Merge tag 'linux-kselftest-kunit-fixes-5.11-rc3' of git://git.kernel.org/pub/scm...
[linux/fpc-iii.git] / arch / powerpc / mm / book3s64 / pgtable.c
blob5b3a3bae21aa6a16dded5a7c9c79d1110cba51c7
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4 */
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <misc/cxl-base.h>
11 #include <asm/debugfs.h>
12 #include <asm/pgalloc.h>
13 #include <asm/tlb.h>
14 #include <asm/trace.h>
15 #include <asm/powernv.h>
16 #include <asm/firmware.h>
17 #include <asm/ultravisor.h>
18 #include <asm/kexec.h>
20 #include <mm/mmu_decl.h>
21 #include <trace/events/thp.h>
23 unsigned long __pmd_frag_nr;
24 EXPORT_SYMBOL(__pmd_frag_nr);
25 unsigned long __pmd_frag_size_shift;
26 EXPORT_SYMBOL(__pmd_frag_size_shift);
28 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
30 * This is called when relaxing access to a hugepage. It's also called in the page
31 * fault path when we don't hit any of the major fault cases, ie, a minor
32 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
33 * handled those two for us, we additionally deal with missing execute
34 * permission here on some processors
36 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
37 pmd_t *pmdp, pmd_t entry, int dirty)
39 int changed;
40 #ifdef CONFIG_DEBUG_VM
41 WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
42 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
43 #endif
44 changed = !pmd_same(*(pmdp), entry);
45 if (changed) {
47 * We can use MMU_PAGE_2M here, because only radix
48 * path look at the psize.
50 __ptep_set_access_flags(vma, pmdp_ptep(pmdp),
51 pmd_pte(entry), address, MMU_PAGE_2M);
53 return changed;
56 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
57 unsigned long address, pmd_t *pmdp)
59 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
62 * set a new huge pmd. We should not be called for updating
63 * an existing pmd entry. That should go via pmd_hugepage_update.
65 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
66 pmd_t *pmdp, pmd_t pmd)
68 #ifdef CONFIG_DEBUG_VM
70 * Make sure hardware valid bit is not set. We don't do
71 * tlb flush for this update.
74 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
75 assert_spin_locked(pmd_lockptr(mm, pmdp));
76 WARN_ON(!(pmd_large(pmd)));
77 #endif
78 trace_hugepage_set_pmd(addr, pmd_val(pmd));
79 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
82 static void do_nothing(void *unused)
87 * Serialize against find_current_mm_pte which does lock-less
88 * lookup in page tables with local interrupts disabled. For huge pages
89 * it casts pmd_t to pte_t. Since format of pte_t is different from
90 * pmd_t we want to prevent transit from pmd pointing to page table
91 * to pmd pointing to huge page (and back) while interrupts are disabled.
92 * We clear pmd to possibly replace it with page table pointer in
93 * different code paths. So make sure we wait for the parallel
94 * find_current_mm_pte to finish.
96 void serialize_against_pte_lookup(struct mm_struct *mm)
98 smp_mb();
99 smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1);
103 * We use this to invalidate a pmdp entry before switching from a
104 * hugepte to regular pmd entry.
106 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
107 pmd_t *pmdp)
109 unsigned long old_pmd;
111 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
112 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
113 return __pmd(old_pmd);
116 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
117 unsigned long addr, pmd_t *pmdp, int full)
119 pmd_t pmd;
120 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
121 VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
122 !pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
123 pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
125 * if it not a fullmm flush, then we can possibly end up converting
126 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
127 * Make sure we flush the tlb in this case.
