2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
51 #include <asm/processor.h>
53 #include <asm/uaccess.h>
54 #include <asm/pgtable.h>
56 #include "coalesced_mmio.h"
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/kvm.h>
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
68 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 DEFINE_RAW_SPINLOCK(kvm_lock
);
74 static cpumask_var_t cpus_hardware_enabled
;
75 static int kvm_usage_count
= 0;
76 static atomic_t hardware_enable_failed
;
78 struct kmem_cache
*kvm_vcpu_cache
;
79 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
81 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
83 struct dentry
*kvm_debugfs_dir
;
85 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
87 static int hardware_enable_all(void);
88 static void hardware_disable_all(void);
90 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
93 EXPORT_SYMBOL_GPL(kvm_rebooting
);
95 static bool largepages_enabled
= true;
97 static struct page
*hwpoison_page
;
98 static pfn_t hwpoison_pfn
;
100 static struct page
*fault_page
;
101 static pfn_t fault_pfn
;
103 inline int kvm_is_mmio_pfn(pfn_t pfn
)
105 if (pfn_valid(pfn
)) {
107 struct page
*tail
= pfn_to_page(pfn
);
108 struct page
*head
= compound_trans_head(tail
);
109 reserved
= PageReserved(head
);
112 * "head" is not a dangling pointer
113 * (compound_trans_head takes care of that)
114 * but the hugepage may have been splitted
115 * from under us (and we may not hold a
116 * reference count on the head page so it can
117 * be reused before we run PageReferenced), so
118 * we've to check PageTail before returning
125 return PageReserved(tail
);
132 * Switches to specified vcpu, until a matching vcpu_put()
134 void vcpu_load(struct kvm_vcpu
*vcpu
)
138 mutex_lock(&vcpu
->mutex
);
139 if (unlikely(vcpu
->pid
!= current
->pids
[PIDTYPE_PID
].pid
)) {
140 /* The thread running this VCPU changed. */
141 struct pid
*oldpid
= vcpu
->pid
;
142 struct pid
*newpid
= get_task_pid(current
, PIDTYPE_PID
);
143 rcu_assign_pointer(vcpu
->pid
, newpid
);
148 preempt_notifier_register(&vcpu
->preempt_notifier
);
149 kvm_arch_vcpu_load(vcpu
, cpu
);
153 void vcpu_put(struct kvm_vcpu
*vcpu
)
156 kvm_arch_vcpu_put(vcpu
);
157 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
159 mutex_unlock(&vcpu
->mutex
);
162 static void ack_flush(void *_completed
)
166 static bool make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
171 struct kvm_vcpu
*vcpu
;
173 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
176 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
177 kvm_make_request(req
, vcpu
);
180 /* Set ->requests bit before we read ->mode */
183 if (cpus
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
184 kvm_vcpu_exiting_guest_mode(vcpu
) != OUTSIDE_GUEST_MODE
)
185 cpumask_set_cpu(cpu
, cpus
);
187 if (unlikely(cpus
== NULL
))
188 smp_call_function_many(cpu_online_mask
, ack_flush
, NULL
, 1);
189 else if (!cpumask_empty(cpus
))
190 smp_call_function_many(cpus
, ack_flush
, NULL
, 1);
194 free_cpumask_var(cpus
);
198 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
200 int dirty_count
= kvm
->tlbs_dirty
;
203 if (make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
204 ++kvm
->stat
.remote_tlb_flush
;
205 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
208 void kvm_reload_remote_mmus(struct kvm
*kvm
)
210 make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
213 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
218 mutex_init(&vcpu
->mutex
);
223 init_waitqueue_head(&vcpu
->wq
);
224 kvm_async_pf_vcpu_init(vcpu
);
226 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
231 vcpu
->run
= page_address(page
);
233 r
= kvm_arch_vcpu_init(vcpu
);
239 free_page((unsigned long)vcpu
->run
);
243 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
245 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
248 kvm_arch_vcpu_uninit(vcpu
);
249 free_page((unsigned long)vcpu
->run
);
251 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
253 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
254 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
256 return container_of(mn
, struct kvm
, mmu_notifier
);
259 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier
*mn
,
260 struct mm_struct
*mm
,
261 unsigned long address
)
263 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
264 int need_tlb_flush
, idx
;
267 * When ->invalidate_page runs, the linux pte has been zapped
268 * already but the page is still allocated until
269 * ->invalidate_page returns. So if we increase the sequence
270 * here the kvm page fault will notice if the spte can't be
271 * established because the page is going to be freed. If
272 * instead the kvm page fault establishes the spte before
273 * ->invalidate_page runs, kvm_unmap_hva will release it
276 * The sequence increase only need to be seen at spin_unlock
277 * time, and not at spin_lock time.
279 * Increasing the sequence after the spin_unlock would be
280 * unsafe because the kvm page fault could then establish the
281 * pte after kvm_unmap_hva returned, without noticing the page
282 * is going to be freed.
284 idx
= srcu_read_lock(&kvm
->srcu
);
285 spin_lock(&kvm
->mmu_lock
);
286 kvm
->mmu_notifier_seq
++;
287 need_tlb_flush
= kvm_unmap_hva(kvm
, address
) | kvm
->tlbs_dirty
;
288 spin_unlock(&kvm
->mmu_lock
);
289 srcu_read_unlock(&kvm
->srcu
, idx
);
291 /* we've to flush the tlb before the pages can be freed */
293 kvm_flush_remote_tlbs(kvm
);
297 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
298 struct mm_struct
*mm
,
299 unsigned long address
,
302 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
305 idx
= srcu_read_lock(&kvm
->srcu
);
306 spin_lock(&kvm
->mmu_lock
);
307 kvm
->mmu_notifier_seq
++;
308 kvm_set_spte_hva(kvm
, address
, pte
);
309 spin_unlock(&kvm
->mmu_lock
);
310 srcu_read_unlock(&kvm
->srcu
, idx
);
313 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
314 struct mm_struct
*mm
,
318 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
319 int need_tlb_flush
= 0, idx
;
321 idx
= srcu_read_lock(&kvm
->srcu
);
322 spin_lock(&kvm
->mmu_lock
);
324 * The count increase must become visible at unlock time as no
325 * spte can be established without taking the mmu_lock and
326 * count is also read inside the mmu_lock critical section.
328 kvm
->mmu_notifier_count
++;
329 for (; start
< end
; start
+= PAGE_SIZE
)
330 need_tlb_flush
|= kvm_unmap_hva(kvm
, start
);
331 need_tlb_flush
|= kvm
->tlbs_dirty
;
332 spin_unlock(&kvm
->mmu_lock
);
333 srcu_read_unlock(&kvm
->srcu
, idx
);
335 /* we've to flush the tlb before the pages can be freed */
337 kvm_flush_remote_tlbs(kvm
);
340 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
341 struct mm_struct
*mm
,
345 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
347 spin_lock(&kvm
->mmu_lock
);
349 * This sequence increase will notify the kvm page fault that
350 * the page that is going to be mapped in the spte could have
353 kvm
->mmu_notifier_seq
++;
355 * The above sequence increase must be visible before the
356 * below count decrease but both values are read by the kvm
357 * page fault under mmu_lock spinlock so we don't need to add
358 * a smb_wmb() here in between the two.
