2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём)
23 * UBI input/output sub-system.
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
33 * Some words about how the eraseblock headers are stored.
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
68 * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
69 * prefer to use sub-pages only for EV and VID headers.
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
89 #include <linux/crc32.h>
90 #include <linux/err.h>
93 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
94 static int paranoid_check_not_bad(const struct ubi_device
*ubi
, int pnum
);
95 static int paranoid_check_peb_ec_hdr(const struct ubi_device
*ubi
, int pnum
);
96 static int paranoid_check_ec_hdr(const struct ubi_device
*ubi
, int pnum
,
97 const struct ubi_ec_hdr
*ec_hdr
);
98 static int paranoid_check_peb_vid_hdr(const struct ubi_device
*ubi
, int pnum
);
99 static int paranoid_check_vid_hdr(const struct ubi_device
*ubi
, int pnum
,
100 const struct ubi_vid_hdr
*vid_hdr
);
101 static int paranoid_check_all_ff(struct ubi_device
*ubi
, int pnum
, int offset
,
104 #define paranoid_check_not_bad(ubi, pnum) 0
105 #define paranoid_check_peb_ec_hdr(ubi, pnum) 0
106 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
107 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
108 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
109 #define paranoid_check_all_ff(ubi, pnum, offset, len) 0
113 * ubi_io_read - read data from a physical eraseblock.
114 * @ubi: UBI device description object
115 * @buf: buffer where to store the read data
116 * @pnum: physical eraseblock number to read from
117 * @offset: offset within the physical eraseblock from where to read
118 * @len: how many bytes to read
120 * This function reads data from offset @offset of physical eraseblock @pnum
121 * and stores the read data in the @buf buffer. The following return codes are
124 * o %0 if all the requested data were successfully read;
125 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
126 * correctable bit-flips were detected; this is harmless but may indicate
127 * that this eraseblock may become bad soon (but do not have to);
128 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
129 * example it can be an ECC error in case of NAND; this most probably means
130 * that the data is corrupted;
131 * o %-EIO if some I/O error occurred;
132 * o other negative error codes in case of other errors.
134 int ubi_io_read(const struct ubi_device
*ubi
, void *buf
, int pnum
, int offset
,
137 int err
, retries
= 0;
141 dbg_io("read %d bytes from PEB %d:%d", len
, pnum
, offset
);
143 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
144 ubi_assert(offset
>= 0 && offset
+ len
<= ubi
->peb_size
);
147 err
= paranoid_check_not_bad(ubi
, pnum
);
149 return err
> 0 ? -EINVAL
: err
;
151 addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
153 err
= ubi
->mtd
->read(ubi
->mtd
, addr
, len
, &read
, buf
);
155 if (err
== -EUCLEAN
) {
157 * -EUCLEAN is reported if there was a bit-flip which
158 * was corrected, so this is harmless.
160 * We do not report about it here unless debugging is
161 * enabled. A corresponding message will be printed
162 * later, when it is has been scrubbed.
164 dbg_msg("fixable bit-flip detected at PEB %d", pnum
);
165 ubi_assert(len
== read
);
166 return UBI_IO_BITFLIPS
;
169 if (read
!= len
&& retries
++ < UBI_IO_RETRIES
) {
170 dbg_io("error %d while reading %d bytes from PEB %d:%d,"
171 " read only %zd bytes, retry",
172 err
, len
, pnum
, offset
, read
);
177 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
178 "read %zd bytes", err
, len
, pnum
, offset
, read
);
179 ubi_dbg_dump_stack();
182 * The driver should never return -EBADMSG if it failed to read
183 * all the requested data. But some buggy drivers might do
184 * this, so we change it to -EIO.
186 if (read
!= len
&& err
== -EBADMSG
) {
191 ubi_assert(len
== read
);
193 if (ubi_dbg_is_bitflip()) {
194 dbg_gen("bit-flip (emulated)");
195 err
= UBI_IO_BITFLIPS
;
203 * ubi_io_write - write data to a physical eraseblock.
204 * @ubi: UBI device description object
205 * @buf: buffer with the data to write
206 * @pnum: physical eraseblock number to write to
207 * @offset: offset within the physical eraseblock where to write
208 * @len: how many bytes to write
210 * This function writes @len bytes of data from buffer @buf to offset @offset
211 * of physical eraseblock @pnum. If all the data were successfully written,
212 * zero is returned. If an error occurred, this function returns a negative
213 * error code. If %-EIO is returned, the physical eraseblock most probably went
216 * Note, in case of an error, it is possible that something was still written
217 * to the flash media, but may be some garbage.
