1 // SPDX-License-Identifier: GPL-2.0+
3 * PowerPC Memory Protection Keys management
5 * Copyright 2017, Ram Pai, IBM Corporation.
9 #include <asm/mmu_context.h>
11 #include <asm/setup.h>
14 #include <linux/pkeys.h>
15 #include <linux/of_fdt.h>
18 int num_pkey
; /* Max number of pkeys supported */
20 * Keys marked in the reservation list cannot be allocated by userspace
22 u32 reserved_allocation_mask __ro_after_init
;
24 /* Bits set for the initially allocated keys */
25 static u32 initial_allocation_mask __ro_after_init
;
28 * Even if we allocate keys with sys_pkey_alloc(), we need to make sure
29 * other thread still find the access denied using the same keys.
31 u64 default_amr __ro_after_init
= ~0x0UL
;
32 u64 default_iamr __ro_after_init
= 0x5555555555555555UL
;
33 u64 default_uamor __ro_after_init
;
35 * Key used to implement PROT_EXEC mmap. Denies READ/WRITE
36 * We pick key 2 because 0 is special key and 1 is reserved as per ISA.
38 static int execute_only_key
= 2;
39 static bool pkey_execute_disable_supported
;
42 #define AMR_BITS_PER_PKEY 2
43 #define AMR_RD_BIT 0x1UL
44 #define AMR_WR_BIT 0x2UL
45 #define IAMR_EX_BIT 0x1UL
46 #define PKEY_REG_BITS (sizeof(u64) * 8)
47 #define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY))
49 static int __init
dt_scan_storage_keys(unsigned long node
,
50 const char *uname
, int depth
,
53 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
55 int *pkeys_total
= (int *) data
;
57 /* We are scanning "cpu" nodes only */
58 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
61 prop
= of_get_flat_dt_prop(node
, "ibm,processor-storage-keys", NULL
);
64 *pkeys_total
= be32_to_cpu(prop
[0]);
68 static int scan_pkey_feature(void)
74 * Pkey is not supported with Radix translation.
76 if (early_radix_enabled())
79 ret
= of_scan_flat_dt(dt_scan_storage_keys
, &pkeys_total
);
82 * Let's assume 32 pkeys on P8/P9 bare metal, if its not defined by device
83 * tree. We make this exception since some version of skiboot forgot to
84 * expose this property on power8/9.
86 if (!firmware_has_feature(FW_FEATURE_LPAR
)) {
87 unsigned long pvr
= mfspr(SPRN_PVR
);
89 if (PVR_VER(pvr
) == PVR_POWER8
|| PVR_VER(pvr
) == PVR_POWER8E
||
90 PVR_VER(pvr
) == PVR_POWER8NVL
|| PVR_VER(pvr
) == PVR_POWER9
)
95 #ifdef CONFIG_PPC_MEM_KEYS
97 * Adjust the upper limit, based on the number of bits supported by
100 pkeys_total
= min_t(int, pkeys_total
,
101 ((ARCH_VM_PKEY_FLAGS
>> VM_PKEY_SHIFT
) + 1));
106 void __init
pkey_early_init_devtree(void)
110 #ifdef CONFIG_PPC_MEM_KEYS
112 * We define PKEY_DISABLE_EXECUTE in addition to the arch-neutral
113 * generic defines for PKEY_DISABLE_ACCESS and PKEY_DISABLE_WRITE.
114 * Ensure that the bits a distinct.
116 BUILD_BUG_ON(PKEY_DISABLE_EXECUTE
&
117 (PKEY_DISABLE_ACCESS
| PKEY_DISABLE_WRITE
));
120 * pkey_to_vmflag_bits() assumes that the pkey bits are contiguous
121 * in the vmaflag. Make sure that is really the case.
123 BUILD_BUG_ON(__builtin_clzl(ARCH_VM_PKEY_FLAGS
>> VM_PKEY_SHIFT
) +
124 __builtin_popcountl(ARCH_VM_PKEY_FLAGS
>> VM_PKEY_SHIFT
)
125 != (sizeof(u64
) * BITS_PER_BYTE
));
128 * Only P7 and above supports SPRN_AMR update with MSR[PR] = 1
130 if (!early_cpu_has_feature(CPU_FTR_ARCH_206
))
133 /* scan the device tree for pkey feature */
134 pkeys_total
= scan_pkey_feature();
138 /* Allow all keys to be modified by default */
139 default_uamor
= ~0x0UL
;
141 cur_cpu_spec
->mmu_features
|= MMU_FTR_PKEY
;
144 * The device tree cannot be relied to indicate support for
145 * execute_disable support. Instead we use a PVR check.
147 if (pvr_version_is(PVR_POWER7
) || pvr_version_is(PVR_POWER7p
))
148 pkey_execute_disable_supported
= false;
150 pkey_execute_disable_supported
= true;
152 #ifdef CONFIG_PPC_4K_PAGES
154 * The OS can manage only 8 pkeys due to its inability to represent them
155 * in the Linux 4K PTE. Mark all other keys reserved.