360 kvm
->mmu_notifier_count
--;
361 spin_unlock(&kvm
->mmu_lock
);
363 BUG_ON(kvm
->mmu_notifier_count
< 0);
366 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
367 struct mm_struct
*mm
,
368 unsigned long address
)
370 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
373 idx
= srcu_read_lock(&kvm
->srcu
);
374 spin_lock(&kvm
->mmu_lock
);
375 young
= kvm_age_hva(kvm
, address
);
376 spin_unlock(&kvm
->mmu_lock
);
377 srcu_read_unlock(&kvm
->srcu
, idx
);
380 kvm_flush_remote_tlbs(kvm
);
385 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
386 struct mm_struct
*mm
,
387 unsigned long address
)
389 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
392 idx
= srcu_read_lock(&kvm
->srcu
);
393 spin_lock(&kvm
->mmu_lock
);
394 young
= kvm_test_age_hva(kvm
, address
);
395 spin_unlock(&kvm
->mmu_lock
);
396 srcu_read_unlock(&kvm
->srcu
, idx
);
401 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
402 struct mm_struct
*mm
)
404 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
407 idx
= srcu_read_lock(&kvm
->srcu
);
408 kvm_arch_flush_shadow(kvm
);
409 srcu_read_unlock(&kvm
->srcu
, idx
);
412 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
413 .invalidate_page
= kvm_mmu_notifier_invalidate_page
,
414 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
415 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
416 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
417 .test_young
= kvm_mmu_notifier_test_young
,
418 .change_pte
= kvm_mmu_notifier_change_pte
,
419 .release
= kvm_mmu_notifier_release
,
422 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
424 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
425 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
428 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
430 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
435 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
437 static struct kvm
*kvm_create_vm(void)
440 struct kvm
*kvm
= kvm_arch_alloc_vm();
443 return ERR_PTR(-ENOMEM
);
445 r
= kvm_arch_init_vm(kvm
);
447 goto out_err_nodisable
;
449 r
= hardware_enable_all();
451 goto out_err_nodisable
;
453 #ifdef CONFIG_HAVE_KVM_IRQCHIP
454 INIT_HLIST_HEAD(&kvm
->mask_notifier_list
);
455 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
459 kvm
->memslots
= kzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
462 if (init_srcu_struct(&kvm
->srcu
))
464 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
465 kvm
->buses
[i
] = kzalloc(sizeof(struct kvm_io_bus
),
471 r
= kvm_init_mmu_notifier(kvm
);
475 kvm
->mm
= current
->mm
;
476 atomic_inc(&kvm
->mm
->mm_count
);
477 spin_lock_init(&kvm
->mmu_lock
);
478 kvm_eventfd_init(kvm
);
479 mutex_init(&kvm
->lock
);
480 mutex_init(&kvm
->irq_lock
);
481 mutex_init(&kvm
->slots_lock
);
482 atomic_set(&kvm
->users_count
, 1);
483 raw_spin_lock(&kvm_lock
);
484 list_add(&kvm
->vm_list
, &vm_list
);
485 raw_spin_unlock(&kvm_lock
);
490 cleanup_srcu_struct(&kvm
->srcu
);
492 hardware_disable_all();
494 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
495 kfree(kvm
->buses
[i
]);
496 kfree(kvm
->memslots
);
497 kvm_arch_free_vm(kvm
);
501 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
503 if (!memslot
->dirty_bitmap
)
506 if (2 * kvm_dirty_bitmap_bytes(memslot
) > PAGE_SIZE
)
507 vfree(memslot
->dirty_bitmap_head
);
509 kfree(memslot
->dirty_bitmap_head
);
511 memslot
->dirty_bitmap
= NULL
;
512 memslot
->dirty_bitmap_head
= NULL
;
516 * Free any memory in @free but not in @dont.
518 static void kvm_free_physmem_slot(struct kvm_memory_slot
*free
,
519 struct kvm_memory_slot
*dont
)
523 if (!dont
|| free
->rmap
!= dont
->rmap
)
526 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
527 kvm_destroy_dirty_bitmap(free
);
530 for (i
= 0; i
< KVM_NR_PAGE_SIZES
- 1; ++i
) {
531 if (!dont
|| free
->lpage_info
[i
] != dont
->lpage_info
[i
]) {
532 vfree(free
->lpage_info
[i
]);
533 free
->lpage_info
[i
] = NULL
;
541 void kvm_free_physmem(struct kvm
*kvm
)
544 struct kvm_memslots
*slots
= kvm
->memslots
;
546 for (i
= 0; i
< slots
->nmemslots
; ++i
)
547 kvm_free_physmem_slot(&slots
->memslots
[i
], NULL
);
549 kfree(kvm
->memslots
);
552 static void kvm_destroy_vm(struct kvm
*kvm
)
555 struct mm_struct
*mm
= kvm
->mm
;
557 kvm_arch_sync_events(kvm
);
558 raw_spin_lock(&kvm_lock
);
559 list_del(&kvm
->vm_list
);
560 raw_spin_unlock(&kvm_lock
);
561 kvm_free_irq_routing(kvm
);
562 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
563 kvm_io_bus_destroy(kvm
->buses
[i
]);
564 kvm_coalesced_mmio_free(kvm
);
565 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
566 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
568 kvm_arch_flush_shadow(kvm
);
570 kvm_arch_destroy_vm(kvm
);
571 kvm_free_physmem(kvm
);
572 cleanup_srcu_struct(&kvm
->srcu
);
573 kvm_arch_free_vm(kvm
);
574 hardware_disable_all();
578 void kvm_get_kvm(struct kvm
*kvm
)
580 atomic_inc(&kvm
->users_count
);
582 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
584 void kvm_put_kvm(struct kvm
*kvm
)
586 if (atomic_dec_and_test(&kvm
->users_count
))
589 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
592 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
594 struct kvm
*kvm
= filp
->private_data
;
596 kvm_irqfd_release(kvm
);
604 * Allocation size is twice as large as the actual dirty bitmap size.
605 * This makes it possible to do double buffering: see x86's
606 * kvm_vm_ioctl_get_dirty_log().
608 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
610 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
612 if (dirty_bytes
> PAGE_SIZE
)
613 memslot
->dirty_bitmap
= vzalloc(dirty_bytes
);
615 memslot
->dirty_bitmap
= kzalloc(dirty_bytes
, GFP_KERNEL
);
617 if (!memslot
->dirty_bitmap
)
620 memslot
->dirty_bitmap_head
= memslot
->dirty_bitmap
;
623 #endif /* !CONFIG_S390 */
626 * Allocate some memory and give it an address in the guest physical address
629 * Discontiguous memory is allowed, mostly for framebuffers.
631 * Must be called holding mmap_sem for write.
