Merge tag 'linux-kselftest-kunit-fixes-5.11-rc3' of git://git.kernel.org/pub/scm...
[linux/fpc-iii.git] / arch / mips / mm / tlbex.c
bloba7521b8f765862d32be631bfce69e3a0ce639623
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
14 * ... and the days got worse and worse and now you see
15 * I've gone completely out of my mind.
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
21 * (Condolences to Napoleon XIV)
24 #include <linux/bug.h>
25 #include <linux/export.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/smp.h>
29 #include <linux/string.h>
30 #include <linux/cache.h>
31 #include <linux/pgtable.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpu-type.h>
35 #include <asm/mmu_context.h>
36 #include <asm/war.h>
37 #include <asm/uasm.h>
38 #include <asm/setup.h>
39 #include <asm/tlbex.h>
41 static int mips_xpa_disabled;
43 static int __init xpa_disable(char *s)
45 mips_xpa_disabled = 1;
47 return 1;
50 __setup("noxpa", xpa_disable);
53 * TLB load/store/modify handlers.
55 * Only the fastpath gets synthesized at runtime, the slowpath for
56 * do_page_fault remains normal asm.
58 extern void tlb_do_page_fault_0(void);
59 extern void tlb_do_page_fault_1(void);
61 struct work_registers {
62 int r1;
63 int r2;
64 int r3;
67 struct tlb_reg_save {
68 unsigned long a;
69 unsigned long b;
70 } ____cacheline_aligned_in_smp;
72 static struct tlb_reg_save handler_reg_save[NR_CPUS];
74 static inline int r45k_bvahwbug(void)
76 /* XXX: We should probe for the presence of this bug, but we don't. */
77 return 0;
80 static inline int r4k_250MHZhwbug(void)
82 /* XXX: We should probe for the presence of this bug, but we don't. */
83 return 0;
86 extern int sb1250_m3_workaround_needed(void);
88 static inline int __maybe_unused bcm1250_m3_war(void)
90 if (IS_ENABLED(CONFIG_SB1_PASS_2_WORKAROUNDS))
91 return sb1250_m3_workaround_needed();
92 return 0;
95 static inline int __maybe_unused r10000_llsc_war(void)
97 return IS_ENABLED(CONFIG_WAR_R10000_LLSC);
100 static int use_bbit_insns(void)
102 switch (current_cpu_type()) {
103 case CPU_CAVIUM_OCTEON:
104 case CPU_CAVIUM_OCTEON_PLUS:
105 case CPU_CAVIUM_OCTEON2:
106 case CPU_CAVIUM_OCTEON3:
107 return 1;
108 default:
109 return 0;
113 static int use_lwx_insns(void)
115 switch (current_cpu_type()) {
116 case CPU_CAVIUM_OCTEON2:
117 case CPU_CAVIUM_OCTEON3:
118 return 1;
119 default:
120 return 0;
123 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
124 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
125 static bool scratchpad_available(void)
127 return true;
129 static int scratchpad_offset(int i)
132 * CVMSEG starts at address -32768 and extends for
133 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
135 i += 1; /* Kernel use starts at the top and works down. */
136 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
138 #else
139 static bool scratchpad_available(void)
141 return false;
143 static int scratchpad_offset(int i)
145 BUG();
146 /* Really unreachable, but evidently some GCC want this. */
147 return 0;
149 #endif
151 * Found by experiment: At least some revisions of the 4kc throw under
152 * some circumstances a machine check exception, triggered by invalid
153 * values in the index register. Delaying the tlbp instruction until
154 * after the next branch, plus adding an additional nop in front of
155 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
156 * why; it's not an issue caused by the core RTL.
159 static int m4kc_tlbp_war(void)
161 return current_cpu_type() == CPU_4KC;
164 /* Handle labels (which must be positive integers). */
165 enum label_id {
166 label_second_part = 1,
167 label_leave,
168 label_vmalloc,
169 label_vmalloc_done,
170 label_tlbw_hazard_0,
171 label_split = label_tlbw_hazard_0 + 8,
172 label_tlbl_goaround1,
173 label_tlbl_goaround2,
174 label_nopage_tlbl,
175 label_nopage_tlbs,
176 label_nopage_tlbm,
177 label_smp_pgtable_change,
178 label_r3000_write_probe_fail,
179 label_large_segbits_fault,
180 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
181 label_tlb_huge_update,
182 #endif
185 UASM_L_LA(_second_part)
186 UASM_L_LA(_leave)
187 UASM_L_LA(_vmalloc)
188 UASM_L_LA(_vmalloc_done)
189 /* _tlbw_hazard_x is handled differently. */
190 UASM_L_LA(_split)
191 UASM_L_LA(_tlbl_goaround1)
192 UASM_L_LA(_tlbl_goaround2)
193 UASM_L_LA(_nopage_tlbl)
194 UASM_L_LA(_nopage_tlbs)
195 UASM_L_LA(_nopage_tlbm)
196 UASM_L_LA(_smp_pgtable_change)
197 UASM_L_LA(_r3000_write_probe_fail)
198 UASM_L_LA(_large_segbits_fault)
199 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
200 UASM_L_LA(_tlb_huge_update)
201 #endif
203 static int hazard_instance;
205 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
207 switch (instance) {
208 case 0 ... 7:
209 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
210 return;
211 default:
212 BUG();
216 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
218 switch (instance) {
219 case 0 ... 7:
220 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
221 break;
222 default:
223 BUG();
228 * pgtable bits are assigned dynamically depending on processor feature
229 * and statically based on kernel configuration. This spits out the actual
230 * values the kernel is using. Required to make sense from disassembled
231 * TLB exception handlers.
233 static void output_pgtable_bits_defines(void)
235 #define pr_define(fmt, ...) \
236 pr_debug("#define " fmt, ##__VA_ARGS__)
238 pr_debug("#include <asm/asm.h>\n");
239 pr_debug("#include <asm/regdef.h>\n");
240 pr_debug("\n");
242 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
243 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
244 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
245 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
246 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
247 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
248 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
249 #endif
250 #ifdef _PAGE_NO_EXEC_SHIFT
251 if (cpu_has_rixi)
252 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
253 #endif
254 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
255 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
256 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
257 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
258 pr_debug("\n");
261 static inline void dump_handler(const char *symbol, const void *start, const void *end)
263 unsigned int count = (end - start) / sizeof(u32);
264 const u32 *handler = start;
265 int i;
267 pr_debug("LEAF(%s)\n", symbol);
269 pr_debug("\t.set push\n");
270 pr_debug("\t.set noreorder\n");
272 for (i = 0; i < count; i++)
273 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
275 pr_debug("\t.set\tpop\n");
277 pr_debug("\tEND(%s)\n", symbol);
280 /* The only general purpose registers allowed in TLB handlers. */
281 #define K0 26
282 #define K1 27
284 /* Some CP0 registers */
285 #define C0_INDEX 0, 0
286 #define C0_ENTRYLO0 2, 0
287 #define C0_TCBIND 2, 2
288 #define C0_ENTRYLO1 3, 0
289 #define C0_CONTEXT 4, 0
290 #define C0_PAGEMASK 5, 0
291 #define C0_PWBASE 5, 5
292 #define C0_PWFIELD 5, 6
293 #define C0_PWSIZE 5, 7
294 #define C0_PWCTL 6, 6
295 #define C0_BADVADDR 8, 0
296 #define C0_PGD 9, 7
297 #define C0_ENTRYHI 10, 0
298 #define C0_EPC 14, 0
299 #define C0_XCONTEXT 20, 0
301 #ifdef CONFIG_64BIT
302 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
303 #else
304 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
305 #endif
307 /* The worst case length of the handler is around 18 instructions for
308 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
309 * Maximum space available is 32 instructions for R3000 and 64
310 * instructions for R4000.
312 * We deliberately chose a buffer size of 128, so we won't scribble
313 * over anything important on overflow before we panic.
315 static u32 tlb_handler[128];
317 /* simply assume worst case size for labels and relocs */
318 static struct uasm_label labels[128];
319 static struct uasm_reloc relocs[128];
321 static int check_for_high_segbits;
322 static bool fill_includes_sw_bits;
324 static unsigned int kscratch_used_mask;
326 static inline int __maybe_unused c0_kscratch(void)
328 switch (current_cpu_type()) {
329 case CPU_XLP:
330 case CPU_XLR:
331 return 22;
332 default:
333 return 31;
337 static int allocate_kscratch(void)
339 int r;
340 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
342 r = ffs(a);
344 if (r == 0)
345 return -1;
347 r--; /* make it zero based */
349 kscratch_used_mask |= (1 << r);
351 return r;
354 static int scratch_reg;
355 int pgd_reg;
356 EXPORT_SYMBOL_GPL(pgd_reg);
357 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
359 static struct work_registers build_get_work_registers(u32 **p)
361 struct work_registers r;
363 if (scratch_reg >= 0) {
364 /* Save in CPU local C0_KScratch? */
365 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
366 r.r1 = K0;
367 r.r2 = K1;
368 r.r3 = 1;
369 return r;
372 if (num_possible_cpus() > 1) {
373 /* Get smp_processor_id */
374 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
375 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
377 /* handler_reg_save index in K0 */
378 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
380 UASM_i_LA(p, K1, (long)&handler_reg_save);
381 UASM_i_ADDU(p, K0, K0, K1);
382 } else {
383 UASM_i_LA(p, K0, (long)&handler_reg_save);
385 /* K0 now points to save area, save $1 and $2 */
386 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
387 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
389 r.r1 = K1;
390 r.r2 = 1;
391 r.r3 = 2;
392 return r;
395 static void build_restore_work_registers(u32 **p)
397 if (scratch_reg >= 0) {
398 uasm_i_ehb(p);
399 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
400 return;
402 /* K0 already points to save area, restore $1 and $2 */
403 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
404 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
407 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
410 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
411 * we cannot do r3000 under these circumstances.