219 int ubi_io_write(struct ubi_device
*ubi
, const void *buf
, int pnum
, int offset
,
226 dbg_io("write %d bytes to PEB %d:%d", len
, pnum
, offset
);
228 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
229 ubi_assert(offset
>= 0 && offset
+ len
<= ubi
->peb_size
);
230 ubi_assert(offset
% ubi
->hdrs_min_io_size
== 0);
231 ubi_assert(len
> 0 && len
% ubi
->hdrs_min_io_size
== 0);
234 ubi_err("read-only mode");
238 /* The below has to be compiled out if paranoid checks are disabled */
240 err
= paranoid_check_not_bad(ubi
, pnum
);
242 return err
> 0 ? -EINVAL
: err
;
244 /* The area we are writing to has to contain all 0xFF bytes */
245 err
= paranoid_check_all_ff(ubi
, pnum
, offset
, len
);
247 return err
> 0 ? -EINVAL
: err
;
249 if (offset
>= ubi
->leb_start
) {
251 * We write to the data area of the physical eraseblock. Make
252 * sure it has valid EC and VID headers.
254 err
= paranoid_check_peb_ec_hdr(ubi
, pnum
);
256 return err
> 0 ? -EINVAL
: err
;
257 err
= paranoid_check_peb_vid_hdr(ubi
, pnum
);
259 return err
> 0 ? -EINVAL
: err
;
262 if (ubi_dbg_is_write_failure()) {
263 dbg_err("cannot write %d bytes to PEB %d:%d "
264 "(emulated)", len
, pnum
, offset
);
265 ubi_dbg_dump_stack();
269 addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
270 err
= ubi
->mtd
->write(ubi
->mtd
, addr
, len
, &written
, buf
);
272 ubi_err("error %d while writing %d bytes to PEB %d:%d, written"
273 " %zd bytes", err
, len
, pnum
, offset
, written
);
274 ubi_dbg_dump_stack();
276 ubi_assert(written
== len
);
282 * erase_callback - MTD erasure call-back.
283 * @ei: MTD erase information object.
285 * Note, even though MTD erase interface is asynchronous, all the current
286 * implementations are synchronous anyway.
288 static void erase_callback(struct erase_info
*ei
)
290 wake_up_interruptible((wait_queue_head_t
*)ei
->priv
);
294 * do_sync_erase - synchronously erase a physical eraseblock.
295 * @ubi: UBI device description object
296 * @pnum: the physical eraseblock number to erase
298 * This function synchronously erases physical eraseblock @pnum and returns
299 * zero in case of success and a negative error code in case of failure. If
300 * %-EIO is returned, the physical eraseblock most probably went bad.
302 static int do_sync_erase(struct ubi_device
*ubi
, int pnum
)
304 int err
, retries
= 0;
305 struct erase_info ei
;
306 wait_queue_head_t wq
;
308 dbg_io("erase PEB %d", pnum
);
311 init_waitqueue_head(&wq
);
312 memset(&ei
, 0, sizeof(struct erase_info
));
315 ei
.addr
= (loff_t
)pnum
* ubi
->peb_size
;
316 ei
.len
= ubi
->peb_size
;
317 ei
.callback
= erase_callback
;
318 ei
.priv
= (unsigned long)&wq
;
320 err
= ubi
->mtd
->erase(ubi
->mtd
, &ei
);
322 if (retries
++ < UBI_IO_RETRIES
) {
323 dbg_io("error %d while erasing PEB %d, retry",
328 ubi_err("cannot erase PEB %d, error %d", pnum
, err
);
329 ubi_dbg_dump_stack();
333 err
= wait_event_interruptible(wq
, ei
.state
== MTD_ERASE_DONE
||
334 ei
.state
== MTD_ERASE_FAILED
);
336 ubi_err("interrupted PEB %d erasure", pnum
);
340 if (ei
.state
== MTD_ERASE_FAILED
) {
341 if (retries
++ < UBI_IO_RETRIES
) {
342 dbg_io("error while erasing PEB %d, retry", pnum
);
346 ubi_err("cannot erase PEB %d", pnum
);
347 ubi_dbg_dump_stack();
351 err
= paranoid_check_all_ff(ubi
, pnum
, 0, ubi
->peb_size
);
353 return err
> 0 ? -EINVAL
: err
;
355 if (ubi_dbg_is_erase_failure() && !err
) {
356 dbg_err("cannot erase PEB %d (emulated)", pnum
);
364 * check_pattern - check if buffer contains only a certain byte pattern.
365 * @buf: buffer to check
366 * @patt: the pattern to check
367 * @size: buffer size in bytes
369 * This function returns %1 in there are only @patt bytes in @buf, and %0 if
370 * something else was also found.