157 num_pkey
= min(8, pkeys_total
);
159 num_pkey
= pkeys_total
;
162 if (unlikely(num_pkey
<= execute_only_key
) || !pkey_execute_disable_supported
) {
164 * Insufficient number of keys to support
165 * execute only key. Mark it unavailable.
167 execute_only_key
= -1;
170 * Mark the execute_only_pkey as not available for
171 * user allocation via pkey_alloc.
173 reserved_allocation_mask
|= (0x1 << execute_only_key
);
176 * Deny READ/WRITE for execute_only_key.
177 * Allow execute in IAMR.
179 default_amr
|= (0x3ul
<< pkeyshift(execute_only_key
));
180 default_iamr
&= ~(0x1ul
<< pkeyshift(execute_only_key
));
183 * Clear the uamor bits for this key.
185 default_uamor
&= ~(0x3ul
<< pkeyshift(execute_only_key
));
188 if (unlikely(num_pkey
<= 3)) {
190 * Insufficient number of keys to support
195 WARN(1, "Disabling kernel user protection due to low (%d) max supported keys\n", num_pkey
);
197 /* handle key which is used by kernel for KAUP */
198 reserved_allocation_mask
|= (0x1 << 3);
200 * Mark access for kup_key in default amr so that
201 * we continue to operate with that AMR in
202 * copy_to/from_user().
204 default_amr
&= ~(0x3ul
<< pkeyshift(3));
205 default_iamr
&= ~(0x1ul
<< pkeyshift(3));
206 default_uamor
&= ~(0x3ul
<< pkeyshift(3));
210 * Allow access for only key 0. And prevent any other modification.
212 default_amr
&= ~(0x3ul
<< pkeyshift(0));
213 default_iamr
&= ~(0x1ul
<< pkeyshift(0));
214 default_uamor
&= ~(0x3ul
<< pkeyshift(0));
216 * key 0 is special in that we want to consider it an allocated
217 * key which is preallocated. We don't allow changing AMR bits
218 * w.r.t key 0. But one can pkey_free(key0)
220 initial_allocation_mask
|= (0x1 << 0);
223 * key 1 is recommended not to be used. PowerISA(3.0) page 1015,
226 reserved_allocation_mask
|= (0x1 << 1);
227 default_uamor
&= ~(0x3ul
<< pkeyshift(1));
230 * Prevent the usage of OS reserved keys. Update UAMOR
231 * for those keys. Also mark the rest of the bits in the
232 * 32 bit mask as reserved.
234 for (i
= num_pkey
; i
< 32 ; i
++) {
235 reserved_allocation_mask
|= (0x1 << i
);
236 default_uamor
&= ~(0x3ul
<< pkeyshift(i
));
239 * Prevent the allocation of reserved keys too.
241 initial_allocation_mask
|= reserved_allocation_mask
;
243 pr_info("Enabling pkeys with max key count %d\n", num_pkey
);
246 * Setup uamor on boot cpu
248 mtspr(SPRN_UAMOR
, default_uamor
);
253 #ifdef CONFIG_PPC_KUEP
254 void setup_kuep(bool disabled
)
259 * On hash if PKEY feature is not enabled, disable KUAP too.
261 if (!early_radix_enabled() && !early_mmu_has_feature(MMU_FTR_PKEY
))
264 if (smp_processor_id() == boot_cpuid
) {
265 pr_info("Activating Kernel Userspace Execution Prevention\n");
266 cur_cpu_spec
->mmu_features
|= MMU_FTR_BOOK3S_KUEP
;
270 * Radix always uses key0 of the IAMR to determine if an access is
271 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
274 mtspr(SPRN_IAMR
, AMR_KUEP_BLOCKED
);
279 #ifdef CONFIG_PPC_KUAP
280 void setup_kuap(bool disabled
)
285 * On hash if PKEY feature is not enabled, disable KUAP too.
287 if (!early_radix_enabled() && !early_mmu_has_feature(MMU_FTR_PKEY
))
290 if (smp_processor_id() == boot_cpuid
) {
291 pr_info("Activating Kernel Userspace Access Prevention\n");
292 cur_cpu_spec
->mmu_features
|= MMU_FTR_BOOK3S_KUAP
;
296 * Set the default kernel AMR values on all cpus.
298 mtspr(SPRN_AMR
, AMR_KUAP_BLOCKED
);
303 static inline void update_current_thread_amr(u64 value
)
305 current
->thread
.regs
->amr
= value
;
308 static inline void update_current_thread_iamr(u64 value
)
310 if (!likely(pkey_execute_disable_supported
))
313 current
->thread
.regs
->iamr
= value
;
316 #ifdef CONFIG_PPC_MEM_KEYS
317 void pkey_mm_init(struct mm_struct
*mm
)
319 if (!mmu_has_feature(MMU_FTR_PKEY
))
321 mm_pkey_allocation_map(mm
) = initial_allocation_mask
;
322 mm
->context
.execute_only_pkey
= execute_only_key
;
325 static inline void init_amr(int pkey
, u8 init_bits
)
327 u64 new_amr_bits
= (((u64
)init_bits
& 0x3UL
) << pkeyshift(pkey
));
328 u64 old_amr
= current_thread_amr() & ~((u64
)(0x3ul
) << pkeyshift(pkey
));
330 update_current_thread_amr(old_amr
| new_amr_bits
);
333 static inline void init_iamr(int pkey
, u8 init_bits
)
335 u64 new_iamr_bits
= (((u64
)init_bits
& 0x1UL
) << pkeyshift(pkey
));
336 u64 old_iamr
= current_thread_iamr() & ~((u64
)(0x1ul
) << pkeyshift(pkey
));
338 update_current_thread_iamr(old_iamr
| new_iamr_bits
);
342 * Set the access rights in AMR IAMR and UAMOR registers for @pkey to that
343 * specified in @init_val.
