Merge tag 'linux-kselftest-kunit-fixes-5.11-rc3' of git://git.kernel.org/pub/scm...
[linux/fpc-iii.git] / Documentation / admin-guide / media / ipu3.rst
blobf59697c7b37405db7ae10475472bae98e8d58016
1 .. SPDX-License-Identifier: GPL-2.0
3 .. include:: <isonum.txt>
5 ===============================================================
6 Intel Image Processing Unit 3 (IPU3) Imaging Unit (ImgU) driver
7 ===============================================================
9 Copyright |copy| 2018 Intel Corporation
11 Introduction
12 ============
14 This file documents the Intel IPU3 (3rd generation Image Processing Unit)
15 Imaging Unit drivers located under drivers/media/pci/intel/ipu3 (CIO2) as well
16 as under drivers/staging/media/ipu3 (ImgU).
18 The Intel IPU3 found in certain Kaby Lake (as well as certain Sky Lake)
19 platforms (U/Y processor lines) is made up of two parts namely the Imaging Unit
20 (ImgU) and the CIO2 device (MIPI CSI2 receiver).
22 The CIO2 device receives the raw Bayer data from the sensors and outputs the
23 frames in a format that is specific to the IPU3 (for consumption by the IPU3
24 ImgU). The CIO2 driver is available as drivers/media/pci/intel/ipu3/ipu3-cio2*
25 and is enabled through the CONFIG_VIDEO_IPU3_CIO2 config option.
27 The Imaging Unit (ImgU) is responsible for processing images captured
28 by the IPU3 CIO2 device. The ImgU driver sources can be found under
29 drivers/staging/media/ipu3 directory. The driver is enabled through the
30 CONFIG_VIDEO_IPU3_IMGU config option.
32 The two driver modules are named ipu3_csi2 and ipu3_imgu, respectively.
34 The drivers has been tested on Kaby Lake platforms (U/Y processor lines).
36 Both of the drivers implement V4L2, Media Controller and V4L2 sub-device
37 interfaces. The IPU3 CIO2 driver supports camera sensors connected to the CIO2
38 MIPI CSI-2 interfaces through V4L2 sub-device sensor drivers.
40 CIO2
41 ====
43 The CIO2 is represented as a single V4L2 subdev, which provides a V4L2 subdev
44 interface to the user space. There is a video node for each CSI-2 receiver,
45 with a single media controller interface for the entire device.
47 The CIO2 contains four independent capture channel, each with its own MIPI CSI-2
48 receiver and DMA engine. Each channel is modelled as a V4L2 sub-device exposed
49 to userspace as a V4L2 sub-device node and has two pads:
51 .. tabularcolumns:: |p{0.8cm}|p{4.0cm}|p{4.0cm}|
53 .. flat-table::
55     * - pad
56       - direction
57       - purpose
59     * - 0
60       - sink
61       - MIPI CSI-2 input, connected to the sensor subdev
63     * - 1
64       - source
65       - Raw video capture, connected to the V4L2 video interface
67 The V4L2 video interfaces model the DMA engines. They are exposed to userspace
68 as V4L2 video device nodes.
70 Capturing frames in raw Bayer format
71 ------------------------------------
73 CIO2 MIPI CSI2 receiver is used to capture frames (in packed raw Bayer format)
74 from the raw sensors connected to the CSI2 ports. The captured frames are used
75 as input to the ImgU driver.
77 Image processing using IPU3 ImgU requires tools such as raw2pnm [#f1]_, and
78 yavta [#f2]_ due to the following unique requirements and / or features specific
79 to IPU3.
81 -- The IPU3 CSI2 receiver outputs the captured frames from the sensor in packed
82 raw Bayer format that is specific to IPU3.
84 -- Multiple video nodes have to be operated simultaneously.
86 Let us take the example of ov5670 sensor connected to CSI2 port 0, for a
87 2592x1944 image capture.
89 Using the media controller APIs, the ov5670 sensor is configured to send
90 frames in packed raw Bayer format to IPU3 CSI2 receiver.