413 * The R3000 TLB handler is simple.
415 static void build_r3000_tlb_refill_handler(void)
417 long pgdc = (long)pgd_current;
418 u32 *p;
420 memset(tlb_handler, 0, sizeof(tlb_handler));
421 p = tlb_handler;
423 uasm_i_mfc0(&p, K0, C0_BADVADDR);
424 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
425 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
426 uasm_i_srl(&p, K0, K0, 22); /* load delay */
427 uasm_i_sll(&p, K0, K0, 2);
428 uasm_i_addu(&p, K1, K1, K0);
429 uasm_i_mfc0(&p, K0, C0_CONTEXT);
430 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
431 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
432 uasm_i_addu(&p, K1, K1, K0);
433 uasm_i_lw(&p, K0, 0, K1);
434 uasm_i_nop(&p); /* load delay */
435 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
436 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
437 uasm_i_tlbwr(&p); /* cp0 delay */
438 uasm_i_jr(&p, K1);
439 uasm_i_rfe(&p); /* branch delay */
441 if (p > tlb_handler + 32)
442 panic("TLB refill handler space exceeded");
444 pr_debug("Wrote TLB refill handler (%u instructions).\n",
445 (unsigned int)(p - tlb_handler));
447 memcpy((void *)ebase, tlb_handler, 0x80);
448 local_flush_icache_range(ebase, ebase + 0x80);
449 dump_handler("r3000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x80));
451 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
454 * The R4000 TLB handler is much more complicated. We have two
455 * consecutive handler areas with 32 instructions space each.
456 * Since they aren't used at the same time, we can overflow in the
457 * other one.To keep things simple, we first assume linear space,
458 * then we relocate it to the final handler layout as needed.
460 static u32 final_handler[64];
463 * Hazards
465 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
466 * 2. A timing hazard exists for the TLBP instruction.
468 * stalling_instruction
469 * TLBP
471 * The JTLB is being read for the TLBP throughout the stall generated by the
472 * previous instruction. This is not really correct as the stalling instruction
473 * can modify the address used to access the JTLB. The failure symptom is that
474 * the TLBP instruction will use an address created for the stalling instruction
475 * and not the address held in C0_ENHI and thus report the wrong results.
477 * The software work-around is to not allow the instruction preceding the TLBP
478 * to stall - make it an NOP or some other instruction guaranteed not to stall.
480 * Errata 2 will not be fixed. This errata is also on the R5000.
482 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
484 static void __maybe_unused build_tlb_probe_entry(u32 **p)
486 switch (current_cpu_type()) {
487 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
488 case CPU_R4600:
489 case CPU_R4700:
490 case CPU_R5000:
491 case CPU_NEVADA:
492 uasm_i_nop(p);
493 uasm_i_tlbp(p);
494 break;
496 default:
497 uasm_i_tlbp(p);
498 break;
502 void build_tlb_write_entry(u32 **p, struct uasm_label **l,
503 struct uasm_reloc **r,
504 enum tlb_write_entry wmode)
506 void(*tlbw)(u32 **) = NULL;
508 switch (wmode) {
509 case tlb_random: tlbw = uasm_i_tlbwr; break;
510 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
513 if (cpu_has_mips_r2_r6) {
514 if (cpu_has_mips_r2_exec_hazard)
515 uasm_i_ehb(p);
516 tlbw(p);
517 return;
520 switch (current_cpu_type()) {
521 case CPU_R4000PC:
522 case CPU_R4000SC:
523 case CPU_R4000MC:
524 case CPU_R4400PC:
525 case CPU_R4400SC:
526 case CPU_R4400MC:
528 * This branch uses up a mtc0 hazard nop slot and saves
529 * two nops after the tlbw instruction.
531 uasm_bgezl_hazard(p, r, hazard_instance);
532 tlbw(p);
533 uasm_bgezl_label(l, p, hazard_instance);
534 hazard_instance++;
535 uasm_i_nop(p);
536 break;
538 case CPU_R4600:
539 case CPU_R4700:
540 uasm_i_nop(p);
541 tlbw(p);
542 uasm_i_nop(p);
543 break;
545 case CPU_R5000:
546 case CPU_NEVADA:
547 uasm_i_nop(p); /* QED specifies 2 nops hazard */
548 uasm_i_nop(p); /* QED specifies 2 nops hazard */
549 tlbw(p);
550 break;
552 case CPU_5KC:
553 case CPU_TX49XX:
554 case CPU_PR4450:
555 case CPU_XLR:
556 uasm_i_nop(p);
557 tlbw(p);
558 break;
560 case CPU_R10000:
561 case CPU_R12000:
562 case CPU_R14000:
563 case CPU_R16000:
564 case CPU_4KC:
565 case CPU_4KEC:
566 case CPU_M14KC:
567 case CPU_M14KEC:
568 case CPU_SB1:
569 case CPU_SB1A:
570 case CPU_4KSC:
571 case CPU_20KC:
572 case CPU_25KF:
573 case CPU_BMIPS32:
574 case CPU_BMIPS3300:
575 case CPU_BMIPS4350:
576 case CPU_BMIPS4380:
577 case CPU_BMIPS5000:
578 case CPU_LOONGSON2EF:
579 case CPU_LOONGSON64:
580 case CPU_R5500:
581 if (m4kc_tlbp_war())
582 uasm_i_nop(p);
583 fallthrough;
584 case CPU_ALCHEMY:
585 tlbw(p);
586 break;
588 case CPU_RM7000:
589 uasm_i_nop(p);
590 uasm_i_nop(p);
591 uasm_i_nop(p);
592 uasm_i_nop(p);
593 tlbw(p);
594 break;
596 case CPU_VR4111:
597 case CPU_VR4121:
598 case CPU_VR4122:
599 case CPU_VR4181:
600 case CPU_VR4181A:
601 uasm_i_nop(p);
602 uasm_i_nop(p);
603 tlbw(p);
604 uasm_i_nop(p);
605 uasm_i_nop(p);
606 break;
608 case CPU_VR4131:
609 case CPU_VR4133:
610 uasm_i_nop(p);
611 uasm_i_nop(p);
612 tlbw(p);
613 break;
615 case CPU_XBURST:
616 tlbw(p);
617 uasm_i_nop(p);
618 break;
620 default:
621 panic("No TLB refill handler yet (CPU type: %d)",
622 current_cpu_type());
623 break;
626 EXPORT_SYMBOL_GPL(build_tlb_write_entry);
628 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
629 unsigned int reg)
631 if (_PAGE_GLOBAL_SHIFT == 0) {
632 /* pte_t is already in EntryLo format */
633 return;
636 if (cpu_has_rixi && !!_PAGE_NO_EXEC) {
637 if (fill_includes_sw_bits) {
638 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
639 } else {
640 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
641 UASM_i_ROTR(p, reg, reg,
642 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
644 } else {
645 #ifdef CONFIG_PHYS_ADDR_T_64BIT
646 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
647 #else
648 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
649 #endif
653 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
655 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
656 unsigned int tmp, enum label_id lid,
657 int restore_scratch)
659 if (restore_scratch) {
661 * Ensure the MFC0 below observes the value written to the
662 * KScratch register by the prior MTC0.
664 if (scratch_reg >= 0)
665 uasm_i_ehb(p);
667 /* Reset default page size */
668 if (PM_DEFAULT_MASK >> 16) {
669 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
670 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
671 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
672 uasm_il_b(p, r, lid);
673 } else if (PM_DEFAULT_MASK) {
674 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
675 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
676 uasm_il_b(p, r, lid);
677 } else {
678 uasm_i_mtc0(p, 0, C0_PAGEMASK);
679 uasm_il_b(p, r, lid);
681 if (scratch_reg >= 0)
682 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
683 else
684 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
685 } else {
686 /* Reset default page size */
687 if (PM_DEFAULT_MASK >> 16) {
688 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
689 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
690 uasm_il_b(p, r, lid);
691 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
692 } else if (PM_DEFAULT_MASK) {
693 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
694 uasm_il_b(p, r, lid);
695 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
696 } else {
697 uasm_il_b(p, r, lid);
698 uasm_i_mtc0(p, 0, C0_PAGEMASK);
703 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
704 struct uasm_reloc **r,
705 unsigned int tmp,
706 enum tlb_write_entry wmode,
707 int restore_scratch)
709 /* Set huge page tlb entry size */
710 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
711 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
712 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
714 build_tlb_write_entry(p, l, r, wmode);
716 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
720 * Check if Huge PTE is present, if so then jump to LABEL.
722 static void
723 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
724 unsigned int pmd, int lid)
726 UASM_i_LW(p, tmp, 0, pmd);
727 if (use_bbit_insns()) {
728 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
729 } else {
730 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
731 uasm_il_bnez(p, r, tmp, lid);
735 static void build_huge_update_entries(u32 **p, unsigned int pte,
736 unsigned int tmp)
738 int small_sequence;
741 * A huge PTE describes an area the size of the
742 * configured huge page size. This is twice the
743 * of the large TLB entry size we intend to use.
744 * A TLB entry half the size of the configured
745 * huge page size is configured into entrylo0
746 * and entrylo1 to cover the contiguous huge PTE
747 * address space.
