1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
4 * {mikejc|engebret}@us.ibm.com
6 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
8 * SMP scalability work:
9 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
14 * PowerPC Hashed Page Table functions
20 #define pr_fmt(fmt) "hash-mmu: " fmt
21 #include <linux/spinlock.h>
22 #include <linux/errno.h>
23 #include <linux/sched/mm.h>
24 #include <linux/proc_fs.h>
25 #include <linux/stat.h>
26 #include <linux/sysctl.h>
27 #include <linux/export.h>
28 #include <linux/ctype.h>
29 #include <linux/cache.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/memblock.h>
33 #include <linux/context_tracking.h>
34 #include <linux/libfdt.h>
35 #include <linux/pkeys.h>
36 #include <linux/hugetlb.h>
37 #include <linux/cpu.h>
38 #include <linux/pgtable.h>
40 #include <asm/debugfs.h>
41 #include <asm/processor.h>
43 #include <asm/mmu_context.h>
45 #include <asm/types.h>
46 #include <linux/uaccess.h>
47 #include <asm/machdep.h>
52 #include <asm/cacheflush.h>
53 #include <asm/cputable.h>
54 #include <asm/sections.h>
55 #include <asm/copro.h>
57 #include <asm/code-patching.h>
58 #include <asm/fadump.h>
59 #include <asm/firmware.h>
61 #include <asm/trace.h>
63 #include <asm/pte-walk.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/ultravisor.h>
67 #include <mm/mmu_decl.h>
73 #define DBG(fmt...) udbg_printf(fmt)
79 #define DBG_LOW(fmt...) udbg_printf(fmt)
81 #define DBG_LOW(fmt...)
89 * Note: pte --> Linux PTE
90 * HPTE --> PowerPC Hashed Page Table Entry
93 * htab_initialize is called with the MMU off (of course), but
94 * the kernel has been copied down to zero so it can directly
95 * reference global data. At this point it is very difficult
96 * to print debug info.
100 static unsigned long _SDR1
;
101 struct mmu_psize_def mmu_psize_defs
[MMU_PAGE_COUNT
];
102 EXPORT_SYMBOL_GPL(mmu_psize_defs
);
104 u8 hpte_page_sizes
[1 << LP_BITS
];
105 EXPORT_SYMBOL_GPL(hpte_page_sizes
);
107 struct hash_pte
*htab_address
;
108 unsigned long htab_size_bytes
;
109 unsigned long htab_hash_mask
;
110 EXPORT_SYMBOL_GPL(htab_hash_mask
);
111 int mmu_linear_psize
= MMU_PAGE_4K
;
112 EXPORT_SYMBOL_GPL(mmu_linear_psize
);
113 int mmu_virtual_psize
= MMU_PAGE_4K
;
114 int mmu_vmalloc_psize
= MMU_PAGE_4K
;
115 EXPORT_SYMBOL_GPL(mmu_vmalloc_psize
);
116 #ifdef CONFIG_SPARSEMEM_VMEMMAP
117 int mmu_vmemmap_psize
= MMU_PAGE_4K
;
119 int mmu_io_psize
= MMU_PAGE_4K
;
120 int mmu_kernel_ssize
= MMU_SEGSIZE_256M
;
121 EXPORT_SYMBOL_GPL(mmu_kernel_ssize
);
122 int mmu_highuser_ssize
= MMU_SEGSIZE_256M
;
123 u16 mmu_slb_size
= 64;
124 EXPORT_SYMBOL_GPL(mmu_slb_size
);
125 #ifdef CONFIG_PPC_64K_PAGES
126 int mmu_ci_restrictions
;
128 #ifdef CONFIG_DEBUG_PAGEALLOC
129 static u8
*linear_map_hash_slots
;
130 static unsigned long linear_map_hash_count
;
131 static DEFINE_SPINLOCK(linear_map_hash_lock
);
132 #endif /* CONFIG_DEBUG_PAGEALLOC */
133 struct mmu_hash_ops mmu_hash_ops
;
134 EXPORT_SYMBOL(mmu_hash_ops
);
137 * These are definitions of page sizes arrays to be used when none
138 * is provided by the firmware.
142 * Fallback (4k pages only)
144 static struct mmu_psize_def mmu_psize_defaults
[] = {
148 .penc
= {[MMU_PAGE_4K
] = 0, [1 ... MMU_PAGE_COUNT
- 1] = -1},
155 * POWER4, GPUL, POWER5
157 * Support for 16Mb large pages
159 static struct mmu_psize_def mmu_psize_defaults_gp
[] = {
163 .penc
= {[MMU_PAGE_4K
] = 0, [1 ... MMU_PAGE_COUNT
- 1] = -1},
170 .penc
= {[0 ... MMU_PAGE_16M
- 1] = -1, [MMU_PAGE_16M
] = 0,
171 [MMU_PAGE_16M
+ 1 ... MMU_PAGE_COUNT
- 1] = -1 },
178 * 'R' and 'C' update notes:
179 * - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
180 * create writeable HPTEs without C set, because the hcall H_PROTECT
181 * that we use in that case will not update C
182 * - The above is however not a problem, because we also don't do that
183 * fancy "no flush" variant of eviction and we use H_REMOVE which will
184 * do the right thing and thus we don't have the race I described earlier
186 * - Under bare metal, we do have the race, so we need R and C set
187 * - We make sure R is always set and never lost
188 * - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
190 unsigned long htab_convert_pte_flags(unsigned long pteflags
, unsigned long flags
)
192 unsigned long rflags
= 0;
194 /* _PAGE_EXEC -> NOEXEC */
195 if ((pteflags
& _PAGE_EXEC
) == 0)
199 * Linux uses slb key 0 for kernel and 1 for user.
200 * kernel RW areas are mapped with PPP=0b000
201 * User area is mapped with PPP=0b010 for read/write
202 * or PPP=0b011 for read-only (including writeable but clean pages).
204 if (pteflags
& _PAGE_PRIVILEGED
) {
206 * Kernel read only mapped with ppp bits 0b110
208 if (!(pteflags
& _PAGE_WRITE
)) {
209 if (mmu_has_feature(MMU_FTR_KERNEL_RO
))
210 rflags
|= (HPTE_R_PP0
| 0x2);
215 if (pteflags
& _PAGE_RWX
)
217 if (!((pteflags
& _PAGE_WRITE
) && (pteflags
& _PAGE_DIRTY
)))
221 * We can't allow hardware to update hpte bits. Hence always
222 * set 'R' bit and set 'C' if it is a write fault
226 if (pteflags
& _PAGE_DIRTY
)
232 if ((pteflags
& _PAGE_CACHE_CTL
) == _PAGE_TOLERANT
)
234 else if ((pteflags
& _PAGE_CACHE_CTL
) == _PAGE_NON_IDEMPOTENT
)
235 rflags
|= (HPTE_R_I
| HPTE_R_G
);
236 else if ((pteflags
& _PAGE_CACHE_CTL
) == _PAGE_SAO
)
237 rflags
|= (HPTE_R_W
| HPTE_R_I
| HPTE_R_M
);
240 * Add memory coherence if cache inhibited is not set
244 rflags
|= pte_to_hpte_pkey_bits(pteflags
, flags
);
248 int htab_bolt_mapping(unsigned long vstart
, unsigned long vend
,
249 unsigned long pstart
, unsigned long prot
,
250 int psize
, int ssize
)
252 unsigned long vaddr
, paddr
;
253 unsigned int step
, shift
;
256 shift
= mmu_psize_defs
[psize
].shift
;
259 prot
= htab_convert_pte_flags(prot
, HPTE_USE_KERNEL_KEY
);
261 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
262 vstart
, vend
, pstart
, prot
, psize
, ssize
);
264 /* Carefully map only the possible range */
265 vaddr
= ALIGN(vstart
, step
);
266 paddr
= ALIGN(pstart
, step
);
267 vend
= ALIGN_DOWN(vend
, step
);
269 for (; vaddr
< vend
; vaddr
+= step
, paddr
+= step
) {
270 unsigned long hash
, hpteg
;
271 unsigned long vsid
= get_kernel_vsid(vaddr
, ssize
);
272 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, ssize
);
273 unsigned long tprot
= prot
;
274 bool secondary_hash
= false;
277 * If we hit a bad address return error.
