ALSA: HDA: Fix single internal mic on ALC275 (Sony Vaio VPCSB1C5E)
[linux/fpc-iii.git] / virt / kvm / kvm_main.c
blob556e3efe532523df4f3bc138ba62605c253fd977
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include "iodev.h"
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
51 #include <asm/processor.h>
52 #include <asm/io.h>
53 #include <asm/uaccess.h>
54 #include <asm/pgtable.h>
56 #include "coalesced_mmio.h"
57 #include "async_pf.h"
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/kvm.h>
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
66 * Ordering of locks:
68 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 DEFINE_RAW_SPINLOCK(kvm_lock);
72 LIST_HEAD(vm_list);
74 static cpumask_var_t cpus_hardware_enabled;
75 static int kvm_usage_count = 0;
76 static atomic_t hardware_enable_failed;
78 struct kmem_cache *kvm_vcpu_cache;
79 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
81 static __read_mostly struct preempt_ops kvm_preempt_ops;
83 struct dentry *kvm_debugfs_dir;
85 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
86 unsigned long arg);
87 static int hardware_enable_all(void);
88 static void hardware_disable_all(void);
90 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
92 bool kvm_rebooting;
93 EXPORT_SYMBOL_GPL(kvm_rebooting);
95 static bool largepages_enabled = true;
97 static struct page *hwpoison_page;
98 static pfn_t hwpoison_pfn;
100 static struct page *fault_page;
101 static pfn_t fault_pfn;
103 inline int kvm_is_mmio_pfn(pfn_t pfn)
105 if (pfn_valid(pfn)) {
106 int reserved;
107 struct page *tail = pfn_to_page(pfn);
108 struct page *head = compound_trans_head(tail);
109 reserved = PageReserved(head);
110 if (head != tail) {
112 * "head" is not a dangling pointer
113 * (compound_trans_head takes care of that)
114 * but the hugepage may have been splitted
115 * from under us (and we may not hold a
116 * reference count on the head page so it can
117 * be reused before we run PageReferenced), so
118 * we've to check PageTail before returning
119 * what we just read.
121 smp_rmb();
122 if (PageTail(tail))
123 return reserved;
125 return PageReserved(tail);
128 return true;
132 * Switches to specified vcpu, until a matching vcpu_put()
134 void vcpu_load(struct kvm_vcpu *vcpu)
136 int cpu;
138 mutex_lock(&vcpu->mutex);
139 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
140 /* The thread running this VCPU changed. */
141 struct pid *oldpid = vcpu->pid;
142 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
143 rcu_assign_pointer(vcpu->pid, newpid);
144 synchronize_rcu();
145 put_pid(oldpid);
147 cpu = get_cpu();
148 preempt_notifier_register(&vcpu->preempt_notifier);
149 kvm_arch_vcpu_load(vcpu, cpu);
150 put_cpu();
153 void vcpu_put(struct kvm_vcpu *vcpu)
155 preempt_disable();
156 kvm_arch_vcpu_put(vcpu);
157 preempt_notifier_unregister(&vcpu->preempt_notifier);
158 preempt_enable();
159 mutex_unlock(&vcpu->mutex);
162 static void ack_flush(void *_completed)
166 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
168 int i, cpu, me;
169 cpumask_var_t cpus;
170 bool called = true;
171 struct kvm_vcpu *vcpu;
173 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
175 me = get_cpu();
176 kvm_for_each_vcpu(i, vcpu, kvm) {
177 kvm_make_request(req, vcpu);
178 cpu = vcpu->cpu;
180 /* Set ->requests bit before we read ->mode */
181 smp_mb();
183 if (cpus != NULL && cpu != -1 && cpu != me &&
184 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
185 cpumask_set_cpu(cpu, cpus);
187 if (unlikely(cpus == NULL))
188 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
189 else if (!cpumask_empty(cpus))
190 smp_call_function_many(cpus, ack_flush, NULL, 1);
191 else
192 called = false;
193 put_cpu();
194 free_cpumask_var(cpus);
195 return called;
198 void kvm_flush_remote_tlbs(struct kvm *kvm)
200 int dirty_count = kvm->tlbs_dirty;
202 smp_mb();
203 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
204 ++kvm->stat.remote_tlb_flush;
205 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
208 void kvm_reload_remote_mmus(struct kvm *kvm)
210 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
213 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
215 struct page *page;
216 int r;
218 mutex_init(&vcpu->mutex);
219 vcpu->cpu = -1;
220 vcpu->kvm = kvm;
221 vcpu->vcpu_id = id;
222 vcpu->pid = NULL;
223 init_waitqueue_head(&vcpu->wq);
224 kvm_async_pf_vcpu_init(vcpu);
226 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
227 if (!page) {
228 r = -ENOMEM;
229 goto fail;
231 vcpu->run = page_address(page);
233 r = kvm_arch_vcpu_init(vcpu);
234 if (r < 0)
235 goto fail_free_run;
236 return 0;
238 fail_free_run:
239 free_page((unsigned long)vcpu->run);
240 fail:
241 return r;
243 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
245 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
247 put_pid(vcpu->pid);
248 kvm_arch_vcpu_uninit(vcpu);
249 free_page((unsigned long)vcpu->run);
251 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
253 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
254 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
256 return container_of(mn, struct kvm, mmu_notifier);
259 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
260 struct mm_struct *mm,
261 unsigned long address)
263 struct kvm *kvm = mmu_notifier_to_kvm(mn);
264 int need_tlb_flush, idx;
267 * When ->invalidate_page runs, the linux pte has been zapped
268 * already but the page is still allocated until
269 * ->invalidate_page returns. So if we increase the sequence
270 * here the kvm page fault will notice if the spte can't be
271 * established because the page is going to be freed. If
272 * instead the kvm page fault establishes the spte before
273 * ->invalidate_page runs, kvm_unmap_hva will release it
274 * before returning.
276 * The sequence increase only need to be seen at spin_unlock
277 * time, and not at spin_lock time.
279 * Increasing the sequence after the spin_unlock would be
280 * unsafe because the kvm page fault could then establish the
281 * pte after kvm_unmap_hva returned, without noticing the page
282 * is going to be freed.
284 idx = srcu_read_lock(&kvm->srcu);
285 spin_lock(&kvm->mmu_lock);
286 kvm->mmu_notifier_seq++;
287 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
288 spin_unlock(&kvm->mmu_lock);
289 srcu_read_unlock(&kvm->srcu, idx);
291 /* we've to flush the tlb before the pages can be freed */
292 if (need_tlb_flush)
293 kvm_flush_remote_tlbs(kvm);
297 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
298 struct mm_struct *mm,
299 unsigned long address,
300 pte_t pte)
302 struct kvm *kvm = mmu_notifier_to_kvm(mn);
303 int idx;
305 idx = srcu_read_lock(&kvm->srcu);
306 spin_lock(&kvm->mmu_lock);
307 kvm->mmu_notifier_seq++;
308 kvm_set_spte_hva(kvm, address, pte);
309 spin_unlock(&kvm->mmu_lock);
310 srcu_read_unlock(&kvm->srcu, idx);
313 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
314 struct mm_struct *mm,
315 unsigned long start,
316 unsigned long end)
318 struct kvm *kvm = mmu_notifier_to_kvm(mn);
319 int need_tlb_flush = 0, idx;
321 idx = srcu_read_lock(&kvm->srcu);
322 spin_lock(&kvm->mmu_lock);
324 * The count increase must become visible at unlock time as no
325 * spte can be established without taking the mmu_lock and
326 * count is also read inside the mmu_lock critical section.
328 kvm->mmu_notifier_count++;
329 for (; start < end; start += PAGE_SIZE)
330 need_tlb_flush |= kvm_unmap_hva(kvm, start);
331 need_tlb_flush |= kvm->tlbs_dirty;
332 spin_unlock(&kvm->mmu_lock);
333 srcu_read_unlock(&kvm->srcu, idx);
335 /* we've to flush the tlb before the pages can be freed */
336 if (need_tlb_flush)
337 kvm_flush_remote_tlbs(kvm);
340 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
341 struct mm_struct *mm,
342 unsigned long start,
343 unsigned long end)
345 struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 spin_lock(&kvm->mmu_lock);
349 * This sequence increase will notify the kvm page fault that
350 * the page that is going to be mapped in the spte could have
351 * been freed.
