2 * Symmetric key ciphers.
4 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
13 #ifndef _CRYPTO_SKCIPHER_H
14 #define _CRYPTO_SKCIPHER_H
16 #include <linux/crypto.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
21 * struct skcipher_request - Symmetric key cipher request
22 * @cryptlen: Number of bytes to encrypt or decrypt
23 * @iv: Initialisation Vector
24 * @src: Source SG list
25 * @dst: Destination SG list
26 * @base: Underlying async request request
27 * @__ctx: Start of private context data
29 struct skcipher_request
{
30 unsigned int cryptlen
;
34 struct scatterlist
*src
;
35 struct scatterlist
*dst
;
37 struct crypto_async_request base
;
39 void *__ctx
[] CRYPTO_MINALIGN_ATTR
;
43 * struct skcipher_givcrypt_request - Crypto request with IV generation
44 * @seq: Sequence number for IV generation
45 * @giv: Space for generated IV
46 * @creq: The crypto request itself
48 struct skcipher_givcrypt_request
{
52 struct ablkcipher_request creq
;
55 struct crypto_skcipher
{
56 int (*setkey
)(struct crypto_skcipher
*tfm
, const u8
*key
,
58 int (*encrypt
)(struct skcipher_request
*req
);
59 int (*decrypt
)(struct skcipher_request
*req
);
65 struct crypto_tfm base
;
69 * struct skcipher_alg - symmetric key cipher definition
70 * @min_keysize: Minimum key size supported by the transformation. This is the
71 * smallest key length supported by this transformation algorithm.
72 * This must be set to one of the pre-defined values as this is
73 * not hardware specific. Possible values for this field can be
74 * found via git grep "_MIN_KEY_SIZE" include/crypto/
75 * @max_keysize: Maximum key size supported by the transformation. This is the
76 * largest key length supported by this transformation algorithm.
77 * This must be set to one of the pre-defined values as this is
78 * not hardware specific. Possible values for this field can be
79 * found via git grep "_MAX_KEY_SIZE" include/crypto/
80 * @setkey: Set key for the transformation. This function is used to either
81 * program a supplied key into the hardware or store the key in the
82 * transformation context for programming it later. Note that this
83 * function does modify the transformation context. This function can
84 * be called multiple times during the existence of the transformation
85 * object, so one must make sure the key is properly reprogrammed into
86 * the hardware. This function is also responsible for checking the key
87 * length for validity. In case a software fallback was put in place in
88 * the @cra_init call, this function might need to use the fallback if
89 * the algorithm doesn't support all of the key sizes.
90 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
91 * the supplied scatterlist containing the blocks of data. The crypto
92 * API consumer is responsible for aligning the entries of the
93 * scatterlist properly and making sure the chunks are correctly
94 * sized. In case a software fallback was put in place in the
95 * @cra_init call, this function might need to use the fallback if
96 * the algorithm doesn't support all of the key sizes. In case the
97 * key was stored in transformation context, the key might need to be
98 * re-programmed into the hardware in this function. This function
99 * shall not modify the transformation context, as this function may
100 * be called in parallel with the same transformation object.
101 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
102 * and the conditions are exactly the same.
103 * @init: Initialize the cryptographic transformation object. This function
104 * is used to initialize the cryptographic transformation object.
105 * This function is called only once at the instantiation time, right
106 * after the transformation context was allocated. In case the
107 * cryptographic hardware has some special requirements which need to
108 * be handled by software, this function shall check for the precise
109 * requirement of the transformation and put any software fallbacks
111 * @exit: Deinitialize the cryptographic transformation object. This is a
112 * counterpart to @init, used to remove various changes set in
114 * @ivsize: IV size applicable for transformation. The consumer must provide an
115 * IV of exactly that size to perform the encrypt or decrypt operation.
116 * @chunksize: Equal to the block size except for stream ciphers such as
117 * CTR where it is set to the underlying block size.
118 * @walksize: Equal to the chunk size except in cases where the algorithm is
119 * considerably more efficient if it can operate on multiple chunks
120 * in parallel. Should be a multiple of chunksize.
121 * @base: Definition of a generic crypto algorithm.
123 * All fields except @ivsize are mandatory and must be filled.
125 struct skcipher_alg
{
126 int (*setkey
)(struct crypto_skcipher
*tfm
, const u8
*key
,
127 unsigned int keylen
);
128 int (*encrypt
)(struct skcipher_request
*req
);
129 int (*decrypt
)(struct skcipher_request
*req
);
130 int (*init
)(struct crypto_skcipher
*tfm
);
131 void (*exit
)(struct crypto_skcipher
*tfm
);
133 unsigned int min_keysize
;
134 unsigned int max_keysize
;
136 unsigned int chunksize
;
137 unsigned int walksize
;
139 struct crypto_alg base
;
142 #define SKCIPHER_REQUEST_ON_STACK(name, tfm) \
143 char __##name##_desc[sizeof(struct skcipher_request) + \
144 crypto_skcipher_reqsize(tfm)] CRYPTO_MINALIGN_ATTR; \
145 struct skcipher_request *name = (void *)__##name##_desc
148 * DOC: Symmetric Key Cipher API
150 * Symmetric key cipher API is used with the ciphers of type
151 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
153 * Asynchronous cipher operations imply that the function invocation for a
154 * cipher request returns immediately before the completion of the operation.