281 /* Make kernel text executable */
282 if (overlaps_kernel_text(vaddr
, vaddr
+ step
))
286 * If relocatable, check if it overlaps interrupt vectors that
287 * are copied down to real 0. For relocatable kernel
288 * (e.g. kdump case) we copy interrupt vectors down to real
289 * address 0. Mark that region as executable. This is
290 * because on p8 system with relocation on exception feature
291 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
292 * in order to execute the interrupt handlers in virtual
293 * mode the vector region need to be marked as executable.
295 if ((PHYSICAL_START
> MEMORY_START
) &&
296 overlaps_interrupt_vector_text(vaddr
, vaddr
+ step
))
299 hash
= hpt_hash(vpn
, shift
, ssize
);
300 hpteg
= ((hash
& htab_hash_mask
) * HPTES_PER_GROUP
);
302 BUG_ON(!mmu_hash_ops
.hpte_insert
);
304 ret
= mmu_hash_ops
.hpte_insert(hpteg
, vpn
, paddr
, tprot
,
305 HPTE_V_BOLTED
, psize
, psize
,
309 * Try to to keep bolted entries in primary.
310 * Remove non bolted entries and try insert again
312 ret
= mmu_hash_ops
.hpte_remove(hpteg
);
314 ret
= mmu_hash_ops
.hpte_insert(hpteg
, vpn
, paddr
, tprot
,
315 HPTE_V_BOLTED
, psize
, psize
,
317 if (ret
== -1 && !secondary_hash
) {
318 secondary_hash
= true;
319 hpteg
= ((~hash
& htab_hash_mask
) * HPTES_PER_GROUP
);
328 #ifdef CONFIG_DEBUG_PAGEALLOC
329 if (debug_pagealloc_enabled() &&
330 (paddr
>> PAGE_SHIFT
) < linear_map_hash_count
)
331 linear_map_hash_slots
[paddr
>> PAGE_SHIFT
] = ret
| 0x80;
332 #endif /* CONFIG_DEBUG_PAGEALLOC */
334 return ret
< 0 ? ret
: 0;
337 int htab_remove_mapping(unsigned long vstart
, unsigned long vend
,
338 int psize
, int ssize
)
341 unsigned int step
, shift
;
345 shift
= mmu_psize_defs
[psize
].shift
;
348 if (!mmu_hash_ops
.hpte_removebolted
)
351 /* Unmap the full range specificied */
352 vaddr
= ALIGN_DOWN(vstart
, step
);
353 for (;vaddr
< vend
; vaddr
+= step
) {
354 rc
= mmu_hash_ops
.hpte_removebolted(vaddr
, psize
, ssize
);
366 static bool disable_1tb_segments
= false;
368 static int __init
parse_disable_1tb_segments(char *p
)
370 disable_1tb_segments
= true;
373 early_param("disable_1tb_segments", parse_disable_1tb_segments
);
375 static int __init
htab_dt_scan_seg_sizes(unsigned long node
,
376 const char *uname
, int depth
,
379 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
383 /* We are scanning "cpu" nodes only */
384 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
387 prop
= of_get_flat_dt_prop(node
, "ibm,processor-segment-sizes", &size
);
390 for (; size
>= 4; size
-= 4, ++prop
) {
391 if (be32_to_cpu(prop
[0]) == 40) {
392 DBG("1T segment support detected\n");
394 if (disable_1tb_segments
) {
395 DBG("1T segments disabled by command line\n");
399 cur_cpu_spec
->mmu_features
|= MMU_FTR_1T_SEGMENT
;
403 cur_cpu_spec
->mmu_features
&= ~MMU_FTR_NO_SLBIE_B
;
407 static int __init
get_idx_from_shift(unsigned int shift
)
431 static int __init
htab_dt_scan_page_sizes(unsigned long node
,
432 const char *uname
, int depth
,
435 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
439 /* We are scanning "cpu" nodes only */
440 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
443 prop
= of_get_flat_dt_prop(node
, "ibm,segment-page-sizes", &size
);
447 pr_info("Page sizes from device-tree:\n");
449 cur_cpu_spec
->mmu_features
&= ~(MMU_FTR_16M_PAGE
);
451 unsigned int base_shift
= be32_to_cpu(prop
[0]);
452 unsigned int slbenc
= be32_to_cpu(prop
[1]);
453 unsigned int lpnum
= be32_to_cpu(prop
[2]);
454 struct mmu_psize_def
*def
;
457 size
-= 3; prop
+= 3;
458 base_idx
= get_idx_from_shift(base_shift
);
460 /* skip the pte encoding also */
461 prop
+= lpnum
* 2; size
-= lpnum
* 2;
464 def
= &mmu_psize_defs
[base_idx
];
465 if (base_idx
== MMU_PAGE_16M
)
466 cur_cpu_spec
->mmu_features
|= MMU_FTR_16M_PAGE
;
468 def
->shift
= base_shift
;
469 if (base_shift
<= 23)
472 def
->avpnm
= (1 << (base_shift
- 23)) - 1;
475 * We don't know for sure what's up with tlbiel, so
476 * for now we only set it for 4K and 64K pages
478 if (base_idx
== MMU_PAGE_4K
|| base_idx
== MMU_PAGE_64K
)
483 while (size
> 0 && lpnum
) {
484 unsigned int shift
= be32_to_cpu(prop
[0]);
485 int penc
= be32_to_cpu(prop
[1]);
487 prop
+= 2; size
-= 2;
490 idx
= get_idx_from_shift(shift
);
495 pr_err("Invalid penc for base_shift=%d "
496 "shift=%d\n", base_shift
, shift
);
498 def
->penc
[idx
] = penc
;
499 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
500 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
501 base_shift
, shift
, def
->sllp
,
502 def
->avpnm
, def
->tlbiel
, def
->penc
[idx
]);
509 #ifdef CONFIG_HUGETLB_PAGE
511 * Scan for 16G memory blocks that have been set aside for huge pages
512 * and reserve those blocks for 16G huge pages.
514 static int __init
htab_dt_scan_hugepage_blocks(unsigned long node
,
515 const char *uname
, int depth
,
517 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
518 const __be64
*addr_prop
;
519 const __be32
*page_count_prop
;
520 unsigned int expected_pages
;
521 long unsigned int phys_addr
;
522 long unsigned int block_size
;
524 /* We are scanning "memory" nodes only */
525 if (type
== NULL
|| strcmp(type
, "memory") != 0)
529 * This property is the log base 2 of the number of virtual pages that
530 * will represent this memory block.
532 page_count_prop
= of_get_flat_dt_prop(node
, "ibm,expected#pages", NULL
);
533 if (page_count_prop
== NULL
)
535 expected_pages
= (1 << be32_to_cpu(page_count_prop
[0]));
536 addr_prop
= of_get_flat_dt_prop(node
, "reg", NULL
);
537 if (addr_prop
== NULL
)
539 phys_addr
= be64_to_cpu(addr_prop
[0]);
540 block_size
= be64_to_cpu(addr_prop
[1]);
541 if (block_size
!= (16 * GB
))
543 printk(KERN_INFO
"Huge page(16GB) memory: "
544 "addr = 0x%lX size = 0x%lX pages = %d\n",
545 phys_addr
, block_size
, expected_pages
);
546 if (phys_addr
+ block_size
* expected_pages
<= memblock_end_of_DRAM()) {
547 memblock_reserve(phys_addr
, block_size
* expected_pages
);
548 pseries_add_gpage(phys_addr
, block_size
, expected_pages
);
552 #endif /* CONFIG_HUGETLB_PAGE */
554 static void mmu_psize_set_default_penc(void)
557 for (bpsize
= 0; bpsize
< MMU_PAGE_COUNT
; bpsize
++)
558 for (apsize
= 0; apsize
< MMU_PAGE_COUNT
; apsize
++)
559 mmu_psize_defs
[bpsize
].penc
[apsize
] = -1;
562 #ifdef CONFIG_PPC_64K_PAGES
564 static bool might_have_hea(void)
567 * The HEA ethernet adapter requires awareness of the
568 * GX bus. Without that awareness we can easily assume
569 * we will never see an HEA ethernet device.