749 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
751 /* We can clobber tmp. It isn't used after this.*/
752 if (!small_sequence)
753 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
755 build_convert_pte_to_entrylo(p, pte);
756 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
757 /* convert to entrylo1 */
758 if (small_sequence)
759 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
760 else
761 UASM_i_ADDU(p, pte, pte, tmp);
763 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
766 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
767 struct uasm_label **l,
768 unsigned int pte,
769 unsigned int ptr,
770 unsigned int flush)
772 #ifdef CONFIG_SMP
773 UASM_i_SC(p, pte, 0, ptr);
774 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
775 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
776 #else
777 UASM_i_SW(p, pte, 0, ptr);
778 #endif
779 if (cpu_has_ftlb && flush) {
780 BUG_ON(!cpu_has_tlbinv);
782 UASM_i_MFC0(p, ptr, C0_ENTRYHI);
783 uasm_i_ori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
784 UASM_i_MTC0(p, ptr, C0_ENTRYHI);
785 build_tlb_write_entry(p, l, r, tlb_indexed);
787 uasm_i_xori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
788 UASM_i_MTC0(p, ptr, C0_ENTRYHI);
789 build_huge_update_entries(p, pte, ptr);
790 build_huge_tlb_write_entry(p, l, r, pte, tlb_random, 0);
792 return;
795 build_huge_update_entries(p, pte, ptr);
796 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
798 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
800 #ifdef CONFIG_64BIT
802 * TMP and PTR are scratch.
803 * TMP will be clobbered, PTR will hold the pmd entry.
805 void build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
806 unsigned int tmp, unsigned int ptr)
808 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
809 long pgdc = (long)pgd_current;
810 #endif
812 * The vmalloc handling is not in the hotpath.
814 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
816 if (check_for_high_segbits) {
818 * The kernel currently implicitely assumes that the
819 * MIPS SEGBITS parameter for the processor is
820 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
821 * allocate virtual addresses outside the maximum
822 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
823 * that doesn't prevent user code from accessing the
824 * higher xuseg addresses. Here, we make sure that
825 * everything but the lower xuseg addresses goes down
826 * the module_alloc/vmalloc path.
828 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
829 uasm_il_bnez(p, r, ptr, label_vmalloc);
830 } else {
831 uasm_il_bltz(p, r, tmp, label_vmalloc);
833 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
835 if (pgd_reg != -1) {
836 /* pgd is in pgd_reg */
837 if (cpu_has_ldpte)
838 UASM_i_MFC0(p, ptr, C0_PWBASE);
839 else
840 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
841 } else {
842 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
844 * &pgd << 11 stored in CONTEXT [23..63].
846 UASM_i_MFC0(p, ptr, C0_CONTEXT);
848 /* Clear lower 23 bits of context. */
849 uasm_i_dins(p, ptr, 0, 0, 23);
851 /* 1 0 1 0 1 << 6 xkphys cached */
852 uasm_i_ori(p, ptr, ptr, 0x540);
853 uasm_i_drotr(p, ptr, ptr, 11);
854 #elif defined(CONFIG_SMP)
855 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
856 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
857 UASM_i_LA_mostly(p, tmp, pgdc);
858 uasm_i_daddu(p, ptr, ptr, tmp);
859 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
860 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
861 #else
862 UASM_i_LA_mostly(p, ptr, pgdc);
863 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
864 #endif
867 uasm_l_vmalloc_done(l, *p);
869 /* get pgd offset in bytes */
870 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
872 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
873 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
874 #ifndef __PAGETABLE_PUD_FOLDED
875 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
876 uasm_i_ld(p, ptr, 0, ptr); /* get pud pointer */
877 uasm_i_dsrl_safe(p, tmp, tmp, PUD_SHIFT - 3); /* get pud offset in bytes */
878 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PUD - 1) << 3);
879 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pud offset */
880 #endif
881 #ifndef __PAGETABLE_PMD_FOLDED
882 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
883 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
884 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
885 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
886 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
887 #endif
889 EXPORT_SYMBOL_GPL(build_get_pmde64);
892 * BVADDR is the faulting address, PTR is scratch.
893 * PTR will hold the pgd for vmalloc.
895 static void
896 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
897 unsigned int bvaddr, unsigned int ptr,
898 enum vmalloc64_mode mode)
900 long swpd = (long)swapper_pg_dir;
901 int single_insn_swpd;
902 int did_vmalloc_branch = 0;
904 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
906 uasm_l_vmalloc(l, *p);
908 if (mode != not_refill && check_for_high_segbits) {
909 if (single_insn_swpd) {
910 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
911 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
912 did_vmalloc_branch = 1;
913 /* fall through */
914 } else {
915 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
918 if (!did_vmalloc_branch) {
919 if (single_insn_swpd) {
920 uasm_il_b(p, r, label_vmalloc_done);
921 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
922 } else {
923 UASM_i_LA_mostly(p, ptr, swpd);
924 uasm_il_b(p, r, label_vmalloc_done);
925 if (uasm_in_compat_space_p(swpd))
926 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
927 else
928 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
931 if (mode != not_refill && check_for_high_segbits) {
932 uasm_l_large_segbits_fault(l, *p);
934 if (mode == refill_scratch && scratch_reg >= 0)
935 uasm_i_ehb(p);
938 * We get here if we are an xsseg address, or if we are
939 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
941 * Ignoring xsseg (assume disabled so would generate
942 * (address errors?), the only remaining possibility
943 * is the upper xuseg addresses. On processors with
944 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
945 * addresses would have taken an address error. We try
946 * to mimic that here by taking a load/istream page
947 * fault.
949 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
950 uasm_i_sync(p, 0);
951 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
952 uasm_i_jr(p, ptr);
954 if (mode == refill_scratch) {
955 if (scratch_reg >= 0)
956 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
957 else
958 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
959 } else {
960 uasm_i_nop(p);
965 #else /* !CONFIG_64BIT */
968 * TMP and PTR are scratch.
969 * TMP will be clobbered, PTR will hold the pgd entry.
971 void build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
973 if (pgd_reg != -1) {
974 /* pgd is in pgd_reg */
975 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
976 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
977 } else {
978 long pgdc = (long)pgd_current;
980 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
981 #ifdef CONFIG_SMP
982 uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
983 UASM_i_LA_mostly(p, tmp, pgdc);
984 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
985 uasm_i_addu(p, ptr, tmp, ptr);
986 #else
987 UASM_i_LA_mostly(p, ptr, pgdc);
988 #endif
989 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
990 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
992 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
993 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
994 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
996 EXPORT_SYMBOL_GPL(build_get_pgde32);
998 #endif /* !CONFIG_64BIT */
1000 static void build_adjust_context(u32 **p, unsigned int ctx)
1002 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
1003 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1005 switch (current_cpu_type()) {
1006 case CPU_VR41XX:
1007 case CPU_VR4111:
1008 case CPU_VR4121:
1009 case CPU_VR4122:
1010 case CPU_VR4131:
1011 case CPU_VR4181:
1012 case CPU_VR4181A:
1013 case CPU_VR4133:
1014 shift += 2;
1015 break;
1017 default:
1018 break;
1021 if (shift)
1022 UASM_i_SRL(p, ctx, ctx, shift);
1023 uasm_i_andi(p, ctx, ctx, mask);
1026 void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1029 * Bug workaround for the Nevada. It seems as if under certain
1030 * circumstances the move from cp0_context might produce a
1031 * bogus result when the mfc0 instruction and its consumer are
1032 * in a different cacheline or a load instruction, probably any
1033 * memory reference, is between them.