129 if (!full)
130 flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
131 return pmd;
134 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
136 return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
140 * At some point we should be able to get rid of
141 * pmd_mkhuge() and mk_huge_pmd() when we update all the
142 * other archs to mark the pmd huge in pfn_pmd()
144 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
146 unsigned long pmdv;
148 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
150 return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
153 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
155 return pfn_pmd(page_to_pfn(page), pgprot);
158 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
160 unsigned long pmdv;
162 pmdv = pmd_val(pmd);
163 pmdv &= _HPAGE_CHG_MASK;
164 return pmd_set_protbits(__pmd(pmdv), newprot);
166 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
168 /* For use by kexec */
169 void mmu_cleanup_all(void)
171 if (radix_enabled())
172 radix__mmu_cleanup_all();
173 else if (mmu_hash_ops.hpte_clear_all)
174 mmu_hash_ops.hpte_clear_all();
176 reset_sprs();
179 #ifdef CONFIG_MEMORY_HOTPLUG
180 int __meminit create_section_mapping(unsigned long start, unsigned long end,
181 int nid, pgprot_t prot)
183 if (radix_enabled())
184 return radix__create_section_mapping(start, end, nid, prot);
186 return hash__create_section_mapping(start, end, nid, prot);
189 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
191 if (radix_enabled())
192 return radix__remove_section_mapping(start, end);
194 return hash__remove_section_mapping(start, end);
196 #endif /* CONFIG_MEMORY_HOTPLUG */
198 void __init mmu_partition_table_init(void)
200 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
201 unsigned long ptcr;
203 BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
204 /* Initialize the Partition Table with no entries */
205 partition_tb = memblock_alloc(patb_size, patb_size);
206 if (!partition_tb)
207 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
208 __func__, patb_size, patb_size);
211 * update partition table control register,
212 * 64 K size.
214 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
215 set_ptcr_when_no_uv(ptcr);
216 powernv_set_nmmu_ptcr(ptcr);
219 static void flush_partition(unsigned int lpid, bool radix)
221 if (radix) {
222 radix__flush_all_lpid(lpid);
223 radix__flush_all_lpid_guest(lpid);
224 } else {
225 asm volatile("ptesync" : : : "memory");
226 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
227 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
228 /* do we need fixup here ?*/
229 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
230 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
234 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
235 unsigned long dw1, bool flush)
237 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
240 * When ultravisor is enabled, the partition table is stored in secure
241 * memory and can only be accessed doing an ultravisor call. However, we
242 * maintain a copy of the partition table in normal memory to allow Nest
243 * MMU translations to occur (for normal VMs).
245 * Therefore, here we always update partition_tb, regardless of whether
246 * we are running under an ultravisor or not.
248 partition_tb[lpid].patb0 = cpu_to_be64(dw0);
249 partition_tb[lpid].patb1 = cpu_to_be64(dw1);
252 * If ultravisor is enabled, we do an ultravisor call to register the
253 * partition table entry (PATE), which also do a global flush of TLBs
254 * and partition table caches for the lpid. Otherwise, just do the
255 * flush. The type of flush (hash or radix) depends on what the previous
256 * use of the partition ID was, not the new use.
258 if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
259 uv_register_pate(lpid, dw0, dw1);
260 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
261 dw0, dw1);
262 } else if (flush) {
264 * Boot does not need to flush, because MMU is off and each
265 * CPU does a tlbiel_all() before switching them on, which
266 * flushes everything.
268 flush_partition(lpid, (old & PATB_HR));
271 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
273 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
275 void *pmd_frag, *ret;
277 if (PMD_FRAG_NR == 1)
278 return NULL;
280 spin_lock(&mm->page_table_lock);
281 ret = mm->context.pmd_frag;
282 if (ret) {
283 pmd_frag = ret + PMD_FRAG_SIZE;
285 * If we have taken up all the fragments mark PTE page NULL
287 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
288 pmd_frag = NULL;
289 mm->context.pmd_frag = pmd_frag;
291 spin_unlock(&mm->page_table_lock);
292 return (pmd_t *)ret;
295 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
297 void *ret = NULL;
298 struct page *page;
299 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
301 if (mm == &init_mm)
302 gfp &= ~__GFP_ACCOUNT;
303 page = alloc_page(gfp);
304 if (!page)
305 return NULL;
306 if (!pgtable_pmd_page_ctor(page)) {
307 __free_pages(page, 0);
308 return NULL;
311 atomic_set(&page->pt_frag_refcount, 1);
313 ret = page_address(page);
315 * if we support only one fragment just return the
316 * allocated page.
318 if (PMD_FRAG_NR == 1)
319 return ret;
321 spin_lock(&mm->page_table_lock);
323 * If we find pgtable_page set, we return
324 * the allocated page with single fragement
325 * count.
