
= get_locked_pte(mm
, addr
, &ptl
);
1532 if (!pte_none(*pte
))
1535 /* Ok, finally just insert the thing.. */
1536 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1537 set_pte_at(mm
, addr
, pte
, entry
);
1538 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1542 pte_unmap_unlock(pte
, ptl
);
1548 * vm_insert_pfn - insert single pfn into user vma
1549 * @vma: user vma to map to
1550 * @addr: target user address of this page
1551 * @pfn: source kernel pfn
1553 * Similar to vm_insert_page, this allows drivers to insert individual pages
1554 * they've allocated into a user vma. Same comments apply.
1556 * This function should only be called from a vm_ops->fault handler, and
1557 * in that case the handler should return NULL.
1559 * vma cannot be a COW mapping.
1561 * As this is called only for pages that do not currently exist, we
1562 * do not need to flush old virtual caches or the TLB.
1564 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1568 pgprot_t pgprot
= vma
->vm_page_prot
;
1570 * Technically, architectures with pte_special can avoid all these
1571 * restrictions (same for remap_pfn_range). However we would like
1572 * consistency in testing and feature parity among all, so we should
1573 * try to keep these invariants in place for everybody.
1575 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1576 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1577 (VM_PFNMAP
|VM_MIXEDMAP
));
1578 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1579 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1581 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1583 if (track_pfn_insert(vma
, &pgprot
, pfn
))
1586 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
1590 EXPORT_SYMBOL(vm_insert_pfn
);
1592 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1595 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1597 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1601 * If we don't have pte special, then we have to use the pfn_valid()
1602 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1603 * refcount the page if pfn_valid is true (hence insert_page rather
1604 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1605 * without pte special, it would there be refcounted as a normal page.
1607 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1610 page
= pfn_to_page(pfn
);
1611 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1613 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1615 EXPORT_SYMBOL(vm_insert_mixed
);
1618 * maps a range of physical memory into the requested pages. the old
1619 * mappings are removed. any references to nonexistent pages results
1620 * in null mappings (currently treated as "copy-on-access")
1622 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1623 unsigned long addr
, unsigned long end
,
1624 unsigned long pfn
, pgprot_t prot
)
1629 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1632 arch_enter_lazy_mmu_mode();
1634 BUG_ON(!pte_none(*pte
));
1635 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1637 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1638 arch_leave_lazy_mmu_mode();
1639 pte_unmap_unlock(pte
- 1, ptl
);
1643 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1644 unsigned long addr
, unsigned long end
,
1645 unsigned long pfn
, pgprot_t prot
)
1650 pfn
-= addr
>> PAGE_SHIFT
;
1651 pmd
= pmd_alloc(mm
, pud
, addr
);
1654 VM_BUG_ON(pmd_trans_huge(*pmd
));
1656 next
= pmd_addr_end(addr
, end
);
1657 if (remap_pte_range(mm
, pmd
, addr
, next
,
1658 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1660 } while (pmd
++, addr
= next
, addr
!= end
);
1664 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1665 unsigned long addr
, unsigned long end
,
1666 unsigned long pfn
, pgprot_t prot
)
1671 pfn
-= addr
>> PAGE_SHIFT
;
1672 pud
= pud_alloc(mm
, pgd
, addr
);
1676 next
= pud_addr_end(addr
, end
);
1677 if (remap_pmd_range(mm
, pud
, addr
, next
,
1678 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1680 } while (pud
++, addr
= next
, addr
!= end
);
1685 * remap_pfn_range - remap kernel memory to userspace
1686 * @vma: user vma to map to
1687 * @addr: target user address to start at
1688 * @pfn: physical address of kernel memory
1689 * @size: size of map area
1690 * @prot: page protection flags for this mapping
1692 * Note: this is only safe if the mm semaphore is held when called.
1694 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1695 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1699 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1700 struct mm_struct
*mm
= vma
->vm_mm
;
1704 * Physically remapped pages are special. Tell the
1705 * rest of the world about it:
1706 * VM_IO tells people not to look at these pages
1707 * (accesses can have side effects).
1708 * VM_PFNMAP tells the core MM that the base pages are just
1709 * raw PFN mappings, and do not have a "struct page" associated
1712 * Disable vma merging and expanding with mremap().
1714 * Omit vma from core dump, even when VM_IO turned off.
1716 * There's a horrible special case to handle copy-on-write
1717 * behaviour that some programs depend on. We mark the "original"
1718 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1719 * See vm_normal_page() for details.
1721 if (is_cow_mapping(vma
->vm_flags
)) {
1722 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1724 vma
->vm_pgoff
= pfn
;
1727 err
= track_pfn_remap(vma
, &prot
, pfn
, addr
, PAGE_ALIGN(size
));
1731 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1733 BUG_ON(addr
>= end
);
1734 pfn
-= addr
>> PAGE_SHIFT
;
1735 pgd
= pgd_offset(mm
, addr
);
1736 flush_cache_range(vma
, addr
, end
);
1738 next
= pgd_addr_end(addr
, end
);
1739 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1740 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1743 } while (pgd
++, addr
= next
, addr
!= end
);
1746 untrack_pfn(vma
, pfn
, PAGE_ALIGN(size
));
1750 EXPORT_SYMBOL(remap_pfn_range
);
1753 * vm_iomap_memory - remap memory to userspace
1754 * @vma: user vma to map to
1755 * @start: start of area
1756 * @len: size of area
1758 * This is a simplified io_remap_pfn_range() for common driver use. The
1759 * driver just needs to give us the physical memory range to be mapped,
1760 * we'll figure out the rest from the vma information.
1762 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1763 * whatever write-combining details or similar.
1765 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1767 unsigned long vm_len
, pfn
, pages
;
1769 /* Check that the physical memory area passed in looks valid */
1770 if (start
+ len
< start
)
1773 * You *really* shouldn't map things that aren't page-aligned,
1774 * but we've historically allowed it because IO memory might
1775 * just have smaller alignment.
1777 len
+= start
& ~PAGE_MASK
;
1778 pfn
= start
>> PAGE_SHIFT
;
1779 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
1780 if (pfn
+ pages
< pfn
)
1783 /* We start the mapping 'vm_pgoff' pages into the area */
1784 if (vma
->vm_pgoff
> pages
)
1786 pfn
+= vma
->vm_pgoff
;
1787 pages
-= vma
->vm_pgoff
;
1789 /* Can we fit all of the mapping? */
1790 vm_len
= vma
->vm_end
- vma
->vm_start
;
1791 if (vm_len
>> PAGE_SHIFT
> pages
)
1794 /* Ok, let it rip */
1795 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1797 EXPORT_SYMBOL(vm_iomap_memory
);
1799 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1800 unsigned long addr
, unsigned long end
,
1801 pte_fn_t fn
, void *data
)
1806 spinlock_t
*uninitialized_var(ptl
);
1808 pte
= (mm
== &init_mm
) ?
1809 pte_alloc_kernel(pmd
, addr
) :
1810 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1814 BUG_ON(pmd_huge(*pmd
));
1816 arch_enter_lazy_mmu_mode();
1818 token
= pmd_pgtable(*pmd
);
1821 err
= fn(pte
++, token
, addr
, data
);
1824 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1826 arch_leave_lazy_mmu_mode();
1829 pte_unmap_unlock(pte
-1, ptl
);
1833 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1834 unsigned long addr
, unsigned long end
,
1835 pte_fn_t fn
, void *data
)
1841 BUG_ON(pud_huge(*pud
));
1843 pmd
= pmd_alloc(mm
, pud
, addr
);
1847 next
= pmd_addr_end(addr
, end
);
1848 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1851 } while (pmd
++, addr
= next
, addr
!= end
);
1855 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1856 unsigned long addr
, unsigned long end
,
1857 pte_fn_t fn
, void *data
)
1863 pud
= pud_alloc(mm
, pgd
, addr
);
1867 next
= pud_addr_end(addr
, end
);
1868 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1871 } while (pud
++, addr
= next
, addr
!= end
);
1876 * Scan a region of virtual memory, filling in page tables as necessary
1877 * and calling a provided function on each leaf page table.
