1 // SPDX-License-Identifier: GPL-2.0-only
3 * Based on arch/arm/mm/fault.c
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1995-2004 Russell King
7 * Copyright (C) 2012 ARM Ltd.
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/signal.h>
15 #include <linux/hardirq.h>
16 #include <linux/init.h>
17 #include <linux/kasan.h>
18 #include <linux/kprobes.h>
19 #include <linux/uaccess.h>
20 #include <linux/page-flags.h>
21 #include <linux/sched/signal.h>
22 #include <linux/sched/debug.h>
23 #include <linux/highmem.h>
24 #include <linux/perf_event.h>
25 #include <linux/preempt.h>
26 #include <linux/hugetlb.h>
30 #include <asm/cmpxchg.h>
31 #include <asm/cpufeature.h>
32 #include <asm/exception.h>
33 #include <asm/daifflags.h>
34 #include <asm/debug-monitors.h>
36 #include <asm/kprobes.h>
38 #include <asm/processor.h>
39 #include <asm/sysreg.h>
40 #include <asm/system_misc.h>
41 #include <asm/tlbflush.h>
42 #include <asm/traps.h>
45 int (*fn
)(unsigned long far
, unsigned int esr
,
46 struct pt_regs
*regs
);
52 static const struct fault_info fault_info
[];
53 static struct fault_info debug_fault_info
[];
55 static inline const struct fault_info
*esr_to_fault_info(unsigned int esr
)
57 return fault_info
+ (esr
& ESR_ELx_FSC
);
60 static inline const struct fault_info
*esr_to_debug_fault_info(unsigned int esr
)
62 return debug_fault_info
+ DBG_ESR_EVT(esr
);
65 static void data_abort_decode(unsigned int esr
)
67 pr_alert("Data abort info:\n");
69 if (esr
& ESR_ELx_ISV
) {
70 pr_alert(" Access size = %u byte(s)\n",
71 1U << ((esr
& ESR_ELx_SAS
) >> ESR_ELx_SAS_SHIFT
));
72 pr_alert(" SSE = %lu, SRT = %lu\n",
73 (esr
& ESR_ELx_SSE
) >> ESR_ELx_SSE_SHIFT
,
74 (esr
& ESR_ELx_SRT_MASK
) >> ESR_ELx_SRT_SHIFT
);
75 pr_alert(" SF = %lu, AR = %lu\n",
76 (esr
& ESR_ELx_SF
) >> ESR_ELx_SF_SHIFT
,
77 (esr
& ESR_ELx_AR
) >> ESR_ELx_AR_SHIFT
);
79 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr
& ESR_ELx_ISS_MASK
);
82 pr_alert(" CM = %lu, WnR = %lu\n",
83 (esr
& ESR_ELx_CM
) >> ESR_ELx_CM_SHIFT
,
84 (esr
& ESR_ELx_WNR
) >> ESR_ELx_WNR_SHIFT
);
87 static void mem_abort_decode(unsigned int esr
)
89 pr_alert("Mem abort info:\n");
91 pr_alert(" ESR = 0x%08x\n", esr
);
92 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
93 ESR_ELx_EC(esr
), esr_get_class_string(esr
),
94 (esr
& ESR_ELx_IL
) ? 32 : 16);
95 pr_alert(" SET = %lu, FnV = %lu\n",
96 (esr
& ESR_ELx_SET_MASK
) >> ESR_ELx_SET_SHIFT
,
97 (esr
& ESR_ELx_FnV
) >> ESR_ELx_FnV_SHIFT
);
98 pr_alert(" EA = %lu, S1PTW = %lu\n",
99 (esr
& ESR_ELx_EA
) >> ESR_ELx_EA_SHIFT
,
100 (esr
& ESR_ELx_S1PTW
) >> ESR_ELx_S1PTW_SHIFT
);
102 if (esr_is_data_abort(esr
))
103 data_abort_decode(esr
);
106 static inline unsigned long mm_to_pgd_phys(struct mm_struct
*mm
)
108 /* Either init_pg_dir or swapper_pg_dir */
110 return __pa_symbol(mm
->pgd
);
112 return (unsigned long)virt_to_phys(mm
->pgd
);
116 * Dump out the page tables associated with 'addr' in the currently active mm.