327 if (likely(!mm->context.pmd_frag)) {
328 atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
329 mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
331 spin_unlock(&mm->page_table_lock);
333 return (pmd_t *)ret;
336 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
338 pmd_t *pmd;
340 pmd = get_pmd_from_cache(mm);
341 if (pmd)
342 return pmd;
344 return __alloc_for_pmdcache(mm);
347 void pmd_fragment_free(unsigned long *pmd)
349 struct page *page = virt_to_page(pmd);
351 if (PageReserved(page))
352 return free_reserved_page(page);
354 BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
355 if (atomic_dec_and_test(&page->pt_frag_refcount)) {
356 pgtable_pmd_page_dtor(page);
357 __free_page(page);
361 static inline void pgtable_free(void *table, int index)
363 switch (index) {
364 case PTE_INDEX:
365 pte_fragment_free(table, 0);
366 break;
367 case PMD_INDEX:
368 pmd_fragment_free(table);
369 break;
370 case PUD_INDEX:
371 __pud_free(table);
372 break;
373 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
374 /* 16M hugepd directory at pud level */
375 case HTLB_16M_INDEX:
376 BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
377 kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
378 break;
379 /* 16G hugepd directory at the pgd level */
380 case HTLB_16G_INDEX:
381 BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
382 kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
383 break;
384 #endif
385 /* We don't free pgd table via RCU callback */
386 default:
387 BUG();
391 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
393 unsigned long pgf = (unsigned long)table;
395 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
396 pgf |= index;
397 tlb_remove_table(tlb, (void *)pgf);
400 void __tlb_remove_table(void *_table)
402 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
403 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
405 return pgtable_free(table, index);
408 #ifdef CONFIG_PROC_FS
409 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
411 void arch_report_meminfo(struct seq_file *m)
414 * Hash maps the memory with one size mmu_linear_psize.
415 * So don't bother to print these on hash
417 if (!radix_enabled())
418 return;
419 seq_printf(m, "DirectMap4k: %8lu kB\n",
420 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
421 seq_printf(m, "DirectMap64k: %8lu kB\n",
422 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
423 seq_printf(m, "DirectMap2M: %8lu kB\n",
424 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
425 seq_printf(m, "DirectMap1G: %8lu kB\n",
426 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
428 #endif /* CONFIG_PROC_FS */
430 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
431 pte_t *ptep)
433 unsigned long pte_val;
436 * Clear the _PAGE_PRESENT so that no hardware parallel update is
437 * possible. Also keep the pte_present true so that we don't take
438 * wrong fault.
440 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
442 return __pte(pte_val);
446 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
447 pte_t *ptep, pte_t old_pte, pte_t pte)
449 if (radix_enabled())
450 return radix__ptep_modify_prot_commit(vma, addr,
451 ptep, old_pte, pte);
452 set_pte_at(vma->vm_mm, addr, ptep, pte);
456 * For hash translation mode, we use the deposited table to store hash slot
457 * information and they are stored at PTRS_PER_PMD offset from related pmd
458 * location. Hence a pmd move requires deposit and withdraw.
460 * For radix translation with split pmd ptl, we store the deposited table in the
461 * pmd page. Hence if we have different pmd page we need to withdraw during pmd
462 * move.
464 * With hash we use deposited table always irrespective of anon or not.
465 * With radix we use deposited table only for anonymous mapping.
467 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
468 struct spinlock *old_pmd_ptl,
469 struct vm_area_struct *vma)
471 if (radix_enabled())
472 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
474 return true;
478 * Does the CPU support tlbie?
480 bool tlbie_capable __read_mostly = true;
481 EXPORT_SYMBOL(tlbie_capable);
484 * Should tlbie be used for management of CPU TLBs, for kernel and process
485 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
486 * guest address spaces.
488 bool tlbie_enabled __read_mostly = true;
490 static int __init setup_disable_tlbie(char *str)
492 if (!radix_enabled()) {
493 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
494 return 1;
497 tlbie_capable = false;
498 tlbie_enabled = false;
500 return 1;
502 __setup("disable_tlbie", setup_disable_tlbie);
504 static int __init pgtable_debugfs_setup(void)
506 if (!tlbie_capable)
507 return 0;
510 * There is no locking vs tlb flushing when changing this value.
511 * The tlb flushers will see one value or another, and use either
512 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
513 * invalidated as expected.
515 debugfs_create_bool("tlbie_enabled", 0600,
516 powerpc_debugfs_root,
517 &tlbie_enabled);
519 return 0;
521 arch_initcall(pgtable_debugfs_setup);