353 kvm->mmu_notifier_seq++;
355 * The above sequence increase must be visible before the
356 * below count decrease but both values are read by the kvm
357 * page fault under mmu_lock spinlock so we don't need to add
358 * a smb_wmb() here in between the two.
360 kvm->mmu_notifier_count--;
361 spin_unlock(&kvm->mmu_lock);
363 BUG_ON(kvm->mmu_notifier_count < 0);
366 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
367 struct mm_struct *mm,
368 unsigned long address)
370 struct kvm *kvm = mmu_notifier_to_kvm(mn);
371 int young, idx;
373 idx = srcu_read_lock(&kvm->srcu);
374 spin_lock(&kvm->mmu_lock);
375 young = kvm_age_hva(kvm, address);
376 spin_unlock(&kvm->mmu_lock);
377 srcu_read_unlock(&kvm->srcu, idx);
379 if (young)
380 kvm_flush_remote_tlbs(kvm);
382 return young;
385 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
386 struct mm_struct *mm,
387 unsigned long address)
389 struct kvm *kvm = mmu_notifier_to_kvm(mn);
390 int young, idx;
392 idx = srcu_read_lock(&kvm->srcu);
393 spin_lock(&kvm->mmu_lock);
394 young = kvm_test_age_hva(kvm, address);
395 spin_unlock(&kvm->mmu_lock);
396 srcu_read_unlock(&kvm->srcu, idx);
398 return young;
401 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
402 struct mm_struct *mm)
404 struct kvm *kvm = mmu_notifier_to_kvm(mn);
405 int idx;
407 idx = srcu_read_lock(&kvm->srcu);
408 kvm_arch_flush_shadow(kvm);
409 srcu_read_unlock(&kvm->srcu, idx);
412 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
413 .invalidate_page = kvm_mmu_notifier_invalidate_page,
414 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
415 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
416 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
417 .test_young = kvm_mmu_notifier_test_young,
418 .change_pte = kvm_mmu_notifier_change_pte,
419 .release = kvm_mmu_notifier_release,
422 static int kvm_init_mmu_notifier(struct kvm *kvm)
424 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
425 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
428 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
430 static int kvm_init_mmu_notifier(struct kvm *kvm)
432 return 0;
435 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
437 static struct kvm *kvm_create_vm(void)
439 int r, i;
440 struct kvm *kvm = kvm_arch_alloc_vm();
442 if (!kvm)
443 return ERR_PTR(-ENOMEM);
445 r = kvm_arch_init_vm(kvm);
446 if (r)
447 goto out_err_nodisable;
449 r = hardware_enable_all();
450 if (r)
451 goto out_err_nodisable;
453 #ifdef CONFIG_HAVE_KVM_IRQCHIP
454 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
455 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
456 #endif
458 r = -ENOMEM;
459 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
460 if (!kvm->memslots)
461 goto out_err_nosrcu;
462 if (init_srcu_struct(&kvm->srcu))
463 goto out_err_nosrcu;
464 for (i = 0; i < KVM_NR_BUSES; i++) {
465 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
466 GFP_KERNEL);
467 if (!kvm->buses[i])
468 goto out_err;
471 r = kvm_init_mmu_notifier(kvm);
472 if (r)
473 goto out_err;
475 kvm->mm = current->mm;
476 atomic_inc(&kvm->mm->mm_count);
477 spin_lock_init(&kvm->mmu_lock);
478 kvm_eventfd_init(kvm);
479 mutex_init(&kvm->lock);
480 mutex_init(&kvm->irq_lock);
481 mutex_init(&kvm->slots_lock);
482 atomic_set(&kvm->users_count, 1);
483 raw_spin_lock(&kvm_lock);
484 list_add(&kvm->vm_list, &vm_list);
485 raw_spin_unlock(&kvm_lock);
487 return kvm;
489 out_err:
490 cleanup_srcu_struct(&kvm->srcu);
491 out_err_nosrcu:
492 hardware_disable_all();
493 out_err_nodisable:
494 for (i = 0; i < KVM_NR_BUSES; i++)
495 kfree(kvm->buses[i]);
496 kfree(kvm->memslots);
497 kvm_arch_free_vm(kvm);
498 return ERR_PTR(r);
501 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
503 if (!memslot->dirty_bitmap)
504 return;
506 if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
507 vfree(memslot->dirty_bitmap_head);
508 else
509 kfree(memslot->dirty_bitmap_head);
511 memslot->dirty_bitmap = NULL;
512 memslot->dirty_bitmap_head = NULL;
516 * Free any memory in @free but not in @dont.
518 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
519 struct kvm_memory_slot *dont)
521 int i;
523 if (!dont || free->rmap != dont->rmap)
524 vfree(free->rmap);
526 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
527 kvm_destroy_dirty_bitmap(free);
530 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
531 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
532 vfree(free->lpage_info[i]);
533 free->lpage_info[i] = NULL;
537 free->npages = 0;
538 free->rmap = NULL;
541 void kvm_free_physmem(struct kvm *kvm)
543 int i;
544 struct kvm_memslots *slots = kvm->memslots;
546 for (i = 0; i < slots->nmemslots; ++i)
547 kvm_free_physmem_slot(&slots->memslots[i], NULL);
549 kfree(kvm->memslots);
552 static void kvm_destroy_vm(struct kvm *kvm)
554 int i;
555 struct mm_struct *mm = kvm->mm;
557 kvm_arch_sync_events(kvm);
558 raw_spin_lock(&kvm_lock);
559 list_del(&kvm->vm_list);
560 raw_spin_unlock(&kvm_lock);
561 kvm_free_irq_routing(kvm);
562 for (i = 0; i < KVM_NR_BUSES; i++)
563 kvm_io_bus_destroy(kvm->buses[i]);
564 kvm_coalesced_mmio_free(kvm);
565 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
566 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
567 #else
568 kvm_arch_flush_shadow(kvm);
569 #endif
570 kvm_arch_destroy_vm(kvm);
571 kvm_free_physmem(kvm);
572 cleanup_srcu_struct(&kvm->srcu);
573 kvm_arch_free_vm(kvm);
574 hardware_disable_all();
575 mmdrop(mm);
578 void kvm_get_kvm(struct kvm *kvm)
580 atomic_inc(&kvm->users_count);
582 EXPORT_SYMBOL_GPL(kvm_get_kvm);
584 void kvm_put_kvm(struct kvm *kvm)
586 if (atomic_dec_and_test(&kvm->users_count))
587 kvm_destroy_vm(kvm);
589 EXPORT_SYMBOL_GPL(kvm_put_kvm);
592 static int kvm_vm_release(struct inode *inode, struct file *filp)
594 struct kvm *kvm = filp->private_data;
596 kvm_irqfd_release(kvm);
598 kvm_put_kvm(kvm);
599 return 0;
602 #ifndef CONFIG_S390
604 * Allocation size is twice as large as the actual dirty bitmap size.
605 * This makes it possible to do double buffering: see x86's
606 * kvm_vm_ioctl_get_dirty_log().
608 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
610 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
612 if (dirty_bytes > PAGE_SIZE)
613 memslot->dirty_bitmap = vzalloc(dirty_bytes);
614 else
615 memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
617 if (!memslot->dirty_bitmap)
618 return -ENOMEM;
620 memslot->dirty_bitmap_head = memslot->dirty_bitmap;
621 return 0;
623 #endif /* !CONFIG_S390 */
626 * Allocate some memory and give it an address in the guest physical address
627 * space.
629 * Discontiguous memory is allowed, mostly for framebuffers.
631 * Must be called holding mmap_sem for write.