1879 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1880 unsigned long size
, pte_fn_t fn
, void *data
)
1884 unsigned long end
= addr
+ size
;
1887 BUG_ON(addr
>= end
);
1888 pgd
= pgd_offset(mm
, addr
);
1890 next
= pgd_addr_end(addr
, end
);
1891 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1894 } while (pgd
++, addr
= next
, addr
!= end
);
1898 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1901 * handle_pte_fault chooses page fault handler according to an entry which was
1902 * read non-atomically. Before making any commitment, on those architectures
1903 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1904 * parts, do_swap_page must check under lock before unmapping the pte and
1905 * proceeding (but do_wp_page is only called after already making such a check;
1906 * and do_anonymous_page can safely check later on).
1908 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1909 pte_t
*page_table
, pte_t orig_pte
)
1912 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1913 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1914 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1916 same
= pte_same(*page_table
, orig_pte
);
1920 pte_unmap(page_table
);
1924 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1926 debug_dma_assert_idle(src
);
1929 * If the source page was a PFN mapping, we don't have
1930 * a "struct page" for it. We do a best-effort copy by
1931 * just copying from the original user address. If that
1932 * fails, we just zero-fill it. Live with it.
1934 if (unlikely(!src
)) {
1935 void *kaddr
= kmap_atomic(dst
);
1936 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1939 * This really shouldn't fail, because the page is there
1940 * in the page tables. But it might just be unreadable,
1941 * in which case we just give up and fill the result with
1944 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1946 kunmap_atomic(kaddr
);
1947 flush_dcache_page(dst
);
1949 copy_user_highpage(dst
, src
, va
, vma
);
1953 * Notify the address space that the page is about to become writable so that
1954 * it can prohibit this or wait for the page to get into an appropriate state.
1956 * We do this without the lock held, so that it can sleep if it needs to.
1958 static int do_page_mkwrite(struct vm_area_struct
*vma
, struct page
*page
,
1959 unsigned long address
)
1961 struct vm_fault vmf
;
1964 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
1965 vmf
.pgoff
= page
->index
;
1966 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
1968 vmf
.cow_page
= NULL
;
1970 ret
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
1971 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
1973 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
1975 if (!page
->mapping
) {
1977 return 0; /* retry */
1979 ret
|= VM_FAULT_LOCKED
;
1981 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1986 * Handle write page faults for pages that can be reused in the current vma
1988 * This can happen either due to the mapping being with the VM_SHARED flag,
1989 * or due to us being the last reference standing to the page. In either
1990 * case, all we need to do here is to mark the page as writable and update
1991 * any related book-keeping.
1993 static inline int wp_page_reuse(struct mm_struct
*mm
,
1994 struct vm_area_struct
*vma
, unsigned long address
,
1995 pte_t
*page_table
, spinlock_t
*ptl
, pte_t orig_pte
,
1996 struct page
*page
, int page_mkwrite
,
2002 * Clear the pages cpupid information as the existing
2003 * information potentially belongs to a now completely
2004 * unrelated process.
2007 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2009 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2010 entry
= pte_mkyoung(orig_pte
);
2011 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2012 if (ptep_set_access_flags(vma
, address
, page_table
, entry
, 1))
2013 update_mmu_cache(vma
, address
, page_table
);
2014 pte_unmap_unlock(page_table
, ptl
);
2017 struct address_space
*mapping
;
2023 dirtied
= set_page_dirty(page
);
2024 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2025 mapping
= page
->mapping
;
2027 page_cache_release(page
);
2029 if ((dirtied
|| page_mkwrite
) && mapping
) {
2031 * Some device drivers do not set page.mapping
2032 * but still dirty their pages
2034 balance_dirty_pages_ratelimited(mapping
);
2038 file_update_time(vma
->vm_file
);
2041 return VM_FAULT_WRITE
;
2045 * Handle the case of a page which we actually need to copy to a new page.
2047 * Called with mmap_sem locked and the old page referenced, but
2048 * without the ptl held.
2050 * High level logic flow:
2052 * - Allocate a page, copy the content of the old page to the new one.
2053 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2054 * - Take the PTL. If the pte changed, bail out and release the allocated page
2055 * - If the pte is still the way we remember it, update the page table and all
2056 * relevant references. This includes dropping the reference the page-table
2057 * held to the old page, as well as updating the rmap.
2058 * - In any case, unlock the PTL and drop the reference we took to the old page.
2060 static int wp_page_copy(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2061 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2062 pte_t orig_pte
, struct page
*old_page
)
2064 struct page
*new_page
= NULL
;
2065 spinlock_t
*ptl
= NULL
;
2067 int page_copied
= 0;
2068 const unsigned long mmun_start
= address
& PAGE_MASK
; /* For mmu_notifiers */
2069 const unsigned long mmun_end
= mmun_start
+ PAGE_SIZE
; /* For mmu_notifiers */
2070 struct mem_cgroup
*memcg
;
2072 if (unlikely(anon_vma_prepare(vma
)))
2075 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2076 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2080 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2083 cow_user_page(new_page
, old_page
, address
, vma
);
2086 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
))
2089 __SetPageUptodate(new_page
);
2091 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2094 * Re-check the pte - we dropped the lock
2096 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2097 if (likely(pte_same(*page_table
, orig_pte
))) {
2099 if (!PageAnon(old_page
)) {
2100 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2101 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2104 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2106 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2107 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2108 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2110 * Clear the pte entry and flush it first, before updating the
2111 * pte with the new entry. This will avoid a race condition
2112 * seen in the presence of one thread doing SMC and another
2115 ptep_clear_flush_notify(vma
, address
, page_table
);
2116 page_add_new_anon_rmap(new_page
, vma
, address
);
2117 mem_cgroup_commit_charge(new_page
, memcg
, false);
2118 lru_cache_add_active_or_unevictable(new_page
, vma
);
2120 * We call the notify macro here because, when using secondary
2121 * mmu page tables (such as kvm shadow page tables), we want the
2122 * new page to be mapped directly into the secondary page table.
2124 set_pte_at_notify(mm
, address
, page_table
, entry
);
2125 update_mmu_cache(vma
, address
, page_table
);
2128 * Only after switching the pte to the new page may
2129 * we remove the mapcount here. Otherwise another
2130 * process may come and find the rmap count decremented
2131 * before the pte is switched to the new page, and
2132 * "reuse" the old page writing into it while our pte
2133 * here still points into it and can be read by other
2136 * The critical issue is to order this
2137 * page_remove_rmap with the ptp_clear_flush above.
2138 * Those stores are ordered by (if nothing else,)
2139 * the barrier present in the atomic_add_negative
2140 * in page_remove_rmap.
2142 * Then the TLB flush in ptep_clear_flush ensures that
2143 * no process can access the old page before the
2144 * decremented mapcount is visible. And the old page
2145 * cannot be reused until after the decremented
2146 * mapcount is visible. So transitively, TLBs to
2147 * old page will be flushed before it can be reused.
