1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * MMU context allocation for 64-bit kernels.
5 * Copyright (C) 2004 Anton Blanchard, IBM Corp. <anton@samba.org>
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/string.h>
12 #include <linux/types.h>
14 #include <linux/pkeys.h>
15 #include <linux/spinlock.h>
16 #include <linux/idr.h>
17 #include <linux/export.h>
18 #include <linux/gfp.h>
19 #include <linux/slab.h>
20 #include <linux/cpu.h>
22 #include <asm/mmu_context.h>
23 #include <asm/pgalloc.h>
27 static DEFINE_IDA(mmu_context_ida
);
29 static int alloc_context_id(int min_id
, int max_id
)
31 return ida_alloc_range(&mmu_context_ida
, min_id
, max_id
, GFP_KERNEL
);
34 void hash__reserve_context_id(int id
)
36 int result
= ida_alloc_range(&mmu_context_ida
, id
, id
, GFP_KERNEL
);
38 WARN(result
!= id
, "mmu: Failed to reserve context id %d (rc %d)\n", id
, result
);
41 int hash__alloc_context_id(void)
45 if (mmu_has_feature(MMU_FTR_68_BIT_VA
))
46 max
= MAX_USER_CONTEXT
;
48 max
= MAX_USER_CONTEXT_65BIT_VA
;
50 return alloc_context_id(MIN_USER_CONTEXT
, max
);
52 EXPORT_SYMBOL_GPL(hash__alloc_context_id
);
54 static int realloc_context_ids(mm_context_t
*ctx
)
59 * id 0 (aka. ctx->id) is special, we always allocate a new one, even if
60 * there wasn't one allocated previously (which happens in the exec
61 * case where ctx is newly allocated).
63 * We have to be a bit careful here. We must keep the existing ids in
64 * the array, so that we can test if they're non-zero to decide if we
65 * need to allocate a new one. However in case of error we must free the
66 * ids we've allocated but *not* any of the existing ones (or risk a
67 * UAF). That's why we decrement i at the start of the error handling
68 * loop, to skip the id that we just tested but couldn't reallocate.
70 for (i
= 0; i
< ARRAY_SIZE(ctx
->extended_id
); i
++) {
71 if (i
== 0 || ctx
->extended_id
[i
]) {
72 id
= hash__alloc_context_id();
76 ctx
->extended_id
[i
] = id
;
80 /* The caller expects us to return id */
84 for (i
--; i
>= 0; i
--) {
85 if (ctx
->extended_id
[i
])
86 ida_free(&mmu_context_ida
, ctx
->extended_id
[i
]);
92 static int hash__init_new_context(struct mm_struct
*mm
)
96 mm
->context
.hash_context
= kmalloc(sizeof(struct hash_mm_context
),
98 if (!mm
->context
.hash_context
)
102 * The old code would re-promote on fork, we don't do that when using
103 * slices as it could cause problem promoting slices that have been
106 * For book3s we have MMU_NO_CONTEXT set to be ~0. Hence check
107 * explicitly against context.id == 0. This ensures that we properly
108 * initialize context slice details for newly allocated mm's (which will
109 * have id == 0) and don't alter context slice inherited via fork (which
110 * will have id != 0).
112 * We should not be calling init_new_context() on init_mm. Hence a
113 * check against 0 is OK.
115 if (mm
->context
.id
== 0) {
116 memset(mm
->context
.hash_context
, 0, sizeof(struct hash_mm_context
));
117 slice_init_new_context_exec(mm
);
119 /* This is fork. Copy hash_context details from current->mm */
120 memcpy(mm
->context
.hash_context
, current
->mm
->context
.hash_context
, sizeof(struct hash_mm_context
));
121 #ifdef CONFIG_PPC_SUBPAGE_PROT
122 /* inherit subpage prot detalis if we have one. */
123 if (current
->mm
->context
.hash_context
->spt
) {
124 mm
->context
.hash_context
->spt
= kmalloc(sizeof(struct subpage_prot_table
),
126 if (!mm
->context
.hash_context
->spt
) {
127 kfree(mm
->context
.hash_context
);
134 index
= realloc_context_ids(&mm
->context
);
136 #ifdef CONFIG_PPC_SUBPAGE_PROT
137 kfree(mm
->context
.hash_context
->spt
);
139 kfree(mm
->context
.hash_context
);
147 void hash__setup_new_exec(void)
149 slice_setup_new_exec();
151 slb_setup_new_exec();
154 static int radix__init_new_context(struct mm_struct
*mm
)
156 unsigned long rts_field
;
159 max_id
= (1 << mmu_pid_bits
) - 1;
160 index
= alloc_context_id(mmu_base_pid
, max_id
);
165 * set the process table entry,
167 rts_field
= radix__get_tree_size();
