1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Page table handling routines for radix page table.
5 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
8 #define pr_fmt(fmt) "radix-mmu: " fmt
11 #include <linux/kernel.h>
12 #include <linux/sched/mm.h>
13 #include <linux/memblock.h>
14 #include <linux/of_fdt.h>
16 #include <linux/hugetlb.h>
17 #include <linux/string_helpers.h>
18 #include <linux/memory.h>
20 #include <asm/pgalloc.h>
21 #include <asm/mmu_context.h>
23 #include <asm/machdep.h>
25 #include <asm/firmware.h>
26 #include <asm/powernv.h>
27 #include <asm/sections.h>
29 #include <asm/trace.h>
30 #include <asm/uaccess.h>
31 #include <asm/ultravisor.h>
33 #include <trace/events/thp.h>
35 unsigned int mmu_pid_bits
;
36 unsigned int mmu_base_pid
;
37 unsigned long radix_mem_block_size __ro_after_init
;
39 static __ref
void *early_alloc_pgtable(unsigned long size
, int nid
,
40 unsigned long region_start
, unsigned long region_end
)
42 phys_addr_t min_addr
= MEMBLOCK_LOW_LIMIT
;
43 phys_addr_t max_addr
= MEMBLOCK_ALLOC_ANYWHERE
;
47 min_addr
= region_start
;
49 max_addr
= region_end
;
51 ptr
= memblock_alloc_try_nid(size
, size
, min_addr
, max_addr
, nid
);
54 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
55 __func__
, size
, size
, nid
, &min_addr
, &max_addr
);
61 * When allocating pud or pmd pointers, we allocate a complete page
62 * of PAGE_SIZE rather than PUD_TABLE_SIZE or PMD_TABLE_SIZE. This
63 * is to ensure that the page obtained from the memblock allocator
64 * can be completely used as page table page and can be freed
65 * correctly when the page table entries are removed.
67 static int early_map_kernel_page(unsigned long ea
, unsigned long pa
,
69 unsigned int map_page_size
,
71 unsigned long region_start
, unsigned long region_end
)
73 unsigned long pfn
= pa
>> PAGE_SHIFT
;
80 pgdp
= pgd_offset_k(ea
);
81 p4dp
= p4d_offset(pgdp
, ea
);
82 if (p4d_none(*p4dp
)) {
83 pudp
= early_alloc_pgtable(PAGE_SIZE
, nid
,
84 region_start
, region_end
);
85 p4d_populate(&init_mm
, p4dp
, pudp
);
87 pudp
= pud_offset(p4dp
, ea
);
88 if (map_page_size
== PUD_SIZE
) {
92 if (pud_none(*pudp
)) {
93 pmdp
= early_alloc_pgtable(PAGE_SIZE
, nid
, region_start
,
95 pud_populate(&init_mm
, pudp
, pmdp
);
97 pmdp
= pmd_offset(pudp
, ea
);
98 if (map_page_size
== PMD_SIZE
) {
99 ptep
= pmdp_ptep(pmdp
);
102 if (!pmd_present(*pmdp
)) {
103 ptep
= early_alloc_pgtable(PAGE_SIZE
, nid
,
104 region_start
, region_end
);
105 pmd_populate_kernel(&init_mm
, pmdp
, ptep
);
107 ptep
= pte_offset_kernel(pmdp
, ea
);
110 set_pte_at(&init_mm
, ea
, ptep
, pfn_pte(pfn
, flags
));
116 * nid, region_start, and region_end are hints to try to place the page
117 * table memory in the same node or region.