633 int __kvm_set_memory_region(struct kvm *kvm,
634 struct kvm_userspace_memory_region *mem,
635 int user_alloc)
637 int r;
638 gfn_t base_gfn;
639 unsigned long npages;
640 unsigned long i;
641 struct kvm_memory_slot *memslot;
642 struct kvm_memory_slot old, new;
643 struct kvm_memslots *slots, *old_memslots;
645 r = -EINVAL;
646 /* General sanity checks */
647 if (mem->memory_size & (PAGE_SIZE - 1))
648 goto out;
649 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
650 goto out;
651 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
652 goto out;
653 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
654 goto out;
655 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
656 goto out;
658 memslot = &kvm->memslots->memslots[mem->slot];
659 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
660 npages = mem->memory_size >> PAGE_SHIFT;
662 r = -EINVAL;
663 if (npages > KVM_MEM_MAX_NR_PAGES)
664 goto out;
666 if (!npages)
667 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
669 new = old = *memslot;
671 new.id = mem->slot;
672 new.base_gfn = base_gfn;
673 new.npages = npages;
674 new.flags = mem->flags;
676 /* Disallow changing a memory slot's size. */
677 r = -EINVAL;
678 if (npages && old.npages && npages != old.npages)
679 goto out_free;
681 /* Check for overlaps */
682 r = -EEXIST;
683 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
684 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
686 if (s == memslot || !s->npages)
687 continue;
688 if (!((base_gfn + npages <= s->base_gfn) ||
689 (base_gfn >= s->base_gfn + s->npages)))
690 goto out_free;
693 /* Free page dirty bitmap if unneeded */
694 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
695 new.dirty_bitmap = NULL;
697 r = -ENOMEM;
699 /* Allocate if a slot is being created */
700 #ifndef CONFIG_S390
701 if (npages && !new.rmap) {
702 new.rmap = vzalloc(npages * sizeof(*new.rmap));
704 if (!new.rmap)
705 goto out_free;
707 new.user_alloc = user_alloc;
708 new.userspace_addr = mem->userspace_addr;
710 if (!npages)
711 goto skip_lpage;
713 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
714 unsigned long ugfn;
715 unsigned long j;
716 int lpages;
717 int level = i + 2;
719 /* Avoid unused variable warning if no large pages */
720 (void)level;
722 if (new.lpage_info[i])
723 continue;
725 lpages = 1 + ((base_gfn + npages - 1)
726 >> KVM_HPAGE_GFN_SHIFT(level));
727 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
729 new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
731 if (!new.lpage_info[i])
732 goto out_free;
734 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
735 new.lpage_info[i][0].write_count = 1;
736 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
737 new.lpage_info[i][lpages - 1].write_count = 1;
738 ugfn = new.userspace_addr >> PAGE_SHIFT;
740 * If the gfn and userspace address are not aligned wrt each
741 * other, or if explicitly asked to, disable large page
742 * support for this slot
744 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
745 !largepages_enabled)
746 for (j = 0; j < lpages; ++j)
747 new.lpage_info[i][j].write_count = 1;
750 skip_lpage:
752 /* Allocate page dirty bitmap if needed */
753 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
754 if (kvm_create_dirty_bitmap(&new) < 0)
755 goto out_free;
756 /* destroy any largepage mappings for dirty tracking */
758 #else /* not defined CONFIG_S390 */
759 new.user_alloc = user_alloc;
760 if (user_alloc)
761 new.userspace_addr = mem->userspace_addr;
762 #endif /* not defined CONFIG_S390 */
764 if (!npages) {
765 r = -ENOMEM;
766 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
767 if (!slots)
768 goto out_free;
769 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
770 if (mem->slot >= slots->nmemslots)
771 slots->nmemslots = mem->slot + 1;
772 slots->generation++;
773 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
775 old_memslots = kvm->memslots;
776 rcu_assign_pointer(kvm->memslots, slots);
777 synchronize_srcu_expedited(&kvm->srcu);
778 /* From this point no new shadow pages pointing to a deleted
779 * memslot will be created.
781 * validation of sp->gfn happens in:
782 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
783 * - kvm_is_visible_gfn (mmu_check_roots)
785 kvm_arch_flush_shadow(kvm);
786 kfree(old_memslots);
789 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
790 if (r)
791 goto out_free;
793 /* map the pages in iommu page table */
794 if (npages) {
795 r = kvm_iommu_map_pages(kvm, &new);
796 if (r)
797 goto out_free;
800 r = -ENOMEM;
801 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
802 if (!slots)
803 goto out_free;
804 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
805 if (mem->slot >= slots->nmemslots)
806 slots->nmemslots = mem->slot + 1;
807 slots->generation++;
809 /* actual memory is freed via old in kvm_free_physmem_slot below */
810 if (!npages) {
811 new.rmap = NULL;
812 new.dirty_bitmap = NULL;
813 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
814 new.lpage_info[i] = NULL;
817 slots->memslots[mem->slot] = new;
818 old_memslots = kvm->memslots;
819 rcu_assign_pointer(kvm->memslots, slots);
820 synchronize_srcu_expedited(&kvm->srcu);
822 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
824 kvm_free_physmem_slot(&old, &new);
825 kfree(old_memslots);
827 return 0;
829 out_free:
830 kvm_free_physmem_slot(&new, &old);
831 out:
832 return r;
835 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
837 int kvm_set_memory_region(struct kvm *kvm,
838 struct kvm_userspace_memory_region *mem,
839 int user_alloc)
841 int r;
843 mutex_lock(&kvm->slots_lock);
844 r = __kvm_set_memory_region(kvm, mem, user_alloc);
845 mutex_unlock(&kvm->slots_lock);
846 return r;
848 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
850 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
851 struct
852 kvm_userspace_memory_region *mem,
853 int user_alloc)
855 if (mem->slot >= KVM_MEMORY_SLOTS)
856 return -EINVAL;
857 return kvm_set_memory_region(kvm, mem, user_alloc);
860 int kvm_get_dirty_log(struct kvm *kvm,
861 struct kvm_dirty_log *log, int *is_dirty)
863 struct kvm_memory_slot *memslot;
864 int r, i;
865 unsigned long n;
866 unsigned long any = 0;
868 r = -EINVAL;
869 if (log->slot >= KVM_MEMORY_SLOTS)
870 goto out;
872 memslot = &kvm->memslots->memslots[log->slot];
873 r = -ENOENT;
874 if (!memslot->dirty_bitmap)
875 goto out;
877 n = kvm_dirty_bitmap_bytes(memslot);
879 for (i = 0; !any && i < n/sizeof(long); ++i)
880 any = memslot->dirty_bitmap[i];
882 r = -EFAULT;
883 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
884 goto out;
886 if (any)
887 *is_dirty = 1;
889 r = 0;
890 out:
891 return r;
894 void kvm_disable_largepages(void)
896 largepages_enabled = false;
898 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
900 int is_error_page(struct page *page)
902 return page == bad_page || page == hwpoison_page || page == fault_page;
904 EXPORT_SYMBOL_GPL(is_error_page);
906 int is_error_pfn(pfn_t pfn)
908 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
910 EXPORT_SYMBOL_GPL(is_error_pfn);
912 int is_hwpoison_pfn(pfn_t pfn)
914 return pfn == hwpoison_pfn;
916 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
918 int is_fault_pfn(pfn_t pfn)
920 return pfn == fault_pfn;
922 EXPORT_SYMBOL_GPL(is_fault_pfn);
924 static inline unsigned long bad_hva(void)
926 return PAGE_OFFSET;
929 int kvm_is_error_hva(unsigned long addr)
931 return addr == bad_hva();
933 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
935 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
936 gfn_t gfn)
938 int i;
940 for (i = 0; i < slots->nmemslots; ++i) {
941 struct kvm_memory_slot *memslot = &slots->memslots[i];
943 if (gfn >= memslot->base_gfn
944 && gfn < memslot->base_gfn + memslot->npages)
945 return memslot;
947 return NULL;
950 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
952 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
954 EXPORT_SYMBOL_GPL(gfn_to_memslot);
956 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
958 int i;
959 struct kvm_memslots *slots = kvm_memslots(kvm);
961 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
962 struct kvm_memory_slot *memslot = &slots->memslots[i];
964 if (memslot->flags & KVM_MEMSLOT_INVALID)
965 continue;
967 if (gfn >= memslot->base_gfn