118 static void show_pte(unsigned long addr
)
120 struct mm_struct
*mm
;
124 if (is_ttbr0_addr(addr
)) {
126 mm
= current
->active_mm
;
127 if (mm
== &init_mm
) {
128 pr_alert("[%016lx] user address but active_mm is swapper\n",
132 } else if (is_ttbr1_addr(addr
)) {
136 pr_alert("[%016lx] address between user and kernel address ranges\n",
141 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
142 mm
== &init_mm
? "swapper" : "user", PAGE_SIZE
/ SZ_1K
,
143 vabits_actual
, mm_to_pgd_phys(mm
));
144 pgdp
= pgd_offset(mm
, addr
);
145 pgd
= READ_ONCE(*pgdp
);
146 pr_alert("[%016lx] pgd=%016llx", addr
, pgd_val(pgd
));
154 if (pgd_none(pgd
) || pgd_bad(pgd
))
157 p4dp
= p4d_offset(pgdp
, addr
);
158 p4d
= READ_ONCE(*p4dp
);
159 pr_cont(", p4d=%016llx", p4d_val(p4d
));
160 if (p4d_none(p4d
) || p4d_bad(p4d
))
163 pudp
= pud_offset(p4dp
, addr
);
164 pud
= READ_ONCE(*pudp
);
165 pr_cont(", pud=%016llx", pud_val(pud
));
166 if (pud_none(pud
) || pud_bad(pud
))
169 pmdp
= pmd_offset(pudp
, addr
);
170 pmd
= READ_ONCE(*pmdp
);
171 pr_cont(", pmd=%016llx", pmd_val(pmd
));
172 if (pmd_none(pmd
) || pmd_bad(pmd
))
175 ptep
= pte_offset_map(pmdp
, addr
);
176 pte
= READ_ONCE(*ptep
);
177 pr_cont(", pte=%016llx", pte_val(pte
));
185 * This function sets the access flags (dirty, accessed), as well as write
186 * permission, and only to a more permissive setting.
188 * It needs to cope with hardware update of the accessed/dirty state by other
189 * agents in the system and can safely skip the __sync_icache_dcache() call as,
190 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
192 * Returns whether or not the PTE actually changed.
194 int ptep_set_access_flags(struct vm_area_struct
*vma
,
195 unsigned long address
, pte_t
*ptep
,
196 pte_t entry
, int dirty
)
198 pteval_t old_pteval
, pteval
;
199 pte_t pte
= READ_ONCE(*ptep
);
201 if (pte_same(pte
, entry
))
204 /* only preserve the access flags and write permission */
205 pte_val(entry
) &= PTE_RDONLY
| PTE_AF
| PTE_WRITE
| PTE_DIRTY
;
208 * Setting the flags must be done atomically to avoid racing with the
209 * hardware update of the access/dirty state. The PTE_RDONLY bit must
210 * be set to the most permissive (lowest value) of *ptep and entry
211 * (calculated as: a & b == ~(~a | ~b)).
213 pte_val(entry
) ^= PTE_RDONLY
;
214 pteval
= pte_val(pte
);
217 pteval
^= PTE_RDONLY
;
218 pteval
|= pte_val(entry
);
219 pteval
^= PTE_RDONLY
;
220 pteval
= cmpxchg_relaxed(&pte_val(*ptep
), old_pteval
, pteval
);
221 } while (pteval
!= old_pteval
);
223 /* Invalidate a stale read-only entry */
225 flush_tlb_page(vma
, address
);
229 static bool is_el1_instruction_abort(unsigned int esr
)
231 return ESR_ELx_EC(esr
) == ESR_ELx_EC_IABT_CUR
;
234 static inline bool is_el1_permission_fault(unsigned long addr
, unsigned int esr
,
235 struct pt_regs
*regs
)
237 unsigned int ec
= ESR_ELx_EC(esr
);
238 unsigned int fsc_type
= esr
& ESR_ELx_FSC_TYPE
;
240 if (ec
!= ESR_ELx_EC_DABT_CUR
&& ec
!= ESR_ELx_EC_IABT_CUR
)
243 if (fsc_type
== ESR_ELx_FSC_PERM
)
246 if (is_ttbr0_addr(addr
) && system_uses_ttbr0_pan())
247 return fsc_type
== ESR_ELx_FSC_FAULT
&&
248 (regs
->pstate
& PSR_PAN_BIT
);
253 static bool __kprobes
is_spurious_el1_translation_fault(unsigned long addr
,
255 struct pt_regs
*regs
)
260 if (ESR_ELx_EC(esr
) != ESR_ELx_EC_DABT_CUR
||
261 (esr
& ESR_ELx_FSC_TYPE
) != ESR_ELx_FSC_FAULT
)
264 local_irq_save(flags
);
265 asm volatile("at s1e1r, %0" :: "r" (addr
));
267 par
= read_sysreg_par();
268 local_irq_restore(flags
);
271 * If we now have a valid translation, treat the translation fault as
274 if (!(par
& SYS_PAR_EL1_F
))
278 * If we got a different type of fault from the AT instruction,
279 * treat the translation fault as spurious.