633 int __kvm_set_memory_region(struct kvm
*kvm
,
634 struct kvm_userspace_memory_region
*mem
,
639 unsigned long npages
;
641 struct kvm_memory_slot
*memslot
;
642 struct kvm_memory_slot old
, new;
643 struct kvm_memslots
*slots
, *old_memslots
;
646 /* General sanity checks */
647 if (mem
->memory_size
& (PAGE_SIZE
- 1))
649 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
651 if (user_alloc
&& (mem
->userspace_addr
& (PAGE_SIZE
- 1)))
653 if (mem
->slot
>= KVM_MEMORY_SLOTS
+ KVM_PRIVATE_MEM_SLOTS
)
655 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
658 memslot
= &kvm
->memslots
->memslots
[mem
->slot
];
659 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
660 npages
= mem
->memory_size
>> PAGE_SHIFT
;
663 if (npages
> KVM_MEM_MAX_NR_PAGES
)
667 mem
->flags
&= ~KVM_MEM_LOG_DIRTY_PAGES
;
669 new = old
= *memslot
;
672 new.base_gfn
= base_gfn
;
674 new.flags
= mem
->flags
;
676 /* Disallow changing a memory slot's size. */
678 if (npages
&& old
.npages
&& npages
!= old
.npages
)
681 /* Check for overlaps */
683 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
684 struct kvm_memory_slot
*s
= &kvm
->memslots
->memslots
[i
];
686 if (s
== memslot
|| !s
->npages
)
688 if (!((base_gfn
+ npages
<= s
->base_gfn
) ||
689 (base_gfn
>= s
->base_gfn
+ s
->npages
)))
693 /* Free page dirty bitmap if unneeded */
694 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
695 new.dirty_bitmap
= NULL
;
699 /* Allocate if a slot is being created */
701 if (npages
&& !new.rmap
) {
702 new.rmap
= vzalloc(npages
* sizeof(*new.rmap
));
707 new.user_alloc
= user_alloc
;
708 new.userspace_addr
= mem
->userspace_addr
;
713 for (i
= 0; i
< KVM_NR_PAGE_SIZES
- 1; ++i
) {
719 /* Avoid unused variable warning if no large pages */
722 if (new.lpage_info
[i
])
725 lpages
= 1 + ((base_gfn
+ npages
- 1)
726 >> KVM_HPAGE_GFN_SHIFT(level
));
727 lpages
-= base_gfn
>> KVM_HPAGE_GFN_SHIFT(level
);
729 new.lpage_info
[i
] = vzalloc(lpages
* sizeof(*new.lpage_info
[i
]));
731 if (!new.lpage_info
[i
])
734 if (base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
735 new.lpage_info
[i
][0].write_count
= 1;
736 if ((base_gfn
+npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
737 new.lpage_info
[i
][lpages
- 1].write_count
= 1;
738 ugfn
= new.userspace_addr
>> PAGE_SHIFT
;
740 * If the gfn and userspace address are not aligned wrt each
741 * other, or if explicitly asked to, disable large page
742 * support for this slot
744 if ((base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
746 for (j
= 0; j
< lpages
; ++j
)
747 new.lpage_info
[i
][j
].write_count
= 1;
752 /* Allocate page dirty bitmap if needed */
753 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
754 if (kvm_create_dirty_bitmap(&new) < 0)
756 /* destroy any largepage mappings for dirty tracking */
758 #else /* not defined CONFIG_S390 */
759 new.user_alloc
= user_alloc
;
761 new.userspace_addr
= mem
->userspace_addr
;
762 #endif /* not defined CONFIG_S390 */
766 slots
= kzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
769 memcpy(slots
, kvm
->memslots
, sizeof(struct kvm_memslots
));
770 if (mem
->slot
>= slots
->nmemslots
)
771 slots
->nmemslots
= mem
->slot
+ 1;
773 slots
->memslots
[mem
->slot
].flags
|= KVM_MEMSLOT_INVALID
;
775 old_memslots
= kvm
->memslots
;
776 rcu_assign_pointer(kvm
->memslots
, slots
);
777 synchronize_srcu_expedited(&kvm
->srcu
);
778 /* From this point no new shadow pages pointing to a deleted
779 * memslot will be created.
781 * validation of sp->gfn happens in:
782 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
783 * - kvm_is_visible_gfn (mmu_check_roots)
785 kvm_arch_flush_shadow(kvm
);
789 r
= kvm_arch_prepare_memory_region(kvm
, &new, old
, mem
, user_alloc
);
793 /* map the pages in iommu page table */
795 r
= kvm_iommu_map_pages(kvm
, &new);
801 slots
= kzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
804 memcpy(slots
, kvm
->memslots
, sizeof(struct kvm_memslots
));
805 if (mem
->slot
>= slots
->nmemslots
)
806 slots
->nmemslots
= mem
->slot
+ 1;
809 /* actual memory is freed via old in kvm_free_physmem_slot below */
812 new.dirty_bitmap
= NULL
;
813 for (i
= 0; i
< KVM_NR_PAGE_SIZES
- 1; ++i
)
814 new.lpage_info
[i
] = NULL
;
817 slots
->memslots
[mem
->slot
] = new;
818 old_memslots
= kvm
->memslots
;
819 rcu_assign_pointer(kvm
->memslots
, slots
);
820 synchronize_srcu_expedited(&kvm
->srcu
);
822 kvm_arch_commit_memory_region(kvm
, mem
, old
, user_alloc
);
824 kvm_free_physmem_slot(&old
, &new);
830 kvm_free_physmem_slot(&new, &old
);
835 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
837 int kvm_set_memory_region(struct kvm
*kvm
,
838 struct kvm_userspace_memory_region
*mem
,
843 mutex_lock(&kvm
->slots_lock
);
844 r
= __kvm_set_memory_region(kvm
, mem
, user_alloc
);
845 mutex_unlock(&kvm
->slots_lock
);
848 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
850 int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
852 kvm_userspace_memory_region
*mem
,
855 if (mem
->slot
>= KVM_MEMORY_SLOTS
)
857 return kvm_set_memory_region(kvm
, mem
, user_alloc
);
860 int kvm_get_dirty_log(struct kvm
*kvm
,
861 struct kvm_dirty_log
*log
, int *is_dirty
)
863 struct kvm_memory_slot
*memslot
;
866 unsigned long any
= 0;
869 if (log
->slot
>= KVM_MEMORY_SLOTS
)
872 memslot
= &kvm
->memslots
->memslots
[log
->slot
];
874 if (!memslot
->dirty_bitmap
)
877 n
= kvm_dirty_bitmap_bytes(memslot
);
879 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
880 any
= memslot
->dirty_bitmap
[i
];
883 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
894 void kvm_disable_largepages(void)
896 largepages_enabled
= false;
898 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
900 int is_error_page(struct page
*page
)
902 return page
== bad_page
|| page
== hwpoison_page
|| page
== fault_page
;
904 EXPORT_SYMBOL_GPL(is_error_page
);
906 int is_error_pfn(pfn_t pfn
)
908 return pfn
== bad_pfn
|| pfn
== hwpoison_pfn
|| pfn
== fault_pfn
;
910 EXPORT_SYMBOL_GPL(is_error_pfn
);
912 int is_hwpoison_pfn(pfn_t pfn
)
914 return pfn
== hwpoison_pfn
;
916 EXPORT_SYMBOL_GPL(is_hwpoison_pfn
);
918 int is_fault_pfn(pfn_t pfn
)
920 return pfn
== fault_pfn
;
922 EXPORT_SYMBOL_GPL(is_fault_pfn
);
924 static inline unsigned long bad_hva(void)
929 int kvm_is_error_hva(unsigned long addr
)
931 return addr
== bad_hva();
933 EXPORT_SYMBOL_GPL(kvm_is_error_hva
);
935 static struct kvm_memory_slot
*__gfn_to_memslot(struct kvm_memslots
*slots
,
940 for (i
= 0; i
< slots
->nmemslots
; ++i
) {
941 struct kvm_memory_slot
*memslot
= &slots
->memslots
[i
];
943 if (gfn
>= memslot
->base_gfn
944 && gfn
< memslot
->base_gfn
+ memslot
->npages
)
