Merge tag 'linux-kselftest-kunit-fixes-5.11-rc3' of git://git.kernel.org/pub/scm...
[linux/fpc-iii.git] / arch / powerpc / mm / book3s64 / radix_pgtable.c
blob98f0b243c1ab21e0953645dae57a5bf33b8ac80b
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Page table handling routines for radix page table.
5 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6 */
8 #define pr_fmt(fmt) "radix-mmu: " fmt
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/sched/mm.h>
13 #include <linux/memblock.h>
14 #include <linux/of_fdt.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/string_helpers.h>
18 #include <linux/memory.h>
20 #include <asm/pgalloc.h>
21 #include <asm/mmu_context.h>
22 #include <asm/dma.h>
23 #include <asm/machdep.h>
24 #include <asm/mmu.h>
25 #include <asm/firmware.h>
26 #include <asm/powernv.h>
27 #include <asm/sections.h>
28 #include <asm/smp.h>
29 #include <asm/trace.h>
30 #include <asm/uaccess.h>
31 #include <asm/ultravisor.h>
33 #include <trace/events/thp.h>
35 unsigned int mmu_pid_bits;
36 unsigned int mmu_base_pid;
37 unsigned long radix_mem_block_size __ro_after_init;
39 static __ref void *early_alloc_pgtable(unsigned long size, int nid,
40 unsigned long region_start, unsigned long region_end)
42 phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
43 phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
44 void *ptr;
46 if (region_start)
47 min_addr = region_start;
48 if (region_end)
49 max_addr = region_end;
51 ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
53 if (!ptr)
54 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
55 __func__, size, size, nid, &min_addr, &max_addr);
57 return ptr;
61 * When allocating pud or pmd pointers, we allocate a complete page
62 * of PAGE_SIZE rather than PUD_TABLE_SIZE or PMD_TABLE_SIZE. This
63 * is to ensure that the page obtained from the memblock allocator
64 * can be completely used as page table page and can be freed
65 * correctly when the page table entries are removed.
67 static int early_map_kernel_page(unsigned long ea, unsigned long pa,
68 pgprot_t flags,
69 unsigned int map_page_size,
70 int nid,
71 unsigned long region_start, unsigned long region_end)
73 unsigned long pfn = pa >> PAGE_SHIFT;
74 pgd_t *pgdp;
75 p4d_t *p4dp;
76 pud_t *pudp;
77 pmd_t *pmdp;
78 pte_t *ptep;
80 pgdp = pgd_offset_k(ea);
81 p4dp = p4d_offset(pgdp, ea);
82 if (p4d_none(*p4dp)) {
83 pudp = early_alloc_pgtable(PAGE_SIZE, nid,
84 region_start, region_end);
85 p4d_populate(&init_mm, p4dp, pudp);
87 pudp = pud_offset(p4dp, ea);
88 if (map_page_size == PUD_SIZE) {
89 ptep = (pte_t *)pudp;
90 goto set_the_pte;
92 if (pud_none(*pudp)) {
93 pmdp = early_alloc_pgtable(PAGE_SIZE, nid, region_start,
94 region_end);
95 pud_populate(&init_mm, pudp, pmdp);
97 pmdp = pmd_offset(pudp, ea);
98 if (map_page_size == PMD_SIZE) {
99 ptep = pmdp_ptep(pmdp);
100 goto set_the_pte;
102 if (!pmd_present(*pmdp)) {
103 ptep = early_alloc_pgtable(PAGE_SIZE, nid,
104 region_start, region_end);
105 pmd_populate_kernel(&init_mm, pmdp, ptep);
107 ptep = pte_offset_kernel(pmdp, ea);
109 set_the_pte:
110 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
111 smp_wmb();
112 return 0;
116 * nid, region_start, and region_end are hints to try to place the page
117 * table memory in the same node or region.
119 static int __map_kernel_page(unsigned long ea, unsigned long pa,
120 pgprot_t flags,
121 unsigned int map_page_size,
122 int nid,
123 unsigned long region_start, unsigned long region_end)
125 unsigned long pfn = pa >> PAGE_SHIFT;
126 pgd_t *pgdp;
127 p4d_t *p4dp;
128 pud_t *pudp;
129 pmd_t *pmdp;
130 pte_t *ptep;
132 * Make sure task size is correct as per the max adddr
134 BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
136 #ifdef CONFIG_PPC_64K_PAGES
137 BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT));
138 #endif
140 if (unlikely(!slab_is_available()))
141 return early_map_kernel_page(ea, pa, flags, map_page_size,
142 nid, region_start, region_end);
145 * Should make page table allocation functions be able to take a
146 * node, so we can place kernel page tables on the right nodes after
147 * boot.