281 dfsc
= FIELD_GET(SYS_PAR_EL1_FST
, par
);
282 return (dfsc
& ESR_ELx_FSC_TYPE
) != ESR_ELx_FSC_FAULT
;
285 static void die_kernel_fault(const char *msg
, unsigned long addr
,
286 unsigned int esr
, struct pt_regs
*regs
)
290 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg
,
293 mem_abort_decode(esr
);
296 die("Oops", regs
, esr
);
301 #ifdef CONFIG_KASAN_HW_TAGS
302 static void report_tag_fault(unsigned long addr
, unsigned int esr
,
303 struct pt_regs
*regs
)
305 bool is_write
= ((esr
& ESR_ELx_WNR
) >> ESR_ELx_WNR_SHIFT
) != 0;
308 * SAS bits aren't set for all faults reported in EL1, so we can't
309 * find out access size.
311 kasan_report(addr
, 0, is_write
, regs
->pc
);
314 /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
315 static inline void report_tag_fault(unsigned long addr
, unsigned int esr
,
316 struct pt_regs
*regs
) { }
319 static void do_tag_recovery(unsigned long addr
, unsigned int esr
,
320 struct pt_regs
*regs
)
322 static bool reported
;
324 if (!READ_ONCE(reported
)) {
325 report_tag_fault(addr
, esr
, regs
);
326 WRITE_ONCE(reported
, true);
330 * Disable MTE Tag Checking on the local CPU for the current EL.
331 * It will be done lazily on the other CPUs when they will hit a
334 sysreg_clear_set(sctlr_el1
, SCTLR_ELx_TCF_MASK
, SCTLR_ELx_TCF_NONE
);
338 static bool is_el1_mte_sync_tag_check_fault(unsigned int esr
)
340 unsigned int ec
= ESR_ELx_EC(esr
);
341 unsigned int fsc
= esr
& ESR_ELx_FSC
;
343 if (ec
!= ESR_ELx_EC_DABT_CUR
)
346 if (fsc
== ESR_ELx_FSC_MTE
)
352 static void __do_kernel_fault(unsigned long addr
, unsigned int esr
,
353 struct pt_regs
*regs
)
358 * Are we prepared to handle this kernel fault?
359 * We are almost certainly not prepared to handle instruction faults.
361 if (!is_el1_instruction_abort(esr
) && fixup_exception(regs
))
364 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr
, esr
, regs
),
365 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr
))
368 if (is_el1_mte_sync_tag_check_fault(esr
)) {
369 do_tag_recovery(addr
, esr
, regs
);
374 if (is_el1_permission_fault(addr
, esr
, regs
)) {
375 if (esr
& ESR_ELx_WNR
)
376 msg
= "write to read-only memory";
377 else if (is_el1_instruction_abort(esr
))
378 msg
= "execute from non-executable memory";
380 msg
= "read from unreadable memory";
381 } else if (addr
< PAGE_SIZE
) {
382 msg
= "NULL pointer dereference";
384 msg
= "paging request";
387 die_kernel_fault(msg
, addr
, esr
, regs
);
390 static void set_thread_esr(unsigned long address
, unsigned int esr
)
392 current
->thread
.fault_address
= address
;
395 * If the faulting address is in the kernel, we must sanitize the ESR.
396 * From userspace's point of view, kernel-only mappings don't exist
397 * at all, so we report them as level 0 translation faults.