2149 page_remove_rmap(old_page
);
2152 /* Free the old page.. */
2153 new_page
= old_page
;
2156 mem_cgroup_cancel_charge(new_page
, memcg
);
2160 page_cache_release(new_page
);
2162 pte_unmap_unlock(page_table
, ptl
);
2163 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2166 * Don't let another task, with possibly unlocked vma,
2167 * keep the mlocked page.
2169 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2170 lock_page(old_page
); /* LRU manipulation */
2171 munlock_vma_page(old_page
);
2172 unlock_page(old_page
);
2174 page_cache_release(old_page
);
2176 return page_copied
? VM_FAULT_WRITE
: 0;
2178 page_cache_release(new_page
);
2181 page_cache_release(old_page
);
2182 return VM_FAULT_OOM
;
2186 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2189 static int wp_pfn_shared(struct mm_struct
*mm
,
2190 struct vm_area_struct
*vma
, unsigned long address
,
2191 pte_t
*page_table
, spinlock_t
*ptl
, pte_t orig_pte
,
2194 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2195 struct vm_fault vmf
= {
2197 .pgoff
= linear_page_index(vma
, address
),
2198 .virtual_address
= (void __user
*)(address
& PAGE_MASK
),
2199 .flags
= FAULT_FLAG_WRITE
| FAULT_FLAG_MKWRITE
,
2203 pte_unmap_unlock(page_table
, ptl
);
2204 ret
= vma
->vm_ops
->pfn_mkwrite(vma
, &vmf
);
2205 if (ret
& VM_FAULT_ERROR
)
2207 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2209 * We might have raced with another page fault while we
2210 * released the pte_offset_map_lock.
2212 if (!pte_same(*page_table
, orig_pte
)) {
2213 pte_unmap_unlock(page_table
, ptl
);
2217 return wp_page_reuse(mm
, vma
, address
, page_table
, ptl
, orig_pte
,
2221 static int wp_page_shared(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2222 unsigned long address
, pte_t
*page_table
,
2223 pmd_t
*pmd
, spinlock_t
*ptl
, pte_t orig_pte
,
2224 struct page
*old_page
)
2227 int page_mkwrite
= 0;
2229 page_cache_get(old_page
);
2232 * Only catch write-faults on shared writable pages,
2233 * read-only shared pages can get COWed by
2234 * get_user_pages(.write=1, .force=1).
2236 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2239 pte_unmap_unlock(page_table
, ptl
);
2240 tmp
= do_page_mkwrite(vma
, old_page
, address
);
2241 if (unlikely(!tmp
|| (tmp
&
2242 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2243 page_cache_release(old_page
);
2247 * Since we dropped the lock we need to revalidate
2248 * the PTE as someone else may have changed it. If
2249 * they did, we just return, as we can count on the
2250 * MMU to tell us if they didn't also make it writable.
2252 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2254 if (!pte_same(*page_table
, orig_pte
)) {
2255 unlock_page(old_page
);
2256 pte_unmap_unlock(page_table
, ptl
);
2257 page_cache_release(old_page
);
2263 return wp_page_reuse(mm
, vma
, address
, page_table
, ptl
,
2264 orig_pte
, old_page
, page_mkwrite
, 1);
2268 * This routine handles present pages, when users try to write
2269 * to a shared page. It is done by copying the page to a new address
2270 * and decrementing the shared-page counter for the old page.
2272 * Note that this routine assumes that the protection checks have been
2273 * done by the caller (the low-level page fault routine in most cases).
2274 * Thus we can safely just mark it writable once we've done any necessary
2277 * We also mark the page dirty at this point even though the page will
2278 * change only once the write actually happens. This avoids a few races,
2279 * and potentially makes it more efficient.
2281 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2282 * but allow concurrent faults), with pte both mapped and locked.
2283 * We return with mmap_sem still held, but pte unmapped and unlocked.
2285 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2286 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2287 spinlock_t
*ptl
, pte_t orig_pte
)
2290 struct page
*old_page
;
2292 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2295 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2298 * We should not cow pages in a shared writeable mapping.
2299 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2301 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2302 (VM_WRITE
|VM_SHARED
))
2303 return wp_pfn_shared(mm
, vma
, address
, page_table
, ptl
,
2306 pte_unmap_unlock(page_table
, ptl
);
2307 return wp_page_copy(mm
, vma
, address
, page_table
, pmd
,
2308 orig_pte
, old_page
);
2312 * Take out anonymous pages first, anonymous shared vmas are
2313 * not dirty accountable.
2315 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2316 if (!trylock_page(old_page
)) {
2317 page_cache_get(old_page
);
2318 pte_unmap_unlock(page_table
, ptl
);
2319 lock_page(old_page
);
2320 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2322 if (!pte_same(*page_table
, orig_pte
)) {
2323 unlock_page(old_page
);
2324 pte_unmap_unlock(page_table
, ptl
);
2325 page_cache_release(old_page
);
2328 page_cache_release(old_page
);
2330 if (reuse_swap_page(old_page
)) {
2332 * The page is all ours. Move it to our anon_vma so
2333 * the rmap code will not search our parent or siblings.
2334 * Protected against the rmap code by the page lock.
2336 page_move_anon_rmap(old_page
, vma
, address
);
2337 unlock_page(old_page
);
2338 return wp_page_reuse(mm
, vma
, address
, page_table
, ptl
,
2339 orig_pte
, old_page
, 0, 0);
2341 unlock_page(old_page
);
2342 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2343 (VM_WRITE
|VM_SHARED
))) {
2344 return wp_page_shared(mm
, vma
, address
, page_table
, pmd
,
2345 ptl
, orig_pte
, old_page
);
2349 * Ok, we need to copy. Oh, well..
2351 page_cache_get(old_page
);
2353 pte_unmap_unlock(page_table
, ptl
);
2354 return wp_page_copy(mm
, vma
, address
, page_table
, pmd
,
2355 orig_pte
, old_page
);
2358 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2359 unsigned long start_addr
, unsigned long end_addr
,
2360 struct zap_details
*details
)
2362 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2365 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2366 struct zap_details
*details
)
2368 struct vm_area_struct
*vma
;
2369 pgoff_t vba
, vea
, zba
, zea
;
2371 vma_interval_tree_foreach(vma
, root
,
2372 details
->first_index
, details
->last_index
) {
2374 vba
= vma
->vm_pgoff
;
2375 vea
= vba
+ vma_pages(vma
) - 1;
2376 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2377 zba
= details
->first_index
;
2380 zea
= details
->last_index
;
2384 unmap_mapping_range_vma(vma
,
2385 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2386 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2392 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2393 * address_space corresponding to the specified page range in the underlying
2396 * @mapping: the address space containing mmaps to be unmapped.
2397 * @holebegin: byte in first page to unmap, relative to the start of
2398 * the underlying file. This will be rounded down to a PAGE_SIZE
2399 * boundary. Note that this is different from truncate_pagecache(), which
2400 * must keep the partial page. In contrast, we must get rid of
2402 * @holelen: size of prospective hole in bytes. This will be rounded
2403 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2405 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2406 * but 0 when invalidating pagecache, don't throw away private data.
2408 void unmap_mapping_range(struct address_space
*mapping
,
2409 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2411 struct zap_details details
;
2412 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2413 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2415 /* Check for overflow. */
2416 if (sizeof(holelen
) > sizeof(hlen
)) {
2418 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2419 if (holeend
& ~(long long)ULONG_MAX
)
2420 hlen
= ULONG_MAX
- hba
+ 1;
2423 details
.check_mapping
= even_cows
? NULL
: mapping
;
2424 details
.first_index
= hba
;
2425 details
.last_index
= hba
+ hlen
- 1;
2426 if (details
.last_index
< details
.first_index
)
2427 details
.last_index
= ULONG_MAX
;
2429 i_mmap_lock_write(mapping
);
2430 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
2431 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2432 i_mmap_unlock_write(mapping
);
2434 EXPORT_SYMBOL(unmap_mapping_range
);
2437 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2438 * but allow concurrent faults), and pte mapped but not yet locked.
