Merge tag 'linux-kselftest-kunit-fixes-5.11-rc3' of git://git.kernel.org/pub/scm...
[linux/fpc-iii.git] / arch / arm64 / mm / fault.c
blob3c40da479899dbb667f427ce8206c52d35e0c16e
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/mm/fault.c
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1995-2004 Russell King
7 * Copyright (C) 2012 ARM Ltd.
8 */
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/signal.h>
14 #include <linux/mm.h>
15 #include <linux/hardirq.h>
16 #include <linux/init.h>
17 #include <linux/kasan.h>
18 #include <linux/kprobes.h>
19 #include <linux/uaccess.h>
20 #include <linux/page-flags.h>
21 #include <linux/sched/signal.h>
22 #include <linux/sched/debug.h>
23 #include <linux/highmem.h>
24 #include <linux/perf_event.h>
25 #include <linux/preempt.h>
26 #include <linux/hugetlb.h>
28 #include <asm/acpi.h>
29 #include <asm/bug.h>
30 #include <asm/cmpxchg.h>
31 #include <asm/cpufeature.h>
32 #include <asm/exception.h>
33 #include <asm/daifflags.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/esr.h>
36 #include <asm/kprobes.h>
37 #include <asm/mte.h>
38 #include <asm/processor.h>
39 #include <asm/sysreg.h>
40 #include <asm/system_misc.h>
41 #include <asm/tlbflush.h>
42 #include <asm/traps.h>
44 struct fault_info {
45 int (*fn)(unsigned long far, unsigned int esr,
46 struct pt_regs *regs);
47 int sig;
48 int code;
49 const char *name;
52 static const struct fault_info fault_info[];
53 static struct fault_info debug_fault_info[];
55 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
57 return fault_info + (esr & ESR_ELx_FSC);
60 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
62 return debug_fault_info + DBG_ESR_EVT(esr);
65 static void data_abort_decode(unsigned int esr)
67 pr_alert("Data abort info:\n");
69 if (esr & ESR_ELx_ISV) {
70 pr_alert(" Access size = %u byte(s)\n",
71 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
72 pr_alert(" SSE = %lu, SRT = %lu\n",
73 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
74 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
75 pr_alert(" SF = %lu, AR = %lu\n",
76 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
77 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
78 } else {
79 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
82 pr_alert(" CM = %lu, WnR = %lu\n",
83 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
84 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
87 static void mem_abort_decode(unsigned int esr)
89 pr_alert("Mem abort info:\n");
91 pr_alert(" ESR = 0x%08x\n", esr);
92 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
93 ESR_ELx_EC(esr), esr_get_class_string(esr),
94 (esr & ESR_ELx_IL) ? 32 : 16);
95 pr_alert(" SET = %lu, FnV = %lu\n",
96 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
97 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
98 pr_alert(" EA = %lu, S1PTW = %lu\n",
99 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
100 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
102 if (esr_is_data_abort(esr))
103 data_abort_decode(esr);
106 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
108 /* Either init_pg_dir or swapper_pg_dir */
109 if (mm == &init_mm)
110 return __pa_symbol(mm->pgd);
112 return (unsigned long)virt_to_phys(mm->pgd);
116 * Dump out the page tables associated with 'addr' in the currently active mm.