119 static int __map_kernel_page(unsigned long ea
, unsigned long pa
,
121 unsigned int map_page_size
,
123 unsigned long region_start
, unsigned long region_end
)
125 unsigned long pfn
= pa
>> PAGE_SHIFT
;
132 * Make sure task size is correct as per the max adddr
134 BUILD_BUG_ON(TASK_SIZE_USER64
> RADIX_PGTABLE_RANGE
);
136 #ifdef CONFIG_PPC_64K_PAGES
137 BUILD_BUG_ON(RADIX_KERN_MAP_SIZE
!= (1UL << MAX_EA_BITS_PER_CONTEXT
));
140 if (unlikely(!slab_is_available()))
141 return early_map_kernel_page(ea
, pa
, flags
, map_page_size
,
142 nid
, region_start
, region_end
);
145 * Should make page table allocation functions be able to take a
146 * node, so we can place kernel page tables on the right nodes after
149 pgdp
= pgd_offset_k(ea
);
150 p4dp
= p4d_offset(pgdp
, ea
);
151 pudp
= pud_alloc(&init_mm
, p4dp
, ea
);
154 if (map_page_size
== PUD_SIZE
) {
155 ptep
= (pte_t
*)pudp
;
158 pmdp
= pmd_alloc(&init_mm
, pudp
, ea
);
161 if (map_page_size
== PMD_SIZE
) {
162 ptep
= pmdp_ptep(pmdp
);
165 ptep
= pte_alloc_kernel(pmdp
, ea
);
170 set_pte_at(&init_mm
, ea
, ptep
, pfn_pte(pfn
, flags
));
175 int radix__map_kernel_page(unsigned long ea
, unsigned long pa
,
177 unsigned int map_page_size
)
179 return __map_kernel_page(ea
, pa
, flags
, map_page_size
, -1, 0, 0);
182 #ifdef CONFIG_STRICT_KERNEL_RWX
183 void radix__change_memory_range(unsigned long start
, unsigned long end
,
193 start
= ALIGN_DOWN(start
, PAGE_SIZE
);
194 end
= PAGE_ALIGN(end
); // aligns up
196 pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
199 for (idx
= start
; idx
< end
; idx
+= PAGE_SIZE
) {
200 pgdp
= pgd_offset_k(idx
);
201 p4dp
= p4d_offset(pgdp
, idx
);
202 pudp
= pud_alloc(&init_mm
, p4dp
, idx
);
205 if (pud_is_leaf(*pudp
)) {
206 ptep
= (pte_t
*)pudp
;
209 pmdp
= pmd_alloc(&init_mm
, pudp
, idx
);
212 if (pmd_is_leaf(*pmdp
)) {
213 ptep
= pmdp_ptep(pmdp
);
216 ptep
= pte_alloc_kernel(pmdp
, idx
);
220 radix__pte_update(&init_mm
, idx
, ptep
, clear
, 0, 0);
223 radix__flush_tlb_kernel_range(start
, end
);
226 void radix__mark_rodata_ro(void)
228 unsigned long start
, end
;
230 start
= (unsigned long)_stext
;
231 end
= (unsigned long)__init_begin
;
233 radix__change_memory_range(start
, end
, _PAGE_WRITE
);
236 void radix__mark_initmem_nx(void)
238 unsigned long start
= (unsigned long)__init_begin
;
239 unsigned long end
= (unsigned long)__init_end
;
241 radix__change_memory_range(start
, end
, _PAGE_EXEC
);
243 #endif /* CONFIG_STRICT_KERNEL_RWX */
245 static inline void __meminit
246 print_mapping(unsigned long start
, unsigned long end
, unsigned long size
, bool exec
)
253 string_get_size(size
, 1, STRING_UNITS_2
, buf
, sizeof(buf
));
255 pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start
, end
, buf
,
256 exec
? " (exec)" : "");
259 static unsigned long next_boundary(unsigned long addr
, unsigned long end
)
261 #ifdef CONFIG_STRICT_KERNEL_RWX
262 if (addr
< __pa_symbol(__init_begin
))
263 return __pa_symbol(__init_begin
);
268 static int __meminit
create_physical_mapping(unsigned long start
,
270 unsigned long max_mapping_size
,
271 int nid
, pgprot_t _prot
)
273 unsigned long vaddr
, addr
, mapping_size
= 0;
274 bool prev_exec
, exec