571 #ifdef CONFIG_IBMEBUS
572 return !cpu_has_feature(CPU_FTR_ARCH_207S
) &&
573 firmware_has_feature(FW_FEATURE_SPLPAR
);
579 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
581 static void __init
htab_scan_page_sizes(void)
585 /* se the invalid penc to -1 */
586 mmu_psize_set_default_penc();
588 /* Default to 4K pages only */
589 memcpy(mmu_psize_defs
, mmu_psize_defaults
,
590 sizeof(mmu_psize_defaults
));
593 * Try to find the available page sizes in the device-tree
595 rc
= of_scan_flat_dt(htab_dt_scan_page_sizes
, NULL
);
596 if (rc
== 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE
)) {
598 * Nothing in the device-tree, but the CPU supports 16M pages,
599 * so let's fallback on a known size list for 16M capable CPUs.
601 memcpy(mmu_psize_defs
, mmu_psize_defaults_gp
,
602 sizeof(mmu_psize_defaults_gp
));
605 #ifdef CONFIG_HUGETLB_PAGE
606 if (!hugetlb_disabled
&& !early_radix_enabled() ) {
607 /* Reserve 16G huge page memory sections for huge pages */
608 of_scan_flat_dt(htab_dt_scan_hugepage_blocks
, NULL
);
610 #endif /* CONFIG_HUGETLB_PAGE */
614 * Fill in the hpte_page_sizes[] array.
615 * We go through the mmu_psize_defs[] array looking for all the
616 * supported base/actual page size combinations. Each combination
617 * has a unique pagesize encoding (penc) value in the low bits of
618 * the LP field of the HPTE. For actual page sizes less than 1MB,
619 * some of the upper LP bits are used for RPN bits, meaning that
620 * we need to fill in several entries in hpte_page_sizes[].
622 * In diagrammatic form, with r = RPN bits and z = page size bits:
623 * PTE LP actual page size
630 * The zzzz bits are implementation-specific but are chosen so that
631 * no encoding for a larger page size uses the same value in its
632 * low-order N bits as the encoding for the 2^(12+N) byte page size
635 static void init_hpte_page_sizes(void)
638 long int shift
, penc
;
640 for (bp
= 0; bp
< MMU_PAGE_COUNT
; ++bp
) {
641 if (!mmu_psize_defs
[bp
].shift
)
642 continue; /* not a supported page size */
643 for (ap
= bp
; ap
< MMU_PAGE_COUNT
; ++ap
) {
644 penc
= mmu_psize_defs
[bp
].penc
[ap
];
645 if (penc
== -1 || !mmu_psize_defs
[ap
].shift
)
647 shift
= mmu_psize_defs
[ap
].shift
- LP_SHIFT
;
649 continue; /* should never happen */
651 * For page sizes less than 1MB, this loop
652 * replicates the entry for all possible values
655 while (penc
< (1 << LP_BITS
)) {
656 hpte_page_sizes
[penc
] = (ap
<< 4) | bp
;
663 static void __init
htab_init_page_sizes(void)
666 init_hpte_page_sizes();
668 if (!debug_pagealloc_enabled()) {
670 * Pick a size for the linear mapping. Currently, we only
671 * support 16M, 1M and 4K which is the default
673 if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX
) &&
674 (unsigned long)_stext
% 0x1000000) {
675 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
)
676 pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n");
680 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
&& aligned
)
681 mmu_linear_psize
= MMU_PAGE_16M
;
682 else if (mmu_psize_defs
[MMU_PAGE_1M
].shift
)
683 mmu_linear_psize
= MMU_PAGE_1M
;
686 #ifdef CONFIG_PPC_64K_PAGES
688 * Pick a size for the ordinary pages. Default is 4K, we support
689 * 64K for user mappings and vmalloc if supported by the processor.
690 * We only use 64k for ioremap if the processor
691 * (and firmware) support cache-inhibited large pages.
692 * If not, we use 4k and set mmu_ci_restrictions so that
693 * hash_page knows to switch processes that use cache-inhibited
694 * mappings to 4k pages.
696 if (mmu_psize_defs
[MMU_PAGE_64K
].shift
) {
697 mmu_virtual_psize
= MMU_PAGE_64K
;
698 mmu_vmalloc_psize
= MMU_PAGE_64K
;
699 if (mmu_linear_psize
== MMU_PAGE_4K
)
700 mmu_linear_psize
= MMU_PAGE_64K
;
701 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE
)) {
703 * When running on pSeries using 64k pages for ioremap
704 * would stop us accessing the HEA ethernet. So if we
705 * have the chance of ever seeing one, stay at 4k.
707 if (!might_have_hea())
708 mmu_io_psize
= MMU_PAGE_64K
;
710 mmu_ci_restrictions
= 1;
712 #endif /* CONFIG_PPC_64K_PAGES */
714 #ifdef CONFIG_SPARSEMEM_VMEMMAP
716 * We try to use 16M pages for vmemmap if that is supported
717 * and we have at least 1G of RAM at boot
719 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
&&
720 memblock_phys_mem_size() >= 0x40000000)
721 mmu_vmemmap_psize
= MMU_PAGE_16M
;
723 mmu_vmemmap_psize
= mmu_virtual_psize
;
724 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
726 printk(KERN_DEBUG
"Page orders: linear mapping = %d, "
727 "virtual = %d, io = %d"
728 #ifdef CONFIG_SPARSEMEM_VMEMMAP
732 mmu_psize_defs
[mmu_linear_psize
].shift
,
733 mmu_psize_defs
[mmu_virtual_psize
].shift
,
734 mmu_psize_defs
[mmu_io_psize
].shift
735 #ifdef CONFIG_SPARSEMEM_VMEMMAP
736 ,mmu_psize_defs
[mmu_vmemmap_psize
].shift
741 static int __init
htab_dt_scan_pftsize(unsigned long node
,
742 const char *uname
, int depth
,
745 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
748 /* We are scanning "cpu" nodes only */
749 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
752 prop
= of_get_flat_dt_prop(node
, "ibm,pft-size", NULL
);
754 /* pft_size[0] is the NUMA CEC cookie */
755 ppc64_pft_size
= be32_to_cpu(prop
[1]);
761 unsigned htab_shift_for_mem_size(unsigned long mem_size
)
763 unsigned memshift
= __ilog2(mem_size
);
764 unsigned pshift
= mmu_psize_defs
[mmu_virtual_psize
].shift
;
767 /* round mem_size up to next power of 2 */
768 if ((1UL << memshift
) < mem_size
)
771 /* aim for 2 pages / pteg */
772 pteg_shift
= memshift
- (pshift
+ 1);
775 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
776 * size permitted by the architecture.