118 static void show_pte(unsigned long addr)
120 struct mm_struct *mm;
121 pgd_t *pgdp;
122 pgd_t pgd;
124 if (is_ttbr0_addr(addr)) {
125 /* TTBR0 */
126 mm = current->active_mm;
127 if (mm == &init_mm) {
128 pr_alert("[%016lx] user address but active_mm is swapper\n",
129 addr);
130 return;
132 } else if (is_ttbr1_addr(addr)) {
133 /* TTBR1 */
134 mm = &init_mm;
135 } else {
136 pr_alert("[%016lx] address between user and kernel address ranges\n",
137 addr);
138 return;
141 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
142 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
143 vabits_actual, mm_to_pgd_phys(mm));
144 pgdp = pgd_offset(mm, addr);
145 pgd = READ_ONCE(*pgdp);
146 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
148 do {
149 p4d_t *p4dp, p4d;
150 pud_t *pudp, pud;
151 pmd_t *pmdp, pmd;
152 pte_t *ptep, pte;
154 if (pgd_none(pgd) || pgd_bad(pgd))
155 break;
157 p4dp = p4d_offset(pgdp, addr);
158 p4d = READ_ONCE(*p4dp);
159 pr_cont(", p4d=%016llx", p4d_val(p4d));
160 if (p4d_none(p4d) || p4d_bad(p4d))
161 break;
163 pudp = pud_offset(p4dp, addr);
164 pud = READ_ONCE(*pudp);
165 pr_cont(", pud=%016llx", pud_val(pud));
166 if (pud_none(pud) || pud_bad(pud))
167 break;
169 pmdp = pmd_offset(pudp, addr);
170 pmd = READ_ONCE(*pmdp);
171 pr_cont(", pmd=%016llx", pmd_val(pmd));
172 if (pmd_none(pmd) || pmd_bad(pmd))
173 break;
175 ptep = pte_offset_map(pmdp, addr);
176 pte = READ_ONCE(*ptep);
177 pr_cont(", pte=%016llx", pte_val(pte));
178 pte_unmap(ptep);
179 } while(0);
181 pr_cont("\n");
185 * This function sets the access flags (dirty, accessed), as well as write
186 * permission, and only to a more permissive setting.
188 * It needs to cope with hardware update of the accessed/dirty state by other
189 * agents in the system and can safely skip the __sync_icache_dcache() call as,
190 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
192 * Returns whether or not the PTE actually changed.
194 int ptep_set_access_flags(struct vm_area_struct *vma,
195 unsigned long address, pte_t *ptep,
196 pte_t entry, int dirty)
198 pteval_t old_pteval, pteval;
199 pte_t pte = READ_ONCE(*ptep);
201 if (pte_same(pte, entry))
202 return 0;
204 /* only preserve the access flags and write permission */
205 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
208 * Setting the flags must be done atomically to avoid racing with the
209 * hardware update of the access/dirty state. The PTE_RDONLY bit must
210 * be set to the most permissive (lowest value) of *ptep and entry
211 * (calculated as: a & b == ~(~a | ~b)).
213 pte_val(entry) ^= PTE_RDONLY;
214 pteval = pte_val(pte);
215 do {
216 old_pteval = pteval;
217 pteval ^= PTE_RDONLY;
218 pteval |= pte_val(entry);
219 pteval ^= PTE_RDONLY;
220 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
221 } while (pteval != old_pteval);
223 /* Invalidate a stale read-only entry */
224 if (dirty)
225 flush_tlb_page(vma, address);
226 return 1;
229 static bool is_el1_instruction_abort(unsigned int esr)
231 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
234 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
235 struct pt_regs *regs)
237 unsigned int ec = ESR_ELx_EC(esr);
238 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
240 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
241 return false;
243 if (fsc_type == ESR_ELx_FSC_PERM)
244 return true;
246 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
247 return fsc_type == ESR_ELx_FSC_FAULT &&
248 (regs->pstate & PSR_PAN_BIT);
250 return false;
253 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
254 unsigned int esr,
255 struct pt_regs *regs)
257 unsigned long flags;
258 u64 par, dfsc;
260 if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR ||
261 (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
262 return false;
264 local_irq_save(flags);
265 asm volatile("at s1e1r, %0" :: "r" (addr));
266 isb();
267 par = read_sysreg_par();
268 local_irq_restore(flags);
271 * If we now have a valid translation, treat the translation fault as
272 * spurious.
274 if (!(par & SYS_PAR_EL1_F))
275 return true;
278 * If we got a different type of fault from the AT instruction,
279 * treat the translation fault as spurious.