= false;
278 start
= ALIGN(start
, PAGE_SIZE
);
279 end
= ALIGN_DOWN(end
, PAGE_SIZE
);
280 for (addr
= start
; addr
< end
; addr
+= mapping_size
) {
281 unsigned long gap
, previous_size
;
284 gap
= next_boundary(addr
, end
) - addr
;
285 if (gap
> max_mapping_size
)
286 gap
= max_mapping_size
;
287 previous_size
= mapping_size
;
290 if (IS_ALIGNED(addr
, PUD_SIZE
) && gap
>= PUD_SIZE
&&
291 mmu_psize_defs
[MMU_PAGE_1G
].shift
) {
292 mapping_size
= PUD_SIZE
;
294 } else if (IS_ALIGNED(addr
, PMD_SIZE
) && gap
>= PMD_SIZE
&&
295 mmu_psize_defs
[MMU_PAGE_2M
].shift
) {
296 mapping_size
= PMD_SIZE
;
299 mapping_size
= PAGE_SIZE
;
300 psize
= mmu_virtual_psize
;
303 vaddr
= (unsigned long)__va(addr
);
305 if (overlaps_kernel_text(vaddr
, vaddr
+ mapping_size
) ||
306 overlaps_interrupt_vector_text(vaddr
, vaddr
+ mapping_size
)) {
307 prot
= PAGE_KERNEL_X
;
314 if (mapping_size
!= previous_size
|| exec
!= prev_exec
) {
315 print_mapping(start
, addr
, previous_size
, prev_exec
);
319 rc
= __map_kernel_page(vaddr
, addr
, prot
, mapping_size
, nid
, start
, end
);
323 update_page_count(psize
, 1);
326 print_mapping(start
, addr
, mapping_size
, exec
);
330 static void __init
radix_init_pgtable(void)
332 unsigned long rts_field
;
333 phys_addr_t start
, end
;
336 /* We don't support slb for radix */
340 * Create the linear mapping
342 for_each_mem_range(i
, &start
, &end
) {
344 * The memblock allocator is up at this point, so the
345 * page tables will be allocated within the range. No
346 * need or a node (which we don't have yet).
349 if (end
>= RADIX_VMALLOC_START
) {
350 pr_warn("Outside the supported range\n");
354 WARN_ON(create_physical_mapping(start
, end
,
355 radix_mem_block_size
,
359 /* Find out how many PID bits are supported */
360 if (!cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG
)) {
364 } else if (cpu_has_feature(CPU_FTR_HVMODE
)) {
367 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
369 * When KVM is possible, we only use the top half of the
370 * PID space to avoid collisions between host and guest PIDs
371 * which can cause problems due to prefetch when exiting the
374 mmu_base_pid
= 1 << (mmu_pid_bits
- 1);
379 /* The guest uses the bottom half of the PID space */
386 * Allocate Partition table and process table for the
389 BUG_ON(PRTB_SIZE_SHIFT
> 36);
390 process_tb
= early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT
, -1, 0, 0);
392 * Fill in the process table.
394 rts_field
= radix__get_tree_size();
395 process_tb
->prtb0
= cpu_to_be64(rts_field
| __pa(init_mm
.pgd
) | RADIX_PGD_INDEX_SIZE
);
398 * The init_mm context is given the first available (non-zero) PID,
399 * which is the "guard PID" and contains no page table. PIDR should
400 * never be set to zero because that duplicates the kernel address
401 * space at the 0x0... offset (quadrant 0)!
403 * An arbitrary PID that may later be allocated by the PID allocator
404 * for userspace processes must not be used either, because that
405 * would cause stale user mappings for that PID on CPUs outside of
406 * the TLB invalidation scheme (because it won't be in mm_cpumask).
408 * So permanently carve out one PID for the purpose of a guard PID.