398 * (This is not quite the way that "no mapping there at all" behaves:
399 * an alignment fault not caused by the memory type would take
400 * precedence over translation fault for a real access to empty
401 * space. Unfortunately we can't easily distinguish "alignment fault
402 * not caused by memory type" from "alignment fault caused by memory
403 * type", so we ignore this wrinkle and just return the translation
406 if (!is_ttbr0_addr(current
->thread
.fault_address
)) {
407 switch (ESR_ELx_EC(esr
)) {
408 case ESR_ELx_EC_DABT_LOW
:
410 * These bits provide only information about the
411 * faulting instruction, which userspace knows already.
412 * We explicitly clear bits which are architecturally
413 * RES0 in case they are given meanings in future.
414 * We always report the ESR as if the fault was taken
415 * to EL1 and so ISV and the bits in ISS[23:14] are
416 * clear. (In fact it always will be a fault to EL1.)
418 esr
&= ESR_ELx_EC_MASK
| ESR_ELx_IL
|
419 ESR_ELx_CM
| ESR_ELx_WNR
;
420 esr
|= ESR_ELx_FSC_FAULT
;
422 case ESR_ELx_EC_IABT_LOW
:
424 * Claim a level 0 translation fault.
425 * All other bits are architecturally RES0 for faults
426 * reported with that DFSC value, so we clear them.
428 esr
&= ESR_ELx_EC_MASK
| ESR_ELx_IL
;
429 esr
|= ESR_ELx_FSC_FAULT
;
433 * This should never happen (entry.S only brings us
434 * into this code for insn and data aborts from a lower
435 * exception level). Fail safe by not providing an ESR
436 * context record at all.
438 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr
);
444 current
->thread
.fault_code
= esr
;
447 static void do_bad_area(unsigned long far
, unsigned int esr
,
448 struct pt_regs
*regs
)
450 unsigned long addr
= untagged_addr(far
);
453 * If we are in kernel mode at this point, we have no context to
454 * handle this fault with.
456 if (user_mode(regs
)) {
457 const struct fault_info
*inf
= esr_to_fault_info(esr
);
459 set_thread_esr(addr
, esr
);
460 arm64_force_sig_fault(inf
->sig
, inf
->code
, far
, inf
->name
);
462 __do_kernel_fault(addr
, esr
, regs
);
466 #define VM_FAULT_BADMAP 0x010000
467 #define VM_FAULT_BADACCESS 0x020000
469 static vm_fault_t
__do_page_fault(struct mm_struct
*mm
, unsigned long addr
,
470 unsigned int mm_flags
, unsigned long vm_flags
,
471 struct pt_regs
*regs
)
473 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
476 return VM_FAULT_BADMAP
;
479 * Ok, we have a good vm_area for this memory access, so we can handle
482 if (unlikely(vma
->vm_start
> addr
)) {
483 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
484 return VM_FAULT_BADMAP
;
485 if (expand_stack(vma
, addr
))
486 return VM_FAULT_BADMAP
;
490 * Check that the permissions on the VMA allow for the fault which
493 if (!(vma
->vm_flags
& vm_flags
))
494 return VM_FAULT_BADACCESS
;
495 return handle_mm_fault(vma
, addr
& PAGE_MASK
, mm_flags
, regs
);
498 static bool is_el0_instruction_abort(unsigned int esr
)
500 return ESR_ELx_EC(esr
) == ESR_ELx_EC_IABT_LOW
;
504 * Note: not valid for EL1 DC IVAC, but we never use that such that it
505 * should fault. EL0 cannot issue DC IVAC (undef).
507 static bool is_write_abort(unsigned int esr
)
509 return (esr
& ESR_ELx_WNR
) && !(esr
& ESR_ELx_CM
);
512 static int __kprobes
do_page_fault(unsigned long far
, unsigned int esr
,
513 struct pt_regs
*regs
)
515 const struct fault_info
*inf
;
516 struct mm_struct
*mm
= current
->mm
;
518 unsigned long vm_flags
= VM_ACCESS_FLAGS
;
519 unsigned int mm_flags
= FAULT_FLAG_DEFAULT
;
520 unsigned long addr
= untagged_addr(far
);
522 if (kprobe_page_fault(regs
, esr
))
526 * If we're in an interrupt or have no user context, we must not take
529 if (faulthandler_disabled() || !mm
)
533 mm_flags
|= FAULT_FLAG_USER
;
535 if (is_el0_instruction_abort(esr
)) {
537 mm_flags
|= FAULT_FLAG_INSTRUCTION
;
538 } else if (is_write_abort(esr
)) {
540 mm_flags
|= FAULT_FLAG_WRITE
;
543 if (is_ttbr0_addr(addr
) && is_el1_permission_fault(addr
, esr
, regs
)) {
544 if (is_el1_instruction_abort(esr
))
545 die_kernel_fault("execution of user memory",
548 if (!search_exception_tables(regs
->pc
))
549 die_kernel_fault("access to user memory outside uaccess routines",
553 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, addr
);
556 * As per x86, we may deadlock here. However, since the kernel only
557 * validly references user space from well defined areas of the code,
558 * we can bug out early if this is from code which shouldn't.