281 dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
282 return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
285 static void die_kernel_fault(const char *msg, unsigned long addr,
286 unsigned int esr, struct pt_regs *regs)
288 bust_spinlocks(1);
290 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
291 addr);
293 mem_abort_decode(esr);
295 show_pte(addr);
296 die("Oops", regs, esr);
297 bust_spinlocks(0);
298 do_exit(SIGKILL);
301 #ifdef CONFIG_KASAN_HW_TAGS
302 static void report_tag_fault(unsigned long addr, unsigned int esr,
303 struct pt_regs *regs)
305 bool is_write = ((esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT) != 0;
308 * SAS bits aren't set for all faults reported in EL1, so we can't
309 * find out access size.
311 kasan_report(addr, 0, is_write, regs->pc);
313 #else
314 /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
315 static inline void report_tag_fault(unsigned long addr, unsigned int esr,
316 struct pt_regs *regs) { }
317 #endif
319 static void do_tag_recovery(unsigned long addr, unsigned int esr,
320 struct pt_regs *regs)
322 static bool reported;
324 if (!READ_ONCE(reported)) {
325 report_tag_fault(addr, esr, regs);
326 WRITE_ONCE(reported, true);
330 * Disable MTE Tag Checking on the local CPU for the current EL.
331 * It will be done lazily on the other CPUs when they will hit a
332 * tag fault.
334 sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, SCTLR_ELx_TCF_NONE);
335 isb();
338 static bool is_el1_mte_sync_tag_check_fault(unsigned int esr)
340 unsigned int ec = ESR_ELx_EC(esr);
341 unsigned int fsc = esr & ESR_ELx_FSC;
343 if (ec != ESR_ELx_EC_DABT_CUR)
344 return false;
346 if (fsc == ESR_ELx_FSC_MTE)
347 return true;
349 return false;
352 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
353 struct pt_regs *regs)
355 const char *msg;
358 * Are we prepared to handle this kernel fault?
359 * We are almost certainly not prepared to handle instruction faults.
361 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
362 return;
364 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
365 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
366 return;
368 if (is_el1_mte_sync_tag_check_fault(esr)) {
369 do_tag_recovery(addr, esr, regs);
371 return;
374 if (is_el1_permission_fault(addr, esr, regs)) {
375 if (esr & ESR_ELx_WNR)
376 msg = "write to read-only memory";
377 else if (is_el1_instruction_abort(esr))
378 msg = "execute from non-executable memory";
379 else
380 msg = "read from unreadable memory";
381 } else if (addr < PAGE_SIZE) {
382 msg = "NULL pointer dereference";
383 } else {
384 msg = "paging request";
387 die_kernel_fault(msg, addr, esr, regs);
390 static void set_thread_esr(unsigned long address, unsigned int esr)
392 current->thread.fault_address = address;
395 * If the faulting address is in the kernel, we must sanitize the ESR.
396 * From userspace's point of view, kernel-only mappings don't exist
397 * at all, so we report them as level 0 translation faults.
398 * (This is not quite the way that "no mapping there at all" behaves:
399 * an alignment fault not caused by the memory type would take
400 * precedence over translation fault for a real access to empty
401 * space. Unfortunately we can't easily distinguish "alignment fault
402 * not caused by memory type" from "alignment fault caused by memory
403 * type", so we ignore this wrinkle and just return the translation
404 * fault.)
406 if (!is_ttbr0_addr(current->thread.fault_address)) {
407 switch (ESR_ELx_EC(esr)) {
408 case ESR_ELx_EC_DABT_LOW:
410 * These bits provide only information about the
411 * faulting instruction, which userspace knows already.
412 * We explicitly clear bits which are architecturally
413 * RES0 in case they are given meanings in future.
414 * We always report the ESR as if the fault was taken
415 * to EL1 and so ISV and the bits in ISS[23:14] are
416 * clear. (In fact it always will be a fault to EL1.)