410 init_mm
.context
.id
= mmu_base_pid
;
414 static void __init
radix_init_partition_table(void)
416 unsigned long rts_field
, dw0
, dw1
;
418 mmu_partition_table_init();
419 rts_field
= radix__get_tree_size();
420 dw0
= rts_field
| __pa(init_mm
.pgd
) | RADIX_PGD_INDEX_SIZE
| PATB_HR
;
421 dw1
= __pa(process_tb
) | (PRTB_SIZE_SHIFT
- 12) | PATB_GR
;
422 mmu_partition_table_set_entry(0, dw0
, dw1
, false);
424 pr_info("Initializing Radix MMU\n");
427 static int __init
get_idx_from_shift(unsigned int shift
)
448 static int __init
radix_dt_scan_page_sizes(unsigned long node
,
449 const char *uname
, int depth
,
456 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
458 /* We are scanning "cpu" nodes only */
459 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
462 /* Find MMU PID size */
463 prop
= of_get_flat_dt_prop(node
, "ibm,mmu-pid-bits", &size
);
464 if (prop
&& size
== 4)
465 mmu_pid_bits
= be32_to_cpup(prop
);
467 /* Grab page size encodings */
468 prop
= of_get_flat_dt_prop(node
, "ibm,processor-radix-AP-encodings", &size
);
472 pr_info("Page sizes from device-tree:\n");
473 for (; size
>= 4; size
-= 4, ++prop
) {
475 struct mmu_psize_def
*def
;
477 /* top 3 bit is AP encoding */
478 shift
= be32_to_cpu(prop
[0]) & ~(0xe << 28);
479 ap
= be32_to_cpu(prop
[0]) >> 29;
480 pr_info("Page size shift = %d AP=0x%x\n", shift
, ap
);
482 idx
= get_idx_from_shift(shift
);
486 def
= &mmu_psize_defs
[idx
];
492 cur_cpu_spec
->mmu_features
&= ~MMU_FTR_NO_SLBIE_B
;
496 #ifdef CONFIG_MEMORY_HOTPLUG
497 static int __init
probe_memory_block_size(unsigned long node
, const char *uname
, int
500 unsigned long *mem_block_size
= (unsigned long *)data
;
507 if (strcmp(uname
, "ibm,dynamic-reconfiguration-memory"))
510 prop
= of_get_flat_dt_prop(node
, "ibm,lmb-size", &len
);
512 if (!prop
|| len
< dt_root_size_cells
* sizeof(__be32
))
514 * Nothing in the device tree
516 *mem_block_size
= MIN_MEMORY_BLOCK_SIZE
;
518 *mem_block_size
= of_read_number(prop
, dt_root_size_cells
);
522 static unsigned long radix_memory_block_size(void)
524 unsigned long mem_block_size
= MIN_MEMORY_BLOCK_SIZE
;
527 * OPAL firmware feature is set by now. Hence we are ok
528 * to test OPAL feature.
530 if (firmware_has_feature(FW_FEATURE_OPAL
))
531 mem_block_size
= 1UL * 1024 * 1024 * 1024;
533 of_scan_flat_dt(probe_memory_block_size
, &mem_block_size
);
535 return mem_block_size
;
538 #else /* CONFIG_MEMORY_HOTPLUG */
540 static unsigned long radix_memory_block_size(void)
542 return 1UL * 1024 * 1024 * 1024;
545 #endif /* CONFIG_MEMORY_HOTPLUG */
548 void __init
radix__early_init_devtree(void)
553 * Try to find the available page sizes in the device-tree
555 rc
= of_scan_flat_dt(radix_dt_scan_page_sizes
, NULL
);
558 * No page size details found in device tree.
559 * Let's assume we have page 4k and 64k support
561 mmu_psize_defs
[MMU_PAGE_4K
].shift
= 12;
562 mmu_psize_defs
[MMU_PAGE_4K
].ap
= 0x0;
564 mmu_psize_defs
[MMU_PAGE_64K
].shift
= 16;
565 mmu_psize_defs
[MMU_PAGE_64K
].ap
= 0x5;
569 * Max mapping size used when mapping pages. We don't use
570 * ppc_md.memory_block_size() here because this get called
571 * early and we don't have machine probe called yet. Also
572 * the pseries implementation only check for ibm,lmb-size.
573 * All hypervisor supporting radix do expose that device
576 radix_mem_block_size
= radix_memory_block_size();
580 static void radix_init_amor(void)
583 * In HV mode, we init AMOR (Authority Mask Override Register) so that
584 * the hypervisor and guest can setup IAMR (Instruction Authority Mask
585 * Register), enable key 0 and set it to 1.