950 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
952 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
954 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
956 int kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
959 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
961 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
962 struct kvm_memory_slot
*memslot
= &slots
->memslots
[i
];
964 if (memslot
->flags
& KVM_MEMSLOT_INVALID
)
967 if (gfn
>= memslot
->base_gfn
968 && gfn
< memslot
->base_gfn
+ memslot
->npages
)
973 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
975 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
977 struct vm_area_struct
*vma
;
978 unsigned long addr
, size
;
982 addr
= gfn_to_hva(kvm
, gfn
);
983 if (kvm_is_error_hva(addr
))
986 down_read(¤t
->mm
->mmap_sem
);
987 vma
= find_vma(current
->mm
, addr
);
991 size
= vma_kernel_pagesize(vma
);
994 up_read(¤t
->mm
->mmap_sem
);
999 int memslot_id(struct kvm
*kvm
, gfn_t gfn
)
1002 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1003 struct kvm_memory_slot
*memslot
= NULL
;
1005 for (i
= 0; i
< slots
->nmemslots
; ++i
) {
1006 memslot
= &slots
->memslots
[i
];
1008 if (gfn
>= memslot
->base_gfn
1009 && gfn
< memslot
->base_gfn
+ memslot
->npages
)
1013 return memslot
- slots
->memslots
;
1016 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1019 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1023 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1025 return gfn_to_hva_memslot(slot
, gfn
);
1028 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1030 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1032 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1034 static pfn_t
get_fault_pfn(void)
1036 get_page(fault_page
);
1040 static inline int check_user_page_hwpoison(unsigned long addr
)
1042 int rc
, flags
= FOLL_TOUCH
| FOLL_HWPOISON
| FOLL_WRITE
;
1044 rc
= __get_user_pages(current
, current
->mm
, addr
, 1,
1045 flags
, NULL
, NULL
, NULL
);
1046 return rc
== -EHWPOISON
;
1049 static pfn_t
hva_to_pfn(struct kvm
*kvm
, unsigned long addr
, bool atomic
,
1050 bool *async
, bool write_fault
, bool *writable
)
1052 struct page
*page
[1];
1056 /* we can do it either atomically or asynchronously, not both */
1057 BUG_ON(atomic
&& async
);
1059 BUG_ON(!write_fault
&& !writable
);
1064 if (atomic
|| async
)
1065 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1067 if (unlikely(npages
!= 1) && !atomic
) {
1071 *writable
= write_fault
;
1073 npages
= get_user_pages_fast(addr
, 1, write_fault
, page
);
1075 /* map read fault as writable if possible */
1076 if (unlikely(!write_fault
) && npages
== 1) {
1077 struct page
*wpage
[1];
1079 npages
= __get_user_pages_fast(addr
, 1, 1, wpage
);
1089 if (unlikely(npages
!= 1)) {
1090 struct vm_area_struct
*vma
;
1093 return get_fault_pfn();
1095 down_read(¤t
->mm
->mmap_sem
);
1096 if (check_user_page_hwpoison(addr
)) {
1097 up_read(¤t
->mm
->mmap_sem
);
1098 get_page(hwpoison_page
);
1099 return page_to_pfn(hwpoison_page
);
1102 vma
= find_vma_intersection(current
->mm
, addr
, addr
+1);
1105 pfn
= get_fault_pfn();
1106 else if ((vma
->vm_flags
& VM_PFNMAP
)) {
1107 pfn
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
1109 BUG_ON(!kvm_is_mmio_pfn(pfn
));
1111 if (async
&& (vma
->vm_flags
& VM_WRITE
))
1113 pfn
= get_fault_pfn();
1115 up_read(¤t
->mm
->mmap_sem
);
1117 pfn
= page_to_pfn(page
[0]);
1122 pfn_t
hva_to_pfn_atomic(struct kvm
*kvm
, unsigned long addr
)
1124 return hva_to_pfn(kvm
, addr
, true, NULL
, true, NULL
);
1126 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic
);
1128 static pfn_t
__gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
, bool atomic
, bool *async
,
1129 bool write_fault
, bool *writable
)
1136 addr
= gfn_to_hva(kvm
, gfn
);
1137 if (kvm_is_error_hva(addr
)) {
1139 return page_to_pfn(bad_page
);
1142 return hva_to_pfn(kvm
, addr
, atomic
, async
, write_fault
, writable
);
1145 pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1147 return __gfn_to_pfn(kvm
, gfn
, true, NULL
, true, NULL
);
1149 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1151 pfn_t
gfn_to_pfn_async(struct kvm
*kvm
, gfn_t gfn
, bool *async
,
1152 bool write_fault
, bool *writable
)
1154 return __gfn_to_pfn(kvm
, gfn
, false, async
, write_fault
, writable
);
1156 EXPORT_SYMBOL_GPL(gfn_to_pfn_async
);
1158 pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1160 return __gfn_to_pfn(kvm
, gfn
, false, NULL
, true, NULL
);
1162 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1164 pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1167 return __gfn_to_pfn(kvm
, gfn
, false, NULL
, write_fault
, writable
);
1169 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1171 pfn_t
gfn_to_pfn_memslot(struct kvm
*kvm
,
1172 struct kvm_memory_slot
*slot
, gfn_t gfn
)
1174 unsigned long addr
= gfn_to_hva_memslot(slot
, gfn
);
1175 return hva_to_pfn(kvm
, addr
, false, NULL
, true, NULL
);
1178 int gfn_to_page_many_atomic(struct kvm
*kvm
, gfn_t gfn
, struct page
**pages
,
1184 addr
= gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, &entry
);
1185 if (kvm_is_error_hva(addr
))
1188 if (entry
< nr_pages
)
1191 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1193 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1195 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1199 pfn
= gfn_to_pfn(kvm
, gfn
);
1200 if (!kvm_is_mmio_pfn(pfn
))
1201 return pfn_to_page(pfn
);
1203 WARN_ON(kvm_is_mmio_pfn(pfn
));
1209 EXPORT_SYMBOL_GPL(gfn_to_page
);
1211 void kvm_release_page_clean(struct page
*page
)
1213 kvm_release_pfn_clean(page_to_pfn(page
));
1215 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1217 void kvm_release_pfn_clean(pfn_t pfn
)
1219 if (!kvm_is_mmio_pfn(pfn
))
1220 put_page(pfn_to_page(pfn
));
1222 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1224 void kvm_release_page_dirty(struct page
*page
)
1226 kvm_release_pfn_dirty(page_to_pfn(page
));
1228 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1230 void kvm_release_pfn_dirty(pfn_t pfn
)
1232 kvm_set_pfn_dirty(pfn
);
1233 kvm_release_pfn_clean(pfn
);
1235 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty
);
1237 void kvm_set_page_dirty(struct page
*page
)
1239 kvm_set_pfn_dirty(page_to_pfn(page
));
1241 EXPORT_SYMBOL_GPL(kvm_set_page_dirty
);
1243 void kvm_set_pfn_dirty(pfn_t pfn
)
1245 if (!kvm_is_mmio_pfn(pfn
)) {
1246 struct page
*page
= pfn_to_page(pfn
);
1247 if (!PageReserved(page
))
1251 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1253 void kvm_set_pfn_accessed(pfn_t pfn
)
1255 if (!kvm_is_mmio_pfn(pfn
))
1256 mark_page_accessed(pfn_to_page(pfn
));