968 && gfn < memslot->base_gfn + memslot->npages)
969 return 1;
971 return 0;
973 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
975 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
977 struct vm_area_struct *vma;
978 unsigned long addr, size;
980 size = PAGE_SIZE;
982 addr = gfn_to_hva(kvm, gfn);
983 if (kvm_is_error_hva(addr))
984 return PAGE_SIZE;
986 down_read(&current->mm->mmap_sem);
987 vma = find_vma(current->mm, addr);
988 if (!vma)
989 goto out;
991 size = vma_kernel_pagesize(vma);
993 out:
994 up_read(&current->mm->mmap_sem);
996 return size;
999 int memslot_id(struct kvm *kvm, gfn_t gfn)
1001 int i;
1002 struct kvm_memslots *slots = kvm_memslots(kvm);
1003 struct kvm_memory_slot *memslot = NULL;
1005 for (i = 0; i < slots->nmemslots; ++i) {
1006 memslot = &slots->memslots[i];
1008 if (gfn >= memslot->base_gfn
1009 && gfn < memslot->base_gfn + memslot->npages)
1010 break;
1013 return memslot - slots->memslots;
1016 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1017 gfn_t *nr_pages)
1019 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1020 return bad_hva();
1022 if (nr_pages)
1023 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1025 return gfn_to_hva_memslot(slot, gfn);
1028 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1030 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1032 EXPORT_SYMBOL_GPL(gfn_to_hva);
1034 static pfn_t get_fault_pfn(void)
1036 get_page(fault_page);
1037 return fault_pfn;
1040 static inline int check_user_page_hwpoison(unsigned long addr)
1042 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1044 rc = __get_user_pages(current, current->mm, addr, 1,
1045 flags, NULL, NULL, NULL);
1046 return rc == -EHWPOISON;
1049 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1050 bool *async, bool write_fault, bool *writable)
1052 struct page *page[1];
1053 int npages = 0;
1054 pfn_t pfn;
1056 /* we can do it either atomically or asynchronously, not both */
1057 BUG_ON(atomic && async);
1059 BUG_ON(!write_fault && !writable);
1061 if (writable)
1062 *writable = true;
1064 if (atomic || async)
1065 npages = __get_user_pages_fast(addr, 1, 1, page);
1067 if (unlikely(npages != 1) && !atomic) {
1068 might_sleep();
1070 if (writable)
1071 *writable = write_fault;
1073 npages = get_user_pages_fast(addr, 1, write_fault, page);
1075 /* map read fault as writable if possible */
1076 if (unlikely(!write_fault) && npages == 1) {
1077 struct page *wpage[1];
1079 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1080 if (npages == 1) {
1081 *writable = true;
1082 put_page(page[0]);
1083 page[0] = wpage[0];
1085 npages = 1;
1089 if (unlikely(npages != 1)) {
1090 struct vm_area_struct *vma;
1092 if (atomic)
1093 return get_fault_pfn();
1095 down_read(&current->mm->mmap_sem);
1096 if (check_user_page_hwpoison(addr)) {
1097 up_read(&current->mm->mmap_sem);
1098 get_page(hwpoison_page);
1099 return page_to_pfn(hwpoison_page);
1102 vma = find_vma_intersection(current->mm, addr, addr+1);
1104 if (vma == NULL)
1105 pfn = get_fault_pfn();
1106 else if ((vma->vm_flags & VM_PFNMAP)) {
1107 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1108 vma->vm_pgoff;
1109 BUG_ON(!kvm_is_mmio_pfn(pfn));
1110 } else {
1111 if (async && (vma->vm_flags & VM_WRITE))
1112 *async = true;
1113 pfn = get_fault_pfn();
1115 up_read(&current->mm->mmap_sem);
1116 } else
1117 pfn = page_to_pfn(page[0]);
1119 return pfn;
1122 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1124 return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1126 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1128 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1129 bool write_fault, bool *writable)
1131 unsigned long addr;
1133 if (async)
1134 *async = false;
1136 addr = gfn_to_hva(kvm, gfn);
1137 if (kvm_is_error_hva(addr)) {
1138 get_page(bad_page);
1139 return page_to_pfn(bad_page);
1142 return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1145 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1147 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1149 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1151 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1152 bool write_fault, bool *writable)
1154 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1156 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1158 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1160 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1162 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1164 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1165 bool *writable)
1167 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1169 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1171 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1172 struct kvm_memory_slot *slot, gfn_t gfn)
1174 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1175 return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1178 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1179 int nr_pages)
1181 unsigned long addr;
1182 gfn_t entry;
1184 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1185 if (kvm_is_error_hva(addr))
1186 return -1;
1188 if (entry < nr_pages)
1189 return 0;
1191 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1193 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1195 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1197 pfn_t pfn;
1199 pfn = gfn_to_pfn(kvm, gfn);
1200 if (!kvm_is_mmio_pfn(pfn))
1201 return pfn_to_page(pfn);
1203 WARN_ON(kvm_is_mmio_pfn(pfn));
1205 get_page(bad_page);
1206 return bad_page;
1209 EXPORT_SYMBOL_GPL(gfn_to_page);
1211 void kvm_release_page_clean(struct page *page)
1213 kvm_release_pfn_clean(page_to_pfn(page));
1215 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1217 void kvm_release_pfn_clean(pfn_t pfn)
1219 if (!kvm_is_mmio_pfn(pfn))
1220 put_page(pfn_to_page(pfn));
1222 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1224 void kvm_release_page_dirty(struct page *page)
1226 kvm_release_pfn_dirty(page_to_pfn(page));
1228 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1230 void kvm_release_pfn_dirty(pfn_t pfn)
1232 kvm_set_pfn_dirty(pfn);
1233 kvm_release_pfn_clean(pfn);
1235 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1237 void kvm_set_page_dirty(struct page *page)
1239 kvm_set_pfn_dirty(page_to_pfn(page));
1241 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1243 void kvm_set_pfn_dirty(pfn_t pfn)
1245 if (!kvm_is_mmio_pfn(pfn)) {
1246 struct page *page = pfn_to_page(pfn);
1247 if (!PageReserved(page))
1248 SetPageDirty(page);
1251 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1253 void kvm_set_pfn_accessed(pfn_t pfn)
1255 if (!kvm_is_mmio_pfn(pfn))
1256 mark_page_accessed(pfn_to_page(pfn));
1258 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1260 void kvm_get_pfn(pfn_t pfn)
1262 if (!kvm_is_mmio_pfn(pfn))
1263 get_page(pfn_to_page(pfn));
1265 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1267 static int next_segment(unsigned long len, int offset)
1269 if (len > PAGE_SIZE - offset)
1270 return PAGE_SIZE - offset;
1271 else
1272 return len;
1275 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1276 int len)
1278 int r;
1279 unsigned long addr;
1281 addr = gfn_to_hva(kvm, gfn);
1282 if (kvm_is_error_hva(addr))
1283 return -EFAULT;
1284 r = copy_from_user(data, (void __user *)addr + offset, len);
1285 if (r)
1286 return -EFAULT;
1287 return 0;
1289 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1291 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1293 gfn_t gfn = gpa >> PAGE_SHIFT;
1294 int seg;
1295 int offset = offset_in_page(gpa);
1296 int ret;
1298 while ((seg = next_segment(len, offset)) != 0) {
1299 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1300 if (ret < 0)
1301 return ret;
1302 offset = 0;
1303 len -= seg;
1304 data += seg;
1305 ++gfn;
1307 return 0;
1309 EXPORT_SYMBOL_GPL(kvm_read_guest);
1311 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1312 unsigned long len)
1314 int r;
1315 unsigned long addr;
1316 gfn_t gfn = gpa >> PAGE_SHIFT;
1317 int offset = offset_in_page(gpa);
1319 addr = gfn_to_hva(kvm, gfn);
1320 if (kvm_is_error_hva(addr))
1321 return -EFAULT;
1322 pagefault_disable();
1323 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1324 pagefault_enable();
1325 if (r)
1326 return -EFAULT;
1327 return 0;