2439 * We return with pte unmapped and unlocked.
2441 * We return with the mmap_sem locked or unlocked in the same cases
2442 * as does filemap_fault().
2444 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2445 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2446 unsigned int flags
, pte_t orig_pte
)
2449 struct page
*page
, *swapcache
;
2450 struct mem_cgroup
*memcg
;
2457 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2460 entry
= pte_to_swp_entry(orig_pte
);
2461 if (unlikely(non_swap_entry(entry
))) {
2462 if (is_migration_entry(entry
)) {
2463 migration_entry_wait(mm
, pmd
, address
);
2464 } else if (is_hwpoison_entry(entry
)) {
2465 ret
= VM_FAULT_HWPOISON
;
2467 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2468 ret
= VM_FAULT_SIGBUS
;
2472 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2473 page
= lookup_swap_cache(entry
);
2475 page
= swapin_readahead(entry
,
2476 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2479 * Back out if somebody else faulted in this pte
2480 * while we released the pte lock.
2482 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2483 if (likely(pte_same(*page_table
, orig_pte
)))
2485 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2489 /* Had to read the page from swap area: Major fault */
2490 ret
= VM_FAULT_MAJOR
;
2491 count_vm_event(PGMAJFAULT
);
2492 mem_cgroup_count_vm_event(mm
, PGMAJFAULT
);
2493 } else if (PageHWPoison(page
)) {
2495 * hwpoisoned dirty swapcache pages are kept for killing
2496 * owner processes (which may be unknown at hwpoison time)
2498 ret
= VM_FAULT_HWPOISON
;
2499 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2505 locked
= lock_page_or_retry(page
, mm
, flags
);
2507 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2509 ret
|= VM_FAULT_RETRY
;
2514 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2515 * release the swapcache from under us. The page pin, and pte_same
2516 * test below, are not enough to exclude that. Even if it is still
2517 * swapcache, we need to check that the page's swap has not changed.
2519 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
2522 page
= ksm_might_need_to_copy(page
, vma
, address
);
2523 if (unlikely(!page
)) {
2529 if (mem_cgroup_try_charge(page
, mm
, GFP_KERNEL
, &memcg
)) {
2535 * Back out if somebody else already faulted in this pte.
2537 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2538 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2541 if (unlikely(!PageUptodate(page
))) {
2542 ret
= VM_FAULT_SIGBUS
;
2547 * The page isn't present yet, go ahead with the fault.
2549 * Be careful about the sequence of operations here.
2550 * To get its accounting right, reuse_swap_page() must be called
2551 * while the page is counted on swap but not yet in mapcount i.e.
2552 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2553 * must be called after the swap_free(), or it will never succeed.
2556 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2557 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
2558 pte
= mk_pte(page
, vma
->vm_page_prot
);
2559 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
2560 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2561 flags
&= ~FAULT_FLAG_WRITE
;
2562 ret
|= VM_FAULT_WRITE
;
2565 flush_icache_page(vma
, page
);
2566 if (pte_swp_soft_dirty(orig_pte
))
2567 pte
= pte_mksoft_dirty(pte
);
2568 set_pte_at(mm
, address
, page_table
, pte
);
2569 if (page
== swapcache
) {
2570 do_page_add_anon_rmap(page
, vma
, address
, exclusive
);
2571 mem_cgroup_commit_charge(page
, memcg
, true);
2572 } else { /* ksm created a completely new copy */
2573 page_add_new_anon_rmap(page
, vma
, address
);
2574 mem_cgroup_commit_charge(page
, memcg
, false);
2575 lru_cache_add_active_or_unevictable(page
, vma
);
2579 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2580 try_to_free_swap(page
);
2582 if (page
!= swapcache
) {
2584 * Hold the lock to avoid the swap entry to be reused
2585 * until we take the PT lock for the pte_same() check
2586 * (to avoid false positives from pte_same). For
2587 * further safety release the lock after the swap_free
2588 * so that the swap count won't change under a
2589 * parallel locked swapcache.
2591 unlock_page(swapcache
);
2592 page_cache_release(swapcache
);
2595 if (flags
& FAULT_FLAG_WRITE
) {
2596 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2597 if (ret
& VM_FAULT_ERROR
)
2598 ret
&= VM_FAULT_ERROR
;
2602 /* No need to invalidate - it was non-present before */
2603 update_mmu_cache(vma
, address
, page_table
);
2605 pte_unmap_unlock(page_table
, ptl
);
2609 mem_cgroup_cancel_charge(page
, memcg
);
2610 pte_unmap_unlock(page_table
, ptl
);
2614 page_cache_release(page
);
2615 if (page
!= swapcache
) {
2616 unlock_page(swapcache
);
2617 page_cache_release(swapcache
);
2623 * This is like a special single-page "expand_{down|up}wards()",
2624 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2625 * doesn't hit another vma.
2627 static inline int check_stack_guard_page(struct vm_area_struct
*vma
, unsigned long address
)
2629 address
&= PAGE_MASK
;
2630 if ((vma
->vm_flags
& VM_GROWSDOWN
) && address
== vma
->vm_start
) {
2631 struct vm_area_struct
*prev
= vma
->vm_prev
;
2634 * Is there a mapping abutting this one below?
2636 * That's only ok if it's the same stack mapping
2637 * that has gotten split..
2639 if (prev
&& prev
->vm_end
== address
)
2640 return prev
->vm_flags
& VM_GROWSDOWN
? 0 : -ENOMEM
;
2642 return expand_downwards(vma
, address
- PAGE_SIZE
);
2644 if ((vma
->vm_flags
& VM_GROWSUP
) && address
+ PAGE_SIZE
== vma
->vm_end
) {
2645 struct vm_area_struct
*next
= vma
->vm_next
;
2647 /* As VM_GROWSDOWN but s/below/above/ */
2648 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
)
2649 return next
->vm_flags
& VM_GROWSUP
? 0 : -ENOMEM
;
2651 return expand_upwards(vma
, address
+ PAGE_SIZE
);
2657 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2658 * but allow concurrent faults), and pte mapped but not yet locked.
2659 * We return with mmap_sem still held, but pte unmapped and unlocked.
2661 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2662 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2665 struct mem_cgroup
*memcg
;
2670 pte_unmap(page_table
);
2672 /* File mapping without ->vm_ops ? */
2673 if (vma
->vm_flags
& VM_SHARED
)
2674 return VM_FAULT_SIGBUS
;
2676 /* Check if we need to add a guard page to the stack */
2677 if (check_stack_guard_page(vma
, address
) < 0)
2678 return VM_FAULT_SIGSEGV
;
2680 /* Use the zero-page for reads */
2681 if (!(flags
& FAULT_FLAG_WRITE
) && !mm_forbids_zeropage(mm
)) {
2682 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
2683 vma
->vm_page_prot
));
2684 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2685 if (!pte_none(*page_table
))
2687 /* Deliver the page fault to userland, check inside PT lock */
2688 if (userfaultfd_missing(vma
)) {
2689 pte_unmap_unlock(page_table
, ptl
);
2690 return handle_userfault(vma
, address
, flags
,
2696 /* Allocate our own private page. */
2697 if (unlikely(anon_vma_prepare(vma
)))
2699 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2703 if (mem_cgroup_try_charge(page
, mm
, GFP_KERNEL
, &memcg
))
2707 * The memory barrier inside __SetPageUptodate makes sure that
2708 * preceeding stores to the page contents become visible before
2709 * the set_pte_at() write.