1258 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1260 void kvm_get_pfn(pfn_t pfn
)
1262 if (!kvm_is_mmio_pfn(pfn
))
1263 get_page(pfn_to_page(pfn
));
1265 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1267 static int next_segment(unsigned long len
, int offset
)
1269 if (len
> PAGE_SIZE
- offset
)
1270 return PAGE_SIZE
- offset
;
1275 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1281 addr
= gfn_to_hva(kvm
, gfn
);
1282 if (kvm_is_error_hva(addr
))
1284 r
= copy_from_user(data
, (void __user
*)addr
+ offset
, len
);
1289 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1291 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1293 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1295 int offset
= offset_in_page(gpa
);
1298 while ((seg
= next_segment(len
, offset
)) != 0) {
1299 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1309 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1311 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1316 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1317 int offset
= offset_in_page(gpa
);
1319 addr
= gfn_to_hva(kvm
, gfn
);
1320 if (kvm_is_error_hva(addr
))
1322 pagefault_disable();
1323 r
= __copy_from_user_inatomic(data
, (void __user
*)addr
+ offset
, len
);
1329 EXPORT_SYMBOL(kvm_read_guest_atomic
);
1331 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
, const void *data
,
1332 int offset
, int len
)
1337 addr
= gfn_to_hva(kvm
, gfn
);
1338 if (kvm_is_error_hva(addr
))
1340 r
= copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1343 mark_page_dirty(kvm
, gfn
);
1346 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1348 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1351 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1353 int offset
= offset_in_page(gpa
);
1356 while ((seg
= next_segment(len
, offset
)) != 0) {
1357 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1368 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1371 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1372 int offset
= offset_in_page(gpa
);
1373 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1376 ghc
->generation
= slots
->generation
;
1377 ghc
->memslot
= __gfn_to_memslot(slots
, gfn
);
1378 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, gfn
, NULL
);
1379 if (!kvm_is_error_hva(ghc
->hva
))
1386 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
1388 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1389 void *data
, unsigned long len
)
1391 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1394 if (slots
->generation
!= ghc
->generation
)
1395 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
);
1397 if (kvm_is_error_hva(ghc
->hva
))
1400 r
= copy_to_user((void __user
*)ghc
->hva
, data
, len
);
1403 mark_page_dirty_in_slot(kvm
, ghc
->memslot
, ghc
->gpa
>> PAGE_SHIFT
);
1407 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
1409 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
1411 return kvm_write_guest_page(kvm
, gfn
, (const void *) empty_zero_page
,
1414 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
1416 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
1418 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1420 int offset
= offset_in_page(gpa
);
1423 while ((seg
= next_segment(len
, offset
)) != 0) {
1424 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
1433 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
1435 void mark_page_dirty_in_slot(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
1438 if (memslot
&& memslot
->dirty_bitmap
) {
1439 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
1441 __set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
1445 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
1447 struct kvm_memory_slot
*memslot
;
1449 memslot
= gfn_to_memslot(kvm
, gfn
);
1450 mark_page_dirty_in_slot(kvm
, memslot
, gfn
);
1454 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1456 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
1461 prepare_to_wait(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
1463 if (kvm_arch_vcpu_runnable(vcpu
)) {
1464 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
1467 if (kvm_cpu_has_pending_timer(vcpu
))
1469 if (signal_pending(current
))
1475 finish_wait(&vcpu
->wq
, &wait
);
1478 void kvm_resched(struct kvm_vcpu
*vcpu
)
1480 if (!need_resched())
1484 EXPORT_SYMBOL_GPL(kvm_resched
);
1486 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
)
1488 struct kvm
*kvm
= me
->kvm
;
1489 struct kvm_vcpu
*vcpu
;
1490 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
1496 * We boost the priority of a VCPU that is runnable but not
1497 * currently running, because it got preempted by something
1498 * else and called schedule in __vcpu_run. Hopefully that
1499 * VCPU is holding the lock that we need and will release it.
1500 * We approximate round-robin by starting at the last boosted VCPU.
1502 for (pass
= 0; pass
< 2 && !yielded
; pass
++) {
1503 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1504 struct task_struct
*task
= NULL
;
1506 if (!pass
&& i
< last_boosted_vcpu
) {
1507 i
= last_boosted_vcpu
;
1509 } else if (pass
&& i
> last_boosted_vcpu
)
1513 if (waitqueue_active(&vcpu
->wq
))
1516 pid
= rcu_dereference(vcpu
->pid
);
1518 task
= get_pid_task(vcpu
->pid
, PIDTYPE_PID
);
1522 if (task
->flags
& PF_VCPU
) {
1523 put_task_struct(task
);
1526 if (yield_to(task
, 1)) {
1527 put_task_struct(task
);
1528 kvm
->last_boosted_vcpu
= i
;
1532 put_task_struct(task
);
1536 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
1538 static int kvm_vcpu_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1540 struct kvm_vcpu
*vcpu
= vma
->vm_file
->private_data
;
1543 if (vmf
->pgoff
== 0)
1544 page
= virt_to_page(vcpu
->run
);
1546 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
1547 page
= virt_to_page(vcpu
->arch
.pio_data
);
1549 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1550 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
1551 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
1554 return VM_FAULT_SIGBUS
;
1560 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
1561 .fault
= kvm_vcpu_fault
,
1564 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1566 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
1570 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
1572 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1574 kvm_put_kvm(vcpu
->kvm
);
1578 static struct file_operations kvm_vcpu_fops
= {
1579 .release
= kvm_vcpu_release
,
1580 .unlocked_ioctl
= kvm_vcpu_ioctl
,
1581 .compat_ioctl
= kvm_vcpu_ioctl
,
1582 .mmap
= kvm_vcpu_mmap
,
1583 .llseek
= noop_llseek
,
1587 * Allocates an inode for the vcpu.