1329 EXPORT_SYMBOL(kvm_read_guest_atomic);
1331 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1332 int offset, int len)
1334 int r;
1335 unsigned long addr;
1337 addr = gfn_to_hva(kvm, gfn);
1338 if (kvm_is_error_hva(addr))
1339 return -EFAULT;
1340 r = copy_to_user((void __user *)addr + offset, data, len);
1341 if (r)
1342 return -EFAULT;
1343 mark_page_dirty(kvm, gfn);
1344 return 0;
1346 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1348 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1349 unsigned long len)
1351 gfn_t gfn = gpa >> PAGE_SHIFT;
1352 int seg;
1353 int offset = offset_in_page(gpa);
1354 int ret;
1356 while ((seg = next_segment(len, offset)) != 0) {
1357 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1358 if (ret < 0)
1359 return ret;
1360 offset = 0;
1361 len -= seg;
1362 data += seg;
1363 ++gfn;
1365 return 0;
1368 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1369 gpa_t gpa)
1371 struct kvm_memslots *slots = kvm_memslots(kvm);
1372 int offset = offset_in_page(gpa);
1373 gfn_t gfn = gpa >> PAGE_SHIFT;
1375 ghc->gpa = gpa;
1376 ghc->generation = slots->generation;
1377 ghc->memslot = __gfn_to_memslot(slots, gfn);
1378 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1379 if (!kvm_is_error_hva(ghc->hva))
1380 ghc->hva += offset;
1381 else
1382 return -EFAULT;
1384 return 0;
1386 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1388 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1389 void *data, unsigned long len)
1391 struct kvm_memslots *slots = kvm_memslots(kvm);
1392 int r;
1394 if (slots->generation != ghc->generation)
1395 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1397 if (kvm_is_error_hva(ghc->hva))
1398 return -EFAULT;
1400 r = copy_to_user((void __user *)ghc->hva, data, len);
1401 if (r)
1402 return -EFAULT;
1403 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1405 return 0;
1407 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1409 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1411 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1412 offset, len);
1414 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1416 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1418 gfn_t gfn = gpa >> PAGE_SHIFT;
1419 int seg;
1420 int offset = offset_in_page(gpa);
1421 int ret;
1423 while ((seg = next_segment(len, offset)) != 0) {
1424 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1425 if (ret < 0)
1426 return ret;
1427 offset = 0;
1428 len -= seg;
1429 ++gfn;
1431 return 0;
1433 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1435 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1436 gfn_t gfn)
1438 if (memslot && memslot->dirty_bitmap) {
1439 unsigned long rel_gfn = gfn - memslot->base_gfn;
1441 __set_bit_le(rel_gfn, memslot->dirty_bitmap);
1445 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1447 struct kvm_memory_slot *memslot;
1449 memslot = gfn_to_memslot(kvm, gfn);
1450 mark_page_dirty_in_slot(kvm, memslot, gfn);
1454 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1456 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1458 DEFINE_WAIT(wait);
1460 for (;;) {
1461 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1463 if (kvm_arch_vcpu_runnable(vcpu)) {
1464 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1465 break;
1467 if (kvm_cpu_has_pending_timer(vcpu))
1468 break;
1469 if (signal_pending(current))
1470 break;
1472 schedule();
1475 finish_wait(&vcpu->wq, &wait);
1478 void kvm_resched(struct kvm_vcpu *vcpu)
1480 if (!need_resched())
1481 return;
1482 cond_resched();
1484 EXPORT_SYMBOL_GPL(kvm_resched);
1486 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1488 struct kvm *kvm = me->kvm;
1489 struct kvm_vcpu *vcpu;
1490 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1491 int yielded = 0;
1492 int pass;
1493 int i;
1496 * We boost the priority of a VCPU that is runnable but not
1497 * currently running, because it got preempted by something
1498 * else and called schedule in __vcpu_run. Hopefully that
1499 * VCPU is holding the lock that we need and will release it.
1500 * We approximate round-robin by starting at the last boosted VCPU.
1502 for (pass = 0; pass < 2 && !yielded; pass++) {
1503 kvm_for_each_vcpu(i, vcpu, kvm) {
1504 struct task_struct *task = NULL;
1505 struct pid *pid;
1506 if (!pass && i < last_boosted_vcpu) {
1507 i = last_boosted_vcpu;
1508 continue;
1509 } else if (pass && i > last_boosted_vcpu)
1510 break;
1511 if (vcpu == me)
1512 continue;
1513 if (waitqueue_active(&vcpu->wq))
1514 continue;
1515 rcu_read_lock();
1516 pid = rcu_dereference(vcpu->pid);
1517 if (pid)
1518 task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1519 rcu_read_unlock();
1520 if (!task)
1521 continue;
1522 if (task->flags & PF_VCPU) {
1523 put_task_struct(task);
1524 continue;
1526 if (yield_to(task, 1)) {
1527 put_task_struct(task);
1528 kvm->last_boosted_vcpu = i;
1529 yielded = 1;
1530 break;
1532 put_task_struct(task);
1536 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1538 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1540 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1541 struct page *page;
1543 if (vmf->pgoff == 0)
1544 page = virt_to_page(vcpu->run);
1545 #ifdef CONFIG_X86
1546 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1547 page = virt_to_page(vcpu->arch.pio_data);
1548 #endif
1549 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1550 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1551 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1552 #endif
1553 else
1554 return VM_FAULT_SIGBUS;
1555 get_page(page);
1556 vmf->page = page;
1557 return 0;
1560 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1561 .fault = kvm_vcpu_fault,
1564 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1566 vma->vm_ops = &kvm_vcpu_vm_ops;
1567 return 0;
1570 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1572 struct kvm_vcpu *vcpu = filp->private_data;
1574 kvm_put_kvm(vcpu->kvm);
1575 return 0;
1578 static struct file_operations kvm_vcpu_fops = {
1579 .release = kvm_vcpu_release,
1580 .unlocked_ioctl = kvm_vcpu_ioctl,
1581 .compat_ioctl = kvm_vcpu_ioctl,
1582 .mmap = kvm_vcpu_mmap,
1583 .llseek = noop_llseek,
1587 * Allocates an inode for the vcpu.
1589 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1591 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1595 * Creates some virtual cpus. Good luck creating more than one.
1597 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1599 int r;
1600 struct kvm_vcpu *vcpu, *v;
1602 vcpu = kvm_arch_vcpu_create(kvm, id);
1603 if (IS_ERR(vcpu))
1604 return PTR_ERR(vcpu);
1606 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1608 r = kvm_arch_vcpu_setup(vcpu);
1609 if (r)
1610 return r;
1612 mutex_lock(&kvm->lock);
1613 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1614 r = -EINVAL;
1615 goto vcpu_destroy;
1618 kvm_for_each_vcpu(r, v, kvm)
1619 if (v->vcpu_id == id) {
1620 r = -EEXIST;
1621 goto vcpu_destroy;
1624 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1626 /* Now it's all set up, let userspace reach it */
1627 kvm_get_kvm(kvm);
1628 r = create_vcpu_fd(vcpu);
1629 if (r < 0) {
1630 kvm_put_kvm(kvm);
1631 goto vcpu_destroy;
1634 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1635 smp_wmb();
1636 atomic_inc(&kvm->online_vcpus);
1638 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1639 if (kvm->bsp_vcpu_id == id)
1640 kvm->bsp_vcpu = vcpu;
1641 #endif
1642 mutex_unlock(&kvm->lock);
1643 return r;
1645 vcpu_destroy:
1646 mutex_unlock(&kvm->lock);
1647 kvm_arch_vcpu_destroy(vcpu);
1648 return r;
1651 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1653 if (sigset) {
1654 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1655 vcpu->sigset_active = 1;
1656 vcpu->sigset = *sigset;
1657 } else
1658 vcpu->sigset_active = 0;
1659 return 0;
1662 static long kvm_vcpu_ioctl(struct file *filp,
1663 unsigned int ioctl, unsigned long arg)
1665 struct kvm_vcpu *vcpu = filp->private_data;
1666 void __user *argp = (void __user *)arg;
1667 int r;
1668 struct kvm_fpu *fpu = NULL;
1669 struct kvm_sregs *kvm_sregs = NULL;
1671 if (vcpu->kvm->mm != current->mm)
1672 return -EIO;
1674 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1676 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1677 * so vcpu_load() would break it.