587 * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
589 mtspr(SPRN_AMOR
, (3ul << 62));
592 void __init
radix__early_init_mmu(void)
596 #ifdef CONFIG_PPC_64K_PAGES
597 /* PAGE_SIZE mappings */
598 mmu_virtual_psize
= MMU_PAGE_64K
;
600 mmu_virtual_psize
= MMU_PAGE_4K
;
603 #ifdef CONFIG_SPARSEMEM_VMEMMAP
604 /* vmemmap mapping */
605 if (mmu_psize_defs
[MMU_PAGE_2M
].shift
) {
607 * map vmemmap using 2M if available
609 mmu_vmemmap_psize
= MMU_PAGE_2M
;
611 mmu_vmemmap_psize
= mmu_virtual_psize
;
614 * initialize page table size
616 __pte_index_size
= RADIX_PTE_INDEX_SIZE
;
617 __pmd_index_size
= RADIX_PMD_INDEX_SIZE
;
618 __pud_index_size
= RADIX_PUD_INDEX_SIZE
;
619 __pgd_index_size
= RADIX_PGD_INDEX_SIZE
;
620 __pud_cache_index
= RADIX_PUD_INDEX_SIZE
;
621 __pte_table_size
= RADIX_PTE_TABLE_SIZE
;
622 __pmd_table_size
= RADIX_PMD_TABLE_SIZE
;
623 __pud_table_size
= RADIX_PUD_TABLE_SIZE
;
624 __pgd_table_size
= RADIX_PGD_TABLE_SIZE
;
626 __pmd_val_bits
= RADIX_PMD_VAL_BITS
;
627 __pud_val_bits
= RADIX_PUD_VAL_BITS
;
628 __pgd_val_bits
= RADIX_PGD_VAL_BITS
;
630 __kernel_virt_start
= RADIX_KERN_VIRT_START
;
631 __vmalloc_start
= RADIX_VMALLOC_START
;
632 __vmalloc_end
= RADIX_VMALLOC_END
;
633 __kernel_io_start
= RADIX_KERN_IO_START
;
634 __kernel_io_end
= RADIX_KERN_IO_END
;
635 vmemmap
= (struct page
*)RADIX_VMEMMAP_START
;
636 ioremap_bot
= IOREMAP_BASE
;
639 pci_io_base
= ISA_IO_BASE
;
641 __pte_frag_nr
= RADIX_PTE_FRAG_NR
;
642 __pte_frag_size_shift
= RADIX_PTE_FRAG_SIZE_SHIFT
;
643 __pmd_frag_nr
= RADIX_PMD_FRAG_NR
;
644 __pmd_frag_size_shift
= RADIX_PMD_FRAG_SIZE_SHIFT
;
646 radix_init_pgtable();
648 if (!firmware_has_feature(FW_FEATURE_LPAR
)) {
649 lpcr
= mfspr(SPRN_LPCR
);
650 mtspr(SPRN_LPCR
, lpcr
| LPCR_UPRT
| LPCR_HR
);
651 radix_init_partition_table();
654 radix_init_pseries();
657 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE
);
659 /* Switch to the guard PID before turning on MMU */
660 radix__switch_mmu_context(NULL
, &init_mm
);
664 void radix__early_init_mmu_secondary(void)
668 * update partition table control register and UPRT
670 if (!firmware_has_feature(FW_FEATURE_LPAR
)) {
671 lpcr
= mfspr(SPRN_LPCR
);
672 mtspr(SPRN_LPCR
, lpcr
| LPCR_UPRT
| LPCR_HR
);
674 set_ptcr_when_no_uv(__pa(partition_tb
) |
675 (PATB_SIZE_SHIFT
- 12));
680 radix__switch_mmu_context(NULL
, &init_mm
);
683 /* Make sure userspace can't change the AMR */
684 mtspr(SPRN_UAMOR
, 0);
687 void radix__mmu_cleanup_all(void)
691 if (!firmware_has_feature(FW_FEATURE_LPAR
)) {
692 lpcr
= mfspr(SPRN_LPCR
);
693 mtspr(SPRN_LPCR
, lpcr
& ~LPCR_UPRT
);
694 set_ptcr_when_no_uv(0);
695 powernv_set_nmmu_ptcr(0);
696 radix__flush_tlb_all();
700 #ifdef CONFIG_MEMORY_HOTPLUG
701 static void free_pte_table(pte_t
*pte_start
, pmd_t
*pmd
)
706 for (i
= 0; i
< PTRS_PER_PTE
; i
++) {
712 pte_free_kernel(&init_mm
, pte_start
);
716 static void free_pmd_table(pmd_t
*pmd_start
, pud_t
*pud
)
721 for (i
= 0; i
< PTRS_PER_PMD
; i
++) {
727 pmd_free(&init_mm
, pmd_start
);
731 static void free_pud_table(pud_t
*pud_start
, p4d_t
*p4d
)
736 for (i
= 0; i
< PTRS_PER_PUD
; i
++) {
742 pud_free(&init_mm
, pud_start
);
746 static void remove_pte_table(pte_t
*pte_start
, unsigned long addr
,
752 pte
= pte_start
+ pte_index(addr
);
753 for (; addr
< end
; addr
= next
, pte
++) {
754 next
= (addr
+ PAGE_SIZE
) & PAGE_MASK
;
758 if (!pte_present(*pte
))
761 if (!PAGE_ALIGNED(addr
) || !PAGE_ALIGNED(next
)) {
763 * The vmemmap_free() and remove_section_mapping()
764 * codepaths call us with aligned addresses.