92 .. code-block:: none
94     # This example assumes /dev/media0 as the CIO2 media device
95     export MDEV=/dev/media0
97     # and that ov5670 sensor is connected to i2c bus 10 with address 0x36
98     export SDEV=$(media-ctl -d $MDEV -e "ov5670 10-0036")
100     # Establish the link for the media devices using media-ctl [#f3]_
101     media-ctl -d $MDEV -l "ov5670:0 -> ipu3-csi2 0:0[1]"
103     # Set the format for the media devices
104     media-ctl -d $MDEV -V "ov5670:0 [fmt:SGRBG10/2592x1944]"
105     media-ctl -d $MDEV -V "ipu3-csi2 0:0 [fmt:SGRBG10/2592x1944]"
106     media-ctl -d $MDEV -V "ipu3-csi2 0:1 [fmt:SGRBG10/2592x1944]"
108 Once the media pipeline is configured, desired sensor specific settings
109 (such as exposure and gain settings) can be set, using the yavta tool.
113 .. code-block:: none
115     yavta -w 0x009e0903 444 $SDEV
116     yavta -w 0x009e0913 1024 $SDEV
117     yavta -w 0x009e0911 2046 $SDEV
119 Once the desired sensor settings are set, frame captures can be done as below.
123 .. code-block:: none
125     yavta --data-prefix -u -c10 -n5 -I -s2592x1944 --file=/tmp/frame-#.bin \
126           -f IPU3_SGRBG10 $(media-ctl -d $MDEV -e "ipu3-cio2 0")
128 With the above command, 10 frames are captured at 2592x1944 resolution, with
129 sGRBG10 format and output as IPU3_SGRBG10 format.
131 The captured frames are available as /tmp/frame-#.bin files.
133 ImgU
134 ====
136 The ImgU is represented as two V4L2 subdevs, each of which provides a V4L2
137 subdev interface to the user space.
139 Each V4L2 subdev represents a pipe, which can support a maximum of 2 streams.
140 This helps to support advanced camera features like Continuous View Finder (CVF)
141 and Snapshot During Video(SDV).
143 The ImgU contains two independent pipes, each modelled as a V4L2 sub-device
144 exposed to userspace as a V4L2 sub-device node.
146 Each pipe has two sink pads and three source pads for the following purpose:
148 .. tabularcolumns:: |p{0.8cm}|p{4.0cm}|p{4.0cm}|
150 .. flat-table::
152     * - pad
153       - direction
154       - purpose
156     * - 0
157       - sink
158       - Input raw video stream
160     * - 1
161       - sink
162       - Processing parameters
164     * - 2
165       - source
166       - Output processed video stream
168     * - 3
169       - source
170       - Output viewfinder video stream
172     * - 4
173       - source
174       - 3A statistics
176 Each pad is connected to a corresponding V4L2 video interface, exposed to 
177 userspace as a V4L2 video device node.
179 Device operation
180 ----------------
182 With ImgU, once the input video node ("ipu3-imgu 0/1":0, in
183 <entity>:<pad-number> format) is queued with buffer (in packed raw Bayer
184 format), ImgU starts processing the buffer and produces the video output in YUV
185 format and statistics output on respective output nodes. The driver is expected
186 to have buffers ready for all of parameter, output and statistics nodes, when
187 input video node is queued with buffer.
189 At a minimum, all of input, main output, 3A statistics and viewfinder
190 video nodes should be enabled for IPU3 to start image processing.
192 Each ImgU V4L2 subdev has the following set of video nodes.
194 input, output and viewfinder video nodes
195 ----------------------------------------
197 The frames (in packed raw Bayer format specific to the IPU3) received by the
198 input video node is processed by the IPU3 Imaging Unit and are output to 2 video
199 nodes, with each targeting a different purpose (main output and viewfinder
200 output).
202 Details onand the Bayer format specific to the IPU3 can be found in
203 :ref:`v4l2-pix-fmt-ipu3-sbggr10`.
205 The driver supports V4L2 Video Capture Interface as defined at :ref:`devices`.
207 Only the multi-planar API is supported. More details can be found at
208 :ref:`planar-apis`.
210 Parameters video node
211 ---------------------
213 The parameters video node receives the ImgU algorithm parameters that are used
214 to configure how the ImgU algorithms process the image.
216 Details on processing parameters specific to the IPU3 can be found in
217 :ref:`v4l2-meta-fmt-params`.