1679 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1680 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1681 #endif
1684 vcpu_load(vcpu);
1685 switch (ioctl) {
1686 case KVM_RUN:
1687 r = -EINVAL;
1688 if (arg)
1689 goto out;
1690 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1691 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1692 break;
1693 case KVM_GET_REGS: {
1694 struct kvm_regs *kvm_regs;
1696 r = -ENOMEM;
1697 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1698 if (!kvm_regs)
1699 goto out;
1700 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1701 if (r)
1702 goto out_free1;
1703 r = -EFAULT;
1704 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1705 goto out_free1;
1706 r = 0;
1707 out_free1:
1708 kfree(kvm_regs);
1709 break;
1711 case KVM_SET_REGS: {
1712 struct kvm_regs *kvm_regs;
1714 r = -ENOMEM;
1715 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1716 if (!kvm_regs)
1717 goto out;
1718 r = -EFAULT;
1719 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1720 goto out_free2;
1721 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1722 if (r)
1723 goto out_free2;
1724 r = 0;
1725 out_free2:
1726 kfree(kvm_regs);
1727 break;
1729 case KVM_GET_SREGS: {
1730 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1731 r = -ENOMEM;
1732 if (!kvm_sregs)
1733 goto out;
1734 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1735 if (r)
1736 goto out;
1737 r = -EFAULT;
1738 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1739 goto out;
1740 r = 0;
1741 break;
1743 case KVM_SET_SREGS: {
1744 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1745 r = -ENOMEM;
1746 if (!kvm_sregs)
1747 goto out;
1748 r = -EFAULT;
1749 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1750 goto out;
1751 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1752 if (r)
1753 goto out;
1754 r = 0;
1755 break;
1757 case KVM_GET_MP_STATE: {
1758 struct kvm_mp_state mp_state;
1760 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1761 if (r)
1762 goto out;
1763 r = -EFAULT;
1764 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1765 goto out;
1766 r = 0;
1767 break;
1769 case KVM_SET_MP_STATE: {
1770 struct kvm_mp_state mp_state;
1772 r = -EFAULT;
1773 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1774 goto out;
1775 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1776 if (r)
1777 goto out;
1778 r = 0;
1779 break;
1781 case KVM_TRANSLATE: {
1782 struct kvm_translation tr;
1784 r = -EFAULT;
1785 if (copy_from_user(&tr, argp, sizeof tr))
1786 goto out;
1787 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1788 if (r)
1789 goto out;
1790 r = -EFAULT;
1791 if (copy_to_user(argp, &tr, sizeof tr))
1792 goto out;
1793 r = 0;
1794 break;
1796 case KVM_SET_GUEST_DEBUG: {
1797 struct kvm_guest_debug dbg;
1799 r = -EFAULT;
1800 if (copy_from_user(&dbg, argp, sizeof dbg))
1801 goto out;
1802 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1803 if (r)
1804 goto out;
1805 r = 0;
1806 break;
1808 case KVM_SET_SIGNAL_MASK: {
1809 struct kvm_signal_mask __user *sigmask_arg = argp;
1810 struct kvm_signal_mask kvm_sigmask;
1811 sigset_t sigset, *p;
1813 p = NULL;
1814 if (argp) {
1815 r = -EFAULT;
1816 if (copy_from_user(&kvm_sigmask, argp,
1817 sizeof kvm_sigmask))
1818 goto out;
1819 r = -EINVAL;
1820 if (kvm_sigmask.len != sizeof sigset)
1821 goto out;
1822 r = -EFAULT;
1823 if (copy_from_user(&sigset, sigmask_arg->sigset,
1824 sizeof sigset))
1825 goto out;
1826 p = &sigset;
1828 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1829 break;
1831 case KVM_GET_FPU: {
1832 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1833 r = -ENOMEM;
1834 if (!fpu)
1835 goto out;
1836 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1837 if (r)
1838 goto out;
1839 r = -EFAULT;
1840 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1841 goto out;
1842 r = 0;
1843 break;
1845 case KVM_SET_FPU: {
1846 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1847 r = -ENOMEM;
1848 if (!fpu)
1849 goto out;
1850 r = -EFAULT;
1851 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1852 goto out;
1853 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1854 if (r)
1855 goto out;
1856 r = 0;
1857 break;
1859 default:
1860 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1862 out:
1863 vcpu_put(vcpu);
1864 kfree(fpu);
1865 kfree(kvm_sregs);
1866 return r;
1869 static long kvm_vm_ioctl(struct file *filp,
1870 unsigned int ioctl, unsigned long arg)
1872 struct kvm *kvm = filp->private_data;
1873 void __user *argp = (void __user *)arg;
1874 int r;
1876 if (kvm->mm != current->mm)
1877 return -EIO;
1878 switch (ioctl) {
1879 case KVM_CREATE_VCPU:
1880 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1881 if (r < 0)
1882 goto out;
1883 break;
1884 case KVM_SET_USER_MEMORY_REGION: {
1885 struct kvm_userspace_memory_region kvm_userspace_mem;
1887 r = -EFAULT;
1888 if (copy_from_user(&kvm_userspace_mem, argp,
1889 sizeof kvm_userspace_mem))
1890 goto out;
1892 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1893 if (r)
1894 goto out;
1895 break;
1897 case KVM_GET_DIRTY_LOG: {
1898 struct kvm_dirty_log log;
1900 r = -EFAULT;
1901 if (copy_from_user(&log, argp, sizeof log))
1902 goto out;
1903 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1904 if (r)
1905 goto out;
1906 break;
1908 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1909 case KVM_REGISTER_COALESCED_MMIO: {
1910 struct kvm_coalesced_mmio_zone zone;
1911 r = -EFAULT;
1912 if (copy_from_user(&zone, argp, sizeof zone))
1913 goto out;
1914 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1915 if (r)
1916 goto out;
1917 r = 0;
1918 break;
1920 case KVM_UNREGISTER_COALESCED_MMIO: {
1921 struct kvm_coalesced_mmio_zone zone;
1922 r = -EFAULT;
1923 if (copy_from_user(&zone, argp, sizeof zone))
1924 goto out;
1925 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1926 if (r)
1927 goto out;
1928 r = 0;
1929 break;
1931 #endif
1932 case KVM_IRQFD: {
1933 struct kvm_irqfd data;
1935 r = -EFAULT;
1936 if (copy_from_user(&data, argp, sizeof data))
1937 goto out;
1938 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1939 break;
1941 case KVM_IOEVENTFD: {
1942 struct kvm_ioeventfd data;
1944 r = -EFAULT;
1945 if (copy_from_user(&data, argp, sizeof data))
1946 goto out;
1947 r = kvm_ioeventfd(kvm, &data);
1948 break;
1950 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1951 case KVM_SET_BOOT_CPU_ID:
1952 r = 0;
1953 mutex_lock(&kvm->lock);
1954 if (atomic_read(&kvm->online_vcpus) != 0)
1955 r = -EBUSY;
1956 else
1957 kvm->bsp_vcpu_id = arg;
1958 mutex_unlock(&kvm->lock);
1959 break;
1960 #endif
1961 default:
1962 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1963 if (r == -ENOTTY)
1964 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1966 out:
1967 return r;
1970 #ifdef CONFIG_COMPAT