372 static int check_pattern(const void *buf
, uint8_t patt
, int size
)
376 for (i
= 0; i
< size
; i
++)
377 if (((const uint8_t *)buf
)[i
] != patt
)
382 /* Patterns to write to a physical eraseblock when torturing it */
383 static uint8_t patterns
[] = {0xa5, 0x5a, 0x0};
386 * torture_peb - test a supposedly bad physical eraseblock.
387 * @ubi: UBI device description object
388 * @pnum: the physical eraseblock number to test
390 * This function returns %-EIO if the physical eraseblock did not pass the
391 * test, a positive number of erase operations done if the test was
392 * successfully passed, and other negative error codes in case of other errors.
394 static int torture_peb(struct ubi_device
*ubi
, int pnum
)
396 int err
, i
, patt_count
;
398 ubi_msg("run torture test for PEB %d", pnum
);
399 patt_count
= ARRAY_SIZE(patterns
);
400 ubi_assert(patt_count
> 0);
402 mutex_lock(&ubi
->buf_mutex
);
403 for (i
= 0; i
< patt_count
; i
++) {
404 err
= do_sync_erase(ubi
, pnum
);
408 /* Make sure the PEB contains only 0xFF bytes */
409 err
= ubi_io_read(ubi
, ubi
->peb_buf1
, pnum
, 0, ubi
->peb_size
);
413 err
= check_pattern(ubi
->peb_buf1
, 0xFF, ubi
->peb_size
);
415 ubi_err("erased PEB %d, but a non-0xFF byte found",
421 /* Write a pattern and check it */
422 memset(ubi
->peb_buf1
, patterns
[i
], ubi
->peb_size
);
423 err
= ubi_io_write(ubi
, ubi
->peb_buf1
, pnum
, 0, ubi
->peb_size
);
427 memset(ubi
->peb_buf1
, ~patterns
[i
], ubi
->peb_size
);
428 err
= ubi_io_read(ubi
, ubi
->peb_buf1
, pnum
, 0, ubi
->peb_size
);
432 err
= check_pattern(ubi
->peb_buf1
, patterns
[i
], ubi
->peb_size
);
434 ubi_err("pattern %x checking failed for PEB %d",
442 ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum
);
445 mutex_unlock(&ubi
->buf_mutex
);
446 if (err
== UBI_IO_BITFLIPS
|| err
== -EBADMSG
) {
448 * If a bit-flip or data integrity error was detected, the test
449 * has not passed because it happened on a freshly erased
450 * physical eraseblock which means something is wrong with it.
452 ubi_err("read problems on freshly erased PEB %d, must be bad",
460 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
461 * @ubi: UBI device description object
462 * @pnum: physical eraseblock number to erase
463 * @torture: if this physical eraseblock has to be tortured
465 * This function synchronously erases physical eraseblock @pnum. If @torture
466 * flag is not zero, the physical eraseblock is checked by means of writing
467 * different patterns to it and reading them back. If the torturing is enabled,
468 * the physical eraseblock is erased more then once.
470 * This function returns the number of erasures made in case of success, %-EIO
471 * if the erasure failed or the torturing test failed, and other negative error
472 * codes in case of other errors. Note, %-EIO means that the physical
475 int ubi_io_sync_erase(struct ubi_device
*ubi
, int pnum
, int torture
)
479 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
481 err
= paranoid_check_not_bad(ubi
, pnum
);
483 return err
> 0 ? -EINVAL
: err
;
486 ubi_err("read-only mode");
491 ret
= torture_peb(ubi
, pnum
);
496 err
= do_sync_erase(ubi
, pnum
);
504 * ubi_io_is_bad - check if a physical eraseblock is bad.
505 * @ubi: UBI device description object
506 * @pnum: the physical eraseblock number to check
508 * This function returns a positive number if the physical eraseblock is bad,
509 * zero if not, and a negative error code if an error occurred.
511 int ubi_io_is_bad(const struct ubi_device
*ubi
, int pnum
)
513 struct mtd_info
*mtd
= ubi
->mtd
;
515 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
517 if (ubi
->bad_allowed
) {
520 ret
= mtd
->block_isbad(mtd
, (loff_t
)pnum
* ubi
->peb_size
);
522 ubi_err("error %d while checking if PEB %d is bad",
525 dbg_io("PEB %d is bad", pnum
);
533 * ubi_io_mark_bad - mark a physical eraseblock as bad.