1589 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
1591 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops
, vcpu
, O_RDWR
);
1595 * Creates some virtual cpus. Good luck creating more than one.
1597 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
1600 struct kvm_vcpu
*vcpu
, *v
;
1602 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
1604 return PTR_ERR(vcpu
);
1606 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
1608 r
= kvm_arch_vcpu_setup(vcpu
);
1612 mutex_lock(&kvm
->lock
);
1613 if (atomic_read(&kvm
->online_vcpus
) == KVM_MAX_VCPUS
) {
1618 kvm_for_each_vcpu(r
, v
, kvm
)
1619 if (v
->vcpu_id
== id
) {
1624 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
1626 /* Now it's all set up, let userspace reach it */
1628 r
= create_vcpu_fd(vcpu
);
1634 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
1636 atomic_inc(&kvm
->online_vcpus
);
1638 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1639 if (kvm
->bsp_vcpu_id
== id
)
1640 kvm
->bsp_vcpu
= vcpu
;
1642 mutex_unlock(&kvm
->lock
);
1646 mutex_unlock(&kvm
->lock
);
1647 kvm_arch_vcpu_destroy(vcpu
);
1651 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
1654 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
1655 vcpu
->sigset_active
= 1;
1656 vcpu
->sigset
= *sigset
;
1658 vcpu
->sigset_active
= 0;
1662 static long kvm_vcpu_ioctl(struct file
*filp
,
1663 unsigned int ioctl
, unsigned long arg
)
1665 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1666 void __user
*argp
= (void __user
*)arg
;
1668 struct kvm_fpu
*fpu
= NULL
;
1669 struct kvm_sregs
*kvm_sregs
= NULL
;
1671 if (vcpu
->kvm
->mm
!= current
->mm
)
1674 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1676 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1677 * so vcpu_load() would break it.
1679 if (ioctl
== KVM_S390_INTERRUPT
|| ioctl
== KVM_INTERRUPT
)
1680 return kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
1690 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
1691 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
1693 case KVM_GET_REGS
: {
1694 struct kvm_regs
*kvm_regs
;
1697 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
1700 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
1704 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
1711 case KVM_SET_REGS
: {
1712 struct kvm_regs
*kvm_regs
;
1715 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
1719 if (copy_from_user(kvm_regs
, argp
, sizeof(struct kvm_regs
)))
1721 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
1729 case KVM_GET_SREGS
: {
1730 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
1734 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
1738 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
1743 case KVM_SET_SREGS
: {
1744 kvm_sregs
= kmalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
1749 if (copy_from_user(kvm_sregs
, argp
, sizeof(struct kvm_sregs
)))
1751 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
1757 case KVM_GET_MP_STATE
: {
1758 struct kvm_mp_state mp_state
;
1760 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
1764 if (copy_to_user(argp
, &mp_state
, sizeof mp_state
))
1769 case KVM_SET_MP_STATE
: {
1770 struct kvm_mp_state mp_state
;
1773 if (copy_from_user(&mp_state
, argp
, sizeof mp_state
))
1775 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
1781 case KVM_TRANSLATE
: {
1782 struct kvm_translation tr
;
1785 if (copy_from_user(&tr
, argp
, sizeof tr
))
1787 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
1791 if (copy_to_user(argp
, &tr
, sizeof tr
))
1796 case KVM_SET_GUEST_DEBUG
: {
1797 struct kvm_guest_debug dbg
;
1800 if (copy_from_user(&dbg
, argp
, sizeof dbg
))
1802 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
1808 case KVM_SET_SIGNAL_MASK
: {
1809 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
1810 struct kvm_signal_mask kvm_sigmask
;
1811 sigset_t sigset
, *p
;
1816 if (copy_from_user(&kvm_sigmask
, argp
,
1817 sizeof kvm_sigmask
))
1820 if (kvm_sigmask
.len
!= sizeof sigset
)
1823 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
1828 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
1832 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
1836 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
1840 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
1846 fpu
= kmalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
1851 if (copy_from_user(fpu
, argp
, sizeof(struct kvm_fpu
)))
1853 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
1860 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
1869 static long kvm_vm_ioctl(struct file
*filp
,
1870 unsigned int ioctl
, unsigned long arg
)
1872 struct kvm
*kvm
= filp
->private_data
;
1873 void __user
*argp
= (void __user
*)arg
;
1876 if (kvm
->mm
!= current
->mm
)
1879 case KVM_CREATE_VCPU
:
1880 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
1884 case KVM_SET_USER_MEMORY_REGION
: {
1885 struct kvm_userspace_memory_region kvm_userspace_mem
;
1888 if (copy_from_user(&kvm_userspace_mem
, argp
,
1889 sizeof kvm_userspace_mem
))
1892 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 1);
1897 case KVM_GET_DIRTY_LOG
: {
1898 struct kvm_dirty_log log
;
1901 if (copy_from_user(&log
, argp
, sizeof log
))
1903 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
1908 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1909 case KVM_REGISTER_COALESCED_MMIO
: {
1910 struct kvm_coalesced_mmio_zone zone
;
1912 if (copy_from_user(&zone
, argp
, sizeof zone
))
1914 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
1920 case KVM_UNREGISTER_COALESCED_MMIO
: {
1921 struct kvm_coalesced_mmio_zone zone
;
1923 if (copy_from_user(&zone
, argp
, sizeof zone
))
1925 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
1933 struct kvm_irqfd data
;
1936 if (copy_from_user(&data
, argp
, sizeof data
))
1938 r
= kvm_irqfd(kvm
, data
.fd
, data
.gsi
, data
.flags
);
1941 case KVM_IOEVENTFD
: {
1942 struct kvm_ioeventfd data
;
1945 if (copy_from_user(&data
, argp
, sizeof data
))
1947 r
= kvm_ioeventfd(kvm
, &data