168 process_tb
[index
].prtb0
= cpu_to_be64(rts_field
| __pa(mm
->pgd
) | RADIX_PGD_INDEX_SIZE
);
171 * Order the above store with subsequent update of the PID
172 * register (at which point HW can start loading/caching
173 * the entry) and the corresponding load by the MMU from
176 asm volatile("ptesync;isync" : : : "memory");
178 mm
->context
.hash_context
= NULL
;
183 int init_new_context(struct task_struct
*tsk
, struct mm_struct
*mm
)
188 index
= radix__init_new_context(mm
);
190 index
= hash__init_new_context(mm
);
195 mm
->context
.id
= index
;
197 mm
->context
.pte_frag
= NULL
;
198 mm
->context
.pmd_frag
= NULL
;
199 #ifdef CONFIG_SPAPR_TCE_IOMMU
202 atomic_set(&mm
->context
.active_cpus
, 0);
203 atomic_set(&mm
->context
.copros
, 0);
208 void __destroy_context(int context_id
)
210 ida_free(&mmu_context_ida
, context_id
);
212 EXPORT_SYMBOL_GPL(__destroy_context
);
214 static void destroy_contexts(mm_context_t
*ctx
)
216 int index
, context_id
;
218 for (index
= 0; index
< ARRAY_SIZE(ctx
->extended_id
); index
++) {
219 context_id
= ctx
->extended_id
[index
];
221 ida_free(&mmu_context_ida
, context_id
);
223 kfree(ctx
->hash_context
);
226 static void pmd_frag_destroy(void *pmd_frag
)
231 page
= virt_to_page(pmd_frag
);
232 /* drop all the pending references */
233 count
= ((unsigned long)pmd_frag
& ~PAGE_MASK
) >> PMD_FRAG_SIZE_SHIFT
;
234 /* We allow PTE_FRAG_NR fragments from a PTE page */
235 if (atomic_sub_and_test(PMD_FRAG_NR
- count
, &page
->pt_frag_refcount
)) {
236 pgtable_pmd_page_dtor(page
);
241 static void destroy_pagetable_cache(struct mm_struct
*mm
)
245 frag
= mm
->context
.pte_frag
;
247 pte_frag_destroy(frag
);
249 frag
= mm
->context
.pmd_frag
;
251 pmd_frag_destroy(frag
);
255 void destroy_context(struct mm_struct
*mm
)
257 #ifdef CONFIG_SPAPR_TCE_IOMMU
258 WARN_ON_ONCE(!list_empty(&mm
->context
.iommu_group_mem_list
));
261 * For tasks which were successfully initialized we end up calling
262 * arch_exit_mmap() which clears the process table entry. And
263 * arch_exit_mmap() is called before the required fullmm TLB flush
264 * which does a RIC=2 flush. Hence for an initialized task, we do clear
265 * any cached process table entries.
267 * The condition below handles the error case during task init. We have
268 * set the process table entry early and if we fail a task
269 * initialization, we need to ensure the process table entry is zeroed.
270 * We need not worry about process table entry caches because the task
271 * never ran with the PID value.
274 process_tb
[mm
->context
.id
].prtb0
= 0;
276 subpage_prot_free(mm
);
277 destroy_contexts(&mm
->context
);
278 mm
->context
.id
= MMU_NO_CONTEXT
;
281 void arch_exit_mmap(struct mm_struct
*mm
)
283 destroy_pagetable_cache(mm
);
285 if (radix_enabled()) {
287 * Radix doesn't have a valid bit in the process table
288 * entries. However we know that at least P9 implementation
289 * will avoid caching an entry with an invalid RTS field,
290 * and 0 is invalid. So this will do.
292 * This runs before the "fullmm" tlb flush in exit_mmap,
293 * which does a RIC=2 tlbie to clear the process table
294 * entry. See the "fullmm" comments in tlb-radix.c.
296 * No barrier required here after the store because
297 * this process will do the invalidate, which starts with
300 process_tb
[mm
->context
.id
].prtb0
= 0;
304 #ifdef CONFIG_PPC_RADIX_MMU
305 void radix__switch_mmu_context(struct mm_struct
*prev
, struct mm_struct
*next
)
307 mtspr(SPRN_PID
, next
->context
.id
);
313 * cleanup_cpu_mmu_context - Clean up MMU details for this CPU (newly offlined)
315 * This clears the CPU from mm_cpumask for all processes, and then flushes the
316 * local TLB to ensure TLB coherency in case the CPU is onlined again.
318 * KVM guest translations are not necessarily flushed here. If KVM started
319 * using mm_cpumask or the Linux APIs which do, this would have to be resolved.
321 #ifdef CONFIG_HOTPLUG_CPU
322 void cleanup_cpu_mmu_context(void)
324 int cpu
= smp_processor_id();
326 clear_tasks_mm_cpumask(cpu
);