778 return max(pteg_shift
+ 7, 18U);
781 static unsigned long __init
htab_get_table_size(void)
784 * If hash size isn't already provided by the platform, we try to
785 * retrieve it from the device-tree. If it's not there neither, we
786 * calculate it now based on the total RAM size
788 if (ppc64_pft_size
== 0)
789 of_scan_flat_dt(htab_dt_scan_pftsize
, NULL
);
791 return 1UL << ppc64_pft_size
;
793 return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
796 #ifdef CONFIG_MEMORY_HOTPLUG
797 static int resize_hpt_for_hotplug(unsigned long new_mem_size
)
799 unsigned target_hpt_shift
;
801 if (!mmu_hash_ops
.resize_hpt
)
804 target_hpt_shift
= htab_shift_for_mem_size(new_mem_size
);
807 * To avoid lots of HPT resizes if memory size is fluctuating
808 * across a boundary, we deliberately have some hysterisis
809 * here: we immediately increase the HPT size if the target
810 * shift exceeds the current shift, but we won't attempt to
811 * reduce unless the target shift is at least 2 below the
814 if (target_hpt_shift
> ppc64_pft_size
||
815 target_hpt_shift
< ppc64_pft_size
- 1)
816 return mmu_hash_ops
.resize_hpt(target_hpt_shift
);
821 int hash__create_section_mapping(unsigned long start
, unsigned long end
,
822 int nid
, pgprot_t prot
)
826 if (end
>= H_VMALLOC_START
) {
827 pr_warn("Outside the supported range\n");
831 resize_hpt_for_hotplug(memblock_phys_mem_size());
833 rc
= htab_bolt_mapping(start
, end
, __pa(start
),
834 pgprot_val(prot
), mmu_linear_psize
,
838 int rc2
= htab_remove_mapping(start
, end
, mmu_linear_psize
,
840 BUG_ON(rc2
&& (rc2
!= -ENOENT
));
845 int hash__remove_section_mapping(unsigned long start
, unsigned long end
)
847 int rc
= htab_remove_mapping(start
, end
, mmu_linear_psize
,
850 if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC
)
851 pr_warn("Hash collision while resizing HPT\n");
855 #endif /* CONFIG_MEMORY_HOTPLUG */
857 static void __init
hash_init_partition_table(phys_addr_t hash_table
,
858 unsigned long htab_size
)
860 mmu_partition_table_init();
863 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
864 * For now, UPRT is 0 and we have no segment table.
866 htab_size
= __ilog2(htab_size
) - 18;
867 mmu_partition_table_set_entry(0, hash_table
| htab_size
, 0, false);
868 pr_info("Partition table %p\n", partition_tb
);
871 static void __init
htab_initialize(void)
874 unsigned long pteg_count
;
876 phys_addr_t base
= 0, size
= 0, end
;
879 DBG(" -> htab_initialize()\n");
881 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
)) {
882 mmu_kernel_ssize
= MMU_SEGSIZE_1T
;
883 mmu_highuser_ssize
= MMU_SEGSIZE_1T
;
884 printk(KERN_INFO
"Using 1TB segments\n");
887 if (stress_slb_enabled
)
888 static_branch_enable(&stress_slb_key
);
891 * Calculate the required size of the htab. We want the number of
892 * PTEGs to equal one half the number of real pages.
894 htab_size_bytes
= htab_get_table_size();
895 pteg_count
= htab_size_bytes
>> 7;
897 htab_hash_mask
= pteg_count
- 1;
899 if (firmware_has_feature(FW_FEATURE_LPAR
) ||
900 firmware_has_feature(FW_FEATURE_PS3_LV1
)) {
901 /* Using a hypervisor which owns the htab */
904 #ifdef CONFIG_FA_DUMP
906 * If firmware assisted dump is active firmware preserves
907 * the contents of htab along with entire partition memory.
908 * Clear the htab if firmware assisted dump is active so
909 * that we dont end up using old mappings.
911 if (is_fadump_active() && mmu_hash_ops
.hpte_clear_all
)
912 mmu_hash_ops
.hpte_clear_all();
915 unsigned long limit
= MEMBLOCK_ALLOC_ANYWHERE
;
917 #ifdef CONFIG_PPC_CELL
919 * Cell may require the hash table down low when using the
920 * Axon IOMMU in order to fit the dynamic region over it, see
921 * comments in cell/iommu.c
923 if (fdt_subnode_offset(initial_boot_params
, 0, "axon") > 0) {
925 pr_info("Hash table forced below 2G for Axon IOMMU\n");
927 #endif /* CONFIG_PPC_CELL */
929 table
= memblock_phys_alloc_range(htab_size_bytes
,
933 panic("ERROR: Failed to allocate %pa bytes below %pa\n",
934 &htab_size_bytes
, &limit
);
936 DBG("Hash table allocated at %lx, size: %lx\n", table
,
939 htab_address
= __va(table
);
941 /* htab absolute addr + encoded htabsize */
942 _SDR1
= table
+ __ilog2(htab_size_bytes
) - 18;
944 /* Initialize the HPT with no entries */
945 memset((void *)table
, 0, htab_size_bytes
);
947 if (!cpu_has_feature(CPU_FTR_ARCH_300
))
949 mtspr(SPRN_SDR1
, _SDR1
);
951 hash_init_partition_table(table
, htab_size_bytes
);
954 prot
= pgprot_val(PAGE_KERNEL
);
956 #ifdef CONFIG_DEBUG_PAGEALLOC
957 if (debug_pagealloc_enabled()) {
958 linear_map_hash_count
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
959 linear_map_hash_slots
= memblock_alloc_try_nid(
960 linear_map_hash_count
, 1, MEMBLOCK_LOW_LIMIT
,
961 ppc64_rma_size
, NUMA_NO_NODE
);
962 if (!linear_map_hash_slots
)
963 panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
964 __func__
, linear_map_hash_count
, &ppc64_rma_size
);
966 #endif /* CONFIG_DEBUG_PAGEALLOC */
968 /* create bolted the linear mapping in the hash table */
969 for_each_mem_range(i
, &base
, &end
) {
971 base
= (unsigned long)__va(base
);
973 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
976 if ((base
+ size
) >= H_VMALLOC_START
) {
977 pr_warn("Outside the supported range\n");
981 BUG_ON(htab_bolt_mapping(base
, base
+ size
, __pa(base
),
982 prot
, mmu_linear_psize
, mmu_kernel_ssize
));
984 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE
);
987 * If we have a memory_limit and we've allocated TCEs then we need to
988 * explicitly map the TCE area at the top of RAM. We also cope with the
989 * case that the TCEs start below memory_limit.
990 * tce_alloc_start/end are 16MB aligned so the mapping should work
991 * for either 4K or 16MB pages.
993 if (tce_alloc_start
) {
994 tce_alloc_start
= (unsigned long)__va(tce_alloc_start
);
995 tce_alloc_end
= (unsigned long)__va(tce_alloc_end
);
997 if (base
+ size
>= tce_alloc_start
)
998 tce_alloc_start
= base
+ size
+ 1;
1000 BUG_ON(htab_bolt_mapping(tce_alloc_start
, tce_alloc_end
,
1001 __pa(tce_alloc_start
), prot
,
1002 mmu_linear_psize
, mmu_kernel_ssize
));
1006 DBG(" <- htab_initialize()\n");
1011 void __init
hash__early_init_devtree(void)
1013 /* Initialize segment sizes */
1014 of_scan_flat_dt(htab_dt_scan_seg_sizes
, NULL
);
1016 /* Initialize page sizes */
1017 htab_scan_page_sizes();
1020 static struct hash_mm_context init_hash_mm_context
;
1021 void __init
hash__early_init_mmu(void)
1023 #ifndef CONFIG_PPC_64K_PAGES
1025 * We have code in __hash_page_4K() and elsewhere, which assumes it can
1027 * new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
1029 * Where the slot number is between 0-15, and values of 8-15 indicate
1030 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
1031 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1032 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1033 * with a BUILD_BUG_ON().