);
1950 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1951 case KVM_SET_BOOT_CPU_ID
:
1953 mutex_lock(&kvm
->lock
);
1954 if (atomic_read(&kvm
->online_vcpus
) != 0)
1957 kvm
->bsp_vcpu_id
= arg
;
1958 mutex_unlock(&kvm
->lock
);
1962 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
1964 r
= kvm_vm_ioctl_assigned_device(kvm
, ioctl
, arg
);
1970 #ifdef CONFIG_COMPAT
1971 struct compat_kvm_dirty_log
{
1975 compat_uptr_t dirty_bitmap
; /* one bit per page */
1980 static long kvm_vm_compat_ioctl(struct file
*filp
,
1981 unsigned int ioctl
, unsigned long arg
)
1983 struct kvm
*kvm
= filp
->private_data
;
1986 if (kvm
->mm
!= current
->mm
)
1989 case KVM_GET_DIRTY_LOG
: {
1990 struct compat_kvm_dirty_log compat_log
;
1991 struct kvm_dirty_log log
;
1994 if (copy_from_user(&compat_log
, (void __user
*)arg
,
1995 sizeof(compat_log
)))
1997 log
.slot
= compat_log
.slot
;
1998 log
.padding1
= compat_log
.padding1
;
1999 log
.padding2
= compat_log
.padding2
;
2000 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
2002 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2008 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
2016 static int kvm_vm_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2018 struct page
*page
[1];
2021 gfn_t gfn
= vmf
->pgoff
;
2022 struct kvm
*kvm
= vma
->vm_file
->private_data
;
2024 addr
= gfn_to_hva(kvm
, gfn
);
2025 if (kvm_is_error_hva(addr
))
2026 return VM_FAULT_SIGBUS
;
2028 npages
= get_user_pages(current
, current
->mm
, addr
, 1, 1, 0, page
,
2030 if (unlikely(npages
!= 1))
2031 return VM_FAULT_SIGBUS
;
2033 vmf
->page
= page
[0];
2037 static const struct vm_operations_struct kvm_vm_vm_ops
= {
2038 .fault
= kvm_vm_fault
,
2041 static int kvm_vm_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2043 vma
->vm_ops
= &kvm_vm_vm_ops
;
2047 static struct file_operations kvm_vm_fops
= {
2048 .release
= kvm_vm_release
,
2049 .unlocked_ioctl
= kvm_vm_ioctl
,
2050 #ifdef CONFIG_COMPAT
2051 .compat_ioctl
= kvm_vm_compat_ioctl
,
2053 .mmap
= kvm_vm_mmap
,
2054 .llseek
= noop_llseek
,
2057 static int kvm_dev_ioctl_create_vm(void)
2062 kvm
= kvm_create_vm();
2064 return PTR_ERR(kvm
);
2065 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2066 r
= kvm_coalesced_mmio_init(kvm
);
2072 r
= anon_inode_getfd("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
);
2079 static long kvm_dev_ioctl_check_extension_generic(long arg
)
2082 case KVM_CAP_USER_MEMORY
:
2083 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
2084 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
2085 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2086 case KVM_CAP_SET_BOOT_CPU_ID
:
2088 case KVM_CAP_INTERNAL_ERROR_DATA
:
2090 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2091 case KVM_CAP_IRQ_ROUTING
:
2092 return KVM_MAX_IRQ_ROUTES
;
2097 return kvm_dev_ioctl_check_extension(arg
);
2100 static long kvm_dev_ioctl(struct file
*filp
,
2101 unsigned int ioctl
, unsigned long arg
)
2106 case KVM_GET_API_VERSION
:
2110 r
= KVM_API_VERSION
;
2116 r
= kvm_dev_ioctl_create_vm();
2118 case KVM_CHECK_EXTENSION
:
2119 r
= kvm_dev_ioctl_check_extension_generic(arg
);
2121 case KVM_GET_VCPU_MMAP_SIZE
:
2125 r
= PAGE_SIZE
; /* struct kvm_run */
2127 r
+= PAGE_SIZE
; /* pio data page */
2129 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2130 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
2133 case KVM_TRACE_ENABLE
:
2134 case KVM_TRACE_PAUSE
:
2135 case KVM_TRACE_DISABLE
:
2139 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
2145 static struct file_operations kvm_chardev_ops
= {
2146 .unlocked_ioctl
= kvm_dev_ioctl
,
2147 .compat_ioctl
= kvm_dev_ioctl
,
2148 .llseek
= noop_llseek
,
2151 static struct miscdevice kvm_dev
= {
2157 static void hardware_enable_nolock(void *junk
)
2159 int cpu
= raw_smp_processor_id();
2162 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2165 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
2167 r
= kvm_arch_hardware_enable(NULL
);
2170 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2171 atomic_inc(&hardware_enable_failed
);
2172 printk(KERN_INFO
"kvm: enabling virtualization on "
2173 "CPU%d failed\n", cpu
);
2177 static void hardware_enable(void *junk
)
2179 raw_spin_lock(&kvm_lock
);
2180 hardware_enable_nolock(junk
);
2181 raw_spin_unlock(&kvm_lock
);
2184 static void hardware_disable_nolock(void *junk
)
2186 int cpu
= raw_smp_processor_id();
2188 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2190 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2191 kvm_arch_hardware_disable(NULL
);
2194 static void hardware_disable(void *junk
)
2196 raw_spin_lock(&kvm_lock
);
2197 hardware_disable_nolock(junk
);
2198 raw_spin_unlock(&kvm_lock
);
2201 static void hardware_disable_all_nolock(void)
2203 BUG_ON(!kvm_usage_count
);
2206 if (!kvm_usage_count
)
2207 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2210 static void hardware_disable_all(void)
2212 raw_spin_lock(&kvm_lock
);
2213 hardware_disable_all_nolock();
2214 raw_spin_unlock(&kvm_lock
);
2217 static int hardware_enable_all(void)
2221 raw_spin_lock(&kvm_lock
);
2224 if (kvm_usage_count
== 1) {
2225 atomic_set(&hardware_enable_failed
, 0);
2226 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
2228 if (atomic_read(&hardware_enable_failed
)) {
2229 hardware_disable_all_nolock();
2234 raw_spin_unlock(&kvm_lock
);
2239 static int kvm_cpu_hotplug(struct notifier_block
*notifier
, unsigned long val
,
2244 if (!kvm_usage_count
)
2247 val
&= ~CPU_TASKS_FROZEN
;
2250 printk(KERN_INFO
"kvm: disabling virtualization on CPU%d\n",
2252 hardware_disable(NULL
);
2255 printk(KERN_INFO
"kvm: enabling virtualization on CPU%d\n",
2257 hardware_enable(NULL
);
2264 asmlinkage
void kvm_spurious_fault(void)
2266 /* Fault while not rebooting. We want the trace. */
2269 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
2271 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
2275 * Some (well, at least mine) BIOSes hang on reboot if
2278 * And Intel TXT required VMX off for all cpu when system shutdown.