1035 switch (current_cpu_type()) {
1036 case CPU_NEVADA:
1037 UASM_i_LW(p, ptr, 0, ptr);
1038 GET_CONTEXT(p, tmp); /* get context reg */
1039 break;
1041 default:
1042 GET_CONTEXT(p, tmp); /* get context reg */
1043 UASM_i_LW(p, ptr, 0, ptr);
1044 break;
1047 build_adjust_context(p, tmp);
1048 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1050 EXPORT_SYMBOL_GPL(build_get_ptep);
1052 void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1054 int pte_off_even = 0;
1055 int pte_off_odd = sizeof(pte_t);
1057 #if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_PHYS_ADDR_T_64BIT)
1058 /* The low 32 bits of EntryLo is stored in pte_high */
1059 pte_off_even += offsetof(pte_t, pte_high);
1060 pte_off_odd += offsetof(pte_t, pte_high);
1061 #endif
1063 if (IS_ENABLED(CONFIG_XPA)) {
1064 uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1065 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1066 UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1068 if (cpu_has_xpa && !mips_xpa_disabled) {
1069 uasm_i_lw(p, tmp, 0, ptep);
1070 uasm_i_ext(p, tmp, tmp, 0, 24);
1071 uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1074 uasm_i_lw(p, tmp, pte_off_odd, ptep); /* odd pte */
1075 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1076 UASM_i_MTC0(p, tmp, C0_ENTRYLO1);
1078 if (cpu_has_xpa && !mips_xpa_disabled) {
1079 uasm_i_lw(p, tmp, sizeof(pte_t), ptep);
1080 uasm_i_ext(p, tmp, tmp, 0, 24);
1081 uasm_i_mthc0(p, tmp, C0_ENTRYLO1);
1083 return;
1086 UASM_i_LW(p, tmp, pte_off_even, ptep); /* get even pte */
1087 UASM_i_LW(p, ptep, pte_off_odd, ptep); /* get odd pte */
1088 if (r45k_bvahwbug())
1089 build_tlb_probe_entry(p);
1090 build_convert_pte_to_entrylo(p, tmp);
1091 if (r4k_250MHZhwbug())
1092 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1093 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1094 build_convert_pte_to_entrylo(p, ptep);
1095 if (r45k_bvahwbug())
1096 uasm_i_mfc0(p, tmp, C0_INDEX);
1097 if (r4k_250MHZhwbug())
1098 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1099 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1101 EXPORT_SYMBOL_GPL(build_update_entries);
1103 struct mips_huge_tlb_info {
1104 int huge_pte;
1105 int restore_scratch;
1106 bool need_reload_pte;
1109 static struct mips_huge_tlb_info
1110 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1111 struct uasm_reloc **r, unsigned int tmp,
1112 unsigned int ptr, int c0_scratch_reg)
1114 struct mips_huge_tlb_info rv;
1115 unsigned int even, odd;
1116 int vmalloc_branch_delay_filled = 0;
1117 const int scratch = 1; /* Our extra working register */
1119 rv.huge_pte = scratch;
1120 rv.restore_scratch = 0;
1121 rv.need_reload_pte = false;
1123 if (check_for_high_segbits) {
1124 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1126 if (pgd_reg != -1)
1127 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1128 else
1129 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1131 if (c0_scratch_reg >= 0)
1132 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1133 else
1134 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1136 uasm_i_dsrl_safe(p, scratch, tmp,
1137 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1138 uasm_il_bnez(p, r, scratch, label_vmalloc);
1140 if (pgd_reg == -1) {
1141 vmalloc_branch_delay_filled = 1;
1142 /* Clear lower 23 bits of context. */
1143 uasm_i_dins(p, ptr, 0, 0, 23);
1145 } else {
1146 if (pgd_reg != -1)
1147 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1148 else
1149 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1151 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1153 if (c0_scratch_reg >= 0)
1154 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1155 else
1156 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1158 if (pgd_reg == -1)
1159 /* Clear lower 23 bits of context. */
1160 uasm_i_dins(p, ptr, 0, 0, 23);
1162 uasm_il_bltz(p, r, tmp, label_vmalloc);
1165 if (pgd_reg == -1) {
1166 vmalloc_branch_delay_filled = 1;
1167 /* 1 0 1 0 1 << 6 xkphys cached */
1168 uasm_i_ori(p, ptr, ptr, 0x540);
1169 uasm_i_drotr(p, ptr, ptr, 11);
1172 #ifdef __PAGETABLE_PMD_FOLDED
1173 #define LOC_PTEP scratch
1174 #else
1175 #define LOC_PTEP ptr
1176 #endif
1178 if (!vmalloc_branch_delay_filled)
1179 /* get pgd offset in bytes */
1180 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1182 uasm_l_vmalloc_done(l, *p);
1185 * tmp ptr
1186 * fall-through case = badvaddr *pgd_current
1187 * vmalloc case = badvaddr swapper_pg_dir
1190 if (vmalloc_branch_delay_filled)
1191 /* get pgd offset in bytes */
1192 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1194 #ifdef __PAGETABLE_PMD_FOLDED
1195 GET_CONTEXT(p, tmp); /* get context reg */
1196 #endif
1197 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1199 if (use_lwx_insns()) {
1200 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1201 } else {
1202 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1203 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1206 #ifndef __PAGETABLE_PUD_FOLDED
1207 /* get pud offset in bytes */
1208 uasm_i_dsrl_safe(p, scratch, tmp, PUD_SHIFT - 3);
1209 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PUD - 1) << 3);
1211 if (use_lwx_insns()) {
1212 UASM_i_LWX(p, ptr, scratch, ptr);
1213 } else {
1214 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1215 UASM_i_LW(p, ptr, 0, ptr);
1217 /* ptr contains a pointer to PMD entry */
1218 /* tmp contains the address */
1219 #endif
1221 #ifndef __PAGETABLE_PMD_FOLDED
1222 /* get pmd offset in bytes */
1223 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1224 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1225 GET_CONTEXT(p, tmp); /* get context reg */
1227 if (use_lwx_insns()) {
1228 UASM_i_LWX(p, scratch, scratch, ptr);
1229 } else {
1230 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1231 UASM_i_LW(p, scratch, 0, ptr);
1233 #endif
1234 /* Adjust the context during the load latency. */
1235 build_adjust_context(p, tmp);
1237 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1238 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1240 * The in the LWX case we don't want to do the load in the
1241 * delay slot. It cannot issue in the same cycle and may be
1242 * speculative and unneeded.
1244 if (use_lwx_insns())
1245 uasm_i_nop(p);
1246 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1249 /* build_update_entries */
1250 if (use_lwx_insns()) {
1251 even = ptr;
1252 odd = tmp;
1253 UASM_i_LWX(p, even, scratch, tmp);
1254 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1255 UASM_i_LWX(p, odd, scratch, tmp);
1256 } else {
1257 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1258 even = tmp;
1259 odd = ptr;
1260 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1261 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1263 if (cpu_has_rixi) {
1264 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1265 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1266 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1267 } else {
1268 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1269 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1270 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1272 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1274 if (c0_scratch_reg >= 0) {
1275 uasm_i_ehb(p);
1276 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1277 build_tlb_write_entry(p, l, r, tlb_random);
1278 uasm_l_leave(l, *p);
1279 rv.restore_scratch = 1;
1280 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1281 build_tlb_write_entry(p, l, r, tlb_random);
1282 uasm_l_leave(l, *p);
1283 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1284 } else {
1285 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1286 build_tlb_write_entry(p, l, r, tlb_random);
1287 uasm_l_leave(l, *p);
1288 rv.restore_scratch = 1;
1291 uasm_i_eret(p); /* return from trap */
1293 return rv;
1297 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1298 * because EXL == 0. If we wrap, we can also use the 32 instruction
1299 * slots before the XTLB refill exception handler which belong to the
1300 * unused TLB refill exception.
1302 #define MIPS64_REFILL_INSNS 32
1304 static void build_r4000_tlb_refill_handler(void)
1306 u32 *p = tlb_handler;
1307 struct uasm_label *l = labels;
1308 struct uasm_reloc *r = relocs;
1309 u32 *f;
1310 unsigned int final_len;
1311 struct mips_huge_tlb_info htlb_info __maybe_unused;
1312 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1314 memset(tlb_handler, 0, sizeof(tlb_handler));
1315 memset(labels, 0, sizeof(labels));
1316 memset(relocs, 0, sizeof(relocs));
1317 memset(final_handler, 0, sizeof(final_handler));
1319 if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1320 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1321 scratch_reg);
1322 vmalloc_mode = refill_scratch;
1323 } else {
1324 htlb_info.huge_pte = K0;
1325 htlb_info.restore_scratch = 0;
1326 htlb_info.need_reload_pte = true;
1327 vmalloc_mode = refill_noscratch;
1329 * create the plain linear handler
1331 if (bcm1250_m3_war()) {
1332 unsigned int segbits = 44;
1334 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1335 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1336 uasm_i_xor(&p, K0, K0, K1);
1337 uasm_i_dsrl_safe(&p, K1, K0, 62);
1338 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1339 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1340 uasm_i_or(&p, K0, K0, K1);
1341 uasm_il_bnez(&p, &r, K0, label_leave);
1342 /* No need for uasm_i_nop */
1345 #ifdef CONFIG_64BIT
1346 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1347 #else
1348 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1349 #endif
1351 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1352 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1353 #endif
1355 build_get_ptep(&p, K0, K1);
1356 build_update_entries(&p, K0, K1);
1357 build_tlb_write_entry(&p, &l, &r, tlb_random);
1358 uasm_l_leave(&l, p);
1359 uasm_i_eret(&p); /* return from trap */
1361 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1362 uasm_l_tlb_huge_update(&l, p);
1363 if (htlb_info.need_reload_pte)
1364 UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1365 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1366 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1367 htlb_info.restore_scratch);
1368 #endif
1370 #ifdef CONFIG_64BIT
1371 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1372 #endif
1375 * Overflow check: For the 64bit handler, we need at least one
1376 * free instruction slot for the wrap-around branch. In worst
1377 * case, if the intended insertion point is a delay slot, we
1378 * need three, with the second nop'ed and the third being
1379 * unused.
1381 switch (boot_cpu_type()) {
1382 default:
1383 if (sizeof(long) == 4) {
1384 case CPU_LOONGSON2EF:
1385 /* Loongson2 ebase is different than r4k, we have more space */
1386 if ((p - tlb_handler) > 64)
1387 panic("TLB refill handler space exceeded");
1389 * Now fold the handler in the TLB refill handler space.
1391 f = final_handler;
1392 /* Simplest case, just copy the handler. */
1393 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1394 final_len = p - tlb_handler;
1395 break;
1396 } else {
1397 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1398 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1399 && uasm_insn_has_bdelay(relocs,
1400 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1401 panic("TLB refill handler space exceeded");
1403 * Now fold the handler in the TLB refill handler space.
1405 f = final_handler + MIPS64_REFILL_INSNS;
1406 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1407 /* Just copy the handler. */
1408 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1409 final_len = p - tlb_handler;
1410 } else {
1411 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1412 const enum label_id ls = label_tlb_huge_update;
1413 #else
1414 const enum label_id ls = label_vmalloc;
1415 #endif
1416 u32 *split;
1417 int ov = 0;
1418 int i;
1420 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1422 BUG_ON(i == ARRAY_SIZE(labels));
1423 split = labels[i].addr;
1426 * See if we have overflown one way or the other.