560 if (!mmap_read_trylock(mm
)) {
561 if (!user_mode(regs
) && !search_exception_tables(regs
->pc
))
567 * The above down_read_trylock() might have succeeded in which
568 * case, we'll have missed the might_sleep() from down_read().
571 #ifdef CONFIG_DEBUG_VM
572 if (!user_mode(regs
) && !search_exception_tables(regs
->pc
)) {
573 mmap_read_unlock(mm
);
579 fault
= __do_page_fault(mm
, addr
, mm_flags
, vm_flags
, regs
);
581 /* Quick path to respond to signals */
582 if (fault_signal_pending(fault
, regs
)) {
583 if (!user_mode(regs
))
588 if (fault
& VM_FAULT_RETRY
) {
589 if (mm_flags
& FAULT_FLAG_ALLOW_RETRY
) {
590 mm_flags
|= FAULT_FLAG_TRIED
;
594 mmap_read_unlock(mm
);
597 * Handle the "normal" (no error) case first.
599 if (likely(!(fault
& (VM_FAULT_ERROR
| VM_FAULT_BADMAP
|
600 VM_FAULT_BADACCESS
))))
604 * If we are in kernel mode at this point, we have no context to
605 * handle this fault with.
607 if (!user_mode(regs
))
610 if (fault
& VM_FAULT_OOM
) {
612 * We ran out of memory, call the OOM killer, and return to
613 * userspace (which will retry the fault, or kill us if we got
616 pagefault_out_of_memory();
620 inf
= esr_to_fault_info(esr
);
621 set_thread_esr(addr
, esr
);
622 if (fault
& VM_FAULT_SIGBUS
) {
624 * We had some memory, but were unable to successfully fix up
627 arm64_force_sig_fault(SIGBUS
, BUS_ADRERR
, far
, inf
->name
);
628 } else if (fault
& (VM_FAULT_HWPOISON_LARGE
| VM_FAULT_HWPOISON
)) {
632 if (fault
& VM_FAULT_HWPOISON_LARGE
)
633 lsb
= hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault
));
635 arm64_force_sig_mceerr(BUS_MCEERR_AR
, far
, lsb
, inf
->name
);
638 * Something tried to access memory that isn't in our memory
641 arm64_force_sig_fault(SIGSEGV
,
642 fault
== VM_FAULT_BADACCESS
? SEGV_ACCERR
: SEGV_MAPERR
,
649 __do_kernel_fault(addr
, esr
, regs
);
653 static int __kprobes
do_translation_fault(unsigned long far
,
655 struct pt_regs
*regs
)
657 unsigned long addr
= untagged_addr(far
);
659 if (is_ttbr0_addr(addr
))
660 return do_page_fault(far
, esr
, regs
);
662 do_bad_area(far
, esr
, regs
);
666 static int do_alignment_fault(unsigned long far
, unsigned int esr
,
667 struct pt_regs
*regs
)
669 do_bad_area(far
, esr
, regs
);
673 static int do_bad(unsigned long far
, unsigned int esr
, struct pt_regs
*regs
)
675 return 1; /* "fault" */
678 static int do_sea(unsigned long far
, unsigned int esr
, struct pt_regs
*regs
)
680 const struct fault_info
*inf
;
681 unsigned long siaddr
;
683 inf
= esr_to_fault_info(esr
);
685 if (user_mode(regs
) && apei_claim_sea(regs
) == 0) {
687 * APEI claimed this as a firmware-first notification.
688 * Some processing deferred to task_work before ret_to_user().
693 if (esr
& ESR_ELx_FnV
) {
697 * The architecture specifies that the tag bits of FAR_EL1 are
698 * UNKNOWN for synchronous external aborts. Mask them out now
699 * so that userspace doesn't see them.