1971 struct compat_kvm_dirty_log {
1972 __u32 slot;
1973 __u32 padding1;
1974 union {
1975 compat_uptr_t dirty_bitmap; /* one bit per page */
1976 __u64 padding2;
1980 static long kvm_vm_compat_ioctl(struct file *filp,
1981 unsigned int ioctl, unsigned long arg)
1983 struct kvm *kvm = filp->private_data;
1984 int r;
1986 if (kvm->mm != current->mm)
1987 return -EIO;
1988 switch (ioctl) {
1989 case KVM_GET_DIRTY_LOG: {
1990 struct compat_kvm_dirty_log compat_log;
1991 struct kvm_dirty_log log;
1993 r = -EFAULT;
1994 if (copy_from_user(&compat_log, (void __user *)arg,
1995 sizeof(compat_log)))
1996 goto out;
1997 log.slot = compat_log.slot;
1998 log.padding1 = compat_log.padding1;
1999 log.padding2 = compat_log.padding2;
2000 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2002 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2003 if (r)
2004 goto out;
2005 break;
2007 default:
2008 r = kvm_vm_ioctl(filp, ioctl, arg);
2011 out:
2012 return r;
2014 #endif
2016 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2018 struct page *page[1];
2019 unsigned long addr;
2020 int npages;
2021 gfn_t gfn = vmf->pgoff;
2022 struct kvm *kvm = vma->vm_file->private_data;
2024 addr = gfn_to_hva(kvm, gfn);
2025 if (kvm_is_error_hva(addr))
2026 return VM_FAULT_SIGBUS;
2028 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2029 NULL);
2030 if (unlikely(npages != 1))
2031 return VM_FAULT_SIGBUS;
2033 vmf->page = page[0];
2034 return 0;
2037 static const struct vm_operations_struct kvm_vm_vm_ops = {
2038 .fault = kvm_vm_fault,
2041 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2043 vma->vm_ops = &kvm_vm_vm_ops;
2044 return 0;
2047 static struct file_operations kvm_vm_fops = {
2048 .release = kvm_vm_release,
2049 .unlocked_ioctl = kvm_vm_ioctl,
2050 #ifdef CONFIG_COMPAT
2051 .compat_ioctl = kvm_vm_compat_ioctl,
2052 #endif
2053 .mmap = kvm_vm_mmap,
2054 .llseek = noop_llseek,
2057 static int kvm_dev_ioctl_create_vm(void)
2059 int r;
2060 struct kvm *kvm;
2062 kvm = kvm_create_vm();
2063 if (IS_ERR(kvm))
2064 return PTR_ERR(kvm);
2065 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2066 r = kvm_coalesced_mmio_init(kvm);
2067 if (r < 0) {
2068 kvm_put_kvm(kvm);
2069 return r;
2071 #endif
2072 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2073 if (r < 0)
2074 kvm_put_kvm(kvm);
2076 return r;
2079 static long kvm_dev_ioctl_check_extension_generic(long arg)
2081 switch (arg) {
2082 case KVM_CAP_USER_MEMORY:
2083 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2084 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2085 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2086 case KVM_CAP_SET_BOOT_CPU_ID:
2087 #endif
2088 case KVM_CAP_INTERNAL_ERROR_DATA:
2089 return 1;
2090 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2091 case KVM_CAP_IRQ_ROUTING:
2092 return KVM_MAX_IRQ_ROUTES;
2093 #endif
2094 default:
2095 break;
2097 return kvm_dev_ioctl_check_extension(arg);
2100 static long kvm_dev_ioctl(struct file *filp,
2101 unsigned int ioctl, unsigned long arg)
2103 long r = -EINVAL;
2105 switch (ioctl) {
2106 case KVM_GET_API_VERSION:
2107 r = -EINVAL;
2108 if (arg)
2109 goto out;
2110 r = KVM_API_VERSION;
2111 break;
2112 case KVM_CREATE_VM:
2113 r = -EINVAL;
2114 if (arg)
2115 goto out;
2116 r = kvm_dev_ioctl_create_vm();
2117 break;
2118 case KVM_CHECK_EXTENSION:
2119 r = kvm_dev_ioctl_check_extension_generic(arg);
2120 break;
2121 case KVM_GET_VCPU_MMAP_SIZE:
2122 r = -EINVAL;
2123 if (arg)
2124 goto out;
2125 r = PAGE_SIZE; /* struct kvm_run */
2126 #ifdef CONFIG_X86
2127 r += PAGE_SIZE; /* pio data page */
2128 #endif
2129 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2130 r += PAGE_SIZE; /* coalesced mmio ring page */
2131 #endif
2132 break;
2133 case KVM_TRACE_ENABLE:
2134 case KVM_TRACE_PAUSE:
2135 case KVM_TRACE_DISABLE:
2136 r = -EOPNOTSUPP;
2137 break;
2138 default:
2139 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2141 out:
2142 return r;
2145 static struct file_operations kvm_chardev_ops = {
2146 .unlocked_ioctl = kvm_dev_ioctl,
2147 .compat_ioctl = kvm_dev_ioctl,
2148 .llseek = noop_llseek,
2151 static struct miscdevice kvm_dev = {
2152 KVM_MINOR,
2153 "kvm",
2154 &kvm_chardev_ops,
2157 static void hardware_enable_nolock(void *junk)
2159 int cpu = raw_smp_processor_id();
2160 int r;
2162 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2163 return;
2165 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2167 r = kvm_arch_hardware_enable(NULL);
2169 if (r) {
2170 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2171 atomic_inc(&hardware_enable_failed);
2172 printk(KERN_INFO "kvm: enabling virtualization on "
2173 "CPU%d failed\n", cpu);
2177 static void hardware_enable(void *junk)
2179 raw_spin_lock(&kvm_lock);
2180 hardware_enable_nolock(junk);
2181 raw_spin_unlock(&kvm_lock);
2184 static void hardware_disable_nolock(void *junk)
2186 int cpu = raw_smp_processor_id();
2188 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2189 return;
2190 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2191 kvm_arch_hardware_disable(NULL);
2194 static void hardware_disable(void *junk)
2196 raw_spin_lock(&kvm_lock);
2197 hardware_disable_nolock(junk);
2198 raw_spin_unlock(&kvm_lock);
2201 static void hardware_disable_all_nolock(void)
2203 BUG_ON(!kvm_usage_count);
2205 kvm_usage_count--;
2206 if (!kvm_usage_count)
2207 on_each_cpu(hardware_disable_nolock, NULL, 1);
2210 static void hardware_disable_all(void)
2212 raw_spin_lock(&kvm_lock);
2213 hardware_disable_all_nolock();
2214 raw_spin_unlock(&kvm_lock);
2217 static int hardware_enable_all(void)
2219 int r = 0;
2221 raw_spin_lock(&kvm_lock);
2223 kvm_usage_count++;
2224 if (kvm_usage_count == 1) {
2225 atomic_set(&hardware_enable_failed, 0);
2226 on_each_cpu(hardware_enable_nolock, NULL, 1);
2228 if (atomic_read(&hardware_enable_failed)) {
2229 hardware_disable_all_nolock();
2230 r = -EBUSY;
2234 raw_spin_unlock(&kvm_lock);
2236 return r;
2239 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2240 void *v)
2242 int cpu = (long)v;
2244 if (!kvm_usage_count)
2245 return NOTIFY_OK;
2247 val &= ~CPU_TASKS_FROZEN;
2248 switch (val) {
2249 case CPU_DYING:
2250 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2251 cpu);
2252 hardware_disable(NULL);
2253 break;
2254 case CPU_STARTING:
2255 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2256 cpu);
2257 hardware_enable(NULL);
2258 break;
2260 return NOTIFY_OK;
2264 asmlinkage void kvm_spurious_fault(void)
2266 /* Fault while not rebooting. We want the trace. */
2267 BUG();
2269 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2271 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2272 void *v)
2275 * Some (well, at least mine) BIOSes hang on reboot if
2276 * in vmx root mode.
2278 * And Intel TXT required VMX off for all cpu when system shutdown.