534 * @ubi: UBI device description object
535 * @pnum: the physical eraseblock number to mark
537 * This function returns zero in case of success and a negative error code in
540 int ubi_io_mark_bad(const struct ubi_device
*ubi
, int pnum
)
543 struct mtd_info
*mtd
= ubi
->mtd
;
545 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
548 ubi_err("read-only mode");
552 if (!ubi
->bad_allowed
)
555 err
= mtd
->block_markbad(mtd
, (loff_t
)pnum
* ubi
->peb_size
);
557 ubi_err("cannot mark PEB %d bad, error %d", pnum
, err
);
562 * validate_ec_hdr - validate an erase counter header.
563 * @ubi: UBI device description object
564 * @ec_hdr: the erase counter header to check
566 * This function returns zero if the erase counter header is OK, and %1 if
569 static int validate_ec_hdr(const struct ubi_device
*ubi
,
570 const struct ubi_ec_hdr
*ec_hdr
)
573 int vid_hdr_offset
, leb_start
;
575 ec
= be64_to_cpu(ec_hdr
->ec
);
576 vid_hdr_offset
= be32_to_cpu(ec_hdr
->vid_hdr_offset
);
577 leb_start
= be32_to_cpu(ec_hdr
->data_offset
);
579 if (ec_hdr
->version
!= UBI_VERSION
) {
580 ubi_err("node with incompatible UBI version found: "
581 "this UBI version is %d, image version is %d",
582 UBI_VERSION
, (int)ec_hdr
->version
);
586 if (vid_hdr_offset
!= ubi
->vid_hdr_offset
) {
587 ubi_err("bad VID header offset %d, expected %d",
588 vid_hdr_offset
, ubi
->vid_hdr_offset
);
592 if (leb_start
!= ubi
->leb_start
) {
593 ubi_err("bad data offset %d, expected %d",
594 leb_start
, ubi
->leb_start
);
598 if (ec
< 0 || ec
> UBI_MAX_ERASECOUNTER
) {
599 ubi_err("bad erase counter %lld", ec
);
606 ubi_err("bad EC header");
607 ubi_dbg_dump_ec_hdr(ec_hdr
);
608 ubi_dbg_dump_stack();
613 * ubi_io_read_ec_hdr - read and check an erase counter header.
614 * @ubi: UBI device description object
615 * @pnum: physical eraseblock to read from
616 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
618 * @verbose: be verbose if the header is corrupted or was not found
620 * This function reads erase counter header from physical eraseblock @pnum and
621 * stores it in @ec_hdr. This function also checks CRC checksum of the read
622 * erase counter header. The following codes may be returned:
624 * o %0 if the CRC checksum is correct and the header was successfully read;
625 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
626 * and corrected by the flash driver; this is harmless but may indicate that
627 * this eraseblock may become bad soon (but may be not);
628 * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
629 * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
630 * o a negative error code in case of failure.
632 int ubi_io_read_ec_hdr(struct ubi_device
*ubi
, int pnum
,
633 struct ubi_ec_hdr
*ec_hdr
, int verbose
)
635 int err
, read_err
= 0;
636 uint32_t crc
, magic
, hdr_crc
;
638 dbg_io("read EC header from PEB %d", pnum
);
639 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
643 err
= ubi_io_read(ubi
, ec_hdr
, pnum
, 0, UBI_EC_HDR_SIZE
);
645 if (err
!= UBI_IO_BITFLIPS
&& err
!= -EBADMSG
)
649 * We read all the data, but either a correctable bit-flip
650 * occurred, or MTD reported about some data integrity error,
651 * like an ECC error in case of NAND. The former is harmless,
652 * the later may mean that the read data is corrupted. But we
653 * have a CRC check-sum and we will detect this. If the EC
654 * header is still OK, we just report this as there was a
660 magic
= be32_to_cpu(ec_hdr
->magic
);
661 if (magic
!= UBI_EC_HDR_MAGIC
) {
663 * The magic field is wrong. Let's check if we have read all
664 * 0xFF. If yes, this physical eraseblock is assumed to be
667 * But if there was a read error, we do not test it for all
668 * 0xFFs. Even if it does contain all 0xFFs, this error
669 * indicates that something is still wrong with this physical
670 * eraseblock and we anyway cannot treat it as empty.
672 if (read_err
!= -EBADMSG
&&
673 check_pattern(ec_hdr
, 0xFF, UBI_EC_HDR_SIZE
)) {
674 /* The physical eraseblock is supposedly empty */
677 * The below is just a paranoid check, it has to be
678 * compiled out if paranoid checks are disabled.