1428 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1429 split < p - MIPS64_REFILL_INSNS)
1430 ov = 1;
1432 if (ov) {
1434 * Split two instructions before the end. One
1435 * for the branch and one for the instruction
1436 * in the delay slot.
1438 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1441 * If the branch would fall in a delay slot,
1442 * we must back up an additional instruction
1443 * so that it is no longer in a delay slot.
1445 if (uasm_insn_has_bdelay(relocs, split - 1))
1446 split--;
1448 /* Copy first part of the handler. */
1449 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1450 f += split - tlb_handler;
1452 if (ov) {
1453 /* Insert branch. */
1454 uasm_l_split(&l, final_handler);
1455 uasm_il_b(&f, &r, label_split);
1456 if (uasm_insn_has_bdelay(relocs, split))
1457 uasm_i_nop(&f);
1458 else {
1459 uasm_copy_handler(relocs, labels,
1460 split, split + 1, f);
1461 uasm_move_labels(labels, f, f + 1, -1);
1462 f++;
1463 split++;
1467 /* Copy the rest of the handler. */
1468 uasm_copy_handler(relocs, labels, split, p, final_handler);
1469 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1470 (p - split);
1473 break;
1476 uasm_resolve_relocs(relocs, labels);
1477 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1478 final_len);
1480 memcpy((void *)ebase, final_handler, 0x100);
1481 local_flush_icache_range(ebase, ebase + 0x100);
1482 dump_handler("r4000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x100));
1485 static void setup_pw(void)
1487 unsigned int pwctl;
1488 unsigned long pgd_i, pgd_w;
1489 #ifndef __PAGETABLE_PMD_FOLDED
1490 unsigned long pmd_i, pmd_w;
1491 #endif
1492 unsigned long pt_i, pt_w;
1493 unsigned long pte_i, pte_w;
1494 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1495 unsigned long psn;
1497 psn = ilog2(_PAGE_HUGE); /* bit used to indicate huge page */
1498 #endif
1499 pgd_i = PGDIR_SHIFT; /* 1st level PGD */
1500 #ifndef __PAGETABLE_PMD_FOLDED
1501 pgd_w = PGDIR_SHIFT - PMD_SHIFT + PGD_ORDER;
1503 pmd_i = PMD_SHIFT; /* 2nd level PMD */
1504 pmd_w = PMD_SHIFT - PAGE_SHIFT;
1505 #else
1506 pgd_w = PGDIR_SHIFT - PAGE_SHIFT + PGD_ORDER;
1507 #endif
1509 pt_i = PAGE_SHIFT; /* 3rd level PTE */
1510 pt_w = PAGE_SHIFT - 3;
1512 pte_i = ilog2(_PAGE_GLOBAL);
1513 pte_w = 0;
1514 pwctl = 1 << 30; /* Set PWDirExt */
1516 #ifndef __PAGETABLE_PMD_FOLDED
1517 write_c0_pwfield(pgd_i << 24 | pmd_i << 12 | pt_i << 6 | pte_i);
1518 write_c0_pwsize(1 << 30 | pgd_w << 24 | pmd_w << 12 | pt_w << 6 | pte_w);
1519 #else
1520 write_c0_pwfield(pgd_i << 24 | pt_i << 6 | pte_i);
1521 write_c0_pwsize(1 << 30 | pgd_w << 24 | pt_w << 6 | pte_w);
1522 #endif
1524 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1525 pwctl |= (1 << 6 | psn);
1526 #endif
1527 write_c0_pwctl(pwctl);
1528 write_c0_kpgd((long)swapper_pg_dir);
1529 kscratch_used_mask |= (1 << 7); /* KScratch6 is used for KPGD */
1532 static void build_loongson3_tlb_refill_handler(void)
1534 u32 *p = tlb_handler;
1535 struct uasm_label *l = labels;
1536 struct uasm_reloc *r = relocs;
1538 memset(labels, 0, sizeof(labels));
1539 memset(relocs, 0, sizeof(relocs));
1540 memset(tlb_handler, 0, sizeof(tlb_handler));
1542 if (check_for_high_segbits) {
1543 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1544 uasm_i_dsrl_safe(&p, K1, K0, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1545 uasm_il_beqz(&p, &r, K1, label_vmalloc);
1546 uasm_i_nop(&p);
1548 uasm_il_bgez(&p, &r, K0, label_large_segbits_fault);
1549 uasm_i_nop(&p);
1550 uasm_l_vmalloc(&l, p);
1553 uasm_i_dmfc0(&p, K1, C0_PGD);
1555 uasm_i_lddir(&p, K0, K1, 3); /* global page dir */
1556 #ifndef __PAGETABLE_PMD_FOLDED
1557 uasm_i_lddir(&p, K1, K0, 1); /* middle page dir */
1558 #endif
1559 uasm_i_ldpte(&p, K1, 0); /* even */
1560 uasm_i_ldpte(&p, K1, 1); /* odd */
1561 uasm_i_tlbwr(&p);
1563 /* restore page mask */
1564 if (PM_DEFAULT_MASK >> 16) {
1565 uasm_i_lui(&p, K0, PM_DEFAULT_MASK >> 16);
1566 uasm_i_ori(&p, K0, K0, PM_DEFAULT_MASK & 0xffff);
1567 uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1568 } else if (PM_DEFAULT_MASK) {
1569 uasm_i_ori(&p, K0, 0, PM_DEFAULT_MASK);
1570 uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1571 } else {
1572 uasm_i_mtc0(&p, 0, C0_PAGEMASK);
1575 uasm_i_eret(&p);
1577 if (check_for_high_segbits) {
1578 uasm_l_large_segbits_fault(&l, p);
1579 UASM_i_LA(&p, K1, (unsigned long)tlb_do_page_fault_0);
1580 uasm_i_jr(&p, K1);
1581 uasm_i_nop(&p);
1584 uasm_resolve_relocs(relocs, labels);
1585 memcpy((void *)(ebase + 0x80), tlb_handler, 0x80);
1586 local_flush_icache_range(ebase + 0x80, ebase + 0x100);
1587 dump_handler("loongson3_tlb_refill",
1588 (u32 *)(ebase + 0x80), (u32 *)(ebase + 0x100));
1591 static void build_setup_pgd(void)
1593 const int a0 = 4;
1594 const int __maybe_unused a1 = 5;
1595 const int __maybe_unused a2 = 6;
1596 u32 *p = (u32 *)msk_isa16_mode((ulong)tlbmiss_handler_setup_pgd);
1597 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1598 long pgdc = (long)pgd_current;
1599 #endif
1601 memset(p, 0, tlbmiss_handler_setup_pgd_end - (char *)p);
1602 memset(labels, 0, sizeof(labels));
1603 memset(relocs, 0, sizeof(relocs));
1604 pgd_reg = allocate_kscratch();
1605 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1606 if (pgd_reg == -1) {
1607 struct uasm_label *l = labels;
1608 struct uasm_reloc *r = relocs;
1610 /* PGD << 11 in c0_Context */
1612 * If it is a ckseg0 address, convert to a physical
1613 * address. Shifting right by 29 and adding 4 will
1614 * result in zero for these addresses.
1617 UASM_i_SRA(&p, a1, a0, 29);
1618 UASM_i_ADDIU(&p, a1, a1, 4);
1619 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1620 uasm_i_nop(&p);
1621 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1622 uasm_l_tlbl_goaround1(&l, p);
1623 UASM_i_SLL(&p, a0, a0, 11);
1624 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1625 uasm_i_jr(&p, 31);
1626 uasm_i_ehb(&p);
1627 } else {
1628 /* PGD in c0_KScratch */
1629 if (cpu_has_ldpte)
1630 UASM_i_MTC0(&p, a0, C0_PWBASE);
1631 else
1632 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1633 uasm_i_jr(&p, 31);
1634 uasm_i_ehb(&p);
1636 #else
1637 #ifdef CONFIG_SMP
1638 /* Save PGD to pgd_current[smp_processor_id()] */
1639 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1640 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1641 UASM_i_LA_mostly(&p, a2, pgdc);
1642 UASM_i_ADDU(&p, a2, a2, a1);
1643 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1644 #else
1645 UASM_i_LA_mostly(&p, a2, pgdc);
1646 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1647 #endif /* SMP */
1649 /* if pgd_reg is allocated, save PGD also to scratch register */
1650 if (pgd_reg != -1) {
1651 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1652 uasm_i_jr(&p, 31);
1653 uasm_i_ehb(&p);
1654 } else {
1655 uasm_i_jr(&p, 31);
1656 uasm_i_nop(&p);
1658 #endif
1659 if (p >= (u32 *)tlbmiss_handler_setup_pgd_end)
1660 panic("tlbmiss_handler_setup_pgd space exceeded");
1662 uasm_resolve_relocs(relocs, labels);
1663 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1664 (unsigned int)(p - (u32 *)tlbmiss_handler_setup_pgd));
1666 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1667 tlbmiss_handler_setup_pgd_end);
1670 static void
1671 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1673 #ifdef CONFIG_SMP
1674 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
1675 uasm_i_sync(p, 0);
1676 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1677 if (cpu_has_64bits)
1678 uasm_i_lld(p, pte, 0, ptr);
1679 else
1680 # endif
1681 UASM_i_LL(p, pte, 0, ptr);
1682 #else
1683 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1684 if (cpu_has_64bits)
1685 uasm_i_ld(p, pte, 0, ptr);
1686 else
1687 # endif
1688 UASM_i_LW(p, pte, 0, ptr);
1689 #endif
1692 static void
1693 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1694 unsigned int mode, unsigned int scratch)
1696 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1697 unsigned int swmode = mode & ~hwmode;
1699 if (IS_ENABLED(CONFIG_XPA) && !cpu_has_64bits) {
1700 uasm_i_lui(p, scratch, swmode >> 16);
1701 uasm_i_or(p, pte, pte, scratch);
1702 BUG_ON(swmode & 0xffff);
1703 } else {
1704 uasm_i_ori(p, pte, pte, mode);
1707 #ifdef CONFIG_SMP
1708 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1709 if (cpu_has_64bits)
1710 uasm_i_scd(p, pte, 0, ptr);
1711 else
1712 # endif
1713 UASM_i_SC(p, pte, 0, ptr);
1715 if (r10000_llsc_war())
1716 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1717 else
1718 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1720 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1721 if (!cpu_has_64bits) {
1722 /* no uasm_i_nop needed */
1723 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1724 uasm_i_ori(p, pte, pte, hwmode);
1725 BUG_ON(hwmode & ~0xffff);
1726 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1727 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1728 /* no uasm_i_nop needed */
1729 uasm_i_lw(p, pte, 0, ptr);
1730 } else
1731 uasm_i_nop(p);
1732 # else
1733 uasm_i_nop(p);
1734 # endif
1735 #else
1736 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1737 if (cpu_has_64bits)
1738 uasm_i_sd(p, pte, 0, ptr);
1739 else
1740 # endif
1741 UASM_i_SW(p, pte, 0, ptr);
1743 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1744 if (!cpu_has_64bits) {
1745 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1746 uasm_i_ori(p, pte, pte, hwmode);
1747 BUG_ON(hwmode & ~0xffff);
1748 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1749 uasm_i_lw(p, pte, 0, ptr);
1751 # endif
1752 #endif
1756 * Check if PTE is present, if not then jump to LABEL. PTR points to
1757 * the page table where this PTE is located, PTE will be re-loaded
1758 * with it's original value.