2280 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2281 kvm_rebooting = true;
2282 on_each_cpu(hardware_disable_nolock, NULL, 1);
2283 return NOTIFY_OK;
2286 static struct notifier_block kvm_reboot_notifier = {
2287 .notifier_call = kvm_reboot,
2288 .priority = 0,
2291 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2293 int i;
2295 for (i = 0; i < bus->dev_count; i++) {
2296 struct kvm_io_device *pos = bus->devs[i];
2298 kvm_iodevice_destructor(pos);
2300 kfree(bus);
2303 /* kvm_io_bus_write - called under kvm->slots_lock */
2304 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2305 int len, const void *val)
2307 int i;
2308 struct kvm_io_bus *bus;
2310 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2311 for (i = 0; i < bus->dev_count; i++)
2312 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2313 return 0;
2314 return -EOPNOTSUPP;
2317 /* kvm_io_bus_read - called under kvm->slots_lock */
2318 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2319 int len, void *val)
2321 int i;
2322 struct kvm_io_bus *bus;
2324 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2325 for (i = 0; i < bus->dev_count; i++)
2326 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2327 return 0;
2328 return -EOPNOTSUPP;
2331 /* Caller must hold slots_lock. */
2332 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2333 struct kvm_io_device *dev)
2335 struct kvm_io_bus *new_bus, *bus;
2337 bus = kvm->buses[bus_idx];
2338 if (bus->dev_count > NR_IOBUS_DEVS-1)
2339 return -ENOSPC;
2341 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2342 if (!new_bus)
2343 return -ENOMEM;
2344 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2345 new_bus->devs[new_bus->dev_count++] = dev;
2346 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2347 synchronize_srcu_expedited(&kvm->srcu);
2348 kfree(bus);
2350 return 0;
2353 /* Caller must hold slots_lock. */
2354 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2355 struct kvm_io_device *dev)
2357 int i, r;
2358 struct kvm_io_bus *new_bus, *bus;
2360 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2361 if (!new_bus)
2362 return -ENOMEM;
2364 bus = kvm->buses[bus_idx];
2365 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2367 r = -ENOENT;
2368 for (i = 0; i < new_bus->dev_count; i++)
2369 if (new_bus->devs[i] == dev) {
2370 r = 0;
2371 new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2372 break;
2375 if (r) {
2376 kfree(new_bus);
2377 return r;
2380 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2381 synchronize_srcu_expedited(&kvm->srcu);
2382 kfree(bus);
2383 return r;
2386 static struct notifier_block kvm_cpu_notifier = {
2387 .notifier_call = kvm_cpu_hotplug,
2390 static int vm_stat_get(void *_offset, u64 *val)
2392 unsigned offset = (long)_offset;
2393 struct kvm *kvm;
2395 *val = 0;
2396 raw_spin_lock(&kvm_lock);
2397 list_for_each_entry(kvm, &vm_list, vm_list)
2398 *val += *(u32 *)((void *)kvm + offset);
2399 raw_spin_unlock(&kvm_lock);
2400 return 0;
2403 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2405 static int vcpu_stat_get(void *_offset, u64 *val)
2407 unsigned offset = (long)_offset;
2408 struct kvm *kvm;
2409 struct kvm_vcpu *vcpu;
2410 int i;
2412 *val = 0;
2413 raw_spin_lock(&kvm_lock);
2414 list_for_each_entry(kvm, &vm_list, vm_list)
2415 kvm_for_each_vcpu(i, vcpu, kvm)
2416 *val += *(u32 *)((void *)vcpu + offset);
2418 raw_spin_unlock(&kvm_lock);
2419 return 0;
2422 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2424 static const struct file_operations *stat_fops[] = {
2425 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2426 [KVM_STAT_VM] = &vm_stat_fops,
2429 static void kvm_init_debug(void)
2431 struct kvm_stats_debugfs_item *p;
2433 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2434 for (p = debugfs_entries; p->name; ++p)
2435 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2436 (void *)(long)p->offset,
2437 stat_fops[p->kind]);
2440 static void kvm_exit_debug(void)
2442 struct kvm_stats_debugfs_item *p;
2444 for (p = debugfs_entries; p->name; ++p)
2445 debugfs_remove(p->dentry);
2446 debugfs_remove(kvm_debugfs_dir);
2449 static int kvm_suspend(void)
2451 if (kvm_usage_count)
2452 hardware_disable_nolock(NULL);
2453 return 0;
2456 static void kvm_resume(void)
2458 if (kvm_usage_count) {
2459 WARN_ON(raw_spin_is_locked(&kvm_lock));
2460 hardware_enable_nolock(NULL);
2464 static struct syscore_ops kvm_syscore_ops = {
2465 .suspend = kvm_suspend,
2466 .resume = kvm_resume,
2469 struct page *bad_page;
2470 pfn_t bad_pfn;
2472 static inline
2473 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2475 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2478 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2480 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2482 kvm_arch_vcpu_load(vcpu, cpu);
2485 static void kvm_sched_out(struct preempt_notifier *pn,
2486 struct task_struct *next)
2488 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2490 kvm_arch_vcpu_put(vcpu);
2493 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2494 struct module *module)
2496 int r;
2497 int cpu;
2499 r = kvm_arch_init(opaque);
2500 if (r)
2501 goto out_fail;
2503 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2505 if (bad_page == NULL) {
2506 r = -ENOMEM;
2507 goto out;
2510 bad_pfn = page_to_pfn(bad_page);
2512 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2514 if (hwpoison_page == NULL) {
2515 r = -ENOMEM;
2516 goto out_free_0;
2519 hwpoison_pfn = page_to_pfn(hwpoison_page);
2521 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2523 if (fault_page == NULL) {
2524 r = -ENOMEM;
2525 goto out_free_0;
2528 fault_pfn = page_to_pfn(fault_page);
2530 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2531 r = -ENOMEM;
2532 goto out_free_0;
2535 r = kvm_arch_hardware_setup();
2536 if (r < 0)
2537 goto out_free_0a;
2539 for_each_online_cpu(cpu) {
2540 smp_call_function_single(cpu,
2541 kvm_arch_check_processor_compat,
2542 &r, 1);
2543 if (r < 0)
2544 goto out_free_1;
2547 r = register_cpu_notifier(&kvm_cpu_notifier);
2548 if (r)
2549 goto out_free_2;
2550 register_reboot_notifier(&kvm_reboot_notifier);
2552 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2553 if (!vcpu_align)
2554 vcpu_align = __alignof__(struct kvm_vcpu);
2555 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2556 0, NULL);
2557 if (!kvm_vcpu_cache) {
2558 r = -ENOMEM;
2559 goto out_free_3;
2562 r = kvm_async_pf_init();
2563 if (r)
2564 goto out_free;
2566 kvm_chardev_ops.owner = module;
2567 kvm_vm_fops.owner = module;
2568 kvm_vcpu_fops.owner = module;
2570 r = misc_register(&kvm_dev);
2571 if (r) {
2572 printk(KERN_ERR "kvm: misc device register failed\n");
2573 goto out_unreg;
2576 register_syscore_ops(&kvm_syscore_ops);
2578 kvm_preempt_ops.sched_in = kvm_sched_in;
2579 kvm_preempt_ops.sched_out = kvm_sched_out;
2581 kvm_init_debug();
2583 return 0;
2585 out_unreg:
2586 kvm_async_pf_deinit();
2587 out_free:
2588 kmem_cache_destroy(kvm_vcpu_cache);
2589 out_free_3:
2590 unregister_reboot_notifier(&kvm_reboot_notifier);
2591 unregister_cpu_notifier(&kvm_cpu_notifier);
2592 out_free_2:
2593 out_free_1:
2594 kvm_arch_hardware_unsetup();
2595 out_free_0a:
2596 free_cpumask_var(cpus_hardware_enabled);
2597 out_free_0:
2598 if (fault_page)
2599 __free_page(fault_page);
2600 if (hwpoison_page)
2601 __free_page(hwpoison_page);
2602 __free_page(bad_page);
2603 out:
2604 kvm_arch_exit();
2605 out_fail:
2606 return r;
2608 EXPORT_SYMBOL_GPL(kvm_init);
2610 void kvm_exit(void)
2612 kvm_exit_debug();
2613 misc_deregister(&kvm_dev);
2614 kmem_cache_destroy(kvm_vcpu_cache);
2615 kvm_async_pf_deinit();
2616 unregister_syscore_ops(&kvm_syscore_ops);
2617 unregister_reboot_notifier(&kvm_reboot_notifier);
2618 unregister_cpu_notifier(&kvm_cpu_notifier);
2619 on_each_cpu(hardware_disable_nolock, NULL, 1);
2620 kvm_arch_hardware_unsetup();
2621 kvm_arch_exit();
2622 free_cpumask_var(cpus_hardware_enabled);
2623 __free_page(hwpoison_page);
2624 __free_page(bad_page);
2626 EXPORT_SYMBOL_GPL(kvm_exit);