1 ==========================================
2 ARM CPUs capacity bindings
3 ==========================================
5 ==========================================
7 ==========================================
9 ARM systems may be configured to have cpus with different power/performance
10 characteristics within the same chip. In this case, additional information has
11 to be made available to the kernel for it to be aware of such differences and
12 take decisions accordingly.
14 ==========================================
15 2 - CPU capacity definition
16 ==========================================
18 CPU capacity is a number that provides the scheduler information about CPUs
19 heterogeneity. Such heterogeneity can come from micro-architectural differences
20 (e.g., ARM big.LITTLE systems) or maximum frequency at which CPUs can run
21 (e.g., SMP systems with multiple frequency domains). Heterogeneity in this
22 context is about differing performance characteristics; this binding tries to
23 capture a first-order approximation of the relative performance of CPUs.
25 CPU capacities are obtained by running a suitable benchmark. This binding makes
26 no guarantees on the validity or suitability of any particular benchmark, the
27 final capacity should, however, be:
29 * A "single-threaded" or CPU affine benchmark
30 * Divided by the running frequency of the CPU executing the benchmark
31 * Not subject to dynamic frequency scaling of the CPU
33 For the time being we however advise usage of the Dhrystone benchmark. What
36 CPU capacities are obtained by running the Dhrystone benchmark on each CPU at
37 max frequency (with caches enabled). The obtained DMIPS score is then divided
38 by the frequency (in MHz) at which the benchmark has been run, so that
39 DMIPS/MHz are obtained. Such values are then normalized w.r.t. the highest
40 score obtained in the system.
42 ==========================================
43 3 - capacity-dmips-mhz
44 ==========================================
46 capacity-dmips-mhz is an optional cpu node [1] property: u32 value
47 representing CPU capacity expressed in normalized DMIPS/MHz. At boot time, the
48 maximum frequency available to the cpu is then used to calculate the capacity
49 value internally used by the kernel.
51 capacity-dmips-mhz property is all-or-nothing: if it is specified for a cpu
52 node, it has to be specified for every other cpu nodes, or the system will
53 fall back to the default capacity value for every CPU. If cpufreq is not
54 available, final capacities are calculated by directly using capacity-dmips-
55 mhz values (normalized w.r.t. the highest value found while parsing the DT).
57 ===========================================
59 ===========================================
61 Example 1 (ARM 64-bit, 6-cpu system, two clusters):
62 The capacities-dmips-mhz or DMIPS/MHz values (scaled to 1024)
63 are 1024 and 578 for cluster0 and cluster1. Further normalization
64 is done by the operating system based on cluster0@max-freq=1100 and
65 custer1@max-freq=850, final capacities are 1024 for cluster0 and
66 446 for cluster1 (576*850/1100).
99 entry-method = "psci";
101 CPU_SLEEP_0: cpu-sleep-0 {
102 compatible = "arm,idle-state";
103 arm,psci-suspend-param = <0x0010000>;
105 entry-latency-us = <100>;
106 exit-latency-us = <250>;
107 min-residency-us = <150>;
110 CLUSTER_SLEEP_0: cluster-sleep-0 {
111 compatible = "arm,idle-state";
112 arm,psci-suspend-param = <0x1010000>;
114 entry-latency-us = <800>;
115 exit-latency-us = <700>;
116 min-residency-us = <2500>;
121 compatible = "arm,cortex-a57";
124 enable-method = "psci";
125 next-level-cache = <&A57_L2>;
126 clocks = <&scpi_dvfs 0>;
127 cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
128 capacity-dmips-mhz = <1024>;
132 compatible = "arm,cortex-a57";
135 enable-method = "psci";
136 next-level-cache = <&A57_L2>;
137 clocks = <&scpi_dvfs 0>;
138 cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
139 capacity-dmips-mhz = <1024>;
143 compatible = "arm,cortex-a53";
146 enable-method = "psci";
147 next-level-cache = <&A53_L2>;
148 clocks = <&scpi_dvfs 1>;
149 cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
150 capacity-dmips-mhz = <578>;
154 compatible = "arm,cortex-a53";
157 enable-method = "psci";
158 next-level-cache = <&A53_L2>;
159 clocks = <&scpi_dvfs 1>;
160 cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
161 capacity-dmips-mhz = <578>;
165 compatible = "arm,cortex-a53";
168 enable-method = "psci";
169 next-level-cache = <&A53_L2>;
170 clocks = <&scpi_dvfs 1>;
171 cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
172 capacity-dmips-mhz = <578>;
176 compatible = "arm,cortex-a53";
179 enable-method = "psci";
180 next-level-cache = <&A53_L2>;
181 clocks = <&scpi_dvfs 1>;
182 cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
183 capacity-dmips-mhz = <578>;
187 compatible = "cache";
191 compatible = "cache";
195 Example 2 (ARM 32-bit, 4-cpu system, two clusters,
196 cpus 0,1@1GHz, cpus 2,3@500MHz):
197 capacities-dmips-mhz are scaled w.r.t. 2 (cpu@0 and cpu@1), this means that first
198 cpu@0 and cpu@1 are twice fast than cpu@2 and cpu@3 (at the same frequency)
201 #address-cells = <1>;
206 compatible = "arm,cortex-a15";
208 capacity-dmips-mhz = <2>;
213 compatible = "arm,cortex-a15";
215 capacity-dmips-mhz = <2>;
220 compatible = "arm,cortex-a15";
222 capacity-dmips-mhz = <1>;
227 compatible = "arm,cortex-a15";
229 capacity-dmips-mhz = <1>;
233 ===========================================
235 ===========================================
237 [1] ARM Linux Kernel documentation - CPUs bindings
238 Documentation/devicetree/bindings/arm/cpus.yaml