1760 static void
1761 build_pte_present(u32 **p, struct uasm_reloc **r,
1762 int pte, int ptr, int scratch, enum label_id lid)
1764 int t = scratch >= 0 ? scratch : pte;
1765 int cur = pte;
1767 if (cpu_has_rixi) {
1768 if (use_bbit_insns()) {
1769 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1770 uasm_i_nop(p);
1771 } else {
1772 if (_PAGE_PRESENT_SHIFT) {
1773 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1774 cur = t;
1776 uasm_i_andi(p, t, cur, 1);
1777 uasm_il_beqz(p, r, t, lid);
1778 if (pte == t)
1779 /* You lose the SMP race :-(*/
1780 iPTE_LW(p, pte, ptr);
1782 } else {
1783 if (_PAGE_PRESENT_SHIFT) {
1784 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1785 cur = t;
1787 uasm_i_andi(p, t, cur,
1788 (_PAGE_PRESENT | _PAGE_NO_READ) >> _PAGE_PRESENT_SHIFT);
1789 uasm_i_xori(p, t, t, _PAGE_PRESENT >> _PAGE_PRESENT_SHIFT);
1790 uasm_il_bnez(p, r, t, lid);
1791 if (pte == t)
1792 /* You lose the SMP race :-(*/
1793 iPTE_LW(p, pte, ptr);
1797 /* Make PTE valid, store result in PTR. */
1798 static void
1799 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1800 unsigned int ptr, unsigned int scratch)
1802 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1804 iPTE_SW(p, r, pte, ptr, mode, scratch);
1808 * Check if PTE can be written to, if not branch to LABEL. Regardless
1809 * restore PTE with value from PTR when done.
1811 static void
1812 build_pte_writable(u32 **p, struct uasm_reloc **r,
1813 unsigned int pte, unsigned int ptr, int scratch,
1814 enum label_id lid)
1816 int t = scratch >= 0 ? scratch : pte;
1817 int cur = pte;
1819 if (_PAGE_PRESENT_SHIFT) {
1820 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1821 cur = t;
1823 uasm_i_andi(p, t, cur,
1824 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1825 uasm_i_xori(p, t, t,
1826 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1827 uasm_il_bnez(p, r, t, lid);
1828 if (pte == t)
1829 /* You lose the SMP race :-(*/
1830 iPTE_LW(p, pte, ptr);
1831 else
1832 uasm_i_nop(p);
1835 /* Make PTE writable, update software status bits as well, then store
1836 * at PTR.
1838 static void
1839 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1840 unsigned int ptr, unsigned int scratch)
1842 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1843 | _PAGE_DIRTY);
1845 iPTE_SW(p, r, pte, ptr, mode, scratch);
1849 * Check if PTE can be modified, if not branch to LABEL. Regardless
1850 * restore PTE with value from PTR when done.
1852 static void
1853 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1854 unsigned int pte, unsigned int ptr, int scratch,
1855 enum label_id lid)
1857 if (use_bbit_insns()) {
1858 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1859 uasm_i_nop(p);
1860 } else {
1861 int t = scratch >= 0 ? scratch : pte;
1862 uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1863 uasm_i_andi(p, t, t, 1);
1864 uasm_il_beqz(p, r, t, lid);
1865 if (pte == t)
1866 /* You lose the SMP race :-(*/
1867 iPTE_LW(p, pte, ptr);
1871 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1875 * R3000 style TLB load/store/modify handlers.
1879 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1880 * Then it returns.
1882 static void
1883 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1885 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1886 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1887 uasm_i_tlbwi(p);
1888 uasm_i_jr(p, tmp);
1889 uasm_i_rfe(p); /* branch delay */
1893 * This places the pte into ENTRYLO0 and writes it with tlbwi
1894 * or tlbwr as appropriate. This is because the index register
1895 * may have the probe fail bit set as a result of a trap on a
1896 * kseg2 access, i.e. without refill. Then it returns.
1898 static void
1899 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1900 struct uasm_reloc **r, unsigned int pte,
1901 unsigned int tmp)
1903 uasm_i_mfc0(p, tmp, C0_INDEX);
1904 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1905 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1906 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1907 uasm_i_tlbwi(p); /* cp0 delay */
1908 uasm_i_jr(p, tmp);
1909 uasm_i_rfe(p); /* branch delay */
1910 uasm_l_r3000_write_probe_fail(l, *p);
1911 uasm_i_tlbwr(p); /* cp0 delay */
1912 uasm_i_jr(p, tmp);
1913 uasm_i_rfe(p); /* branch delay */
1916 static void
1917 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1918 unsigned int ptr)
1920 long pgdc = (long)pgd_current;
1922 uasm_i_mfc0(p, pte, C0_BADVADDR);
1923 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1924 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1925 uasm_i_srl(p, pte, pte, 22); /* load delay */
1926 uasm_i_sll(p, pte, pte, 2);
1927 uasm_i_addu(p, ptr, ptr, pte);
1928 uasm_i_mfc0(p, pte, C0_CONTEXT);
1929 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1930 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1931 uasm_i_addu(p, ptr, ptr, pte);
1932 uasm_i_lw(p, pte, 0, ptr);
1933 uasm_i_tlbp(p); /* load delay */
1936 static void build_r3000_tlb_load_handler(void)
1938 u32 *p = (u32 *)handle_tlbl;
1939 struct uasm_label *l = labels;
1940 struct uasm_reloc *r = relocs;
1942 memset(p, 0, handle_tlbl_end - (char *)p);
1943 memset(labels, 0, sizeof(labels));
1944 memset(relocs, 0, sizeof(relocs));
1946 build_r3000_tlbchange_handler_head(&p, K0, K1);
1947 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1948 uasm_i_nop(&p); /* load delay */
1949 build_make_valid(&p, &r, K0, K1, -1);
1950 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1952 uasm_l_nopage_tlbl(&l, p);
1953 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1954 uasm_i_nop(&p);
1956 if (p >= (u32 *)handle_tlbl_end)
1957 panic("TLB load handler fastpath space exceeded");
1959 uasm_resolve_relocs(relocs, labels);
1960 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1961 (unsigned int)(p - (u32 *)handle_tlbl));
1963 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_end);
1966 static void build_r3000_tlb_store_handler(void)
1968 u32 *p = (u32 *)handle_tlbs;
1969 struct uasm_label *l = labels;
1970 struct uasm_reloc *r = relocs;
1972 memset(p, 0, handle_tlbs_end - (char *)p);
1973 memset(labels, 0, sizeof(labels));
1974 memset(relocs, 0, sizeof(relocs));
1976 build_r3000_tlbchange_handler_head(&p, K0, K1);
1977 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1978 uasm_i_nop(&p); /* load delay */
1979 build_make_write(&p, &r, K0, K1, -1);
1980 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1982 uasm_l_nopage_tlbs(&l, p);
1983 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1984 uasm_i_nop(&p);
1986 if (p >= (u32 *)handle_tlbs_end)
1987 panic("TLB store handler fastpath space exceeded");
1989 uasm_resolve_relocs(relocs, labels);
1990 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1991 (unsigned int)(p - (u32 *)handle_tlbs));
1993 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_end);
1996 static void build_r3000_tlb_modify_handler(void)
1998 u32 *p = (u32 *)handle_tlbm;
1999 struct uasm_label *l = labels;
2000 struct uasm_reloc *r = relocs;
2002 memset(p, 0, handle_tlbm_end - (char *)p);
2003 memset(labels, 0, sizeof(labels));
2004 memset(relocs, 0, sizeof(relocs));
2006 build_r3000_tlbchange_handler_head(&p, K0, K1);
2007 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
2008 uasm_i_nop(&p); /* load delay */
2009 build_make_write(&p, &r, K0, K1, -1);
2010 build_r3000_pte_reload_tlbwi(&p, K0, K1);
2012 uasm_l_nopage_tlbm(&l, p);
2013 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2014 uasm_i_nop(&p);
2016 if (p >= (u32 *)handle_tlbm_end)
2017 panic("TLB modify handler fastpath space exceeded");
2019 uasm_resolve_relocs(relocs, labels);
2020 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2021 (unsigned int)(p - (u32 *)handle_tlbm));
2023 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_end);
2025 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
2027 static bool cpu_has_tlbex_tlbp_race(void)
2030 * When a Hardware Table Walker is running it can replace TLB entries
2031 * at any time, leading to a race between it & the CPU.