418 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
419 ESR_ELx_CM | ESR_ELx_WNR;
420 esr |= ESR_ELx_FSC_FAULT;
421 break;
422 case ESR_ELx_EC_IABT_LOW:
424 * Claim a level 0 translation fault.
425 * All other bits are architecturally RES0 for faults
426 * reported with that DFSC value, so we clear them.
428 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
429 esr |= ESR_ELx_FSC_FAULT;
430 break;
431 default:
433 * This should never happen (entry.S only brings us
434 * into this code for insn and data aborts from a lower
435 * exception level). Fail safe by not providing an ESR
436 * context record at all.
438 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
439 esr = 0;
440 break;
444 current->thread.fault_code = esr;
447 static void do_bad_area(unsigned long far, unsigned int esr,
448 struct pt_regs *regs)
450 unsigned long addr = untagged_addr(far);
453 * If we are in kernel mode at this point, we have no context to
454 * handle this fault with.
456 if (user_mode(regs)) {
457 const struct fault_info *inf = esr_to_fault_info(esr);
459 set_thread_esr(addr, esr);
460 arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
461 } else {
462 __do_kernel_fault(addr, esr, regs);
466 #define VM_FAULT_BADMAP 0x010000
467 #define VM_FAULT_BADACCESS 0x020000
469 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
470 unsigned int mm_flags, unsigned long vm_flags,
471 struct pt_regs *regs)
473 struct vm_area_struct *vma = find_vma(mm, addr);
475 if (unlikely(!vma))
476 return VM_FAULT_BADMAP;
479 * Ok, we have a good vm_area for this memory access, so we can handle
480 * it.
482 if (unlikely(vma->vm_start > addr)) {
483 if (!(vma->vm_flags & VM_GROWSDOWN))
484 return VM_FAULT_BADMAP;
485 if (expand_stack(vma, addr))
486 return VM_FAULT_BADMAP;
490 * Check that the permissions on the VMA allow for the fault which
491 * occurred.
493 if (!(vma->vm_flags & vm_flags))
494 return VM_FAULT_BADACCESS;
495 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags, regs);
498 static bool is_el0_instruction_abort(unsigned int esr)
500 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
504 * Note: not valid for EL1 DC IVAC, but we never use that such that it
505 * should fault. EL0 cannot issue DC IVAC (undef).
507 static bool is_write_abort(unsigned int esr)
509 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
512 static int __kprobes do_page_fault(unsigned long far, unsigned int esr,
513 struct pt_regs *regs)
515 const struct fault_info *inf;
516 struct mm_struct *mm = current->mm;
517 vm_fault_t fault;
518 unsigned long vm_flags = VM_ACCESS_FLAGS;
519 unsigned int mm_flags = FAULT_FLAG_DEFAULT;
520 unsigned long addr = untagged_addr(far);
522 if (kprobe_page_fault(regs, esr))
523 return 0;
526 * If we're in an interrupt or have no user context, we must not take
527 * the fault.
529 if (faulthandler_disabled() || !mm)
530 goto no_context;
532 if (user_mode(regs))
533 mm_flags |= FAULT_FLAG_USER;
535 if (is_el0_instruction_abort(esr)) {
536 vm_flags = VM_EXEC;
537 mm_flags |= FAULT_FLAG_INSTRUCTION;
538 } else if (is_write_abort(esr)) {
539 vm_flags = VM_WRITE;
540 mm_flags |= FAULT_FLAG_WRITE;
543 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
544 if (is_el1_instruction_abort(esr))
545 die_kernel_fault("execution of user memory",
546 addr, esr, regs);
548 if (!search_exception_tables(regs->pc))
549 die_kernel_fault("access to user memory outside uaccess routines",
550 addr, esr, regs);
553 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
556 * As per x86, we may deadlock here. However, since the kernel only
557 * validly references user space from well defined areas of the code,
558 * we can bug out early if this is from code which shouldn't.