680 err
= paranoid_check_all_ff(ubi
, pnum
, 0,
683 return err
> 0 ? UBI_IO_BAD_EC_HDR
: err
;
686 ubi_warn("no EC header found at PEB %d, "
687 "only 0xFF bytes", pnum
);
688 return UBI_IO_PEB_EMPTY
;
692 * This is not a valid erase counter header, and these are not
693 * 0xFF bytes. Report that the header is corrupted.
696 ubi_warn("bad magic number at PEB %d: %08x instead of "
697 "%08x", pnum
, magic
, UBI_EC_HDR_MAGIC
);
698 ubi_dbg_dump_ec_hdr(ec_hdr
);
700 return UBI_IO_BAD_EC_HDR
;
703 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
704 hdr_crc
= be32_to_cpu(ec_hdr
->hdr_crc
);
706 if (hdr_crc
!= crc
) {
708 ubi_warn("bad EC header CRC at PEB %d, calculated "
709 "%#08x, read %#08x", pnum
, crc
, hdr_crc
);
710 ubi_dbg_dump_ec_hdr(ec_hdr
);
712 return UBI_IO_BAD_EC_HDR
;
715 /* And of course validate what has just been read from the media */
716 err
= validate_ec_hdr(ubi
, ec_hdr
);
718 ubi_err("validation failed for PEB %d", pnum
);
722 return read_err
? UBI_IO_BITFLIPS
: 0;
726 * ubi_io_write_ec_hdr - write an erase counter header.
727 * @ubi: UBI device description object
728 * @pnum: physical eraseblock to write to
729 * @ec_hdr: the erase counter header to write
731 * This function writes erase counter header described by @ec_hdr to physical
732 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
733 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
736 * This function returns zero in case of success and a negative error code in
737 * case of failure. If %-EIO is returned, the physical eraseblock most probably
740 int ubi_io_write_ec_hdr(struct ubi_device
*ubi
, int pnum
,
741 struct ubi_ec_hdr
*ec_hdr
)
746 dbg_io("write EC header to PEB %d", pnum
);
747 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
749 ec_hdr
->magic
= cpu_to_be32(UBI_EC_HDR_MAGIC
);
750 ec_hdr
->version
= UBI_VERSION
;
751 ec_hdr
->vid_hdr_offset
= cpu_to_be32(ubi
->vid_hdr_offset
);
752 ec_hdr
->data_offset
= cpu_to_be32(ubi
->leb_start
);
753 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
754 ec_hdr
->hdr_crc
= cpu_to_be32(crc
);
756 err
= paranoid_check_ec_hdr(ubi
, pnum
, ec_hdr
);
760 err
= ubi_io_write(ubi
, ec_hdr
, pnum
, 0, ubi
->ec_hdr_alsize
);
765 * validate_vid_hdr - validate a volume identifier header.
766 * @ubi: UBI device description object
767 * @vid_hdr: the volume identifier header to check
769 * This function checks that data stored in the volume identifier header
770 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
772 static int validate_vid_hdr(const struct ubi_device
*ubi
,
773 const struct ubi_vid_hdr
*vid_hdr
)
775 int vol_type
= vid_hdr
->vol_type
;
776 int copy_flag
= vid_hdr
->copy_flag
;
777 int vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
778 int lnum
= be32_to_cpu(vid_hdr
->lnum
);
779 int compat
= vid_hdr
->compat
;
780 int data_size
= be32_to_cpu(vid_hdr
->data_size
);
781 int used_ebs
= be32_to_cpu(vid_hdr
->used_ebs
);
782 int data_pad
= be32_to_cpu(vid_hdr
->data_pad
);
783 int data_crc
= be32_to_cpu(vid_hdr
->data_crc
);
784 int usable_leb_size
= ubi
->leb_size
- data_pad
;
786 if (copy_flag
!= 0 && copy_flag
!= 1) {
787 dbg_err("bad copy_flag");
791 if (vol_id
< 0 || lnum
< 0 || data_size
< 0 || used_ebs
< 0 ||
793 dbg_err("negative values");
797 if (vol_id
>= UBI_MAX_VOLUMES
&& vol_id
< UBI_INTERNAL_VOL_START
) {
798 dbg_err("bad vol_id");
802 if (vol_id
< UBI_INTERNAL_VOL_START
&& compat
!= 0) {
803 dbg_err("bad compat");
807 if (vol_id
>= UBI_INTERNAL_VOL_START
&& compat
!= UBI_COMPAT_DELETE
&&
808 compat
!= UBI_COMPAT_RO
&& compat
!= UBI_COMPAT_PRESERVE
&&
809 compat
!= UBI_COMPAT_REJECT
) {
810 dbg_err("bad compat");
814 if (vol_type
!= UBI_VID_DYNAMIC
&& vol_type
!= UBI_VID_STATIC
) {
815 dbg_err("bad vol_type");
819 if (data_pad
>= ubi
->leb_size
/ 2) {
820 dbg_err("bad data_pad");
824 if (vol_type
== UBI_VID_STATIC
) {
826 * Although from high-level point of view static volumes may
827 * contain zero bytes of data, but no VID headers can contain
828 * zero at these fields, because they empty volumes do not have
829 * mapped logical eraseblocks.