2033 if (cpu_has_htw)
2034 return true;
2037 * If the CPU shares FTLB RAM with its siblings then our entry may be
2038 * replaced at any time by a sibling performing a write to the FTLB.
2040 if (cpu_has_shared_ftlb_ram)
2041 return true;
2043 /* In all other cases there ought to be no race condition to handle */
2044 return false;
2048 * R4000 style TLB load/store/modify handlers.
2050 static struct work_registers
2051 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
2052 struct uasm_reloc **r)
2054 struct work_registers wr = build_get_work_registers(p);
2056 #ifdef CONFIG_64BIT
2057 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
2058 #else
2059 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
2060 #endif
2062 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2064 * For huge tlb entries, pmd doesn't contain an address but
2065 * instead contains the tlb pte. Check the PAGE_HUGE bit and
2066 * see if we need to jump to huge tlb processing.
2068 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
2069 #endif
2071 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
2072 UASM_i_LW(p, wr.r2, 0, wr.r2);
2073 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
2074 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
2075 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
2077 #ifdef CONFIG_SMP
2078 uasm_l_smp_pgtable_change(l, *p);
2079 #endif
2080 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
2081 if (!m4kc_tlbp_war()) {
2082 build_tlb_probe_entry(p);
2083 if (cpu_has_tlbex_tlbp_race()) {
2084 /* race condition happens, leaving */
2085 uasm_i_ehb(p);
2086 uasm_i_mfc0(p, wr.r3, C0_INDEX);
2087 uasm_il_bltz(p, r, wr.r3, label_leave);
2088 uasm_i_nop(p);
2091 return wr;
2094 static void
2095 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
2096 struct uasm_reloc **r, unsigned int tmp,
2097 unsigned int ptr)
2099 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
2100 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
2101 build_update_entries(p, tmp, ptr);
2102 build_tlb_write_entry(p, l, r, tlb_indexed);
2103 uasm_l_leave(l, *p);
2104 build_restore_work_registers(p);
2105 uasm_i_eret(p); /* return from trap */
2107 #ifdef CONFIG_64BIT
2108 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
2109 #endif
2112 static void build_r4000_tlb_load_handler(void)
2114 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbl);
2115 struct uasm_label *l = labels;
2116 struct uasm_reloc *r = relocs;
2117 struct work_registers wr;
2119 memset(p, 0, handle_tlbl_end - (char *)p);
2120 memset(labels, 0, sizeof(labels));
2121 memset(relocs, 0, sizeof(relocs));
2123 if (bcm1250_m3_war()) {
2124 unsigned int segbits = 44;
2126 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
2127 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
2128 uasm_i_xor(&p, K0, K0, K1);
2129 uasm_i_dsrl_safe(&p, K1, K0, 62);
2130 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
2131 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
2132 uasm_i_or(&p, K0, K0, K1);
2133 uasm_il_bnez(&p, &r, K0, label_leave);
2134 /* No need for uasm_i_nop */
2137 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2138 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2139 if (m4kc_tlbp_war())
2140 build_tlb_probe_entry(&p);
2142 if (cpu_has_rixi && !cpu_has_rixiex) {
2144 * If the page is not _PAGE_VALID, RI or XI could not
2145 * have triggered it. Skip the expensive test..
2147 if (use_bbit_insns()) {
2148 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2149 label_tlbl_goaround1);
2150 } else {
2151 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2152 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
2154 uasm_i_nop(&p);
2157 * Warn if something may race with us & replace the TLB entry
2158 * before we read it here. Everything with such races should
2159 * also have dedicated RiXi exception handlers, so this
2160 * shouldn't be hit.
2162 WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2164 uasm_i_tlbr(&p);
2166 switch (current_cpu_type()) {
2167 default:
2168 if (cpu_has_mips_r2_exec_hazard) {
2169 uasm_i_ehb(&p);
2171 case CPU_CAVIUM_OCTEON:
2172 case CPU_CAVIUM_OCTEON_PLUS:
2173 case CPU_CAVIUM_OCTEON2:
2174 break;
2178 /* Examine entrylo 0 or 1 based on ptr. */
2179 if (use_bbit_insns()) {
2180 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2181 } else {
2182 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2183 uasm_i_beqz(&p, wr.r3, 8);
2185 /* load it in the delay slot*/
2186 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2187 /* load it if ptr is odd */
2188 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2190 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2191 * XI must have triggered it.
2193 if (use_bbit_insns()) {
2194 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2195 uasm_i_nop(&p);
2196 uasm_l_tlbl_goaround1(&l, p);
2197 } else {
2198 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2199 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2200 uasm_i_nop(&p);
2202 uasm_l_tlbl_goaround1(&l, p);
2204 build_make_valid(&p, &r, wr.r1, wr.r2, wr.r3);
2205 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2207 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2209 * This is the entry point when build_r4000_tlbchange_handler_head
2210 * spots a huge page.
2212 uasm_l_tlb_huge_update(&l, p);
2213 iPTE_LW(&p, wr.r1, wr.r2);
2214 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2215 build_tlb_probe_entry(&p);
2217 if (cpu_has_rixi && !cpu_has_rixiex) {
2219 * If the page is not _PAGE_VALID, RI or XI could not
2220 * have triggered it. Skip the expensive test..
2222 if (use_bbit_insns()) {
2223 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2224 label_tlbl_goaround2);
2225 } else {
2226 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2227 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2229 uasm_i_nop(&p);
2232 * Warn if something may race with us & replace the TLB entry
2233 * before we read it here. Everything with such races should
2234 * also have dedicated RiXi exception handlers, so this
2235 * shouldn't be hit.
2237 WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2239 uasm_i_tlbr(&p);
2241 switch (current_cpu_type()) {
2242 default:
2243 if (cpu_has_mips_r2_exec_hazard) {
2244 uasm_i_ehb(&p);
2246 case CPU_CAVIUM_OCTEON:
2247 case CPU_CAVIUM_OCTEON_PLUS:
2248 case CPU_CAVIUM_OCTEON2:
2249 break;
2253 /* Examine entrylo 0 or 1 based on ptr. */
2254 if (use_bbit_insns()) {
2255 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2256 } else {
2257 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2258 uasm_i_beqz(&p, wr.r3, 8);
2260 /* load it in the delay slot*/
2261 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2262 /* load it if ptr is odd */
2263 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2265 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2266 * XI must have triggered it.
2268 if (use_bbit_insns()) {
2269 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2270 } else {
2271 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2272 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2274 if (PM_DEFAULT_MASK == 0)
2275 uasm_i_nop(&p);
2277 * We clobbered C0_PAGEMASK, restore it. On the other branch
2278 * it is restored in build_huge_tlb_write_entry.
2280 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2282 uasm_l_tlbl_goaround2(&l, p);
2284 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2285 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2286 #endif
2288 uasm_l_nopage_tlbl(&l, p);
2289 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2290 uasm_i_sync(&p, 0);
2291 build_restore_work_registers(&p);
2292 #ifdef CONFIG_CPU_MICROMIPS
2293 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2294 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2295 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2296 uasm_i_jr(&p, K0);
2297 } else
2298 #endif
2299 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2300 uasm_i_nop(&p);
2302 if (p >= (u32 *)handle_tlbl_end)
2303 panic("TLB load handler fastpath space exceeded");
2305 uasm_resolve_relocs(relocs, labels);
2306 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2307 (unsigned int)(p - (u32 *)handle_tlbl));
2309 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_end);
2312 static void build_r4000_tlb_store_handler(void)
2314 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbs);
2315 struct uasm_label *l = labels;
2316 struct uasm_reloc *r = relocs;
2317 struct work_registers wr;
2319 memset(p, 0, handle_tlbs_end - (char *)p);
2320 memset(labels, 0, sizeof(labels));
2321 memset(relocs, 0, sizeof(relocs));
2323 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2324 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2325 if (m4kc_tlbp_war())
2326 build_tlb_probe_entry(&p);
2327 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2328 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2330 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2332 * This is the entry point when
2333 * build_r4000_tlbchange_handler_head spots a huge page.