155 * The cipher request is scheduled as a separate kernel thread and therefore
156 * load-balanced on the different CPUs via the process scheduler. To allow
157 * the kernel crypto API to inform the caller about the completion of a cipher
158 * request, the caller must provide a callback function. That function is
159 * invoked with the cipher handle when the request completes.
161 * To support the asynchronous operation, additional information than just the
162 * cipher handle must be supplied to the kernel crypto API. That additional
163 * information is given by filling in the skcipher_request data structure.
165 * For the symmetric key cipher API, the state is maintained with the tfm
166 * cipher handle. A single tfm can be used across multiple calls and in
167 * parallel. For asynchronous block cipher calls, context data supplied and
168 * only used by the caller can be referenced the request data structure in
169 * addition to the IV used for the cipher request. The maintenance of such
170 * state information would be important for a crypto driver implementer to
171 * have, because when calling the callback function upon completion of the
172 * cipher operation, that callback function may need some information about
173 * which operation just finished if it invoked multiple in parallel. This
174 * state information is unused by the kernel crypto API.
177 static inline struct crypto_skcipher
*__crypto_skcipher_cast(
178 struct crypto_tfm
*tfm
)
180 return container_of(tfm
, struct crypto_skcipher
, base
);
184 * crypto_alloc_skcipher() - allocate symmetric key cipher handle
185 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
187 * @type: specifies the type of the cipher
188 * @mask: specifies the mask for the cipher
190 * Allocate a cipher handle for an skcipher. The returned struct
191 * crypto_skcipher is the cipher handle that is required for any subsequent
192 * API invocation for that skcipher.
194 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
195 * of an error, PTR_ERR() returns the error code.
197 struct crypto_skcipher
*crypto_alloc_skcipher(const char *alg_name
,
200 static inline struct crypto_tfm
*crypto_skcipher_tfm(
201 struct crypto_skcipher
*tfm
)
207 * crypto_free_skcipher() - zeroize and free cipher handle
208 * @tfm: cipher handle to be freed
210 static inline void crypto_free_skcipher(struct crypto_skcipher
*tfm
)
212 crypto_destroy_tfm(tfm
, crypto_skcipher_tfm(tfm
));
216 * crypto_has_skcipher() - Search for the availability of an skcipher.
217 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
219 * @type: specifies the type of the cipher
220 * @mask: specifies the mask for the cipher
222 * Return: true when the skcipher is known to the kernel crypto API; false
225 static inline int crypto_has_skcipher(const char *alg_name
, u32 type
,
228 return crypto_has_alg(alg_name
, crypto_skcipher_type(type
),
229 crypto_skcipher_mask(mask
));
233 * crypto_has_skcipher2() - Search for the availability of an skcipher.
234 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
236 * @type: specifies the type of the skcipher
237 * @mask: specifies the mask for the skcipher
239 * Return: true when the skcipher is known to the kernel crypto API; false
242 int crypto_has_skcipher2(const char *alg_name
, u32 type
, u32 mask
);
244 static inline const char *crypto_skcipher_driver_name(
245 struct crypto_skcipher
*tfm
)
247 return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm
));
250 static inline struct skcipher_alg
*crypto_skcipher_alg(
251 struct crypto_skcipher
*tfm
)
253 return container_of(crypto_skcipher_tfm(tfm
)->__crt_alg
,
254 struct skcipher_alg
, base
);
257 static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg
*alg
)
259 if ((alg
->base
.cra_flags
& CRYPTO_ALG_TYPE_MASK
) ==
260 CRYPTO_ALG_TYPE_BLKCIPHER
)
261 return alg
->base
.cra_blkcipher
.ivsize
;
263 if (alg
->base
.cra_ablkcipher
.encrypt
)
264 return alg
->base
.cra_ablkcipher
.ivsize
;
270 * crypto_skcipher_ivsize() - obtain IV size
271 * @tfm: cipher handle
273 * The size of the IV for the skcipher referenced by the cipher handle is
274 * returned. This IV size may be zero if the cipher does not need an IV.