1035 BUILD_BUG_ON(H_PAGE_F_SECOND
!= (1ul << (H_PAGE_F_GIX_SHIFT
+ 3)));
1036 #endif /* CONFIG_PPC_64K_PAGES */
1038 htab_init_page_sizes();
1041 * initialize page table size
1043 __pte_frag_nr
= H_PTE_FRAG_NR
;
1044 __pte_frag_size_shift
= H_PTE_FRAG_SIZE_SHIFT
;
1045 __pmd_frag_nr
= H_PMD_FRAG_NR
;
1046 __pmd_frag_size_shift
= H_PMD_FRAG_SIZE_SHIFT
;
1048 __pte_index_size
= H_PTE_INDEX_SIZE
;
1049 __pmd_index_size
= H_PMD_INDEX_SIZE
;
1050 __pud_index_size
= H_PUD_INDEX_SIZE
;
1051 __pgd_index_size
= H_PGD_INDEX_SIZE
;
1052 __pud_cache_index
= H_PUD_CACHE_INDEX
;
1053 __pte_table_size
= H_PTE_TABLE_SIZE
;
1054 __pmd_table_size
= H_PMD_TABLE_SIZE
;
1055 __pud_table_size
= H_PUD_TABLE_SIZE
;
1056 __pgd_table_size
= H_PGD_TABLE_SIZE
;
1058 * 4k use hugepd format, so for hash set then to
1061 __pmd_val_bits
= HASH_PMD_VAL_BITS
;
1062 __pud_val_bits
= HASH_PUD_VAL_BITS
;
1063 __pgd_val_bits
= HASH_PGD_VAL_BITS
;
1065 __kernel_virt_start
= H_KERN_VIRT_START
;
1066 __vmalloc_start
= H_VMALLOC_START
;
1067 __vmalloc_end
= H_VMALLOC_END
;
1068 __kernel_io_start
= H_KERN_IO_START
;
1069 __kernel_io_end
= H_KERN_IO_END
;
1070 vmemmap
= (struct page
*)H_VMEMMAP_START
;
1071 ioremap_bot
= IOREMAP_BASE
;
1074 pci_io_base
= ISA_IO_BASE
;
1077 /* Select appropriate backend */
1078 if (firmware_has_feature(FW_FEATURE_PS3_LV1
))
1079 ps3_early_mm_init();
1080 else if (firmware_has_feature(FW_FEATURE_LPAR
))
1081 hpte_init_pseries();
1082 else if (IS_ENABLED(CONFIG_PPC_NATIVE
))
1085 if (!mmu_hash_ops
.hpte_insert
)
1086 panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1089 * Initialize the MMU Hash table and create the linear mapping
1090 * of memory. Has to be done before SLB initialization as this is
1091 * currently where the page size encoding is obtained.
1095 init_mm
.context
.hash_context
= &init_hash_mm_context
;
1096 mm_ctx_set_slb_addr_limit(&init_mm
.context
, SLB_ADDR_LIMIT_DEFAULT
);
1098 pr_info("Initializing hash mmu with SLB\n");
1099 /* Initialize SLB management */
1102 if (cpu_has_feature(CPU_FTR_ARCH_206
)
1103 && cpu_has_feature(CPU_FTR_HVMODE
))
1108 void hash__early_init_mmu_secondary(void)
1110 /* Initialize hash table for that CPU */
1111 if (!firmware_has_feature(FW_FEATURE_LPAR
)) {
1113 if (!cpu_has_feature(CPU_FTR_ARCH_300
))
1114 mtspr(SPRN_SDR1
, _SDR1
);
1116 set_ptcr_when_no_uv(__pa(partition_tb
) |
1117 (PATB_SIZE_SHIFT
- 12));
1119 /* Initialize SLB */
1122 if (cpu_has_feature(CPU_FTR_ARCH_206
)
1123 && cpu_has_feature(CPU_FTR_HVMODE
))
1126 #ifdef CONFIG_PPC_MEM_KEYS
1127 if (mmu_has_feature(MMU_FTR_PKEY
))
1128 mtspr(SPRN_UAMOR
, default_uamor
);
1131 #endif /* CONFIG_SMP */
1134 * Called by asm hashtable.S for doing lazy icache flush
1136 unsigned int hash_page_do_lazy_icache(unsigned int pp
, pte_t pte
, int trap
)
1140 if (!pfn_valid(pte_pfn(pte
)))
1143 page
= pte_page(pte
);
1146 if (!test_bit(PG_arch_1
, &page
->flags
) && !PageReserved(page
)) {
1147 if (trap
== 0x400) {
1148 flush_dcache_icache_page(page
);
1149 set_bit(PG_arch_1
, &page
->flags
);
1156 #ifdef CONFIG_PPC_MM_SLICES
1157 static unsigned int get_paca_psize(unsigned long addr
)
1159 unsigned char *psizes
;
1160 unsigned long index
, mask_index
;
1162 if (addr
< SLICE_LOW_TOP
) {
1163 psizes
= get_paca()->mm_ctx_low_slices_psize
;
1164 index
= GET_LOW_SLICE_INDEX(addr
);
1166 psizes
= get_paca()->mm_ctx_high_slices_psize
;
1167 index
= GET_HIGH_SLICE_INDEX(addr
);
1169 mask_index
= index
& 0x1;
1170 return (psizes
[index
>> 1] >> (mask_index
* 4)) & 0xF;
1174 unsigned int get_paca_psize(unsigned long addr
)
1176 return get_paca()->mm_ctx_user_psize
;
1181 * Demote a segment to using 4k pages.
1182 * For now this makes the whole process use 4k pages.
1184 #ifdef CONFIG_PPC_64K_PAGES
1185 void demote_segment_4k(struct mm_struct
*mm
, unsigned long addr
)
1187 if (get_slice_psize(mm
, addr
) == MMU_PAGE_4K
)
1189 slice_set_range_psize(mm
, addr
, 1, MMU_PAGE_4K
);
1190 copro_flush_all_slbs(mm
);
1191 if ((get_paca_psize(addr
) != MMU_PAGE_4K
) && (current
->mm
== mm
)) {
1193 copy_mm_to_paca(mm
);
1194 slb_flush_and_restore_bolted();
1197 #endif /* CONFIG_PPC_64K_PAGES */
1199 #ifdef CONFIG_PPC_SUBPAGE_PROT
1201 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1202 * Userspace sets the subpage permissions using the subpage_prot system call.
1204 * Result is 0: full permissions, _PAGE_RW: read-only,
1205 * _PAGE_RWX: no access.
1207 static int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
1209 struct subpage_prot_table
*spt
= mm_ctx_subpage_prot(&mm
->context
);
1216 if (ea
>= spt
->maxaddr
)
1218 if (ea
< 0x100000000UL
) {
1219 /* addresses below 4GB use spt->low_prot */
1220 sbpm
= spt
->low_prot
;
1222 sbpm
= spt
->protptrs
[ea
>> SBP_L3_SHIFT
];
1226 sbpp
= sbpm
[(ea
>> SBP_L2_SHIFT
) & (SBP_L2_COUNT
- 1)];
1229 spp
= sbpp
[(ea
>> PAGE_SHIFT
) & (SBP_L1_COUNT
- 1)];
1231 /* extract 2-bit bitfield for this 4k subpage */
1232 spp
>>= 30 - 2 * ((ea
>> 12) & 0xf);
1235 * 0 -> full premission
1238 * We return the flag that need to be cleared.