2711 __SetPageUptodate(page
);
2713 entry
= mk_pte(page
, vma
->vm_page_prot
);
2714 if (vma
->vm_flags
& VM_WRITE
)
2715 entry
= pte_mkwrite(pte_mkdirty(entry
));
2717 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2718 if (!pte_none(*page_table
))
2721 /* Deliver the page fault to userland, check inside PT lock */
2722 if (userfaultfd_missing(vma
)) {
2723 pte_unmap_unlock(page_table
, ptl
);
2724 mem_cgroup_cancel_charge(page
, memcg
);
2725 page_cache_release(page
);
2726 return handle_userfault(vma
, address
, flags
,
2730 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2731 page_add_new_anon_rmap(page
, vma
, address
);
2732 mem_cgroup_commit_charge(page
, memcg
, false);
2733 lru_cache_add_active_or_unevictable(page
, vma
);
2735 set_pte_at(mm
, address
, page_table
, entry
);
2737 /* No need to invalidate - it was non-present before */
2738 update_mmu_cache(vma
, address
, page_table
);
2740 pte_unmap_unlock(page_table
, ptl
);
2743 mem_cgroup_cancel_charge(page
, memcg
);
2744 page_cache_release(page
);
2747 page_cache_release(page
);
2749 return VM_FAULT_OOM
;
2753 * The mmap_sem must have been held on entry, and may have been
2754 * released depending on flags and vma->vm_ops->fault() return value.
2755 * See filemap_fault() and __lock_page_retry().
2757 static int __do_fault(struct vm_area_struct
*vma
, unsigned long address
,
2758 pgoff_t pgoff
, unsigned int flags
,
2759 struct page
*cow_page
, struct page
**page
)
2761 struct vm_fault vmf
;
2764 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2768 vmf
.cow_page
= cow_page
;
2770 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2771 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2776 if (unlikely(PageHWPoison(vmf
.page
))) {
2777 if (ret
& VM_FAULT_LOCKED
)
2778 unlock_page(vmf
.page
);
2779 page_cache_release(vmf
.page
);
2780 return VM_FAULT_HWPOISON
;
2783 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2784 lock_page(vmf
.page
);
2786 VM_BUG_ON_PAGE(!PageLocked(vmf
.page
), vmf
.page
);
2794 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2796 * @vma: virtual memory area
2797 * @address: user virtual address
2798 * @page: page to map
2799 * @pte: pointer to target page table entry
2800 * @write: true, if new entry is writable
2801 * @anon: true, if it's anonymous page
2803 * Caller must hold page table lock relevant for @pte.
2805 * Target users are page handler itself and implementations of
2806 * vm_ops->map_pages.
2808 void do_set_pte(struct vm_area_struct
*vma
, unsigned long address
,
2809 struct page
*page
, pte_t
*pte
, bool write
, bool anon
)
2813 flush_icache_page(vma
, page
);
2814 entry
= mk_pte(page
, vma
->vm_page_prot
);
2816 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2818 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2819 page_add_new_anon_rmap(page
, vma
, address
);
2821 inc_mm_counter_fast(vma
->vm_mm
, MM_FILEPAGES
);
2822 page_add_file_rmap(page
);
2824 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
2826 /* no need to invalidate: a not-present page won't be cached */
2827 update_mmu_cache(vma
, address
, pte
);
2830 static unsigned long fault_around_bytes __read_mostly
=
2831 rounddown_pow_of_two(65536);
2833 #ifdef CONFIG_DEBUG_FS
2834 static int fault_around_bytes_get(void *data
, u64
*val
)
2836 *val
= fault_around_bytes
;
2841 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2842 * rounded down to nearest page order. It's what do_fault_around() expects to
2845 static int fault_around_bytes_set(void *data
, u64 val
)
2847 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
2849 if (val
> PAGE_SIZE
)
2850 fault_around_bytes
= rounddown_pow_of_two(val
);
2852 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
2855 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops
,
2856 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
2858 static int __init
fault_around_debugfs(void)
2862 ret
= debugfs_create_file("fault_around_bytes", 0644, NULL
, NULL
,
2863 &fault_around_bytes_fops
);
2865 pr_warn("Failed to create fault_around_bytes in debugfs");
2868 late_initcall(fault_around_debugfs
);
2872 * do_fault_around() tries to map few pages around the fault address. The hope
2873 * is that the pages will be needed soon and this will lower the number of
2876 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2877 * not ready to be mapped: not up-to-date, locked, etc.
2879 * This function is called with the page table lock taken. In the split ptlock
2880 * case the page table lock only protects only those entries which belong to
2881 * the page table corresponding to the fault address.
2883 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2886 * fault_around_pages() defines how many pages we'll try to map.
2887 * do_fault_around() expects it to return a power of two less than or equal to
2890 * The virtual address of the area that we map is naturally aligned to the
2891 * fault_around_pages() value (and therefore to page order). This way it's
2892 * easier to guarantee that we don't cross page table boundaries.
2894 static void do_fault_around(struct vm_area_struct
*vma
, unsigned long address
,
2895 pte_t
*pte
, pgoff_t pgoff
, unsigned int flags
)
2897 unsigned long start_addr
, nr_pages
, mask
;
2899 struct vm_fault vmf
;
2902 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
2903 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
2905 start_addr
= max(address
& mask
, vma
->vm_start
);
2906 off
= ((address
- start_addr
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
2911 * max_pgoff is either end of page table or end of vma
2912 * or fault_around_pages() from pgoff, depending what is nearest.
2914 max_pgoff
= pgoff
- ((start_addr
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
2916 max_pgoff
= min3(max_pgoff
, vma_pages(vma
) + vma
->vm_pgoff
- 1,
2917 pgoff
+ nr_pages
- 1);
2919 /* Check if it makes any sense to call ->map_pages */
2920 while (!pte_none(*pte
)) {
2921 if (++pgoff
> max_pgoff
)
2923 start_addr
+= PAGE_SIZE
;
2924 if (start_addr
>= vma
->vm_end
)
2929 vmf
.virtual_address
= (void __user
*) start_addr
;
2932 vmf
.max_pgoff
= max_pgoff
;
2934 vma
->vm_ops
->map_pages(vma
, &vmf
);
2937 static int do_read_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2938 unsigned long address
, pmd_t
*pmd
,
2939 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2941 struct page
*fault_page
;
2947 * Let's call ->map_pages() first and use ->fault() as fallback
2948 * if page by the offset is not ready to be mapped (cold cache or
2951 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
2952 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2953 do_fault_around(vma
, address
, pte
, pgoff
, flags
);
2954 if (!pte_same(*pte
, orig_pte
))
2956 pte_unmap_unlock(pte
, ptl
);
2959 ret
= __do_fault(vma
, address
, pgoff
, flags
, NULL
, &fault_page
);
2960 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2963 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2964 if (unlikely(!pte_same(*pte
, orig_pte
))) {
2965 pte_unmap_unlock(pte
, ptl
);
2966 unlock_page(fault_page
);
2967 page_cache_release(fault_page
);
2970 do_set_pte(vma
, address
, fault_page
, pte
, false, false);
2971 unlock_page(fault_page
);
2973 pte_unmap_unlock(pte
, ptl
);
2977 static int do_cow_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2978 unsigned long address
, pmd_t
*pmd
,
2979 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2981 struct page
*fault_page
, *new_page
;
2982 struct mem_cgroup
*memcg
;
2987 if (unlikely(anon_vma_prepare(vma
)))
2988 return VM_FAULT_OOM
;
2990 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2992 return VM_FAULT_OOM
;
2994 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
)) {
2995 page_cache_release(new_page
);
2996 return VM_FAULT_OOM
;
2999 ret
= __do_fault(vma
, address
, pgoff
, flags
, new_page
, &fault_page
);
3000 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3004 copy_user_highpage(new_page
, fault_page
, address
, vma
);
3005 __SetPageUptodate(new_page
);
3007 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3008 if (unlikely(!pte_same(*pte
, orig_pte
))) {
3009 pte_unmap_unlock(pte
, ptl
);
3011 unlock_page(fault_page
);
3012 page_cache_release(fault_page
);
3015 * The fault handler has no page to lock, so it holds
3016 * i_mmap_lock for write to protect against truncate.