766 WARN_ONCE(1, "%s: unaligned range\n", __func__
);
770 pte_clear(&init_mm
, addr
, pte
);
774 static void __meminit
remove_pmd_table(pmd_t
*pmd_start
, unsigned long addr
,
781 pmd
= pmd_start
+ pmd_index(addr
);
782 for (; addr
< end
; addr
= next
, pmd
++) {
783 next
= pmd_addr_end(addr
, end
);
785 if (!pmd_present(*pmd
))
788 if (pmd_is_leaf(*pmd
)) {
789 if (!IS_ALIGNED(addr
, PMD_SIZE
) ||
790 !IS_ALIGNED(next
, PMD_SIZE
)) {
791 WARN_ONCE(1, "%s: unaligned range\n", __func__
);
794 pte_clear(&init_mm
, addr
, (pte_t
*)pmd
);
798 pte_base
= (pte_t
*)pmd_page_vaddr(*pmd
);
799 remove_pte_table(pte_base
, addr
, next
);
800 free_pte_table(pte_base
, pmd
);
804 static void __meminit
remove_pud_table(pud_t
*pud_start
, unsigned long addr
,
811 pud
= pud_start
+ pud_index(addr
);
812 for (; addr
< end
; addr
= next
, pud
++) {
813 next
= pud_addr_end(addr
, end
);
815 if (!pud_present(*pud
))
818 if (pud_is_leaf(*pud
)) {
819 if (!IS_ALIGNED(addr
, PUD_SIZE
) ||
820 !IS_ALIGNED(next
, PUD_SIZE
)) {
821 WARN_ONCE(1, "%s: unaligned range\n", __func__
);
824 pte_clear(&init_mm
, addr
, (pte_t
*)pud
);
828 pmd_base
= (pmd_t
*)pud_page_vaddr(*pud
);
829 remove_pmd_table(pmd_base
, addr
, next
);
830 free_pmd_table(pmd_base
, pud
);
834 static void __meminit
remove_pagetable(unsigned long start
, unsigned long end
)
836 unsigned long addr
, next
;
841 spin_lock(&init_mm
.page_table_lock
);
843 for (addr
= start
; addr
< end
; addr
= next
) {
844 next
= pgd_addr_end(addr
, end
);
846 pgd
= pgd_offset_k(addr
);
847 p4d
= p4d_offset(pgd
, addr
);
848 if (!p4d_present(*p4d
))
851 if (p4d_is_leaf(*p4d
)) {
852 if (!IS_ALIGNED(addr
, P4D_SIZE
) ||
853 !IS_ALIGNED(next
, P4D_SIZE
)) {
854 WARN_ONCE(1, "%s: unaligned range\n", __func__
);
858 pte_clear(&init_mm
, addr
, (pte_t
*)pgd
);
862 pud_base
= (pud_t
*)p4d_page_vaddr(*p4d
);
863 remove_pud_table(pud_base
, addr
, next
);
864 free_pud_table(pud_base
, p4d
);
867 spin_unlock(&init_mm
.page_table_lock
);
868 radix__flush_tlb_kernel_range(start
, end
);
871 int __meminit
radix__create_section_mapping(unsigned long start
,
872 unsigned long end
, int nid
,
875 if (end
>= RADIX_VMALLOC_START
) {
876 pr_warn("Outside the supported range\n");
880 return create_physical_mapping(__pa(start
), __pa(end
),
881 radix_mem_block_size
, nid
, prot
);
884 int __meminit
radix__remove_section_mapping(unsigned long start
, unsigned long end
)
886 remove_pagetable(start
, end
);
889 #endif /* CONFIG_MEMORY_HOTPLUG */
891 #ifdef CONFIG_SPARSEMEM_VMEMMAP
892 static int __map_kernel_page_nid(unsigned long ea
, unsigned long pa
,
893 pgprot_t flags
, unsigned int map_page_size
,
896 return __map_kernel_page(ea
, pa
, flags
, map_page_size
, nid
, 0, 0);
899 int __meminit
radix__vmemmap_create_mapping(unsigned long start
,
900 unsigned long page_size
,
903 /* Create a PTE encoding */
904 unsigned long flags
= _PAGE_PRESENT
| _PAGE_ACCESSED
| _PAGE_KERNEL_RW
;
905 int nid
= early_pfn_to_nid(phys
>> PAGE_SHIFT
);
908 if ((start
+ page_size
) >= RADIX_VMEMMAP_END
) {
909 pr_warn("Outside the supported range\n");