1240 spp
= ((spp
& 2) ? _PAGE_RWX
: 0) | ((spp
& 1) ? _PAGE_WRITE
: 0);
1244 #else /* CONFIG_PPC_SUBPAGE_PROT */
1245 static inline int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
1251 void hash_failure_debug(unsigned long ea
, unsigned long access
,
1252 unsigned long vsid
, unsigned long trap
,
1253 int ssize
, int psize
, int lpsize
, unsigned long pte
)
1255 if (!printk_ratelimit())
1257 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1258 ea
, access
, current
->comm
);
1259 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1260 trap
, vsid
, ssize
, psize
, lpsize
, pte
);
1263 static void check_paca_psize(unsigned long ea
, struct mm_struct
*mm
,
1264 int psize
, bool user_region
)
1267 if (psize
!= get_paca_psize(ea
)) {
1268 copy_mm_to_paca(mm
);
1269 slb_flush_and_restore_bolted();
1271 } else if (get_paca()->vmalloc_sllp
!=
1272 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
) {
1273 get_paca()->vmalloc_sllp
=
1274 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
;
1275 slb_vmalloc_update();
1282 * 1 - normal page fault
1283 * -1 - critical hash insertion error
1284 * -2 - access not permitted by subpage protection mechanism
1286 int hash_page_mm(struct mm_struct
*mm
, unsigned long ea
,
1287 unsigned long access
, unsigned long trap
,
1288 unsigned long flags
)
1291 enum ctx_state prev_state
= exception_enter();
1296 int rc
, user_region
= 0;
1299 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1301 trace_hash_fault(ea
, access
, trap
);
1303 /* Get region & vsid */
1304 switch (get_region_id(ea
)) {
1305 case USER_REGION_ID
:
1308 DBG_LOW(" user region with no mm !\n");
1312 psize
= get_slice_psize(mm
, ea
);
1313 ssize
= user_segment_size(ea
);
1314 vsid
= get_user_vsid(&mm
->context
, ea
, ssize
);
1316 case VMALLOC_REGION_ID
:
1317 vsid
= get_kernel_vsid(ea
, mmu_kernel_ssize
);
1318 psize
= mmu_vmalloc_psize
;
1319 ssize
= mmu_kernel_ssize
;
1320 flags
|= HPTE_USE_KERNEL_KEY
;
1324 vsid
= get_kernel_vsid(ea
, mmu_kernel_ssize
);
1325 psize
= mmu_io_psize
;
1326 ssize
= mmu_kernel_ssize
;
1327 flags
|= HPTE_USE_KERNEL_KEY
;
1332 * Send the problem up to do_page_fault()
1337 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm
, mm
->pgd
, vsid
);
1341 DBG_LOW("Bad address!\n");
1347 if (pgdir
== NULL
) {
1352 /* Check CPU locality */
1353 if (user_region
&& mm_is_thread_local(mm
))
1354 flags
|= HPTE_LOCAL_UPDATE
;
1356 #ifndef CONFIG_PPC_64K_PAGES
1358 * If we use 4K pages and our psize is not 4K, then we might
1359 * be hitting a special driver mapping, and need to align the
1360 * address before we fetch the PTE.
1362 * It could also be a hugepage mapping, in which case this is
1363 * not necessary, but it's not harmful, either.
1365 if (psize
!= MMU_PAGE_4K
)
1366 ea
&= ~((1ul << mmu_psize_defs
[psize
].shift
) - 1);
1367 #endif /* CONFIG_PPC_64K_PAGES */
1369 /* Get PTE and page size from page tables */
1370 ptep
= find_linux_pte(pgdir
, ea
, &is_thp
, &hugeshift
);
1371 if (ptep
== NULL
|| !pte_present(*ptep
)) {
1372 DBG_LOW(" no PTE !\n");
1378 * Add _PAGE_PRESENT to the required access perm. If there are parallel
1379 * updates to the pte that can possibly clear _PAGE_PTE, catch that too.
1381 * We can safely use the return pte address in rest of the function
1382 * because we do set H_PAGE_BUSY which prevents further updates to pte
1383 * from generic code.
1385 access
|= _PAGE_PRESENT
| _PAGE_PTE
;
1388 * Pre-check access permissions (will be re-checked atomically
1389 * in __hash_page_XX but this pre-check is a fast path
1391 if (!check_pte_access(access
, pte_val(*ptep
))) {
1392 DBG_LOW(" no access !\n");
1399 rc
= __hash_page_thp(ea
, access
, vsid
, (pmd_t
*)ptep
,
1400 trap
, flags
, ssize
, psize
);
1401 #ifdef CONFIG_HUGETLB_PAGE
1403 rc
= __hash_page_huge(ea
, access
, vsid
, ptep
, trap
,
1404 flags
, ssize
, hugeshift
, psize
);
1408 * if we have hugeshift, and is not transhuge with
1409 * hugetlb disabled, something is really wrong.
1415 if (current
->mm
== mm
)
1416 check_paca_psize(ea
, mm
, psize
, user_region
);
1421 #ifndef CONFIG_PPC_64K_PAGES
1422 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep
));
1424 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep
),
1425 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1427 /* Do actual hashing */
1428 #ifdef CONFIG_PPC_64K_PAGES
1429 /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1430 if ((pte_val(*ptep
) & H_PAGE_4K_PFN
) && psize
== MMU_PAGE_64K
) {
1431 demote_segment_4k(mm
, ea
);
1432 psize
= MMU_PAGE_4K
;
1436 * If this PTE is non-cacheable and we have restrictions on
1437 * using non cacheable large pages, then we switch to 4k
1439 if (mmu_ci_restrictions
&& psize
== MMU_PAGE_64K
&& pte_ci(*ptep
)) {
1441 demote_segment_4k(mm
, ea
);
1442 psize
= MMU_PAGE_4K
;
1443 } else if (ea
< VMALLOC_END
) {
1445 * some driver did a non-cacheable mapping
1446 * in vmalloc space, so switch vmalloc
1449 printk(KERN_ALERT
"Reducing vmalloc segment "
1450 "to 4kB pages because of "
1451 "non-cacheable mapping\n");
1452 psize
= mmu_vmalloc_psize
= MMU_PAGE_4K
;
1453 copro_flush_all_slbs(mm
);
1457 #endif /* CONFIG_PPC_64K_PAGES */
1459 if (current
->mm
== mm
)
1460 check_paca_psize(ea
, mm
, psize
, user_region
);
1462 #ifdef CONFIG_PPC_64K_PAGES
1463 if (psize
== MMU_PAGE_64K
)
1464 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
,
1467 #endif /* CONFIG_PPC_64K_PAGES */
1469 int spp
= subpage_protection(mm
, ea
);
1473 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
,
1478 * Dump some info in case of hash insertion failure, they should
1479 * never happen so it is really useful to know if/when they do
1482 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
, psize
,
1483 psize
, pte_val(*ptep
));
1484 #ifndef CONFIG_PPC_64K_PAGES
1485 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep
));
1487 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep
),
1488 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1490 DBG_LOW(" -> rc=%d\n", rc
);
1493 exception_exit(prev_state
);
1496 EXPORT_SYMBOL_GPL(hash_page_mm
);
1498 int hash_page(unsigned long ea
, unsigned long access
, unsigned long trap
,
1499 unsigned long dsisr
)
1501 unsigned long flags
= 0;
1502 struct mm_struct
*mm
= current
->mm
;
1504 if ((get_region_id(ea
) == VMALLOC_REGION_ID
) ||
1505 (get_region_id(ea
) == IO_REGION_ID
))
1508 if (dsisr
& DSISR_NOHPTE
)
1509 flags
|= HPTE_NOHPTE_UPDATE
;
1511 return hash_page_mm(mm
, ea
, access
, trap
, flags
);
1513 EXPORT_SYMBOL_GPL(hash_page
);
1515 int __hash_page(unsigned long trap
, unsigned long ea
, unsigned long dsisr
,
1518 unsigned long access
= _PAGE_PRESENT
| _PAGE_READ
;
1519 unsigned long flags
= 0;
1520 struct mm_struct
*mm
= current
->mm
;
1521 unsigned int region_id
= get_region_id(ea
);
1523 if ((region_id
== VMALLOC_REGION_ID
) || (region_id
== IO_REGION_ID
))
1526 if (dsisr
& DSISR_NOHPTE
)
1527 flags
|= HPTE_NOHPTE_UPDATE
;
1529 if (dsisr
& DSISR_ISSTORE
)
1530 access
|= _PAGE_WRITE
;
1532 * We set _PAGE_PRIVILEGED only when
1533 * kernel mode access kernel space.
1535 * _PAGE_PRIVILEGED is NOT set
1536 * 1) when kernel mode access user space
1537 * 2) user space access kernel space.
1539 access
|= _PAGE_PRIVILEGED
;
1540 if ((msr
& MSR_PR
) || (region_id
== USER_REGION_ID
))
1541 access
&= ~_PAGE_PRIVILEGED
;
1544 access
|= _PAGE_EXEC
;
1546 return hash_page_mm(mm
, ea
, access
, trap
, flags
);
1549 #ifdef CONFIG_PPC_MM_SLICES
1550 static bool should_hash_preload(struct mm_struct
*mm
, unsigned long ea
)
1552 int psize
= get_slice_psize(mm
, ea
);
1554 /* We only prefault standard pages for now */
1555 if (unlikely(psize
!= mm_ctx_user_psize(&mm
->context
)))
1559 * Don't prefault if subpage protection is enabled for the EA.