3018 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
3022 do_set_pte(vma
, address
, new_page
, pte
, true, true);
3023 mem_cgroup_commit_charge(new_page
, memcg
, false);
3024 lru_cache_add_active_or_unevictable(new_page
, vma
);
3025 pte_unmap_unlock(pte
, ptl
);
3027 unlock_page(fault_page
);
3028 page_cache_release(fault_page
);
3031 * The fault handler has no page to lock, so it holds
3032 * i_mmap_lock for write to protect against truncate.
3034 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
3038 mem_cgroup_cancel_charge(new_page
, memcg
);
3039 page_cache_release(new_page
);
3043 static int do_shared_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3044 unsigned long address
, pmd_t
*pmd
,
3045 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
3047 struct page
*fault_page
;
3048 struct address_space
*mapping
;
3054 ret
= __do_fault(vma
, address
, pgoff
, flags
, NULL
, &fault_page
);
3055 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3059 * Check if the backing address space wants to know that the page is
3060 * about to become writable
3062 if (vma
->vm_ops
->page_mkwrite
) {
3063 unlock_page(fault_page
);
3064 tmp
= do_page_mkwrite(vma
, fault_page
, address
);
3065 if (unlikely(!tmp
||
3066 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3067 page_cache_release(fault_page
);
3072 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3073 if (unlikely(!pte_same(*pte
, orig_pte
))) {
3074 pte_unmap_unlock(pte
, ptl
);
3075 unlock_page(fault_page
);
3076 page_cache_release(fault_page
);
3079 do_set_pte(vma
, address
, fault_page
, pte
, true, false);
3080 pte_unmap_unlock(pte
, ptl
);
3082 if (set_page_dirty(fault_page
))
3085 * Take a local copy of the address_space - page.mapping may be zeroed
3086 * by truncate after unlock_page(). The address_space itself remains
3087 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3088 * release semantics to prevent the compiler from undoing this copying.
3090 mapping
= fault_page
->mapping
;
3091 unlock_page(fault_page
);
3092 if ((dirtied
|| vma
->vm_ops
->page_mkwrite
) && mapping
) {
3094 * Some device drivers do not set page.mapping but still
3097 balance_dirty_pages_ratelimited(mapping
);
3100 if (!vma
->vm_ops
->page_mkwrite
)
3101 file_update_time(vma
->vm_file
);
3107 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3108 * but allow concurrent faults).
3109 * The mmap_sem may have been released depending on flags and our
3110 * return value. See filemap_fault() and __lock_page_or_retry().
3112 static int do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3113 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3114 unsigned int flags
, pte_t orig_pte
)
3116 pgoff_t pgoff
= (((address
& PAGE_MASK
)
3117 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3119 pte_unmap(page_table
);
3120 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3121 if (!vma
->vm_ops
->fault
)
3122 return VM_FAULT_SIGBUS
;
3123 if (!(flags
& FAULT_FLAG_WRITE
))
3124 return do_read_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3126 if (!(vma
->vm_flags
& VM_SHARED
))
3127 return do_cow_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3129 return do_shared_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3132 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3133 unsigned long addr
, int page_nid
,
3138 count_vm_numa_event(NUMA_HINT_FAULTS
);
3139 if (page_nid
== numa_node_id()) {
3140 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3141 *flags
|= TNF_FAULT_LOCAL
;
3144 return mpol_misplaced(page
, vma
, addr
);
3147 static int do_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3148 unsigned long addr
, pte_t pte
, pte_t
*ptep
, pmd_t
*pmd
)
3150 struct page
*page
= NULL
;
3155 bool migrated
= false;
3156 bool was_writable
= pte_write(pte
);
3159 /* A PROT_NONE fault should not end up here */
3160 BUG_ON(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)));
3163 * The "pte" at this point cannot be used safely without
3164 * validation through pte_unmap_same(). It's of NUMA type but
3165 * the pfn may be screwed if the read is non atomic.
3167 * We can safely just do a "set_pte_at()", because the old
3168 * page table entry is not accessible, so there would be no
3169 * concurrent hardware modifications to the PTE.
3171 ptl
= pte_lockptr(mm
, pmd
);
3173 if (unlikely(!pte_same(*ptep
, pte
))) {
3174 pte_unmap_unlock(ptep
, ptl
);
3178 /* Make it present again */
3179 pte
= pte_modify(pte
, vma
->vm_page_prot
);
3180 pte
= pte_mkyoung(pte
);
3182 pte
= pte_mkwrite(pte
);
3183 set_pte_at(mm
, addr
, ptep
, pte
);
3184 update_mmu_cache(vma
, addr
, ptep
);
3186 page
= vm_normal_page(vma
, addr
, pte
);
3188 pte_unmap_unlock(ptep
, ptl
);
3193 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3194 * much anyway since they can be in shared cache state. This misses
3195 * the case where a mapping is writable but the process never writes
3196 * to it but pte_write gets cleared during protection updates and
3197 * pte_dirty has unpredictable behaviour between PTE scan updates,
3198 * background writeback, dirty balancing and application behaviour.
3200 if (!(vma
->vm_flags
& VM_WRITE
))
3201 flags
|= TNF_NO_GROUP
;
3204 * Flag if the page is shared between multiple address spaces. This
3205 * is later used when determining whether to group tasks together
3207 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3208 flags
|= TNF_SHARED
;
3210 last_cpupid
= page_cpupid_last(page
);
3211 page_nid
= page_to_nid(page
);
3212 target_nid
= numa_migrate_prep(page
, vma
, addr
, page_nid
, &flags
);
3213 pte_unmap_unlock(ptep
, ptl
);
3214 if (target_nid
== -1) {
3219 /* Migrate to the requested node */
3220 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3222 page_nid
= target_nid
;
3223 flags
|= TNF_MIGRATED
;
3225 flags
|= TNF_MIGRATE_FAIL
;
3229 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3233 static int create_huge_pmd(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3234 unsigned long address
, pmd_t
*pmd
, unsigned int flags
)
3236 if (vma_is_anonymous(vma
))
3237 return do_huge_pmd_anonymous_page(mm
, vma
, address
, pmd
, flags
);
3238 if (vma
->vm_ops
->pmd_fault
)
3239 return vma
->vm_ops
->pmd_fault(vma
, address
, pmd
, flags
);
3240 return VM_FAULT_FALLBACK
;
3243 static int wp_huge_pmd(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3244 unsigned long address
, pmd_t
*pmd
, pmd_t orig_pmd
,
3247 if (vma_is_anonymous(vma
))
3248 return do_huge_pmd_wp_page(mm
, vma
, address
, pmd
, orig_pmd
);
3249 if (vma
->vm_ops
->pmd_fault
)
3250 return vma
->vm_ops
->pmd_fault(vma
, address
, pmd
, flags
);
3251 return VM_FAULT_FALLBACK
;
3255 * These routines also need to handle stuff like marking pages dirty
3256 * and/or accessed for architectures that don't do it in hardware (most
3257 * RISC architectures). The early dirtying is also good on the i386.