219 3A statistics video node
220 ------------------------
222 3A statistics video node is used by the ImgU driver to output the 3A (auto
223 focus, auto exposure and auto white balance) statistics for the frames that are
224 being processed by the ImgU to user space applications. User space applications
225 can use this statistics data to compute the desired algorithm parameters for
226 the ImgU.
228 Configuring the Intel IPU3
229 ==========================
231 The IPU3 ImgU pipelines can be configured using the Media Controller, defined at
232 :ref:`media_controller`.
234 Running mode and firmware binary selection
235 ------------------------------------------
237 ImgU works based on firmware, currently the ImgU firmware support run 2 pipes in
238 time-sharing with single input frame data. Each pipe can run at certain mode -
239 "VIDEO" or "STILL", "VIDEO" mode is commonly used for video frames capture, and
240 "STILL" is used for still frame capture. However, you can also select "VIDEO" to
241 capture still frames if you want to capture images with less system load and
242 power. For "STILL" mode, ImgU will try to use smaller BDS factor and output
243 larger bayer frame for further YUV processing than "VIDEO" mode to get high
244 quality images. Besides, "STILL" mode need XNR3 to do noise reduction, hence
245 "STILL" mode will need more power and memory bandwidth than "VIDEO" mode. TNR
246 will be enabled in "VIDEO" mode and bypassed by "STILL" mode. ImgU is running at
247 “VIDEO” mode by default, the user can use v4l2 control V4L2_CID_INTEL_IPU3_MODE
248 (currently defined in drivers/staging/media/ipu3/include/intel-ipu3.h) to query
249 and set the running mode. For user, there is no difference for buffer queueing
250 between the "VIDEO" and "STILL" mode, mandatory input and main output node
251 should be enabled and buffers need be queued, the statistics and the view-finder
252 queues are optional.
254 The firmware binary will be selected according to current running mode, such log
255 "using binary if_to_osys_striped " or "using binary if_to_osys_primary_striped"
256 could be observed if you enable the ImgU dynamic debug, the binary
257 if_to_osys_striped is selected for "VIDEO" and the binary
258 "if_to_osys_primary_striped" is selected for "STILL".
261 Processing the image in raw Bayer format
262 ----------------------------------------
264 Configuring ImgU V4L2 subdev for image processing
265 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
267 The ImgU V4L2 subdevs have to be configured with media controller APIs to have
268 all the video nodes setup correctly.
270 Let us take "ipu3-imgu 0" subdev as an example.
272 .. code-block:: none
274     media-ctl -d $MDEV -r
275     media-ctl -d $MDEV -l "ipu3-imgu 0 input":0 -> "ipu3-imgu 0":0[1]
276     media-ctl -d $MDEV -l "ipu3-imgu 0":2 -> "ipu3-imgu 0 output":0[1]
277     media-ctl -d $MDEV -l "ipu3-imgu 0":3 -> "ipu3-imgu 0 viewfinder":0[1]
278     media-ctl -d $MDEV -l "ipu3-imgu 0":4 -> "ipu3-imgu 0 3a stat":0[1]
280 Also the pipe mode of the corresponding V4L2 subdev should be set as desired
281 (e.g 0 for video mode or 1 for still mode) through the control id 0x009819a1 as
282 below.
284 .. code-block:: none
286     yavta -w "0x009819A1 1" /dev/v4l-subdev7
288 Certain hardware blocks in ImgU pipeline can change the frame resolution by
289 cropping or scaling, these hardware blocks include Input Feeder(IF), Bayer Down
290 Scaler (BDS) and Geometric Distortion Correction (GDC).
291 There is also a block which can change the frame resolution - YUV Scaler, it is
292 only applicable to the secondary output.
294 RAW Bayer frames go through these ImgU pipeline hardware blocks and the final
295 processed image output to the DDR memory.
297 .. kernel-figure::  ipu3_rcb.svg
298    :alt: ipu3 resolution blocks image
300    IPU3 resolution change hardware blocks
302 **Input Feeder**
304 Input Feeder gets the Bayer frame data from the sensor, it can enable cropping
305 of lines and columns from the frame and then store pixels into device's internal
306 pixel buffer which are ready to readout by following blocks.
308 **Bayer Down Scaler**
310 Bayer Down Scaler is capable of performing image scaling in Bayer domain, the
311 downscale factor can be configured from 1X to 1/4X in each axis with
312 configuration steps of 0.03125 (1/32).