832 dbg_err("zero used_ebs");
835 if (data_size
== 0) {
836 dbg_err("zero data_size");
839 if (lnum
< used_ebs
- 1) {
840 if (data_size
!= usable_leb_size
) {
841 dbg_err("bad data_size");
844 } else if (lnum
== used_ebs
- 1) {
845 if (data_size
== 0) {
846 dbg_err("bad data_size at last LEB");
850 dbg_err("too high lnum");
854 if (copy_flag
== 0) {
856 dbg_err("non-zero data CRC");
859 if (data_size
!= 0) {
860 dbg_err("non-zero data_size");
864 if (data_size
== 0) {
865 dbg_err("zero data_size of copy");
870 dbg_err("bad used_ebs");
878 ubi_err("bad VID header");
879 ubi_dbg_dump_vid_hdr(vid_hdr
);
880 ubi_dbg_dump_stack();
885 * ubi_io_read_vid_hdr - read and check a volume identifier header.
886 * @ubi: UBI device description object
887 * @pnum: physical eraseblock number to read from
888 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
890 * @verbose: be verbose if the header is corrupted or wasn't found
892 * This function reads the volume identifier header from physical eraseblock
893 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
894 * volume identifier header. The following codes may be returned:
896 * o %0 if the CRC checksum is correct and the header was successfully read;
897 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
898 * and corrected by the flash driver; this is harmless but may indicate that
899 * this eraseblock may become bad soon;
900 * o %UBI_IO_BAD_VID_HRD if the volume identifier header is corrupted (a CRC
902 * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
904 * o a negative error code in case of failure.
906 int ubi_io_read_vid_hdr(struct ubi_device
*ubi
, int pnum
,
907 struct ubi_vid_hdr
*vid_hdr
, int verbose
)
909 int err
, read_err
= 0;
910 uint32_t crc
, magic
, hdr_crc
;
913 dbg_io("read VID header from PEB %d", pnum
);
914 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
918 p
= (char *)vid_hdr
- ubi
->vid_hdr_shift
;
919 err
= ubi_io_read(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
920 ubi
->vid_hdr_alsize
);
922 if (err
!= UBI_IO_BITFLIPS
&& err
!= -EBADMSG
)
926 * We read all the data, but either a correctable bit-flip
927 * occurred, or MTD reported about some data integrity error,
928 * like an ECC error in case of NAND. The former is harmless,
929 * the later may mean the read data is corrupted. But we have a
930 * CRC check-sum and we will identify this. If the VID header is
931 * still OK, we just report this as there was a bit-flip.
936 magic
= be32_to_cpu(vid_hdr
->magic
);
937 if (magic
!= UBI_VID_HDR_MAGIC
) {
939 * If we have read all 0xFF bytes, the VID header probably does
940 * not exist and the physical eraseblock is assumed to be free.
942 * But if there was a read error, we do not test the data for
943 * 0xFFs. Even if it does contain all 0xFFs, this error
944 * indicates that something is still wrong with this physical
945 * eraseblock and it cannot be regarded as free.
947 if (read_err
!= -EBADMSG
&&
948 check_pattern(vid_hdr
, 0xFF, UBI_VID_HDR_SIZE
)) {
949 /* The physical eraseblock is supposedly free */
952 * The below is just a paranoid check, it has to be
953 * compiled out if paranoid checks are disabled.
955 err
= paranoid_check_all_ff(ubi
, pnum
, ubi
->leb_start
,
958 return err
> 0 ? UBI_IO_BAD_VID_HDR
: err
;
961 ubi_warn("no VID header found at PEB %d, "
962 "only 0xFF bytes", pnum
);
963 return UBI_IO_PEB_FREE
;
967 * This is not a valid VID header, and these are not 0xFF
968 * bytes. Report that the header is corrupted.