3259 * There is also a hook called "update_mmu_cache()" that architectures
3260 * with external mmu caches can use to update those (ie the Sparc or
3261 * PowerPC hashed page tables that act as extended TLBs).
3263 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3264 * but allow concurrent faults), and pte mapped but not yet locked.
3265 * We return with pte unmapped and unlocked.
3267 * The mmap_sem may have been released depending on flags and our
3268 * return value. See filemap_fault() and __lock_page_or_retry().
3270 static int handle_pte_fault(struct mm_struct
*mm
,
3271 struct vm_area_struct
*vma
, unsigned long address
,
3272 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3278 * some architectures can have larger ptes than wordsize,
3279 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3280 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3281 * The code below just needs a consistent view for the ifs and
3282 * we later double check anyway with the ptl lock held. So here
3283 * a barrier will do.
3287 if (!pte_present(entry
)) {
3288 if (pte_none(entry
)) {
3289 if (vma_is_anonymous(vma
))
3290 return do_anonymous_page(mm
, vma
, address
,
3293 return do_fault(mm
, vma
, address
, pte
, pmd
,
3296 return do_swap_page(mm
, vma
, address
,
3297 pte
, pmd
, flags
, entry
);
3300 if (pte_protnone(entry
))
3301 return do_numa_page(mm
, vma
, address
, entry
, pte
, pmd
);
3303 ptl
= pte_lockptr(mm
, pmd
);
3305 if (unlikely(!pte_same(*pte
, entry
)))
3307 if (flags
& FAULT_FLAG_WRITE
) {
3308 if (!pte_write(entry
))
3309 return do_wp_page(mm
, vma
, address
,
3310 pte
, pmd
, ptl
, entry
);
3311 entry
= pte_mkdirty(entry
);
3313 entry
= pte_mkyoung(entry
);
3314 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3315 update_mmu_cache(vma
, address
, pte
);
3318 * This is needed only for protection faults but the arch code
3319 * is not yet telling us if this is a protection fault or not.
3320 * This still avoids useless tlb flushes for .text page faults
3323 if (flags
& FAULT_FLAG_WRITE
)
3324 flush_tlb_fix_spurious_fault(vma
, address
);
3327 pte_unmap_unlock(pte
, ptl
);
3332 * By the time we get here, we already hold the mm semaphore
3334 * The mmap_sem may have been released depending on flags and our
3335 * return value. See filemap_fault() and __lock_page_or_retry().
3337 static int __handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3338 unsigned long address
, unsigned int flags
)
3345 if (unlikely(is_vm_hugetlb_page(vma
)))
3346 return hugetlb_fault(mm
, vma
, address
, flags
);
3348 pgd
= pgd_offset(mm
, address
);
3349 pud
= pud_alloc(mm
, pgd
, address
);
3351 return VM_FAULT_OOM
;
3352 pmd
= pmd_alloc(mm
, pud
, address
);
3354 return VM_FAULT_OOM
;
3355 if (pmd_none(*pmd
) && transparent_hugepage_enabled(vma
)) {
3356 int ret
= create_huge_pmd(mm
, vma
, address
, pmd
, flags
);
3357 if (!(ret
& VM_FAULT_FALLBACK
))
3360 pmd_t orig_pmd
= *pmd
;
3364 if (pmd_trans_huge(orig_pmd
)) {
3365 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3368 * If the pmd is splitting, return and retry the
3369 * the fault. Alternative: wait until the split
3370 * is done, and goto retry.
3372 if (pmd_trans_splitting(orig_pmd
))
3375 if (pmd_protnone(orig_pmd
))
3376 return do_huge_pmd_numa_page(mm
, vma
, address
,
3379 if (dirty
&& !pmd_write(orig_pmd
)) {
3380 ret
= wp_huge_pmd(mm
, vma
, address
, pmd
,
3382 if (!(ret
& VM_FAULT_FALLBACK
))
3385 huge_pmd_set_accessed(mm
, vma
, address
, pmd
,
3393 * Use __pte_alloc instead of pte_alloc_map, because we can't
3394 * run pte_offset_map on the pmd, if an huge pmd could
3395 * materialize from under us from a different thread.
3397 if (unlikely(pmd_none(*pmd
)) &&
3398 unlikely(__pte_alloc(mm
, vma
, pmd
, address
)))
3399 return VM_FAULT_OOM
;
3400 /* if an huge pmd materialized from under us just retry later */
3401 if (unlikely(pmd_trans_huge(*pmd
)))
3404 * A regular pmd is established and it can't morph into a huge pmd
3405 * from under us anymore at this point because we hold the mmap_sem
3406 * read mode and khugepaged takes it in write mode. So now it's
3407 * safe to run pte_offset_map().
3409 pte
= pte_offset_map(pmd
, address
);
3411 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3415 * By the time we get here, we already hold the mm semaphore
3417 * The mmap_sem may have been released depending on flags and our
3418 * return value. See filemap_fault() and __lock_page_or_retry().
3420 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3421 unsigned long address
, unsigned int flags
)
3425 __set_current_state(TASK_RUNNING
);
3427 count_vm_event(PGFAULT
);
3428 mem_cgroup_count_vm_event(mm
, PGFAULT
);
3430 /* do counter updates before entering really critical section. */
3431 check_sync_rss_stat(current
);
3434 * Enable the memcg OOM handling for faults triggered in user
3435 * space. Kernel faults are handled more gracefully.
3437 if (flags
& FAULT_FLAG_USER
)
3438 mem_cgroup_oom_enable();
3440 ret
= __handle_mm_fault(mm
, vma
, address
, flags
);
3442 if (flags
& FAULT_FLAG_USER
) {
3443 mem_cgroup_oom_disable();
3445 * The task may have entered a memcg OOM situation but
3446 * if the allocation error was handled gracefully (no
3447 * VM_FAULT_OOM), there is no need to kill anything.
3448 * Just clean up the OOM state peacefully.
3450 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
3451 mem_cgroup_oom_synchronize(false);
3456 EXPORT_SYMBOL_GPL(handle_mm_fault
);
3458 #ifndef __PAGETABLE_PUD_FOLDED
3460 * Allocate page upper directory.
3461 * We've already handled the fast-path in-line.
3463 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3465 pud_t
*new = pud_alloc_one(mm
, address
);
3469 smp_wmb(); /* See comment in __pte_alloc */
3471 spin_lock(&mm
->page_table_lock
);
3472 if (pgd_present(*pgd
)) /* Another has populated it */
3475 pgd_populate(mm
, pgd
, new);
3476 spin_unlock(&mm
->page_table_lock
);
3479 #endif /* __PAGETABLE_PUD_FOLDED */
3481 #ifndef __PAGETABLE_PMD_FOLDED
3483 * Allocate page middle directory.
3484 * We've already handled the fast-path in-line.