701 siaddr
= untagged_addr(far
);
703 arm64_notify_die(inf
->name
, regs
, inf
->sig
, inf
->code
, siaddr
, esr
);
708 static int do_tag_check_fault(unsigned long far
, unsigned int esr
,
709 struct pt_regs
*regs
)
712 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN for tag
713 * check faults. Mask them out now so that userspace doesn't see them.
715 far
&= (1UL << 60) - 1;
716 do_bad_area(far
, esr
, regs
);
720 static const struct fault_info fault_info
[] = {
721 { do_bad
, SIGKILL
, SI_KERNEL
, "ttbr address size fault" },
722 { do_bad
, SIGKILL
, SI_KERNEL
, "level 1 address size fault" },
723 { do_bad
, SIGKILL
, SI_KERNEL
, "level 2 address size fault" },
724 { do_bad
, SIGKILL
, SI_KERNEL
, "level 3 address size fault" },
725 { do_translation_fault
, SIGSEGV
, SEGV_MAPERR
, "level 0 translation fault" },
726 { do_translation_fault
, SIGSEGV
, SEGV_MAPERR
, "level 1 translation fault" },
727 { do_translation_fault
, SIGSEGV
, SEGV_MAPERR
, "level 2 translation fault" },
728 { do_translation_fault
, SIGSEGV
, SEGV_MAPERR
, "level 3 translation fault" },
729 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 8" },
730 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 1 access flag fault" },
731 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 2 access flag fault" },
732 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 3 access flag fault" },
733 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 12" },
734 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 1 permission fault" },
735 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 2 permission fault" },
736 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 3 permission fault" },
737 { do_sea
, SIGBUS
, BUS_OBJERR
, "synchronous external abort" },
738 { do_tag_check_fault
, SIGSEGV
, SEGV_MTESERR
, "synchronous tag check fault" },
739 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 18" },
740 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 19" },
741 { do_sea
, SIGKILL
, SI_KERNEL
, "level 0 (translation table walk)" },
742 { do_sea
, SIGKILL
, SI_KERNEL
, "level 1 (translation table walk)" },
743 { do_sea
, SIGKILL
, SI_KERNEL
, "level 2 (translation table walk)" },
744 { do_sea
, SIGKILL
, SI_KERNEL
, "level 3 (translation table walk)" },
745 { do_sea
, SIGBUS
, BUS_OBJERR
, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
746 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 25" },
747 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 26" },
748 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 27" },
749 { do_sea
, SIGKILL
, SI_KERNEL
, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
750 { do_sea
, SIGKILL
, SI_KERNEL
, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
751 { do_sea
, SIGKILL
, SI_KERNEL
, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
752 { do_sea
, SIGKILL
, SI_KERNEL
, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
753 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 32" },
754 { do_alignment_fault
, SIGBUS
, BUS_ADRALN
, "alignment fault" },
755 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 34" },
756 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 35" },
757 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 36" },
758 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 37" },
759 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 38" },
760 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 39" },
761 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 40" },
762 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 41" },
763 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 42" },
764 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 43" },
765 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 44" },
766 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 45" },
767 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 46" },
768 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 47" },
769 { do_bad
, SIGKILL
, SI_KERNEL
, "TLB conflict abort" },
770 { do_bad
, SIGKILL
, SI_KERNEL
, "Unsupported atomic hardware update fault" },
771 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 50" },
772 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 51" },
773 { do_bad
, SIGKILL
, SI_KERNEL
, "implementation fault (lockdown abort)" },
774 { do_bad
, SIGBUS
, BUS_OBJERR
, "implementation fault (unsupported exclusive)" },
775 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 54" },
776 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 55" },
777 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 56" },
778 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 57" },
779 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 58" },
780 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 59" },
781 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 60" },
782 { do_bad
, SIGKILL
, SI_KERNEL
, "section domain fault" },
783 { do_bad
, SIGKILL
, SI_KERNEL
, "page domain fault" },
784 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 63" },
787 void do_mem_abort(unsigned long far
, unsigned int esr
, struct pt_regs
*regs
)
789 const struct fault_info
*inf
= esr_to_fault_info(esr
);
790 unsigned long addr
= untagged_addr(far
);
792 if (!inf
->fn(far
, esr
, regs
))
795 if (!user_mode(regs
)) {
796 pr_alert("Unhandled fault at 0x%016lx\n", addr
);
797 mem_abort_decode(esr
);
802 * At this point we have an unrecognized fault type whose tag bits may
803 * have been defined as UNKNOWN. Therefore we only expose the untagged
804 * address to the signal handler.