971 ubi_warn("bad magic number at PEB %d: %08x instead of "
972 "%08x", pnum
, magic
, UBI_VID_HDR_MAGIC
);
973 ubi_dbg_dump_vid_hdr(vid_hdr
);
975 return UBI_IO_BAD_VID_HDR
;
978 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_VID_HDR_SIZE_CRC
);
979 hdr_crc
= be32_to_cpu(vid_hdr
->hdr_crc
);
981 if (hdr_crc
!= crc
) {
983 ubi_warn("bad CRC at PEB %d, calculated %#08x, "
984 "read %#08x", pnum
, crc
, hdr_crc
);
985 ubi_dbg_dump_vid_hdr(vid_hdr
);
987 return UBI_IO_BAD_VID_HDR
;
990 /* Validate the VID header that we have just read */
991 err
= validate_vid_hdr(ubi
, vid_hdr
);
993 ubi_err("validation failed for PEB %d", pnum
);
997 return read_err
? UBI_IO_BITFLIPS
: 0;
1001 * ubi_io_write_vid_hdr - write a volume identifier header.
1002 * @ubi: UBI device description object
1003 * @pnum: the physical eraseblock number to write to
1004 * @vid_hdr: the volume identifier header to write
1006 * This function writes the volume identifier header described by @vid_hdr to
1007 * physical eraseblock @pnum. This function automatically fills the
1008 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1009 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1011 * This function returns zero in case of success and a negative error code in
1012 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1015 int ubi_io_write_vid_hdr(struct ubi_device
*ubi
, int pnum
,
1016 struct ubi_vid_hdr
*vid_hdr
)
1022 dbg_io("write VID header to PEB %d", pnum
);
1023 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
1025 err
= paranoid_check_peb_ec_hdr(ubi
, pnum
);
1027 return err
> 0 ? -EINVAL
: err
;
1029 vid_hdr
->magic
= cpu_to_be32(UBI_VID_HDR_MAGIC
);
1030 vid_hdr
->version
= UBI_VERSION
;
1031 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_VID_HDR_SIZE_CRC
);
1032 vid_hdr
->hdr_crc
= cpu_to_be32(crc
);
1034 err
= paranoid_check_vid_hdr(ubi
, pnum
, vid_hdr
);
1038 p
= (char *)vid_hdr
- ubi
->vid_hdr_shift
;
1039 err
= ubi_io_write(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
1040 ubi
->vid_hdr_alsize
);
1044 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1047 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1048 * @ubi: UBI device description object
1049 * @pnum: physical eraseblock number to check
1051 * This function returns zero if the physical eraseblock is good, a positive
1052 * number if it is bad and a negative error code if an error occurred.
1054 static int paranoid_check_not_bad(const struct ubi_device
*ubi
, int pnum
)
1058 err
= ubi_io_is_bad(ubi
, pnum
);
1062 ubi_err("paranoid check failed for PEB %d", pnum
);
1063 ubi_dbg_dump_stack();
1068 * paranoid_check_ec_hdr - check if an erase counter header is all right.
1069 * @ubi: UBI device description object
1070 * @pnum: physical eraseblock number the erase counter header belongs to
1071 * @ec_hdr: the erase counter header to check
1073 * This function returns zero if the erase counter header contains valid
1074 * values, and %1 if not.
1076 static int paranoid_check_ec_hdr(const struct ubi_device
*ubi
, int pnum
,
1077 const struct ubi_ec_hdr
*ec_hdr
)
1082 magic
= be32_to_cpu(ec_hdr
->magic
);
1083 if (magic
!= UBI_EC_HDR_MAGIC
) {
1084 ubi_err("bad magic %#08x, must be %#08x",
1085 magic
, UBI_EC_HDR_MAGIC
);
1089 err
= validate_ec_hdr(ubi
, ec_hdr
);
1091 ubi_err("paranoid check failed for PEB %d", pnum
);
1098 ubi_dbg_dump_ec_hdr(ec_hdr
);
1099 ubi_dbg_dump_stack();
1104 * paranoid_check_peb_ec_hdr - check erase counter header.
1105 * @ubi: UBI device description object
1106 * @pnum: the physical eraseblock number to check
1108 * This function returns zero if the erase counter header is all right, %1 if
1109 * not, and a negative error code if an error occurred.