276 * Return: IV size in bytes
278 static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher
*tfm
)
283 static inline unsigned int crypto_skcipher_alg_chunksize(
284 struct skcipher_alg
*alg
)
286 if ((alg
->base
.cra_flags
& CRYPTO_ALG_TYPE_MASK
) ==
287 CRYPTO_ALG_TYPE_BLKCIPHER
)
288 return alg
->base
.cra_blocksize
;
290 if (alg
->base
.cra_ablkcipher
.encrypt
)
291 return alg
->base
.cra_blocksize
;
293 return alg
->chunksize
;
296 static inline unsigned int crypto_skcipher_alg_walksize(
297 struct skcipher_alg
*alg
)
299 if ((alg
->base
.cra_flags
& CRYPTO_ALG_TYPE_MASK
) ==
300 CRYPTO_ALG_TYPE_BLKCIPHER
)
301 return alg
->base
.cra_blocksize
;
303 if (alg
->base
.cra_ablkcipher
.encrypt
)
304 return alg
->base
.cra_blocksize
;
306 return alg
->walksize
;
310 * crypto_skcipher_chunksize() - obtain chunk size
311 * @tfm: cipher handle
313 * The block size is set to one for ciphers such as CTR. However,
314 * you still need to provide incremental updates in multiples of
315 * the underlying block size as the IV does not have sub-block
316 * granularity. This is known in this API as the chunk size.
318 * Return: chunk size in bytes
320 static inline unsigned int crypto_skcipher_chunksize(
321 struct crypto_skcipher
*tfm
)
323 return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm
));
327 * crypto_skcipher_walksize() - obtain walk size
328 * @tfm: cipher handle
330 * In some cases, algorithms can only perform optimally when operating on
331 * multiple blocks in parallel. This is reflected by the walksize, which
332 * must be a multiple of the chunksize (or equal if the concern does not
335 * Return: walk size in bytes
337 static inline unsigned int crypto_skcipher_walksize(
338 struct crypto_skcipher
*tfm
)
340 return crypto_skcipher_alg_walksize(crypto_skcipher_alg(tfm
));
344 * crypto_skcipher_blocksize() - obtain block size of cipher
345 * @tfm: cipher handle
347 * The block size for the skcipher referenced with the cipher handle is
348 * returned. The caller may use that information to allocate appropriate
349 * memory for the data returned by the encryption or decryption operation
351 * Return: block size of cipher
353 static inline unsigned int crypto_skcipher_blocksize(
354 struct crypto_skcipher
*tfm
)
356 return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm
));
359 static inline unsigned int crypto_skcipher_alignmask(
360 struct crypto_skcipher
*tfm
)
362 return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm
));
365 static inline u32
crypto_skcipher_get_flags(struct crypto_skcipher
*tfm
)
367 return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm
));
370 static inline void crypto_skcipher_set_flags(struct crypto_skcipher
*tfm
,
373 crypto_tfm_set_flags(crypto_skcipher_tfm(tfm
), flags
);
376 static inline void crypto_skcipher_clear_flags(struct crypto_skcipher
*tfm
,
379 crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm
), flags
);
383 * crypto_skcipher_setkey() - set key for cipher
384 * @tfm: cipher handle
385 * @key: buffer holding the key
386 * @keylen: length of the key in bytes
388 * The caller provided key is set for the skcipher referenced by the cipher
391 * Note, the key length determines the cipher type. Many block ciphers implement
392 * different cipher modes depending on the key size, such as AES-128 vs AES-192
393 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
396 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
398 static inline int crypto_skcipher_setkey(struct crypto_skcipher
*tfm
,
399 const u8
*key
, unsigned int keylen
)
401 return tfm
->setkey(tfm
, key
, keylen
);
404 static inline bool crypto_skcipher_has_setkey(struct crypto_skcipher
*tfm
)
409 static inline unsigned int crypto_skcipher_default_keysize(
410 struct crypto_skcipher
*tfm
)
416 * crypto_skcipher_reqtfm() - obtain cipher handle from request
417 * @req: skcipher_request out of which the cipher handle is to be obtained
419 * Return the crypto_skcipher handle when furnishing an skcipher_request
422 * Return: crypto_skcipher handle
424 static inline struct crypto_skcipher
*crypto_skcipher_reqtfm(
425 struct skcipher_request
*req
)
427 return __crypto_skcipher_cast(req
->base
.tfm
);
431 * crypto_skcipher_encrypt() - encrypt plaintext
432 * @req: reference to the skcipher_request handle that holds all information
433 * needed to perform the cipher operation
435 * Encrypt plaintext data using the skcipher_request handle. That data
436 * structure and how it is filled with data is discussed with the
437 * skcipher_request_* functions.
439 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
441 static inline int crypto_skcipher_encrypt(struct skcipher_request
*req
)
443 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
445 return tfm
->encrypt(req
);
449 * crypto_skcipher_decrypt() - decrypt ciphertext
450 * @req: reference to the skcipher_request handle that holds all information
451 * needed to perform the cipher operation
453 * Decrypt ciphertext data using the skcipher_request handle. That data
454 * structure and how it is filled with data is discussed with the
455 * skcipher_request_* functions.