806 arm64_notify_die(inf
->name
, regs
, inf
->sig
, inf
->code
, addr
, esr
);
808 NOKPROBE_SYMBOL(do_mem_abort
);
810 void do_el0_irq_bp_hardening(void)
812 /* PC has already been checked in entry.S */
813 arm64_apply_bp_hardening();
815 NOKPROBE_SYMBOL(do_el0_irq_bp_hardening
);
817 void do_sp_pc_abort(unsigned long addr
, unsigned int esr
, struct pt_regs
*regs
)
819 arm64_notify_die("SP/PC alignment exception", regs
, SIGBUS
, BUS_ADRALN
,
822 NOKPROBE_SYMBOL(do_sp_pc_abort
);
824 int __init
early_brk64(unsigned long addr
, unsigned int esr
,
825 struct pt_regs
*regs
);
828 * __refdata because early_brk64 is __init, but the reference to it is
829 * clobbered at arch_initcall time.
830 * See traps.c and debug-monitors.c:debug_traps_init().
832 static struct fault_info __refdata debug_fault_info
[] = {
833 { do_bad
, SIGTRAP
, TRAP_HWBKPT
, "hardware breakpoint" },
834 { do_bad
, SIGTRAP
, TRAP_HWBKPT
, "hardware single-step" },
835 { do_bad
, SIGTRAP
, TRAP_HWBKPT
, "hardware watchpoint" },
836 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 3" },
837 { do_bad
, SIGTRAP
, TRAP_BRKPT
, "aarch32 BKPT" },
838 { do_bad
, SIGKILL
, SI_KERNEL
, "aarch32 vector catch" },
839 { early_brk64
, SIGTRAP
, TRAP_BRKPT
, "aarch64 BRK" },
840 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 7" },
843 void __init
hook_debug_fault_code(int nr
,
844 int (*fn
)(unsigned long, unsigned int, struct pt_regs
*),
845 int sig
, int code
, const char *name
)
847 BUG_ON(nr
< 0 || nr
>= ARRAY_SIZE(debug_fault_info
));
849 debug_fault_info
[nr
].fn
= fn
;
850 debug_fault_info
[nr
].sig
= sig
;
851 debug_fault_info
[nr
].code
= code
;
852 debug_fault_info
[nr
].name
= name
;
856 * In debug exception context, we explicitly disable preemption despite
857 * having interrupts disabled.
858 * This serves two purposes: it makes it much less likely that we would
859 * accidentally schedule in exception context and it will force a warning
860 * if we somehow manage to schedule by accident.
862 static void debug_exception_enter(struct pt_regs
*regs
)
866 /* This code is a bit fragile. Test it. */
867 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
869 NOKPROBE_SYMBOL(debug_exception_enter
);
871 static void debug_exception_exit(struct pt_regs
*regs
)
873 preempt_enable_no_resched();
875 NOKPROBE_SYMBOL(debug_exception_exit
);
877 #ifdef CONFIG_ARM64_ERRATUM_1463225
878 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa
);
880 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs
*regs
)
885 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa
))
889 * We've taken a dummy step exception from the kernel to ensure
890 * that interrupts are re-enabled on the syscall path. Return back
891 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
892 * masked so that we can safely restore the mdscr and get on with
893 * handling the syscall.
895 regs
->pstate
|= PSR_D_BIT
;
899 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs
*regs
)
903 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
904 NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler
);
906 void do_debug_exception(unsigned long addr_if_watchpoint
, unsigned int esr
,
907 struct pt_regs
*regs
)
909 const struct fault_info
*inf
= esr_to_debug_fault_info(esr
);
910 unsigned long pc
= instruction_pointer(regs
);
912 if (cortex_a76_erratum_1463225_debug_handler(regs
))
915 debug_exception_enter(regs
);
917 if (user_mode(regs
) && !is_ttbr0_addr(pc
))
918 arm64_apply_bp_hardening();
920 if (inf
->fn(addr_if_watchpoint
, esr
, regs
)) {
921 arm64_notify_die(inf
->name
, regs
, inf
->sig
, inf
->code
, pc
, esr
);
924 debug_exception_exit(regs
);
926 NOKPROBE_SYMBOL(do_debug_exception
);