1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/types.h>
3 #include <linux/i8253.h>
4 #include <linux/interrupt.h>
7 #include <linux/time.h>
8 #include <linux/clockchips.h>
13 #define SNI_CLOCK_TICK_RATE 3686400
14 #define SNI_COUNTER2_DIV 64
15 #define SNI_COUNTER0_DIV ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
17 static int a20r_set_periodic(struct clock_event_device
*evt
)
19 *(volatile u8
*)(A20R_PT_CLOCK_BASE
+ 12) = 0x34;
21 *(volatile u8
*)(A20R_PT_CLOCK_BASE
+ 0) = SNI_COUNTER0_DIV
;
23 *(volatile u8
*)(A20R_PT_CLOCK_BASE
+ 0) = SNI_COUNTER0_DIV
>> 8;
26 *(volatile u8
*)(A20R_PT_CLOCK_BASE
+ 12) = 0xb4;
28 *(volatile u8
*)(A20R_PT_CLOCK_BASE
+ 8) = SNI_COUNTER2_DIV
;
30 *(volatile u8
*)(A20R_PT_CLOCK_BASE
+ 8) = SNI_COUNTER2_DIV
>> 8;
35 static struct clock_event_device a20r_clockevent_device
= {
37 .features
= CLOCK_EVT_FEAT_PERIODIC
,
39 /* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
42 .irq
= SNI_A20R_IRQ_TIMER
,
43 .set_state_periodic
= a20r_set_periodic
,
46 static irqreturn_t
a20r_interrupt(int irq
, void *dev_id
)
48 struct clock_event_device
*cd
= dev_id
;
50 *(volatile u8
*)A20R_PT_TIM0_ACK
= 0;
53 cd
->event_handler(cd
);
59 * a20r platform uses 2 counters to divide the input frequency.
60 * Counter 2 output is connected to Counter 0 & 1 input.
62 static void __init
sni_a20r_timer_setup(void)
64 struct clock_event_device
*cd
= &a20r_clockevent_device
;
65 unsigned int cpu
= smp_processor_id();
67 cd
->cpumask
= cpumask_of(cpu
);
68 clockevents_register_device(cd
);
69 if (request_irq(SNI_A20R_IRQ_TIMER
, a20r_interrupt
,
70 IRQF_PERCPU
| IRQF_TIMER
, "a20r-timer", cd
))
71 pr_err("Failed to register a20r-timer interrupt\n");
74 #define SNI_8254_TICK_RATE 1193182UL
76 #define SNI_8254_TCSAMP_COUNTER ((SNI_8254_TICK_RATE / HZ) + 255)
78 static __init
unsigned long dosample(void)
83 /* Start the counter. */
85 outb_p(SNI_8254_TCSAMP_COUNTER
& 0xff, 0x40);
86 outb(SNI_8254_TCSAMP_COUNTER
>> 8, 0x40);
88 /* Get initial counter invariant */
89 ct0
= read_c0_count();
91 /* Latch and spin until top byte of counter0 is zero */
96 ct1
= read_c0_count();
99 /* Stop the counter. */
102 * Return the difference, this is how far the r4k counter increments
103 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
104 * clock (= 1000000 / HZ / 2).
106 /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
107 return (ct1
- ct0
) / (500000/HZ
) * (500000/HZ
);
111 * Here we need to calibrate the cycle counter to at least be close.
113 void __init
plat_time_init(void)
115 unsigned long r4k_ticks
[3];
116 unsigned long r4k_tick
;
119 * Figure out the r4k offset, the algorithm is very simple and works in
120 * _all_ cases as long as the 8254 counter register itself works ok (as
121 * an interrupt driving timer it does not because of bug, this is why
122 * we are using the onchip r4k counter/compare register to serve this
123 * purpose, but for r4k_offset calculation it will work ok for us).
124 * There are other very complicated ways of performing this calculation
125 * but this one works just fine so I am not going to futz around. ;-)
127 printk(KERN_INFO
"Calibrating system timer... ");
128 dosample(); /* Prime cache. */
129 dosample(); /* Prime cache. */
130 /* Zero is NOT an option. */
132 r4k_ticks
[0] = dosample();
133 } while (!r4k_ticks
[0]);
135 r4k_ticks
[1] = dosample();
136 } while (!r4k_ticks
[1]);
138 if (r4k_ticks
[0] != r4k_ticks
[1]) {
139 printk("warning: timer counts differ, retrying... ");
140 r4k_ticks
[2] = dosample();
141 if (r4k_ticks
[2] == r4k_ticks
[0]
142 || r4k_ticks
[2] == r4k_ticks
[1])
143 r4k_tick
= r4k_ticks
[2];
145 printk("disagreement, using average... ");
146 r4k_tick
= (r4k_ticks
[0] + r4k_ticks
[1]
150 r4k_tick
= r4k_ticks
[0];
152 printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick
,
153 (int) (r4k_tick
/ (500000 / HZ
)),
154 (int) (r4k_tick
% (500000 / HZ
)));
156 mips_hpt_frequency
= r4k_tick
* HZ
;
158 switch (sni_brd_type
) {
161 case SNI_BRD_TOWER_OASIC
:
162 case SNI_BRD_MINITOWER
:
163 sni_a20r_timer_setup();