314 **Geometric Distortion Correction**
316 Geometric Distortion Correction is used to perform correction of distortions
317 and image filtering. It needs some extra filter and envelope padding pixels to
318 work, so the input resolution of GDC should be larger than the output
319 resolution.
321 **YUV Scaler**
323 YUV Scaler which similar with BDS, but it is mainly do image down scaling in
324 YUV domain, it can support up to 1/12X down scaling, but it can not be applied
325 to the main output.
327 The ImgU V4L2 subdev has to be configured with the supported resolutions in all
328 the above hardware blocks, for a given input resolution.
329 For a given supported resolution for an input frame, the Input Feeder, Bayer
330 Down Scaler and GDC blocks should be configured with the supported resolutions
331 as each hardware block has its own alignment requirement.
333 You must configure the output resolution of the hardware blocks smartly to meet
334 the hardware requirement along with keeping the maximum field of view. The
335 intermediate resolutions can be generated by specific tool -
337 https://github.com/intel/intel-ipu3-pipecfg
339 This tool can be used to generate intermediate resolutions. More information can
340 be obtained by looking at the following IPU3 ImgU configuration table.
342 https://chromium.googlesource.com/chromiumos/overlays/board-overlays/+/master
344 Under baseboard-poppy/media-libs/cros-camera-hal-configs-poppy/files/gcss
345 directory, graph_settings_ov5670.xml can be used as an example.
347 The following steps prepare the ImgU pipeline for the image processing.
349 1. The ImgU V4L2 subdev data format should be set by using the
350 VIDIOC_SUBDEV_S_FMT on pad 0, using the GDC width and height obtained above.
352 2. The ImgU V4L2 subdev cropping should be set by using the
353 VIDIOC_SUBDEV_S_SELECTION on pad 0, with V4L2_SEL_TGT_CROP as the target,
354 using the input feeder height and width.
356 3. The ImgU V4L2 subdev composing should be set by using the
357 VIDIOC_SUBDEV_S_SELECTION on pad 0, with V4L2_SEL_TGT_COMPOSE as the target,
358 using the BDS height and width.
360 For the ov5670 example, for an input frame with a resolution of 2592x1944
361 (which is input to the ImgU subdev pad 0), the corresponding resolutions
362 for input feeder, BDS and GDC are 2592x1944, 2592x1944 and 2560x1920
363 respectively.
365 Once this is done, the received raw Bayer frames can be input to the ImgU
366 V4L2 subdev as below, using the open source application v4l2n [#f1]_.
368 For an image captured with 2592x1944 [#f4]_ resolution, with desired output
369 resolution as 2560x1920 and viewfinder resolution as 2560x1920, the following
370 v4l2n command can be used. This helps process the raw Bayer frames and produces
371 the desired results for the main output image and the viewfinder output, in NV12
372 format.
374 .. code-block:: none
376     v4l2n --pipe=4 --load=/tmp/frame-#.bin --open=/dev/video4
377           --fmt=type:VIDEO_OUTPUT_MPLANE,width=2592,height=1944,pixelformat=0X47337069 \
378           --reqbufs=type:VIDEO_OUTPUT_MPLANE,count:1 --pipe=1 \
379           --output=/tmp/frames.out --open=/dev/video5 \
380           --fmt=type:VIDEO_CAPTURE_MPLANE,width=2560,height=1920,pixelformat=NV12 \
381           --reqbufs=type:VIDEO_CAPTURE_MPLANE,count:1 --pipe=2 \
382           --output=/tmp/frames.vf --open=/dev/video6 \
383           --fmt=type:VIDEO_CAPTURE_MPLANE,width=2560,height=1920,pixelformat=NV12 \
384           --reqbufs=type:VIDEO_CAPTURE_MPLANE,count:1 --pipe=3 --open=/dev/video7 \
385           --output=/tmp/frames.3A --fmt=type:META_CAPTURE,? \
386           --reqbufs=count:1,type:META_CAPTURE --pipe=1,2,3,4 --stream=5
388 You can also use yavta [#f2]_ command to do same thing as above:
390 .. code-block:: none
392     yavta --data-prefix -Bcapture-mplane -c10 -n5 -I -s2592x1944 \
393           --file=frame-#.out-f NV12 /dev/video5 & \
394     yavta --data-prefix -Bcapture-mplane -c10 -n5 -I -s2592x1944 \
395           --file=frame-#.vf -f NV12 /dev/video6 & \
396     yavta --data-prefix -Bmeta-capture -c10 -n5 -I \
397           --file=frame-#.3a /dev/video7 & \
398     yavta --data-prefix -Boutput-mplane -c10 -n5 -I -s2592x1944 \
399           --file=/tmp/frame-in.cio2 -f IPU3_SGRBG10 /dev/video4
401 where /dev/video4, /dev/video5, /dev/video6 and /dev/video7 devices point to
402 input, output, viewfinder and 3A statistics video nodes respectively.