3486 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3488 pmd_t
*new = pmd_alloc_one(mm
, address
);
3492 smp_wmb(); /* See comment in __pte_alloc */
3494 spin_lock(&mm
->page_table_lock
);
3495 #ifndef __ARCH_HAS_4LEVEL_HACK
3496 if (!pud_present(*pud
)) {
3498 pud_populate(mm
, pud
, new);
3499 } else /* Another has populated it */
3502 if (!pgd_present(*pud
)) {
3504 pgd_populate(mm
, pud
, new);
3505 } else /* Another has populated it */
3507 #endif /* __ARCH_HAS_4LEVEL_HACK */
3508 spin_unlock(&mm
->page_table_lock
);
3511 #endif /* __PAGETABLE_PMD_FOLDED */
3513 static int __follow_pte(struct mm_struct
*mm
, unsigned long address
,
3514 pte_t
**ptepp
, spinlock_t
**ptlp
)
3521 pgd
= pgd_offset(mm
, address
);
3522 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3525 pud
= pud_offset(pgd
, address
);
3526 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3529 pmd
= pmd_offset(pud
, address
);
3530 VM_BUG_ON(pmd_trans_huge(*pmd
));
3531 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3534 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3538 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3541 if (!pte_present(*ptep
))
3546 pte_unmap_unlock(ptep
, *ptlp
);
3551 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3552 pte_t
**ptepp
, spinlock_t
**ptlp
)
3556 /* (void) is needed to make gcc happy */
3557 (void) __cond_lock(*ptlp
,
3558 !(res
= __follow_pte(mm
, address
, ptepp
, ptlp
)));
3563 * follow_pfn - look up PFN at a user virtual address
3564 * @vma: memory mapping
3565 * @address: user virtual address
3566 * @pfn: location to store found PFN
3568 * Only IO mappings and raw PFN mappings are allowed.
3570 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3572 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3579 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3582 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3585 *pfn
= pte_pfn(*ptep
);
3586 pte_unmap_unlock(ptep
, ptl
);
3589 EXPORT_SYMBOL(follow_pfn
);
3591 #ifdef CONFIG_HAVE_IOREMAP_PROT
3592 int follow_phys(struct vm_area_struct
*vma
,
3593 unsigned long address
, unsigned int flags
,
3594 unsigned long *prot
, resource_size_t
*phys
)
3600 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3603 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3607 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3610 *prot
= pgprot_val(pte_pgprot(pte
));
3611 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3615 pte_unmap_unlock(ptep
, ptl
);
3620 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3621 void *buf
, int len
, int write
)
3623 resource_size_t phys_addr
;
3624 unsigned long prot
= 0;
3625 void __iomem
*maddr
;
3626 int offset
= addr
& (PAGE_SIZE
-1);
3628 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3631 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
3633 memcpy_toio(maddr
+ offset
, buf
, len
);
3635 memcpy_fromio(buf
, maddr
+ offset
, len
);
3640 EXPORT_SYMBOL_GPL(generic_access_phys
);
3644 * Access another process' address space as given in mm. If non-NULL, use the
3645 * given task for page fault accounting.
3647 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
3648 unsigned long addr
, void *buf
, int len
, int write
)
3650 struct vm_area_struct
*vma
;
3651 void *old_buf
= buf
;
3653 down_read(&mm
->mmap_sem
);
3654 /* ignore errors, just check how much was successfully transferred */
3656 int bytes
, ret
, offset
;
3658 struct page
*page
= NULL
;
3660 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3661 write
, 1, &page
, &vma
);
3663 #ifndef CONFIG_HAVE_IOREMAP_PROT
3667 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3668 * we can access using slightly different code.
3670 vma
= find_vma(mm
, addr
);
3671 if (!vma
|| vma
->vm_start
> addr
)
3673 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3674 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3682 offset
= addr
& (PAGE_SIZE
-1);
3683 if (bytes
> PAGE_SIZE
-offset
)
3684 bytes
= PAGE_SIZE
-offset
;
3688 copy_to_user_page(vma
, page
, addr
,
3689 maddr
+ offset
, buf
, bytes
);
3690 set_page_dirty_lock(page
);
3692 copy_from_user_page(vma
, page
, addr
,
3693 buf
, maddr
+ offset
, bytes
);
3696 page_cache_release(page
);
3702 up_read(&mm
->mmap_sem
);
3704 return buf
- old_buf
;
3708 * access_remote_vm - access another process' address space
3709 * @mm: the mm_struct of the target address space
3710 * @addr: start address to access
3711 * @buf: source or destination buffer
3712 * @len: number of bytes to transfer
3713 * @write: whether the access is a write
3715 * The caller must hold a reference on @mm.
3717 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
3718 void *buf
, int len
, int write
)
3720 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
3724 * Access another process' address space.
3725 * Source/target buffer must be kernel space,
3726 * Do not walk the page table directly, use get_user_pages
3728 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
3729 void *buf
, int len
, int write
)
3731 struct mm_struct
*mm
;
3734 mm
= get_task_mm(tsk
);
3738 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
3745 * Print the name of a VMA.
3747 void print_vma_addr(char *prefix
, unsigned long ip
)
3749 struct mm_struct
*mm
= current
->mm
;
3750 struct vm_area_struct
*vma
;
3753 * Do not print if we are in atomic
3754 * contexts (in exception stacks, etc.):
3756 if (preempt_count())
3759 down_read(&mm
->mmap_sem
);
3760 vma
= find_vma(mm
, ip
);
3761 if (vma
&& vma
->vm_file
) {
3762 struct file
*f
= vma
->vm_file
;
3763 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3767 p
= file_path(f
, buf
, PAGE_SIZE
);
3770 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
3772 vma
->vm_end
- vma
->vm_start
);
3773 free_page((unsigned long)buf
);
3776 up_read(&mm
->mmap_sem
);
3779 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3780 void __might_fault(const char *file
, int line
)
3783 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3784 * holding the mmap_sem, this is safe because kernel memory doesn't
3785 * get paged out, therefore we'll never actually fault, and the
3786 * below annotations will generate false positives.
3788 if (segment_eq(get_fs(), KERNEL_DS
))
3790 if (pagefault_disabled())
3792 __might_sleep(file
, line
, 0);
3793 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3795 might_lock_read(¤t
->mm
->mmap_sem
);
3798 EXPORT_SYMBOL(__might_fault
);
3801 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3802 static void clear_gigantic_page(struct page
*page
,
3804 unsigned int pages_per_huge_page
)
3807 struct page
*p
= page
;
3810 for (i
= 0; i
< pages_per_huge_page
;
3811 i
++, p
= mem_map_next(p
, page
, i
)) {
3813 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
3816 void clear_huge_page(struct page
*page
,
3817 unsigned long addr
, unsigned int pages_per_huge_page
)
3821 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
3822 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
3827 for (i
= 0; i
< pages_per_huge_page
; i
++) {
3829 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
3833 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
3835 struct vm_area_struct
*vma
,
3836 unsigned int pages_per_huge_page
)
3839 struct page
*dst_base
= dst
;
3840 struct page
*src_base
= src
;
3842 for (i
= 0; i
< pages_per_huge_page
; ) {
3844 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
3847 dst
= mem_map_next(dst
, dst_base
, i
);
3848 src
= mem_map_next(src
, src_base
, i
);
3852 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
3853 unsigned long addr
, struct vm_area_struct
*vma
,
3854 unsigned int pages_per_huge_page
)
3858 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
3859 copy_user_gigantic_page(dst
, src
, addr
, vma
,
3860 pages_per_huge_page
);
3865 for (i
= 0; i
< pages_per_huge_page
; i
++) {
3867 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
3870 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3872 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3874 static struct kmem_cache
*page_ptl_cachep
;
3876 void __init
ptlock_cache_init(void)
3878 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
3882 bool ptlock_alloc(struct page
*page
)
3886 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
3893 void ptlock_free(struct page
*page
)
3895 kmem_cache_free(page_ptl_cachep
, page
->ptl
);