457 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
459 static inline int crypto_skcipher_decrypt(struct skcipher_request
*req
)
461 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
463 return tfm
->decrypt(req
);
467 * DOC: Symmetric Key Cipher Request Handle
469 * The skcipher_request data structure contains all pointers to data
470 * required for the symmetric key cipher operation. This includes the cipher
471 * handle (which can be used by multiple skcipher_request instances), pointer
472 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
473 * as a handle to the skcipher_request_* API calls in a similar way as
474 * skcipher handle to the crypto_skcipher_* API calls.
478 * crypto_skcipher_reqsize() - obtain size of the request data structure
479 * @tfm: cipher handle
481 * Return: number of bytes
483 static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher
*tfm
)
489 * skcipher_request_set_tfm() - update cipher handle reference in request
490 * @req: request handle to be modified
491 * @tfm: cipher handle that shall be added to the request handle
493 * Allow the caller to replace the existing skcipher handle in the request
494 * data structure with a different one.
496 static inline void skcipher_request_set_tfm(struct skcipher_request
*req
,
497 struct crypto_skcipher
*tfm
)
499 req
->base
.tfm
= crypto_skcipher_tfm(tfm
);
502 static inline struct skcipher_request
*skcipher_request_cast(
503 struct crypto_async_request
*req
)
505 return container_of(req
, struct skcipher_request
, base
);
509 * skcipher_request_alloc() - allocate request data structure
510 * @tfm: cipher handle to be registered with the request
511 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
513 * Allocate the request data structure that must be used with the skcipher
514 * encrypt and decrypt API calls. During the allocation, the provided skcipher
515 * handle is registered in the request data structure.
517 * Return: allocated request handle in case of success, or NULL if out of memory
519 static inline struct skcipher_request
*skcipher_request_alloc(
520 struct crypto_skcipher
*tfm
, gfp_t gfp
)
522 struct skcipher_request
*req
;
524 req
= kmalloc(sizeof(struct skcipher_request
) +
525 crypto_skcipher_reqsize(tfm
), gfp
);
528 skcipher_request_set_tfm(req
, tfm
);
534 * skcipher_request_free() - zeroize and free request data structure
535 * @req: request data structure cipher handle to be freed
537 static inline void skcipher_request_free(struct skcipher_request
*req
)
542 static inline void skcipher_request_zero(struct skcipher_request
*req
)
544 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
546 memzero_explicit(req
, sizeof(*req
) + crypto_skcipher_reqsize(tfm
));
550 * skcipher_request_set_callback() - set asynchronous callback function
551 * @req: request handle
552 * @flags: specify zero or an ORing of the flags
553 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
554 * increase the wait queue beyond the initial maximum size;
555 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
556 * @compl: callback function pointer to be registered with the request handle
557 * @data: The data pointer refers to memory that is not used by the kernel
558 * crypto API, but provided to the callback function for it to use. Here,
559 * the caller can provide a reference to memory the callback function can
560 * operate on. As the callback function is invoked asynchronously to the
561 * related functionality, it may need to access data structures of the
562 * related functionality which can be referenced using this pointer. The
563 * callback function can access the memory via the "data" field in the
564 * crypto_async_request data structure provided to the callback function.
566 * This function allows setting the callback function that is triggered once the
567 * cipher operation completes.
569 * The callback function is registered with the skcipher_request handle and
570 * must comply with the following template::
572 * void callback_function(struct crypto_async_request *req, int error)
574 static inline void skcipher_request_set_callback(struct skcipher_request
*req
,
576 crypto_completion_t
compl,
579 req
->base
.complete
= compl;
580 req
->base
.data
= data
;
581 req
->base
.flags
= flags
;
585 * skcipher_request_set_crypt() - set data buffers
586 * @req: request handle
587 * @src: source scatter / gather list
588 * @dst: destination scatter / gather list
589 * @cryptlen: number of bytes to process from @src
590 * @iv: IV for the cipher operation which must comply with the IV size defined
591 * by crypto_skcipher_ivsize
593 * This function allows setting of the source data and destination data
594 * scatter / gather lists.
596 * For encryption, the source is treated as the plaintext and the
597 * destination is the ciphertext. For a decryption operation, the use is
598 * reversed - the source is the ciphertext and the destination is the plaintext.
600 static inline void skcipher_request_set_crypt(
601 struct skcipher_request
*req
,
602 struct scatterlist
*src
, struct scatterlist
*dst
,
603 unsigned int cryptlen
, void *iv
)
607 req
->cryptlen
= cryptlen
;
611 #endif /* _CRYPTO_SKCIPHER_H */