404 Converting the raw Bayer image into YUV domain
405 ----------------------------------------------
407 The processed images after the above step, can be converted to YUV domain
408 as below.
410 Main output frames
411 ~~~~~~~~~~~~~~~~~~
413 .. code-block:: none
415     raw2pnm -x2560 -y1920 -fNV12 /tmp/frames.out /tmp/frames.out.ppm
417 where 2560x1920 is output resolution, NV12 is the video format, followed
418 by input frame and output PNM file.
420 Viewfinder output frames
421 ~~~~~~~~~~~~~~~~~~~~~~~~
423 .. code-block:: none
425     raw2pnm -x2560 -y1920 -fNV12 /tmp/frames.vf /tmp/frames.vf.ppm
427 where 2560x1920 is output resolution, NV12 is the video format, followed
428 by input frame and output PNM file.
430 Example user space code for IPU3
431 ================================
433 User space code that configures and uses IPU3 is available here.
435 https://chromium.googlesource.com/chromiumos/platform/arc-camera/+/master/
437 The source can be located under hal/intel directory.
439 Overview of IPU3 pipeline
440 =========================
442 IPU3 pipeline has a number of image processing stages, each of which takes a
443 set of parameters as input. The major stages of pipelines are shown here:
445 .. kernel-render:: DOT
446    :alt: IPU3 ImgU Pipeline
447    :caption: IPU3 ImgU Pipeline Diagram
449    digraph "IPU3 ImgU" {
450        node [shape=box]
451        splines="ortho"
452        rankdir="LR"
454        a [label="Raw pixels"]
455        b [label="Bayer Downscaling"]
456        c [label="Optical Black Correction"]
457        d [label="Linearization"]
458        e [label="Lens Shading Correction"]
459        f [label="White Balance / Exposure / Focus Apply"]
460        g [label="Bayer Noise Reduction"]
461        h [label="ANR"]
462        i [label="Demosaicing"]
463        j [label="Color Correction Matrix"]
464        k [label="Gamma correction"]
465        l [label="Color Space Conversion"]
466        m [label="Chroma Down Scaling"]
467        n [label="Chromatic Noise Reduction"]
468        o [label="Total Color Correction"]
469        p [label="XNR3"]
470        q [label="TNR"]
471        r [label="DDR", style=filled, fillcolor=yellow, shape=cylinder]
472        s [label="YUV Downscaling"]
473        t [label="DDR", style=filled, fillcolor=yellow, shape=cylinder]
475        { rank=same; a -> b -> c -> d -> e -> f -> g -> h -> i }
476        { rank=same; j -> k -> l -> m -> n -> o -> p -> q -> s -> t}
478        a -> j [style=invis, weight=10]
479        i -> j
480        q -> r
481    }
483 The table below presents a description of the above algorithms.
485 ======================== =======================================================
486 Name                     Description
487 ======================== =======================================================
488 Optical Black Correction Optical Black Correction block subtracts a pre-defined
489                          value from the respective pixel values to obtain better
490                          image quality.
491                          Defined in struct ipu3_uapi_obgrid_param.
492 Linearization            This algo block uses linearization parameters to
493                          address non-linearity sensor effects. The Lookup table
494                          table is defined in
495                          struct ipu3_uapi_isp_lin_vmem_params.
496 SHD                      Lens shading correction is used to correct spatial
497                          non-uniformity of the pixel response due to optical
498                          lens shading. This is done by applying a different gain
499                          for each pixel. The gain, black level etc are
500                          configured in struct ipu3_uapi_shd_config_static.