1561 if (unlikely((psize
== MMU_PAGE_4K
) && subpage_protection(mm
, ea
)))
1567 static bool should_hash_preload(struct mm_struct
*mm
, unsigned long ea
)
1573 static void hash_preload(struct mm_struct
*mm
, pte_t
*ptep
, unsigned long ea
,
1574 bool is_exec
, unsigned long trap
)
1578 int rc
, ssize
, update_flags
= 0;
1579 unsigned long access
= _PAGE_PRESENT
| _PAGE_READ
| (is_exec
? _PAGE_EXEC
: 0);
1580 unsigned long flags
;
1582 BUG_ON(get_region_id(ea
) != USER_REGION_ID
);
1584 if (!should_hash_preload(mm
, ea
))
1587 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1588 " trap=%lx\n", mm
, mm
->pgd
, ea
, access
, trap
);
1590 /* Get Linux PTE if available */
1596 ssize
= user_segment_size(ea
);
1597 vsid
= get_user_vsid(&mm
->context
, ea
, ssize
);
1601 #ifdef CONFIG_PPC_64K_PAGES
1602 /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1603 * a 64K kernel), then we don't preload, hash_page() will take
1604 * care of it once we actually try to access the page.
1605 * That way we don't have to duplicate all of the logic for segment
1606 * page size demotion here
1607 * Called with PTL held, hence can be sure the value won't change in
1610 if ((pte_val(*ptep
) & H_PAGE_4K_PFN
) || pte_ci(*ptep
))
1612 #endif /* CONFIG_PPC_64K_PAGES */
1615 * __hash_page_* must run with interrupts off, as it sets the
1616 * H_PAGE_BUSY bit. It's possible for perf interrupts to hit at any
1617 * time and may take a hash fault reading the user stack, see
1618 * read_user_stack_slow() in the powerpc/perf code.
1620 * If that takes a hash fault on the same page as we lock here, it
1621 * will bail out when seeing H_PAGE_BUSY set, and retry the access
1622 * leading to an infinite loop.
1624 * Disabling interrupts here does not prevent perf interrupts, but it
1625 * will prevent them taking hash faults (see the NMI test in
1626 * do_hash_page), then read_user_stack's copy_from_user_nofault will
1627 * fail and perf will fall back to read_user_stack_slow(), which
1628 * walks the Linux page tables.
1630 * Interrupts must also be off for the duration of the
1631 * mm_is_thread_local test and update, to prevent preempt running the
1632 * mm on another CPU (XXX: this may be racy vs kthread_use_mm).
1634 local_irq_save(flags
);
1636 /* Is that local to this CPU ? */
1637 if (mm_is_thread_local(mm
))
1638 update_flags
|= HPTE_LOCAL_UPDATE
;
1641 #ifdef CONFIG_PPC_64K_PAGES
1642 if (mm_ctx_user_psize(&mm
->context
) == MMU_PAGE_64K
)
1643 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
,
1644 update_flags
, ssize
);
1646 #endif /* CONFIG_PPC_64K_PAGES */
1647 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
, update_flags
,
1648 ssize
, subpage_protection(mm
, ea
));
1650 /* Dump some info in case of hash insertion failure, they should
1651 * never happen so it is really useful to know if/when they do
1654 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
,
1655 mm_ctx_user_psize(&mm
->context
),
1656 mm_ctx_user_psize(&mm
->context
),
1659 local_irq_restore(flags
);
1663 * This is called at the end of handling a user page fault, when the
1664 * fault has been handled by updating a PTE in the linux page tables.
1665 * We use it to preload an HPTE into the hash table corresponding to
1666 * the updated linux PTE.
1668 * This must always be called with the pte lock held.
1670 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long address
,
1674 * We don't need to worry about _PAGE_PRESENT here because we are
1675 * called with either mm->page_table_lock held or ptl lock held
1680 if (radix_enabled())
1683 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
1684 if (!pte_young(*ptep
) || address
>= TASK_SIZE
)
1688 * We try to figure out if we are coming from an instruction
1689 * access fault and pass that down to __hash_page so we avoid
1690 * double-faulting on execution of fresh text. We have to test
1691 * for regs NULL since init will get here first thing at boot.
1693 * We also avoid filling the hash if not coming from a fault.
1696 trap
= current
->thread
.regs
? TRAP(current
->thread
.regs
) : 0UL;
1708 hash_preload(vma
->vm_mm
, ptep
, address
, is_exec
, trap
);
1711 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1712 static inline void tm_flush_hash_page(int local
)
1715 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1716 * page back to a block device w/PIO could pick up transactional data
1717 * (bad!) so we force an abort here. Before the sync the page will be
1718 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1719 * kernel uses a page from userspace without unmapping it first, it may
1720 * see the speculated version.
1722 if (local
&& cpu_has_feature(CPU_FTR_TM
) && current
->thread
.regs
&&
1723 MSR_TM_ACTIVE(current
->thread
.regs
->msr
)) {
1725 tm_abort(TM_CAUSE_TLBI
);
1729 static inline void tm_flush_hash_page(int local
)
1735 * Return the global hash slot, corresponding to the given PTE, which contains
1738 unsigned long pte_get_hash_gslot(unsigned long vpn
, unsigned long shift
,
1739 int ssize
, real_pte_t rpte
, unsigned int subpg_index
)
1741 unsigned long hash
, gslot
, hidx
;
1743 hash
= hpt_hash(vpn
, shift
, ssize
);
1744 hidx
= __rpte_to_hidx(rpte
, subpg_index
);
1745 if (hidx
& _PTEIDX_SECONDARY
)
1747 gslot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1748 gslot
+= hidx
& _PTEIDX_GROUP_IX
;
1752 void flush_hash_page(unsigned long vpn
, real_pte_t pte
, int psize
, int ssize
,
1753 unsigned long flags
)
1755 unsigned long index
, shift
, gslot
;
1756 int local
= flags
& HPTE_LOCAL_UPDATE
;
1758 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn
);
1759 pte_iterate_hashed_subpages(pte
, psize
, vpn
, index
, shift
) {
1760 gslot
= pte_get_hash_gslot(vpn
, shift
, ssize
, pte
, index
);
1761 DBG_LOW(" sub %ld: gslot=%lx\n", index
, gslot
);
1763 * We use same base page size and actual psize, because we don't
1764 * use these functions for hugepage
1766 mmu_hash_ops
.hpte_invalidate(gslot
, vpn
, psize
, psize
,
1768 } pte_iterate_hashed_end();
1770 tm_flush_hash_page(local
);
1773 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1774 void flush_hash_hugepage(unsigned long vsid
, unsigned long addr
,
1775 pmd_t
*pmdp
, unsigned int psize
, int ssize
,
1776 unsigned long flags
)
1778 int i
, max_hpte_count
, valid
;
1779 unsigned long s_addr
;
1780 unsigned char *hpte_slot_array
;
1781 unsigned long hidx
, shift
, vpn
, hash
, slot
;
1782 int local
= flags
& HPTE_LOCAL_UPDATE
;
1784 s_addr
= addr
& HPAGE_PMD_MASK
;
1785 hpte_slot_array
= get_hpte_slot_array(pmdp
);
1787 * IF we try to do a HUGE PTE update after a withdraw is done.