913 ret
= __map_kernel_page_nid(start
, phys
, __pgprot(flags
), page_size
, nid
);
919 #ifdef CONFIG_MEMORY_HOTPLUG
920 void __meminit
radix__vmemmap_remove_mapping(unsigned long start
, unsigned long page_size
)
922 remove_pagetable(start
, start
+ page_size
);
927 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
929 unsigned long radix__pmd_hugepage_update(struct mm_struct
*mm
, unsigned long addr
,
930 pmd_t
*pmdp
, unsigned long clr
,
935 #ifdef CONFIG_DEBUG_VM
936 WARN_ON(!radix__pmd_trans_huge(*pmdp
) && !pmd_devmap(*pmdp
));
937 assert_spin_locked(pmd_lockptr(mm
, pmdp
));
940 old
= radix__pte_update(mm
, addr
, (pte_t
*)pmdp
, clr
, set
, 1);
941 trace_hugepage_update(addr
, old
, clr
, set
);
946 pmd_t
radix__pmdp_collapse_flush(struct vm_area_struct
*vma
, unsigned long address
,
952 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
953 VM_BUG_ON(radix__pmd_trans_huge(*pmdp
));
954 VM_BUG_ON(pmd_devmap(*pmdp
));
956 * khugepaged calls this for normal pmd
962 * pmdp collapse_flush need to ensure that there are no parallel gup
963 * walk after this call. This is needed so that we can have stable
964 * page ref count when collapsing a page. We don't allow a collapse page
965 * if we have gup taken on the page. We can ensure that by sending IPI
966 * because gup walk happens with IRQ disabled.
968 serialize_against_pte_lookup(vma
->vm_mm
);
970 radix__flush_tlb_collapsed_pmd(vma
->vm_mm
, address
);
976 * For us pgtable_t is pte_t *. Inorder to save the deposisted
977 * page table, we consider the allocated page table as a list
978 * head. On withdraw we need to make sure we zero out the used
979 * list_head memory area.
981 void radix__pgtable_trans_huge_deposit(struct mm_struct
*mm
, pmd_t
*pmdp
,
984 struct list_head
*lh
= (struct list_head
*) pgtable
;
986 assert_spin_locked(pmd_lockptr(mm
, pmdp
));
989 if (!pmd_huge_pte(mm
, pmdp
))
992 list_add(lh
, (struct list_head
*) pmd_huge_pte(mm
, pmdp
));
993 pmd_huge_pte(mm
, pmdp
) = pgtable
;
996 pgtable_t
radix__pgtable_trans_huge_withdraw(struct mm_struct
*mm
, pmd_t
*pmdp
)
1000 struct list_head
*lh
;
1002 assert_spin_locked(pmd_lockptr(mm
, pmdp
));
1005 pgtable
= pmd_huge_pte(mm
, pmdp
);
1006 lh
= (struct list_head
*) pgtable
;
1008 pmd_huge_pte(mm
, pmdp
) = NULL
;
1010 pmd_huge_pte(mm
, pmdp
) = (pgtable_t
) lh
->next
;
1013 ptep
= (pte_t
*) pgtable
;
1020 pmd_t
radix__pmdp_huge_get_and_clear(struct mm_struct
*mm
,
1021 unsigned long addr
, pmd_t
*pmdp
)
1026 old
= radix__pmd_hugepage_update(mm
, addr
, pmdp
, ~0UL, 0);
1027 old_pmd
= __pmd(old
);
1031 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1033 void radix__ptep_set_access_flags(struct vm_area_struct
*vma
, pte_t
*ptep
,
1034 pte_t entry
, unsigned long address
, int psize
)
1036 struct mm_struct
*mm
= vma
->vm_mm
;
1037 unsigned long set
= pte_val(entry
) & (_PAGE_DIRTY
| _PAGE_ACCESSED
|
1038 _PAGE_RW
| _PAGE_EXEC
);
1040 unsigned long change
= pte_val(entry
) ^ pte_val(*ptep
);
1042 * To avoid NMMU hang while relaxing access, we need mark
1043 * the pte invalid in between.