1111 static int paranoid_check_peb_ec_hdr(const struct ubi_device
*ubi
, int pnum
)
1114 uint32_t crc
, hdr_crc
;
1115 struct ubi_ec_hdr
*ec_hdr
;
1117 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
1121 err
= ubi_io_read(ubi
, ec_hdr
, pnum
, 0, UBI_EC_HDR_SIZE
);
1122 if (err
&& err
!= UBI_IO_BITFLIPS
&& err
!= -EBADMSG
)
1125 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
1126 hdr_crc
= be32_to_cpu(ec_hdr
->hdr_crc
);
1127 if (hdr_crc
!= crc
) {
1128 ubi_err("bad CRC, calculated %#08x, read %#08x", crc
, hdr_crc
);
1129 ubi_err("paranoid check failed for PEB %d", pnum
);
1130 ubi_dbg_dump_ec_hdr(ec_hdr
);
1131 ubi_dbg_dump_stack();
1136 err
= paranoid_check_ec_hdr(ubi
, pnum
, ec_hdr
);
1144 * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1145 * @ubi: UBI device description object
1146 * @pnum: physical eraseblock number the volume identifier header belongs to
1147 * @vid_hdr: the volume identifier header to check
1149 * This function returns zero if the volume identifier header is all right, and
1152 static int paranoid_check_vid_hdr(const struct ubi_device
*ubi
, int pnum
,
1153 const struct ubi_vid_hdr
*vid_hdr
)
1158 magic
= be32_to_cpu(vid_hdr
->magic
);
1159 if (magic
!= UBI_VID_HDR_MAGIC
) {
1160 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1161 magic
, pnum
, UBI_VID_HDR_MAGIC
);
1165 err
= validate_vid_hdr(ubi
, vid_hdr
);
1167 ubi_err("paranoid check failed for PEB %d", pnum
);
1174 ubi_err("paranoid check failed for PEB %d", pnum
);
1175 ubi_dbg_dump_vid_hdr(vid_hdr
);
1176 ubi_dbg_dump_stack();
1182 * paranoid_check_peb_vid_hdr - check volume identifier header.
1183 * @ubi: UBI device description object
1184 * @pnum: the physical eraseblock number to check
1186 * This function returns zero if the volume identifier header is all right,
1187 * %1 if not, and a negative error code if an error occurred.
1189 static int paranoid_check_peb_vid_hdr(const struct ubi_device
*ubi
, int pnum
)
1192 uint32_t crc
, hdr_crc
;
1193 struct ubi_vid_hdr
*vid_hdr
;
1196 vid_hdr
= ubi_zalloc_vid_hdr(ubi
, GFP_NOFS
);
1200 p
= (char *)vid_hdr
- ubi
->vid_hdr_shift
;
1201 err
= ubi_io_read(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
1202 ubi
->vid_hdr_alsize
);
1203 if (err
&& err
!= UBI_IO_BITFLIPS
&& err
!= -EBADMSG
)
1206 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_EC_HDR_SIZE_CRC
);
1207 hdr_crc
= be32_to_cpu(vid_hdr
->hdr_crc
);
1208 if (hdr_crc
!= crc
) {
1209 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1210 "read %#08x", pnum
, crc
, hdr_crc
);
1211 ubi_err("paranoid check failed for PEB %d", pnum
);
1212 ubi_dbg_dump_vid_hdr(vid_hdr
);
1213 ubi_dbg_dump_stack();
1218 err
= paranoid_check_vid_hdr(ubi
, pnum
, vid_hdr
);
1221 ubi_free_vid_hdr(ubi
, vid_hdr
);
1226 * paranoid_check_all_ff - check that a region of flash is empty.
1227 * @ubi: UBI device description object
1228 * @pnum: the physical eraseblock number to check
1229 * @offset: the starting offset within the physical eraseblock to check
1230 * @len: the length of the region to check
1232 * This function returns zero if only 0xFF bytes are present at offset
1233 * @offset of the physical eraseblock @pnum, %1 if not, and a negative error
1234 * code if an error occurred.
1236 static int paranoid_check_all_ff(struct ubi_device
*ubi
, int pnum
, int offset
,
1241 loff_t addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
1243 mutex_lock(&ubi
->dbg_buf_mutex
);
1244 err
= ubi
->mtd
->read(ubi
->mtd
, addr
, len
, &read
, ubi
->dbg_peb_buf
);
1245 if (err
&& err
!= -EUCLEAN
) {
1246 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1247 "read %zd bytes", err
, len
, pnum
, offset
, read
);
1251 err
= check_pattern(ubi
->dbg_peb_buf
, 0xFF, len
);
1253 ubi_err("flash region at PEB %d:%d, length %d does not "
1254 "contain all 0xFF bytes", pnum
, offset
, len
);
1257 mutex_unlock(&ubi
->dbg_buf_mutex
);
1262 ubi_err("paranoid check failed for PEB %d", pnum
);
1263 ubi_msg("hex dump of the %d-%d region", offset
, offset
+ len
);
1264 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
1265 ubi
->dbg_peb_buf
, len
, 1);
1268 ubi_dbg_dump_stack();
1269 mutex_unlock(&ubi
->dbg_buf_mutex
);
1273 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */