Merge tag 'linux-kselftest-kunit-fixes-5.11-rc3' of git://git.kernel.org/pub/scm...
[linux/fpc-iii.git] / arch / mips / kernel / smp-bmips.c
blob359b176b665fd5fd538e89a423b75c9ef01f4cb5
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
8 * SMP support for BMIPS
9 */
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/sched/hotplug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/mm.h>
16 #include <linux/delay.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/cpu.h>
21 #include <linux/cpumask.h>
22 #include <linux/reboot.h>
23 #include <linux/io.h>
24 #include <linux/compiler.h>
25 #include <linux/linkage.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28 #include <linux/kexec.h>
30 #include <asm/time.h>
31 #include <asm/processor.h>
32 #include <asm/bootinfo.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlbflush.h>
35 #include <asm/mipsregs.h>
36 #include <asm/bmips.h>
37 #include <asm/traps.h>
38 #include <asm/barrier.h>
39 #include <asm/cpu-features.h>
41 static int __maybe_unused max_cpus = 1;
43 /* these may be configured by the platform code */
44 int bmips_smp_enabled = 1;
45 int bmips_cpu_offset;
46 cpumask_t bmips_booted_mask;
47 unsigned long bmips_tp1_irqs = IE_IRQ1;
49 #define RESET_FROM_KSEG0 0x80080800
50 #define RESET_FROM_KSEG1 0xa0080800
52 static void bmips_set_reset_vec(int cpu, u32 val);
54 #ifdef CONFIG_SMP
56 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
57 unsigned long bmips_smp_boot_sp;
58 unsigned long bmips_smp_boot_gp;
60 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
61 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
62 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
63 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
65 /* SW interrupts 0,1 are used for interprocessor signaling */
66 #define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
67 #define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
69 #define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
70 #define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
71 #define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
72 #define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
74 static void __init bmips_smp_setup(void)
76 int i, cpu = 1, boot_cpu = 0;
77 int cpu_hw_intr;
79 switch (current_cpu_type()) {
80 case CPU_BMIPS4350:
81 case CPU_BMIPS4380:
82 /* arbitration priority */
83 clear_c0_brcm_cmt_ctrl(0x30);
85 /* NBK and weak order flags */
86 set_c0_brcm_config_0(0x30000);
88 /* Find out if we are running on TP0 or TP1 */
89 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
92 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
93 * thread
94 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
95 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
97 if (boot_cpu == 0)
98 cpu_hw_intr = 0x02;
99 else
100 cpu_hw_intr = 0x1d;
102 change_c0_brcm_cmt_intr(0xf8018000,
103 (cpu_hw_intr << 27) | (0x03 << 15));
105 /* single core, 2 threads (2 pipelines) */
106 max_cpus = 2;
108 break;
109 case CPU_BMIPS5000:
110 /* enable raceless SW interrupts */
111 set_c0_brcm_config(0x03 << 22);
113 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
114 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
116 /* N cores, 2 threads per core */
117 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
119 /* clear any pending SW interrupts */
120 for (i = 0; i < max_cpus; i++) {
121 write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
122 write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
125 break;
126 default:
127 max_cpus = 1;
130 if (!bmips_smp_enabled)
131 max_cpus = 1;
133 /* this can be overridden by the BSP */
134 if (!board_ebase_setup)
135 board_ebase_setup = &bmips_ebase_setup;
137 __cpu_number_map[boot_cpu] = 0;
138 __cpu_logical_map[0] = boot_cpu;
140 for (i = 0; i < max_cpus; i++) {
141 if (i != boot_cpu) {
142 __cpu_number_map[i] = cpu;
143 __cpu_logical_map[cpu] = i;
144 cpu++;
146 set_cpu_possible(i, 1);
147 set_cpu_present(i, 1);
152 * IPI IRQ setup - runs on CPU0
154 static void bmips_prepare_cpus(unsigned int max_cpus)
156 irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
158 switch (current_cpu_type()) {
159 case CPU_BMIPS4350:
160 case CPU_BMIPS4380:
161 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
162 break;
163 case CPU_BMIPS5000:
164 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
165 break;
166 default:
167 return;
170 if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
171 IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
172 panic("Can't request IPI0 interrupt");
173 if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
174 IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
175 panic("Can't request IPI1 interrupt");
179 * Tell the hardware to boot CPUx - runs on CPU0
181 static int bmips_boot_secondary(int cpu, struct task_struct *idle)
183 bmips_smp_boot_sp = __KSTK_TOS(idle);
184 bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
185 mb();
188 * Initial boot sequence for secondary CPU:
189 * bmips_reset_nmi_vec @ a000_0000 ->
190 * bmips_smp_entry ->
191 * plat_wired_tlb_setup (cached function call; optional) ->
192 * start_secondary (cached jump)
194 * Warm restart sequence:
195 * play_dead WAIT loop ->
196 * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
197 * eret to play_dead ->
198 * bmips_secondary_reentry ->
199 * start_secondary
202 pr_info("SMP: Booting CPU%d...\n", cpu);
204 if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
205 /* kseg1 might not exist if this CPU enabled XKS01 */
206 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
208 switch (current_cpu_type()) {
209 case CPU_BMIPS4350:
210 case CPU_BMIPS4380:
211 bmips43xx_send_ipi_single(cpu, 0);
212 break;
213 case CPU_BMIPS5000:
214 bmips5000_send_ipi_single(cpu, 0);
215 break;
217 } else {
218 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
220 switch (current_cpu_type()) {
221 case CPU_BMIPS4350:
222 case CPU_BMIPS4380:
223 /* Reset slave TP1 if booting from TP0 */
224 if (cpu_logical_map(cpu) == 1)
225 set_c0_brcm_cmt_ctrl(0x01);
226 break;
227 case CPU_BMIPS5000:
228 write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
229 break;
231 cpumask_set_cpu(cpu, &bmips_booted_mask);
234 return 0;
238 * Early setup - runs on secondary CPU after cache probe
240 static void bmips_init_secondary(void)
242 bmips_cpu_setup();
244 switch (current_cpu_type()) {
245 case CPU_BMIPS4350:
246 case CPU_BMIPS4380:
247 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
248 break;
249 case CPU_BMIPS5000:
250 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
251 cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
252 break;
257 * Late setup - runs on secondary CPU before entering the idle loop
259 static void bmips_smp_finish(void)
261 pr_info("SMP: CPU%d is running\n", smp_processor_id());
263 /* make sure there won't be a timer interrupt for a little while */
264 write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
266 irq_enable_hazard();
267 set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
268 irq_enable_hazard();
272 * BMIPS5000 raceless IPIs
274 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
275 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
276 * IPI1 is used for SMP_CALL_FUNCTION
279 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
281 write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
284 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
286 int action = irq - IPI0_IRQ;
288 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
290 if (action == 0)
291 scheduler_ipi();
292 else
293 generic_smp_call_function_interrupt();
295 return IRQ_HANDLED;
298 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
299 unsigned int action)
301 unsigned int i;
303 for_each_cpu(i, mask)
304 bmips5000_send_ipi_single(i, action);
308 * BMIPS43xx racey IPIs
310 * We use one inbound SW IRQ for each CPU.
312 * A spinlock must be held in order to keep CPUx from accidentally clearing
313 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
314 * same spinlock is used to protect the action masks.
317 static DEFINE_SPINLOCK(ipi_lock);
318 static DEFINE_PER_CPU(int, ipi_action_mask);
320 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
322 unsigned long flags;
324 spin_lock_irqsave(&ipi_lock, flags);
325 set_c0_cause(cpu ? C_SW1 : C_SW0);
326 per_cpu(ipi_action_mask, cpu) |= action;
327 irq_enable_hazard();
328 spin_unlock_irqrestore(&ipi_lock, flags);
331 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
333 unsigned long flags;
334 int action, cpu = irq - IPI0_IRQ;
336 spin_lock_irqsave(&ipi_lock, flags);
337 action = __this_cpu_read(ipi_action_mask);
338 per_cpu(ipi_action_mask, cpu) = 0;
339 clear_c0_cause(cpu ? C_SW1 : C_SW0);
340 spin_unlock_irqrestore(&ipi_lock, flags);
342 if (action & SMP_RESCHEDULE_YOURSELF)
343 scheduler_ipi();
344 if (action & SMP_CALL_FUNCTION)
345 generic_smp_call_function_interrupt();
347 return IRQ_HANDLED;
350 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
351 unsigned int action)
353 unsigned int i;
355 for_each_cpu(i, mask)
356 bmips43xx_send_ipi_single(i, action);
359 #ifdef CONFIG_HOTPLUG_CPU
361 static int bmips_cpu_disable(void)
363 unsigned int cpu = smp_processor_id();
365 pr_info("SMP: CPU%d is offline\n", cpu);
367 set_cpu_online(cpu, false);
368 calculate_cpu_foreign_map();
369 irq_cpu_offline();
370 clear_c0_status(IE_IRQ5);
372 local_flush_tlb_all();
373 local_flush_icache_range(0, ~0);
375 return 0;
378 static void bmips_cpu_die(unsigned int cpu)
382 void __ref play_dead(void)
384 idle_task_exit();
386 /* flush data cache */
387 _dma_cache_wback_inv(0, ~0);
390 * Wakeup is on SW0 or SW1; disable everything else
391 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
392 * IRQ handlers; this clears ST0_IE and returns immediately.
394 clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
395 change_c0_status(
396 IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
397 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
398 irq_disable_hazard();
401 * wait for SW interrupt from bmips_boot_secondary(), then jump
402 * back to start_secondary()
404 __asm__ __volatile__(
405 " wait\n"
406 " j bmips_secondary_reentry\n"
407 : : : "memory");
410 #endif /* CONFIG_HOTPLUG_CPU */
412 const struct plat_smp_ops bmips43xx_smp_ops = {
413 .smp_setup = bmips_smp_setup,
414 .prepare_cpus = bmips_prepare_cpus,
415 .boot_secondary = bmips_boot_secondary,
416 .smp_finish = bmips_smp_finish,
417 .init_secondary = bmips_init_secondary,
418 .send_ipi_single = bmips43xx_send_ipi_single,
419 .send_ipi_mask = bmips43xx_send_ipi_mask,
420 #ifdef CONFIG_HOTPLUG_CPU
421 .cpu_disable = bmips_cpu_disable,
422 .cpu_die = bmips_cpu_die,
423 #endif
424 #ifdef CONFIG_KEXEC
425 .kexec_nonboot_cpu = kexec_nonboot_cpu_jump,
426 #endif
429 const struct plat_smp_ops bmips5000_smp_ops = {
430 .smp_setup = bmips_smp_setup,
431 .prepare_cpus = bmips_prepare_cpus,
432 .boot_secondary = bmips_boot_secondary,
433 .smp_finish = bmips_smp_finish,
434 .init_secondary = bmips_init_secondary,
435 .send_ipi_single = bmips5000_send_ipi_single,
436 .send_ipi_mask = bmips5000_send_ipi_mask,
437 #ifdef CONFIG_HOTPLUG_CPU
438 .cpu_disable = bmips_cpu_disable,
439 .cpu_die = bmips_cpu_die,
440 #endif
441 #ifdef CONFIG_KEXEC
442 .kexec_nonboot_cpu = kexec_nonboot_cpu_jump,
443 #endif
446 #endif /* CONFIG_SMP */
448 /***********************************************************************
449 * BMIPS vector relocation
450 * This is primarily used for SMP boot, but it is applicable to some
451 * UP BMIPS systems as well.
452 ***********************************************************************/
454 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
456 memcpy((void *)dst, start, end - start);
457 dma_cache_wback(dst, end - start);
458 local_flush_icache_range(dst, dst + (end - start));
459 instruction_hazard();
462 static inline void bmips_nmi_handler_setup(void)
464 bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
465 bmips_reset_nmi_vec_end);
466 bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
467 bmips_smp_int_vec_end);
470 struct reset_vec_info {
471 int cpu;
472 u32 val;
475 static void bmips_set_reset_vec_remote(void *vinfo)
477 struct reset_vec_info *info = vinfo;
478 int shift = info->cpu & 0x01 ? 16 : 0;
479 u32 mask = ~(0xffff << shift), val = info->val >> 16;
481 preempt_disable();
482 if (smp_processor_id() > 0) {
483 smp_call_function_single(0, &bmips_set_reset_vec_remote,
484 info, 1);
485 } else {
486 if (info->cpu & 0x02) {
487 /* BMIPS5200 "should" use mask/shift, but it's buggy */
488 bmips_write_zscm_reg(0xa0, (val << 16) | val);
489 bmips_read_zscm_reg(0xa0);
490 } else {
491 write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
492 (val << shift));
495 preempt_enable();
498 static void bmips_set_reset_vec(int cpu, u32 val)
500 struct reset_vec_info info;
502 if (current_cpu_type() == CPU_BMIPS5000) {
503 /* this needs to run from CPU0 (which is always online) */
504 info.cpu = cpu;
505 info.val = val;
506 bmips_set_reset_vec_remote(&info);
507 } else {
508 void __iomem *cbr = BMIPS_GET_CBR();
510 if (cpu == 0)
511 __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
512 else {
513 if (current_cpu_type() != CPU_BMIPS4380)
514 return;
515 __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
518 __sync();
519 back_to_back_c0_hazard();
522 void bmips_ebase_setup(void)
524 unsigned long new_ebase = ebase;
526 BUG_ON(ebase != CKSEG0);
528 switch (current_cpu_type()) {
529 case CPU_BMIPS4350:
531 * BMIPS4350 cannot relocate the normal vectors, but it
532 * can relocate the BEV=1 vectors. So CPU1 starts up at
533 * the relocated BEV=1, IV=0 general exception vector @
534 * 0xa000_0380.
536 * set_uncached_handler() is used here because:
537 * - CPU1 will run this from uncached space
538 * - None of the cacheflush functions are set up yet
540 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
541 &bmips_smp_int_vec, 0x80);
542 __sync();
543 return;
544 case CPU_BMIPS3300:
545 case CPU_BMIPS4380:
547 * 0x8000_0000: reset/NMI (initially in kseg1)
548 * 0x8000_0400: normal vectors
550 new_ebase = 0x80000400;
551 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
552 break;
553 case CPU_BMIPS5000:
555 * 0x8000_0000: reset/NMI (initially in kseg1)
556 * 0x8000_1000: normal vectors
558 new_ebase = 0x80001000;
559 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
560 write_c0_ebase(new_ebase);
561 break;
562 default:
563 return;
566 board_nmi_handler_setup = &bmips_nmi_handler_setup;
567 ebase = new_ebase;
570 asmlinkage void __weak plat_wired_tlb_setup(void)
573 * Called when starting/restarting a secondary CPU.
574 * Kernel stacks and other important data might only be accessible
575 * once the wired entries are present.
579 void bmips_cpu_setup(void)
581 void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
582 u32 __maybe_unused cfg;
584 switch (current_cpu_type()) {
585 case CPU_BMIPS3300:
586 /* Set BIU to async mode */
587 set_c0_brcm_bus_pll(BIT(22));
588 __sync();
590 /* put the BIU back in sync mode */
591 clear_c0_brcm_bus_pll(BIT(22));
593 /* clear BHTD to enable branch history table */
594 clear_c0_brcm_reset(BIT(16));
596 /* Flush and enable RAC */
597 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
598 __raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
599 __raw_readl(cbr + BMIPS_RAC_CONFIG);
601 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
602 __raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
603 __raw_readl(cbr + BMIPS_RAC_CONFIG);
605 cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
606 __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
607 __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
608 break;
610 case CPU_BMIPS4380:
611 /* CBG workaround for early BMIPS4380 CPUs */
612 switch (read_c0_prid()) {
613 case 0x2a040:
614 case 0x2a042:
615 case 0x2a044:
616 case 0x2a060:
617 cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
618 __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
619 __raw_readl(cbr + BMIPS_L2_CONFIG);
622 /* clear BHTD to enable branch history table */
623 clear_c0_brcm_config_0(BIT(21));
625 /* XI/ROTR enable */
626 set_c0_brcm_config_0(BIT(23));
627 set_c0_brcm_cmt_ctrl(BIT(15));
628 break;
630 case CPU_BMIPS5000:
631 /* enable RDHWR, BRDHWR */
632 set_c0_brcm_config(BIT(17) | BIT(21));
634 /* Disable JTB */
635 __asm__ __volatile__(
636 " .set noreorder\n"
637 " li $8, 0x5a455048\n"
638 " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
639 " .word 0x4008b008\n" /* mfc0 t0, $22, 8 */
640 " li $9, 0x00008000\n"
641 " or $8, $8, $9\n"
642 " .word 0x4088b008\n" /* mtc0 t0, $22, 8 */
643 " sync\n"
644 " li $8, 0x0\n"
645 " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
646 " .set reorder\n"
647 : : : "$8", "$9");
649 /* XI enable */
650 set_c0_brcm_config(BIT(27));
652 /* enable MIPS32R2 ROR instruction for XI TLB handlers */
653 __asm__ __volatile__(
654 " li $8, 0x5a455048\n"
655 " .word 0x4088b00f\n" /* mtc0 $8, $22, 15 */
656 " nop; nop; nop\n"
657 " .word 0x4008b008\n" /* mfc0 $8, $22, 8 */
658 " lui $9, 0x0100\n"
659 " or $8, $9\n"
660 " .word 0x4088b008\n" /* mtc0 $8, $22, 8 */
661 : : : "$8", "$9");
662 break;