345 int __arch_set_user_pkey_access(struct task_struct
*tsk
, int pkey
,
346 unsigned long init_val
)
348 u64 new_amr_bits
= 0x0ul
;
349 u64 new_iamr_bits
= 0x0ul
;
350 u64 pkey_bits
, uamor_pkey_bits
;
353 * Check whether the key is disabled by UAMOR.
355 pkey_bits
= 0x3ul
<< pkeyshift(pkey
);
356 uamor_pkey_bits
= (default_uamor
& pkey_bits
);
359 * Both the bits in UAMOR corresponding to the key should be set
361 if (uamor_pkey_bits
!= pkey_bits
)
364 if (init_val
& PKEY_DISABLE_EXECUTE
) {
365 if (!pkey_execute_disable_supported
)
367 new_iamr_bits
|= IAMR_EX_BIT
;
369 init_iamr(pkey
, new_iamr_bits
);
371 /* Set the bits we need in AMR: */
372 if (init_val
& PKEY_DISABLE_ACCESS
)
373 new_amr_bits
|= AMR_RD_BIT
| AMR_WR_BIT
;
374 else if (init_val
& PKEY_DISABLE_WRITE
)
375 new_amr_bits
|= AMR_WR_BIT
;
377 init_amr(pkey
, new_amr_bits
);
381 int execute_only_pkey(struct mm_struct
*mm
)
383 return mm
->context
.execute_only_pkey
;
386 static inline bool vma_is_pkey_exec_only(struct vm_area_struct
*vma
)
388 /* Do this check first since the vm_flags should be hot */
389 if ((vma
->vm_flags
& VM_ACCESS_FLAGS
) != VM_EXEC
)
392 return (vma_pkey(vma
) == vma
->vm_mm
->context
.execute_only_pkey
);
396 * This should only be called for *plain* mprotect calls.
398 int __arch_override_mprotect_pkey(struct vm_area_struct
*vma
, int prot
,
402 * If the currently associated pkey is execute-only, but the requested
403 * protection is not execute-only, move it back to the default pkey.
405 if (vma_is_pkey_exec_only(vma
) && (prot
!= PROT_EXEC
))
409 * The requested protection is execute-only. Hence let's use an
412 if (prot
== PROT_EXEC
) {
413 pkey
= execute_only_pkey(vma
->vm_mm
);
418 /* Nothing to override. */
419 return vma_pkey(vma
);
422 static bool pkey_access_permitted(int pkey
, bool write
, bool execute
)
427 pkey_shift
= pkeyshift(pkey
);
429 return !(current_thread_iamr() & (IAMR_EX_BIT
<< pkey_shift
));
431 amr
= current_thread_amr();
433 return !(amr
& (AMR_WR_BIT
<< pkey_shift
));
435 return !(amr
& (AMR_RD_BIT
<< pkey_shift
));
438 bool arch_pte_access_permitted(u64 pte
, bool write
, bool execute
)
440 if (!mmu_has_feature(MMU_FTR_PKEY
))
443 return pkey_access_permitted(pte_to_pkey_bits(pte
), write
, execute
);
447 * We only want to enforce protection keys on the current thread because we
448 * effectively have no access to AMR/IAMR for other threads or any way to tell
449 * which AMR/IAMR in a threaded process we could use.
451 * So do not enforce things if the VMA is not from the current mm, or if we are
452 * in a kernel thread.
454 bool arch_vma_access_permitted(struct vm_area_struct
*vma
, bool write
,
455 bool execute
, bool foreign
)
457 if (!mmu_has_feature(MMU_FTR_PKEY
))
460 * Do not enforce our key-permissions on a foreign vma.
462 if (foreign
|| vma_is_foreign(vma
))
465 return pkey_access_permitted(vma_pkey(vma
), write
, execute
);
468 void arch_dup_pkeys(struct mm_struct
*oldmm
, struct mm_struct
*mm
)
470 if (!mmu_has_feature(MMU_FTR_PKEY
))
473 /* Duplicate the oldmm pkey state in mm: */
474 mm_pkey_allocation_map(mm
) = mm_pkey_allocation_map(oldmm
);
475 mm
->context
.execute_only_pkey
= oldmm
->context
.execute_only_pkey
;
478 #endif /* CONFIG_PPC_MEM_KEYS */