560 if (!mmap_read_trylock(mm)) {
561 if (!user_mode(regs) && !search_exception_tables(regs->pc))
562 goto no_context;
563 retry:
564 mmap_read_lock(mm);
565 } else {
567 * The above down_read_trylock() might have succeeded in which
568 * case, we'll have missed the might_sleep() from down_read().
570 might_sleep();
571 #ifdef CONFIG_DEBUG_VM
572 if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
573 mmap_read_unlock(mm);
574 goto no_context;
576 #endif
579 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, regs);
581 /* Quick path to respond to signals */
582 if (fault_signal_pending(fault, regs)) {
583 if (!user_mode(regs))
584 goto no_context;
585 return 0;
588 if (fault & VM_FAULT_RETRY) {
589 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
590 mm_flags |= FAULT_FLAG_TRIED;
591 goto retry;
594 mmap_read_unlock(mm);
597 * Handle the "normal" (no error) case first.
599 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
600 VM_FAULT_BADACCESS))))
601 return 0;
604 * If we are in kernel mode at this point, we have no context to
605 * handle this fault with.
607 if (!user_mode(regs))
608 goto no_context;
610 if (fault & VM_FAULT_OOM) {
612 * We ran out of memory, call the OOM killer, and return to
613 * userspace (which will retry the fault, or kill us if we got
614 * oom-killed).
616 pagefault_out_of_memory();
617 return 0;
620 inf = esr_to_fault_info(esr);
621 set_thread_esr(addr, esr);
622 if (fault & VM_FAULT_SIGBUS) {
624 * We had some memory, but were unable to successfully fix up
625 * this page fault.
627 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
628 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
629 unsigned int lsb;
631 lsb = PAGE_SHIFT;
632 if (fault & VM_FAULT_HWPOISON_LARGE)
633 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
635 arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
636 } else {
638 * Something tried to access memory that isn't in our memory
639 * map.
641 arm64_force_sig_fault(SIGSEGV,
642 fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
643 far, inf->name);
646 return 0;
648 no_context:
649 __do_kernel_fault(addr, esr, regs);
650 return 0;
653 static int __kprobes do_translation_fault(unsigned long far,
654 unsigned int esr,
655 struct pt_regs *regs)
657 unsigned long addr = untagged_addr(far);
659 if (is_ttbr0_addr(addr))
660 return do_page_fault(far, esr, regs);
662 do_bad_area(far, esr, regs);
663 return 0;
666 static int do_alignment_fault(unsigned long far, unsigned int esr,
667 struct pt_regs *regs)
669 do_bad_area(far, esr, regs);
670 return 0;
673 static int do_bad(unsigned long far, unsigned int esr, struct pt_regs *regs)
675 return 1; /* "fault" */
678 static int do_sea(unsigned long far, unsigned int esr, struct pt_regs *regs)
680 const struct fault_info *inf;
681 unsigned long siaddr;
683 inf = esr_to_fault_info(esr);
685 if (user_mode(regs) && apei_claim_sea(regs) == 0) {
687 * APEI claimed this as a firmware-first notification.
688 * Some processing deferred to task_work before ret_to_user().
690 return 0;
693 if (esr & ESR_ELx_FnV) {
694 siaddr = 0;
695 } else {
697 * The architecture specifies that the tag bits of FAR_EL1 are
698 * UNKNOWN for synchronous external aborts. Mask them out now
699 * so that userspace doesn't see them.
701 siaddr = untagged_addr(far);
703 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
705 return 0;
708 static int do_tag_check_fault(unsigned long far, unsigned int esr,
709 struct pt_regs *regs)
712 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN for tag
713 * check faults. Mask them out now so that userspace doesn't see them.