1045 if ((change
& _PAGE_RW
) && atomic_read(&mm
->context
.copros
) > 0) {
1046 unsigned long old_pte
, new_pte
;
1048 old_pte
= __radix_pte_update(ptep
, _PAGE_PRESENT
, _PAGE_INVALID
);
1052 new_pte
= old_pte
| set
;
1053 radix__flush_tlb_page_psize(mm
, address
, psize
);
1054 __radix_pte_update(ptep
, _PAGE_INVALID
, new_pte
);
1056 __radix_pte_update(ptep
, 0, set
);
1058 * Book3S does not require a TLB flush when relaxing access
1059 * restrictions when the address space is not attached to a
1060 * NMMU, because the core MMU will reload the pte after taking
1061 * an access fault, which is defined by the architectue.
1064 /* See ptesync comment in radix__set_pte_at */
1067 void radix__ptep_modify_prot_commit(struct vm_area_struct
*vma
,
1068 unsigned long addr
, pte_t
*ptep
,
1069 pte_t old_pte
, pte_t pte
)
1071 struct mm_struct
*mm
= vma
->vm_mm
;
1074 * To avoid NMMU hang while relaxing access we need to flush the tlb before
1075 * we set the new value. We need to do this only for radix, because hash
1076 * translation does flush when updating the linux pte.
1078 if (is_pte_rw_upgrade(pte_val(old_pte
), pte_val(pte
)) &&
1079 (atomic_read(&mm
->context
.copros
) > 0))
1080 radix__flush_tlb_page(vma
, addr
);
1082 set_pte_at(mm
, addr
, ptep
, pte
);
1085 int __init
arch_ioremap_pud_supported(void)
1087 /* HPT does not cope with large pages in the vmalloc area */
1088 return radix_enabled();
1091 int __init
arch_ioremap_pmd_supported(void)
1093 return radix_enabled();
1096 int p4d_free_pud_page(p4d_t
*p4d
, unsigned long addr
)
1101 int pud_set_huge(pud_t
*pud
, phys_addr_t addr
, pgprot_t prot
)
1103 pte_t
*ptep
= (pte_t
*)pud
;
1104 pte_t new_pud
= pfn_pte(__phys_to_pfn(addr
), prot
);
1106 if (!radix_enabled())
1109 set_pte_at(&init_mm
, 0 /* radix unused */, ptep
, new_pud
);
1114 int pud_clear_huge(pud_t
*pud
)
1116 if (pud_huge(*pud
)) {
1124 int pud_free_pmd_page(pud_t
*pud
, unsigned long addr
)
1129 pmd
= (pmd_t
*)pud_page_vaddr(*pud
);
1132 flush_tlb_kernel_range(addr
, addr
+ PUD_SIZE
);
1134 for (i
= 0; i
< PTRS_PER_PMD
; i
++) {
1135 if (!pmd_none(pmd
[i
])) {
1137 pte
= (pte_t
*)pmd_page_vaddr(pmd
[i
]);
1139 pte_free_kernel(&init_mm
, pte
);
1143 pmd_free(&init_mm
, pmd
);
1148 int pmd_set_huge(pmd_t
*pmd
, phys_addr_t addr
, pgprot_t prot
)
1150 pte_t
*ptep
= (pte_t
*)pmd
;
1151 pte_t new_pmd
= pfn_pte(__phys_to_pfn(addr
), prot
);
1153 if (!radix_enabled())
1156 set_pte_at(&init_mm
, 0 /* radix unused */, ptep
, new_pmd
);
1161 int pmd_clear_huge(pmd_t
*pmd
)
1163 if (pmd_huge(*pmd
)) {
1171 int pmd_free_pte_page(pmd_t
*pmd
, unsigned long addr
)
1175 pte
= (pte_t
*)pmd_page_vaddr(*pmd
);
1178 flush_tlb_kernel_range(addr
, addr
+ PMD_SIZE
);
1180 pte_free_kernel(&init_mm
, pte
);
1185 int __init
arch_ioremap_p4d_supported(void)