501 BNR                      Bayer noise reduction block removes image noise by
502                          applying a bilateral filter.
503                          See struct ipu3_uapi_bnr_static_config for details.
504 ANR                      Advanced Noise Reduction is a block based algorithm
505                          that performs noise reduction in the Bayer domain. The
506                          convolution matrix etc can be found in
507                          struct ipu3_uapi_anr_config.
508 DM                       Demosaicing converts raw sensor data in Bayer format
509                          into RGB (Red, Green, Blue) presentation. Then add
510                          outputs of estimation of Y channel for following stream
511                          processing by Firmware. The struct is defined as
512                          struct ipu3_uapi_dm_config.
513 Color Correction         Color Correction algo transforms sensor specific color
514                          space to the standard "sRGB" color space. This is done
515                          by applying 3x3 matrix defined in
516                          struct ipu3_uapi_ccm_mat_config.
517 Gamma correction         Gamma correction struct ipu3_uapi_gamma_config is a
518                          basic non-linear tone mapping correction that is
519                          applied per pixel for each pixel component.
520 CSC                      Color space conversion transforms each pixel from the
521                          RGB primary presentation to YUV (Y: brightness,
522                          UV: Luminance) presentation. This is done by applying
523                          a 3x3 matrix defined in
524                          struct ipu3_uapi_csc_mat_config
525 CDS                      Chroma down sampling
526                          After the CSC is performed, the Chroma Down Sampling
527                          is applied for a UV plane down sampling by a factor
528                          of 2 in each direction for YUV 4:2:0 using a 4x2
529                          configurable filter struct ipu3_uapi_cds_params.
530 CHNR                     Chroma noise reduction
531                          This block processes only the chrominance pixels and
532                          performs noise reduction by cleaning the high
533                          frequency noise.
534                          See struct struct ipu3_uapi_yuvp1_chnr_config.
535 TCC                      Total color correction as defined in struct
536                          struct ipu3_uapi_yuvp2_tcc_static_config.
537 XNR3                     eXtreme Noise Reduction V3 is the third revision of
538                          noise reduction algorithm used to improve image
539                          quality. This removes the low frequency noise in the
540                          captured image. Two related structs are  being defined,
541                          struct ipu3_uapi_isp_xnr3_params for ISP data memory
542                          and struct ipu3_uapi_isp_xnr3_vmem_params for vector
543                          memory.
544 TNR                      Temporal Noise Reduction block compares successive
545                          frames in time to remove anomalies / noise in pixel
546                          values. struct ipu3_uapi_isp_tnr3_vmem_params and
547                          struct ipu3_uapi_isp_tnr3_params are defined for ISP
548                          vector and data memory respectively.
549 ======================== =======================================================
551 Other often encountered acronyms not listed in above table:
553         ACC
554                 Accelerator cluster
555         AWB_FR
556                 Auto white balance filter response statistics
557         BDS
558                 Bayer downscaler parameters
559         CCM
560                 Color correction matrix coefficients
561         IEFd
562                 Image enhancement filter directed
563         Obgrid
564                 Optical black level compensation
565         OSYS
566                 Output system configuration
567         ROI
568                 Region of interest
569         YDS
570                 Y down sampling
571         YTM
572                 Y-tone mapping
574 A few stages of the pipeline will be executed by firmware running on the ISP
575 processor, while many others will use a set of fixed hardware blocks also
576 called accelerator cluster (ACC) to crunch pixel data and produce statistics.
578 ACC parameters of individual algorithms, as defined by
579 struct ipu3_uapi_acc_param, can be chosen to be applied by the user
580 space through struct struct ipu3_uapi_flags embedded in
581 struct ipu3_uapi_params structure. For parameters that are configured as
582 not enabled by the user space, the corresponding structs are ignored by the
583 driver, in which case the existing configuration of the algorithm will be
584 preserved.
586 References
587 ==========
589 .. [#f5] drivers/staging/media/ipu3/include/intel-ipu3.h
591 .. [#f1] https://github.com/intel/nvt
593 .. [#f2] http://git.ideasonboard.org/yavta.git
595 .. [#f3] http://git.ideasonboard.org/?p=media-ctl.git;a=summary
597 .. [#f4] ImgU limitation requires an additional 16x16 for all input resolutions