2335 uasm_l_tlb_huge_update(&l, p);
2336 iPTE_LW(&p, wr.r1, wr.r2);
2337 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2338 build_tlb_probe_entry(&p);
2339 uasm_i_ori(&p, wr.r1, wr.r1,
2340 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2341 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2342 #endif
2344 uasm_l_nopage_tlbs(&l, p);
2345 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2346 uasm_i_sync(&p, 0);
2347 build_restore_work_registers(&p);
2348 #ifdef CONFIG_CPU_MICROMIPS
2349 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2350 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2351 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2352 uasm_i_jr(&p, K0);
2353 } else
2354 #endif
2355 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2356 uasm_i_nop(&p);
2358 if (p >= (u32 *)handle_tlbs_end)
2359 panic("TLB store handler fastpath space exceeded");
2361 uasm_resolve_relocs(relocs, labels);
2362 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2363 (unsigned int)(p - (u32 *)handle_tlbs));
2365 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_end);
2368 static void build_r4000_tlb_modify_handler(void)
2370 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbm);
2371 struct uasm_label *l = labels;
2372 struct uasm_reloc *r = relocs;
2373 struct work_registers wr;
2375 memset(p, 0, handle_tlbm_end - (char *)p);
2376 memset(labels, 0, sizeof(labels));
2377 memset(relocs, 0, sizeof(relocs));
2379 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2380 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2381 if (m4kc_tlbp_war())
2382 build_tlb_probe_entry(&p);
2383 /* Present and writable bits set, set accessed and dirty bits. */
2384 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2385 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2387 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2389 * This is the entry point when
2390 * build_r4000_tlbchange_handler_head spots a huge page.
2392 uasm_l_tlb_huge_update(&l, p);
2393 iPTE_LW(&p, wr.r1, wr.r2);
2394 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2395 build_tlb_probe_entry(&p);
2396 uasm_i_ori(&p, wr.r1, wr.r1,
2397 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2398 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 0);
2399 #endif
2401 uasm_l_nopage_tlbm(&l, p);
2402 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2403 uasm_i_sync(&p, 0);
2404 build_restore_work_registers(&p);
2405 #ifdef CONFIG_CPU_MICROMIPS
2406 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2407 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2408 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2409 uasm_i_jr(&p, K0);
2410 } else
2411 #endif
2412 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2413 uasm_i_nop(&p);
2415 if (p >= (u32 *)handle_tlbm_end)
2416 panic("TLB modify handler fastpath space exceeded");
2418 uasm_resolve_relocs(relocs, labels);
2419 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2420 (unsigned int)(p - (u32 *)handle_tlbm));
2422 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_end);
2425 static void flush_tlb_handlers(void)
2427 local_flush_icache_range((unsigned long)handle_tlbl,
2428 (unsigned long)handle_tlbl_end);
2429 local_flush_icache_range((unsigned long)handle_tlbs,
2430 (unsigned long)handle_tlbs_end);
2431 local_flush_icache_range((unsigned long)handle_tlbm,
2432 (unsigned long)handle_tlbm_end);
2433 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2434 (unsigned long)tlbmiss_handler_setup_pgd_end);
2437 static void print_htw_config(void)
2439 unsigned long config;
2440 unsigned int pwctl;
2441 const int field = 2 * sizeof(unsigned long);
2443 config = read_c0_pwfield();
2444 pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n",
2445 field, config,
2446 (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2447 (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2448 (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2449 (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2450 (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2452 config = read_c0_pwsize();
2453 pr_debug("PWSize (0x%0*lx): PS: 0x%lx GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n",
2454 field, config,
2455 (config & MIPS_PWSIZE_PS_MASK) >> MIPS_PWSIZE_PS_SHIFT,
2456 (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2457 (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2458 (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2459 (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2460 (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2462 pwctl = read_c0_pwctl();
2463 pr_debug("PWCtl (0x%x): PWEn: 0x%x XK: 0x%x XS: 0x%x XU: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n",
2464 pwctl,
2465 (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2466 (pwctl & MIPS_PWCTL_XK_MASK) >> MIPS_PWCTL_XK_SHIFT,
2467 (pwctl & MIPS_PWCTL_XS_MASK) >> MIPS_PWCTL_XS_SHIFT,
2468 (pwctl & MIPS_PWCTL_XU_MASK) >> MIPS_PWCTL_XU_SHIFT,
2469 (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2470 (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2471 (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2474 static void config_htw_params(void)
2476 unsigned long pwfield, pwsize, ptei;
2477 unsigned int config;
2480 * We are using 2-level page tables, so we only need to
2481 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2482 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2483 * write values less than 0xc in these fields because the entire
2484 * write will be dropped. As a result of which, we must preserve
2485 * the original reset values and overwrite only what we really want.
2488 pwfield = read_c0_pwfield();
2489 /* re-initialize the GDI field */
2490 pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2491 pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2492 /* re-initialize the PTI field including the even/odd bit */
2493 pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2494 pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2495 if (CONFIG_PGTABLE_LEVELS >= 3) {
2496 pwfield &= ~MIPS_PWFIELD_MDI_MASK;
2497 pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
2499 /* Set the PTEI right shift */
2500 ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2501 pwfield |= ptei;
2502 write_c0_pwfield(pwfield);
2503 /* Check whether the PTEI value is supported */
2504 back_to_back_c0_hazard();
2505 pwfield = read_c0_pwfield();
2506 if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2507 != ptei) {
2508 pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2509 ptei);
2511 * Drop option to avoid HTW being enabled via another path
2512 * (eg htw_reset())
2514 current_cpu_data.options &= ~MIPS_CPU_HTW;
2515 return;
2518 pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2519 pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2520 if (CONFIG_PGTABLE_LEVELS >= 3)
2521 pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
2523 /* Set pointer size to size of directory pointers */
2524 if (IS_ENABLED(CONFIG_64BIT))
2525 pwsize |= MIPS_PWSIZE_PS_MASK;
2526 /* PTEs may be multiple pointers long (e.g. with XPA) */
2527 pwsize |= ((PTE_T_LOG2 - PGD_T_LOG2) << MIPS_PWSIZE_PTEW_SHIFT)
2528 & MIPS_PWSIZE_PTEW_MASK;
2530 write_c0_pwsize(pwsize);
2532 /* Make sure everything is set before we enable the HTW */
2533 back_to_back_c0_hazard();
2536 * Enable HTW (and only for XUSeg on 64-bit), and disable the rest of
2537 * the pwctl fields.
2539 config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2540 if (IS_ENABLED(CONFIG_64BIT))
2541 config |= MIPS_PWCTL_XU_MASK;
2542 write_c0_pwctl(config);
2543 pr_info("Hardware Page Table Walker enabled\n");
2545 print_htw_config();
2548 static void config_xpa_params(void)
2550 #ifdef CONFIG_XPA
2551 unsigned int pagegrain;
2553 if (mips_xpa_disabled) {
2554 pr_info("Extended Physical Addressing (XPA) disabled\n");
2555 return;
2558 pagegrain = read_c0_pagegrain();
2559 write_c0_pagegrain(pagegrain | PG_ELPA);
2560 back_to_back_c0_hazard();
2561 pagegrain = read_c0_pagegrain();
2563 if (pagegrain & PG_ELPA)
2564 pr_info("Extended Physical Addressing (XPA) enabled\n");
2565 else
2566 panic("Extended Physical Addressing (XPA) disabled");
2567 #endif
2570 static void check_pabits(void)
2572 unsigned long entry;
2573 unsigned pabits, fillbits;
2575 if (!cpu_has_rixi || !_PAGE_NO_EXEC) {
2577 * We'll only be making use of the fact that we can rotate bits
2578 * into the fill if the CPU supports RIXI, so don't bother
2579 * probing this for CPUs which don't.
2581 return;
2584 write_c0_entrylo0(~0ul);
2585 back_to_back_c0_hazard();
2586 entry = read_c0_entrylo0();
2588 /* clear all non-PFN bits */
2589 entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
2590 entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
2592 /* find a lower bound on PABITS, and upper bound on fill bits */
2593 pabits = fls_long(entry) + 6;
2594 fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
2596 /* minus the RI & XI bits */
2597 fillbits -= min_t(unsigned, fillbits, 2);
2599 if (fillbits >= ilog2(_PAGE_NO_EXEC))
2600 fill_includes_sw_bits = true;
2602 pr_debug("Entry* registers contain %u fill bits\n", fillbits);
2605 void build_tlb_refill_handler(void)
2608 * The refill handler is generated per-CPU, multi-node systems
2609 * may have local storage for it. The other handlers are only
2610 * needed once.
2612 static int run_once = 0;
2614 if (IS_ENABLED(CONFIG_XPA) && !cpu_has_rixi)
2615 panic("Kernels supporting XPA currently require CPUs with RIXI");
2617 output_pgtable_bits_defines();
2618 check_pabits();
2620 #ifdef CONFIG_64BIT
2621 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2622 #endif
2624 if (cpu_has_3kex) {
2625 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2626 if (!run_once) {
2627 build_setup_pgd();
2628 build_r3000_tlb_refill_handler();
2629 build_r3000_tlb_load_handler();
2630 build_r3000_tlb_store_handler();
2631 build_r3000_tlb_modify_handler();
2632 flush_tlb_handlers();
2633 run_once++;
2635 #else
2636 panic("No R3000 TLB refill handler");
2637 #endif
2638 return;
2641 if (cpu_has_ldpte)
2642 setup_pw();
2644 if (!run_once) {
2645 scratch_reg = allocate_kscratch();
2646 build_setup_pgd();
2647 build_r4000_tlb_load_handler();
2648 build_r4000_tlb_store_handler();
2649 build_r4000_tlb_modify_handler();
2650 if (cpu_has_ldpte)
2651 build_loongson3_tlb_refill_handler();
2652 else
2653 build_r4000_tlb_refill_handler();
2654 flush_tlb_handlers();
2655 run_once++;
2657 if (cpu_has_xpa)
2658 config_xpa_params();
2659 if (cpu_has_htw)
2660 config_htw_params();