715 far &= (1UL << 60) - 1;
716 do_bad_area(far, esr, regs);
717 return 0;
720 static const struct fault_info fault_info[] = {
721 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
722 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
723 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
724 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
725 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
726 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
727 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
728 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
729 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
730 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
731 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
732 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
733 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
734 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
735 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
736 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
737 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
738 { do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" },
739 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
740 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
741 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
742 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
743 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
744 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
745 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
746 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
747 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
748 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
749 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
750 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
751 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
752 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
753 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
754 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
755 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
756 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
757 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
758 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
759 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
760 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
761 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
762 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
763 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
764 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
765 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
766 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
767 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
768 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
769 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
770 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
771 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
772 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
773 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
774 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
775 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
776 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
777 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
778 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
779 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
780 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
781 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
782 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
783 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
784 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
787 void do_mem_abort(unsigned long far, unsigned int esr, struct pt_regs *regs)
789 const struct fault_info *inf = esr_to_fault_info(esr);
790 unsigned long addr = untagged_addr(far);
792 if (!inf->fn(far, esr, regs))
793 return;
795 if (!user_mode(regs)) {
796 pr_alert("Unhandled fault at 0x%016lx\n", addr);
797 mem_abort_decode(esr);
798 show_pte(addr);
802 * At this point we have an unrecognized fault type whose tag bits may
803 * have been defined as UNKNOWN. Therefore we only expose the untagged
804 * address to the signal handler.
806 arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
808 NOKPROBE_SYMBOL(do_mem_abort);
810 void do_el0_irq_bp_hardening(void)
812 /* PC has already been checked in entry.S */
813 arm64_apply_bp_hardening();
815 NOKPROBE_SYMBOL(do_el0_irq_bp_hardening);
817 void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
819 arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
820 addr, esr);
822 NOKPROBE_SYMBOL(do_sp_pc_abort);
824 int __init early_brk64(unsigned long addr, unsigned int esr,
825 struct pt_regs *regs);
828 * __refdata because early_brk64 is __init, but the reference to it is
829 * clobbered at arch_initcall time.
830 * See traps.c and debug-monitors.c:debug_traps_init().
832 static struct fault_info __refdata debug_fault_info[] = {
833 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
834 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
835 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
836 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
837 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
838 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
839 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
840 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
843 void __init hook_debug_fault_code(int nr,
844 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
845 int sig, int code, const char *name)
847 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
849 debug_fault_info[nr].fn = fn;
850 debug_fault_info[nr].sig = sig;
851 debug_fault_info[nr].code = code;
852 debug_fault_info[nr].name = name;
856 * In debug exception context, we explicitly disable preemption despite
857 * having interrupts disabled.
858 * This serves two purposes: it makes it much less likely that we would
859 * accidentally schedule in exception context and it will force a warning
860 * if we somehow manage to schedule by accident.
862 static void debug_exception_enter(struct pt_regs *regs)
864 preempt_disable();
866 /* This code is a bit fragile. Test it. */
867 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
869 NOKPROBE_SYMBOL(debug_exception_enter);
871 static void debug_exception_exit(struct pt_regs *regs)
873 preempt_enable_no_resched();
875 NOKPROBE_SYMBOL(debug_exception_exit);
877 #ifdef CONFIG_ARM64_ERRATUM_1463225
878 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
880 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
882 if (user_mode(regs))
883 return 0;
885 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
886 return 0;
889 * We've taken a dummy step exception from the kernel to ensure
890 * that interrupts are re-enabled on the syscall path. Return back
891 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
892 * masked so that we can safely restore the mdscr and get on with
893 * handling the syscall.
895 regs->pstate |= PSR_D_BIT;
896 return 1;
898 #else
899 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
901 return 0;
903 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
904 NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler);
906 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
907 struct pt_regs *regs)
909 const struct fault_info *inf = esr_to_debug_fault_info(esr);
910 unsigned long pc = instruction_pointer(regs);
912 if (cortex_a76_erratum_1463225_debug_handler(regs))
913 return;
915 debug_exception_enter(regs);
917 if (user_mode(regs) && !is_ttbr0_addr(pc))
918 arm64_apply_bp_hardening();
920 if (inf->fn(addr_if_watchpoint, esr, regs)) {
921 arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
924 debug_exception_exit(regs);
926 NOKPROBE_SYMBOL(do_debug_exception);