1788 * we will find the below NULL. This happens when we do
1791 if (!hpte_slot_array
)
1794 if (mmu_hash_ops
.hugepage_invalidate
) {
1795 mmu_hash_ops
.hugepage_invalidate(vsid
, s_addr
, hpte_slot_array
,
1796 psize
, ssize
, local
);
1800 * No bluk hpte removal support, invalidate each entry
1802 shift
= mmu_psize_defs
[psize
].shift
;
1803 max_hpte_count
= HPAGE_PMD_SIZE
>> shift
;
1804 for (i
= 0; i
< max_hpte_count
; i
++) {
1806 * 8 bits per each hpte entries
1807 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1809 valid
= hpte_valid(hpte_slot_array
, i
);
1812 hidx
= hpte_hash_index(hpte_slot_array
, i
);
1815 addr
= s_addr
+ (i
* (1ul << shift
));
1816 vpn
= hpt_vpn(addr
, vsid
, ssize
);
1817 hash
= hpt_hash(vpn
, shift
, ssize
);
1818 if (hidx
& _PTEIDX_SECONDARY
)
1821 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1822 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1823 mmu_hash_ops
.hpte_invalidate(slot
, vpn
, psize
,
1824 MMU_PAGE_16M
, ssize
, local
);
1827 tm_flush_hash_page(local
);
1829 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1831 void flush_hash_range(unsigned long number
, int local
)
1833 if (mmu_hash_ops
.flush_hash_range
)
1834 mmu_hash_ops
.flush_hash_range(number
, local
);
1837 struct ppc64_tlb_batch
*batch
=
1838 this_cpu_ptr(&ppc64_tlb_batch
);
1840 for (i
= 0; i
< number
; i
++)
1841 flush_hash_page(batch
->vpn
[i
], batch
->pte
[i
],
1842 batch
->psize
, batch
->ssize
, local
);
1847 * low_hash_fault is called when we the low level hash code failed
1848 * to instert a PTE due to an hypervisor error
1850 void low_hash_fault(struct pt_regs
*regs
, unsigned long address
, int rc
)
1852 enum ctx_state prev_state
= exception_enter();
1854 if (user_mode(regs
)) {
1855 #ifdef CONFIG_PPC_SUBPAGE_PROT
1857 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, address
);
1860 _exception(SIGBUS
, regs
, BUS_ADRERR
, address
);
1862 bad_page_fault(regs
, address
, SIGBUS
);
1864 exception_exit(prev_state
);
1867 long hpte_insert_repeating(unsigned long hash
, unsigned long vpn
,
1868 unsigned long pa
, unsigned long rflags
,
1869 unsigned long vflags
, int psize
, int ssize
)
1871 unsigned long hpte_group
;
1875 hpte_group
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1877 /* Insert into the hash table, primary slot */
1878 slot
= mmu_hash_ops
.hpte_insert(hpte_group
, vpn
, pa
, rflags
, vflags
,
1879 psize
, psize
, ssize
);
1881 /* Primary is full, try the secondary */
1882 if (unlikely(slot
== -1)) {
1883 hpte_group
= (~hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1884 slot
= mmu_hash_ops
.hpte_insert(hpte_group
, vpn
, pa
, rflags
,
1885 vflags
| HPTE_V_SECONDARY
,
1886 psize
, psize
, ssize
);
1889 hpte_group
= (hash
& htab_hash_mask
) *
1892 mmu_hash_ops
.hpte_remove(hpte_group
);
1900 #ifdef CONFIG_DEBUG_PAGEALLOC
1901 static void kernel_map_linear_page(unsigned long vaddr
, unsigned long lmi
)
1904 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1905 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, mmu_kernel_ssize
);
1906 unsigned long mode
= htab_convert_pte_flags(pgprot_val(PAGE_KERNEL
), HPTE_USE_KERNEL_KEY
);
1909 hash
= hpt_hash(vpn
, PAGE_SHIFT
, mmu_kernel_ssize
);
1911 /* Don't create HPTE entries for bad address */
1915 ret
= hpte_insert_repeating(hash
, vpn
, __pa(vaddr
), mode
,
1917 mmu_linear_psize
, mmu_kernel_ssize
);
1920 spin_lock(&linear_map_hash_lock
);
1921 BUG_ON(linear_map_hash_slots
[lmi
] & 0x80);
1922 linear_map_hash_slots
[lmi
] = ret
| 0x80;
1923 spin_unlock(&linear_map_hash_lock
);
1926 static void kernel_unmap_linear_page(unsigned long vaddr
, unsigned long lmi
)
1928 unsigned long hash
, hidx
, slot
;
1929 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1930 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, mmu_kernel_ssize
);
1932 hash
= hpt_hash(vpn
, PAGE_SHIFT
, mmu_kernel_ssize
);
1933 spin_lock(&linear_map_hash_lock
);
1934 BUG_ON(!(linear_map_hash_slots
[lmi
] & 0x80));
1935 hidx
= linear_map_hash_slots
[lmi
] & 0x7f;
1936 linear_map_hash_slots
[lmi
] = 0;
1937 spin_unlock(&linear_map_hash_lock
);
1938 if (hidx
& _PTEIDX_SECONDARY
)
1940 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1941 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1942 mmu_hash_ops
.hpte_invalidate(slot
, vpn
, mmu_linear_psize
,
1944 mmu_kernel_ssize
, 0);
1947 void __kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1949 unsigned long flags
, vaddr
, lmi
;
1952 local_irq_save(flags
);
1953 for (i
= 0; i
< numpages
; i
++, page
++) {
1954 vaddr
= (unsigned long)page_address(page
);
1955 lmi
= __pa(vaddr
) >> PAGE_SHIFT
;
1956 if (lmi
>= linear_map_hash_count
)
1959 kernel_map_linear_page(vaddr
, lmi
);
1961 kernel_unmap_linear_page(vaddr
, lmi
);
1963 local_irq_restore(flags
);
1965 #endif /* CONFIG_DEBUG_PAGEALLOC */
1967 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base
,
1968 phys_addr_t first_memblock_size
)
1971 * We don't currently support the first MEMBLOCK not mapping 0
1972 * physical on those processors
1974 BUG_ON(first_memblock_base
!= 0);
1977 * On virtualized systems the first entry is our RMA region aka VRMA,
1978 * non-virtualized 64-bit hash MMU systems don't have a limitation
1979 * on real mode access.
1981 * For guests on platforms before POWER9, we clamp the it limit to 1G
1982 * to avoid some funky things such as RTAS bugs etc...
1984 * On POWER9 we limit to 1TB in case the host erroneously told us that
1985 * the RMA was >1TB. Effective address bits 0:23 are treated as zero
1986 * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
1987 * for virtual real mode addressing and so it doesn't make sense to
1988 * have an area larger than 1TB as it can't be addressed.
1990 if (!early_cpu_has_feature(CPU_FTR_HVMODE
)) {
1991 ppc64_rma_size
= first_memblock_size
;
1992 if (!early_cpu_has_feature(CPU_FTR_ARCH_300
))
1993 ppc64_rma_size
= min_t(u64
, ppc64_rma_size
, 0x40000000);
1995 ppc64_rma_size
= min_t(u64
, ppc64_rma_size
,
1996 1UL << SID_SHIFT_1T
);
1998 /* Finally limit subsequent allocations */
1999 memblock_set_current_limit(ppc64_rma_size
);
2001 ppc64_rma_size
= ULONG_MAX
;
2005 #ifdef CONFIG_DEBUG_FS
2007 static int hpt_order_get(void *data
, u64
*val
)
2009 *val
= ppc64_pft_size
;
2013 static int hpt_order_set(void *data
, u64 val
)
2017 if (!mmu_hash_ops
.resize_hpt
)
2021 ret
= mmu_hash_ops
.resize_hpt(val
);
2027 DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order
, hpt_order_get
, hpt_order_set
, "%llu\n");
2029 static int __init
hash64_debugfs(void)
2031 debugfs_create_file("hpt_order", 0600, powerpc_debugfs_root
, NULL
,
2035 machine_device_initcall(pseries
, hash64_debugfs
);
2036 #endif /* CONFIG_DEBUG_FS */
2038 void __init
print_system_hash_info(void)
2040 pr_info("ppc64_pft_size = 0x%llx\n", ppc64_pft_size
);
2043 pr_info("htab_hash_mask = 0x%lx\n", htab_hash_mask
);