2280 printk(KERN_INFO
"kvm: exiting hardware virtualization\n");
2281 kvm_rebooting
= true;
2282 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2286 static struct notifier_block kvm_reboot_notifier
= {
2287 .notifier_call
= kvm_reboot
,
2291 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
2295 for (i
= 0; i
< bus
->dev_count
; i
++) {
2296 struct kvm_io_device
*pos
= bus
->devs
[i
];
2298 kvm_iodevice_destructor(pos
);
2303 /* kvm_io_bus_write - called under kvm->slots_lock */
2304 int kvm_io_bus_write(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2305 int len
, const void *val
)
2308 struct kvm_io_bus
*bus
;
2310 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
2311 for (i
= 0; i
< bus
->dev_count
; i
++)
2312 if (!kvm_iodevice_write(bus
->devs
[i
], addr
, len
, val
))
2317 /* kvm_io_bus_read - called under kvm->slots_lock */
2318 int kvm_io_bus_read(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2322 struct kvm_io_bus
*bus
;
2324 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
2325 for (i
= 0; i
< bus
->dev_count
; i
++)
2326 if (!kvm_iodevice_read(bus
->devs
[i
], addr
, len
, val
))
2331 /* Caller must hold slots_lock. */
2332 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
2333 struct kvm_io_device
*dev
)
2335 struct kvm_io_bus
*new_bus
, *bus
;
2337 bus
= kvm
->buses
[bus_idx
];
2338 if (bus
->dev_count
> NR_IOBUS_DEVS
-1)
2341 new_bus
= kzalloc(sizeof(struct kvm_io_bus
), GFP_KERNEL
);
2344 memcpy(new_bus
, bus
, sizeof(struct kvm_io_bus
));
2345 new_bus
->devs
[new_bus
->dev_count
++] = dev
;
2346 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
2347 synchronize_srcu_expedited(&kvm
->srcu
);
2353 /* Caller must hold slots_lock. */
2354 int kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
2355 struct kvm_io_device
*dev
)
2358 struct kvm_io_bus
*new_bus
, *bus
;
2360 new_bus
= kzalloc(sizeof(struct kvm_io_bus
), GFP_KERNEL
);
2364 bus
= kvm
->buses
[bus_idx
];
2365 memcpy(new_bus
, bus
, sizeof(struct kvm_io_bus
));
2368 for (i
= 0; i
< new_bus
->dev_count
; i
++)
2369 if (new_bus
->devs
[i
] == dev
) {
2371 new_bus
->devs
[i
] = new_bus
->devs
[--new_bus
->dev_count
];
2380 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
2381 synchronize_srcu_expedited(&kvm
->srcu
);
2386 static struct notifier_block kvm_cpu_notifier
= {
2387 .notifier_call
= kvm_cpu_hotplug
,
2390 static int vm_stat_get(void *_offset
, u64
*val
)
2392 unsigned offset
= (long)_offset
;
2396 raw_spin_lock(&kvm_lock
);
2397 list_for_each_entry(kvm
, &vm_list
, vm_list
)
2398 *val
+= *(u32
*)((void *)kvm
+ offset
);
2399 raw_spin_unlock(&kvm_lock
);
2403 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, NULL
, "%llu\n");
2405 static int vcpu_stat_get(void *_offset
, u64
*val
)
2407 unsigned offset
= (long)_offset
;
2409 struct kvm_vcpu
*vcpu
;
2413 raw_spin_lock(&kvm_lock
);
2414 list_for_each_entry(kvm
, &vm_list
, vm_list
)
2415 kvm_for_each_vcpu(i
, vcpu
, kvm
)
2416 *val
+= *(u32
*)((void *)vcpu
+ offset
);
2418 raw_spin_unlock(&kvm_lock
);
2422 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, NULL
, "%llu\n");
2424 static const struct file_operations
*stat_fops
[] = {
2425 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
2426 [KVM_STAT_VM
] = &vm_stat_fops
,
2429 static void kvm_init_debug(void)
2431 struct kvm_stats_debugfs_item
*p
;
2433 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
2434 for (p
= debugfs_entries
; p
->name
; ++p
)
2435 p
->dentry
= debugfs_create_file(p
->name
, 0444, kvm_debugfs_dir
,
2436 (void *)(long)p
->offset
,
2437 stat_fops
[p
->kind
]);
2440 static void kvm_exit_debug(void)
2442 struct kvm_stats_debugfs_item
*p
;
2444 for (p
= debugfs_entries
; p
->name
; ++p
)
2445 debugfs_remove(p
->dentry
);
2446 debugfs_remove(kvm_debugfs_dir
);
2449 static int kvm_suspend(void)
2451 if (kvm_usage_count
)
2452 hardware_disable_nolock(NULL
);
2456 static void kvm_resume(void)
2458 if (kvm_usage_count
) {
2459 WARN_ON(raw_spin_is_locked(&kvm_lock
));
2460 hardware_enable_nolock(NULL
);
2464 static struct syscore_ops kvm_syscore_ops
= {
2465 .suspend
= kvm_suspend
,
2466 .resume
= kvm_resume
,
2469 struct page
*bad_page
;
2473 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
2475 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
2478 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
2480 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
2482 kvm_arch_vcpu_load(vcpu
, cpu
);
2485 static void kvm_sched_out(struct preempt_notifier
*pn
,
2486 struct task_struct
*next
)
2488 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
2490 kvm_arch_vcpu_put(vcpu
);
2493 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
2494 struct module
*module
)
2499 r
= kvm_arch_init(opaque
);
2503 bad_page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2505 if (bad_page
== NULL
) {
2510 bad_pfn
= page_to_pfn(bad_page
);
2512 hwpoison_page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2514 if (hwpoison_page
== NULL
) {
2519 hwpoison_pfn
= page_to_pfn(hwpoison_page
);
2521 fault_page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2523 if (fault_page
== NULL
) {
2528 fault_pfn
= page_to_pfn(fault_page
);
2530 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
2535 r
= kvm_arch_hardware_setup();
2539 for_each_online_cpu(cpu
) {
2540 smp_call_function_single(cpu
,
2541 kvm_arch_check_processor_compat
,
2547 r
= register_cpu_notifier(&kvm_cpu_notifier
);
2550 register_reboot_notifier(&kvm_reboot_notifier
);
2552 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2554 vcpu_align
= __alignof__(struct kvm_vcpu
);
2555 kvm_vcpu_cache
= kmem_cache_create("kvm_vcpu", vcpu_size
, vcpu_align
,
2557 if (!kvm_vcpu_cache
) {
2562 r
= kvm_async_pf_init();
2566 kvm_chardev_ops
.owner
= module
;
2567 kvm_vm_fops
.owner
= module
;
2568 kvm_vcpu_fops
.owner
= module
;
2570 r
= misc_register(&kvm_dev
);
2572 printk(KERN_ERR
"kvm: misc device register failed\n");
2576 register_syscore_ops(&kvm_syscore_ops
);
2578 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
2579 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
2586 kvm_async_pf_deinit();
2588 kmem_cache_destroy(kvm_vcpu_cache
);
2590 unregister_reboot_notifier(&kvm_reboot_notifier
);
2591 unregister_cpu_notifier(&kvm_cpu_notifier
);
2594 kvm_arch_hardware_unsetup();
2596 free_cpumask_var(cpus_hardware_enabled
);
2599 __free_page(fault_page
);
2601 __free_page(hwpoison_page
);
2602 __free_page(bad_page
);
2608 EXPORT_SYMBOL_GPL(kvm_init
);
2613 misc_deregister(&kvm_dev
);
2614 kmem_cache_destroy(kvm_vcpu_cache
);
2615 kvm_async_pf_deinit();
2616 unregister_syscore_ops(&kvm_syscore_ops
);
2617 unregister_reboot_notifier(&kvm_reboot_notifier
);
2618 unregister_cpu_notifier(&kvm_cpu_notifier
);
2619 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2620 kvm_arch_hardware_unsetup();
2622 free_cpumask_var(cpus_hardware_enabled
);
2623 __free_page(hwpoison_page
);
2624 __free_page(bad_page
);
2626 EXPORT_SYMBOL_GPL(kvm_exit
);