149 pgdp = pgd_offset_k(ea);
150 p4dp = p4d_offset(pgdp, ea);
151 pudp = pud_alloc(&init_mm, p4dp, ea);
152 if (!pudp)
153 return -ENOMEM;
154 if (map_page_size == PUD_SIZE) {
155 ptep = (pte_t *)pudp;
156 goto set_the_pte;
158 pmdp = pmd_alloc(&init_mm, pudp, ea);
159 if (!pmdp)
160 return -ENOMEM;
161 if (map_page_size == PMD_SIZE) {
162 ptep = pmdp_ptep(pmdp);
163 goto set_the_pte;
165 ptep = pte_alloc_kernel(pmdp, ea);
166 if (!ptep)
167 return -ENOMEM;
169 set_the_pte:
170 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
171 smp_wmb();
172 return 0;
175 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
176 pgprot_t flags,
177 unsigned int map_page_size)
179 return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
182 #ifdef CONFIG_STRICT_KERNEL_RWX
183 void radix__change_memory_range(unsigned long start, unsigned long end,
184 unsigned long clear)
186 unsigned long idx;
187 pgd_t *pgdp;
188 p4d_t *p4dp;
189 pud_t *pudp;
190 pmd_t *pmdp;
191 pte_t *ptep;
193 start = ALIGN_DOWN(start, PAGE_SIZE);
194 end = PAGE_ALIGN(end); // aligns up
196 pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
197 start, end, clear);
199 for (idx = start; idx < end; idx += PAGE_SIZE) {
200 pgdp = pgd_offset_k(idx);
201 p4dp = p4d_offset(pgdp, idx);
202 pudp = pud_alloc(&init_mm, p4dp, idx);
203 if (!pudp)
204 continue;
205 if (pud_is_leaf(*pudp)) {
206 ptep = (pte_t *)pudp;
207 goto update_the_pte;
209 pmdp = pmd_alloc(&init_mm, pudp, idx);
210 if (!pmdp)
211 continue;
212 if (pmd_is_leaf(*pmdp)) {
213 ptep = pmdp_ptep(pmdp);
214 goto update_the_pte;
216 ptep = pte_alloc_kernel(pmdp, idx);
217 if (!ptep)
218 continue;
219 update_the_pte:
220 radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
223 radix__flush_tlb_kernel_range(start, end);
226 void radix__mark_rodata_ro(void)
228 unsigned long start, end;
230 start = (unsigned long)_stext;
231 end = (unsigned long)__init_begin;
233 radix__change_memory_range(start, end, _PAGE_WRITE);
236 void radix__mark_initmem_nx(void)
238 unsigned long start = (unsigned long)__init_begin;
239 unsigned long end = (unsigned long)__init_end;
241 radix__change_memory_range(start, end, _PAGE_EXEC);
243 #endif /* CONFIG_STRICT_KERNEL_RWX */
245 static inline void __meminit
246 print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
248 char buf[10];
250 if (end <= start)
251 return;
253 string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
255 pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
256 exec ? " (exec)" : "");
259 static unsigned long next_boundary(unsigned long addr, unsigned long end)
261 #ifdef CONFIG_STRICT_KERNEL_RWX
262 if (addr < __pa_symbol(__init_begin))
263 return __pa_symbol(__init_begin);
264 #endif
265 return end;
268 static int __meminit create_physical_mapping(unsigned long start,
269 unsigned long end,
270 unsigned long max_mapping_size,
271 int nid, pgprot_t _prot)
273 unsigned long vaddr, addr, mapping_size = 0;
274 bool prev_exec, exec = false;
275 pgprot_t prot;
276 int psize;
278 start = ALIGN(start, PAGE_SIZE);
279 end = ALIGN_DOWN(end, PAGE_SIZE);
280 for (addr = start; addr < end; addr += mapping_size) {
281 unsigned long gap, previous_size;
282 int rc;
284 gap = next_boundary(addr, end) - addr;
285 if (gap > max_mapping_size)
286 gap = max_mapping_size;
287 previous_size = mapping_size;
288 prev_exec = exec;
290 if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
291 mmu_psize_defs[MMU_PAGE_1G].shift) {
292 mapping_size = PUD_SIZE;
293 psize = MMU_PAGE_1G;
294 } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
295 mmu_psize_defs[MMU_PAGE_2M].shift) {
296 mapping_size = PMD_SIZE;
297 psize = MMU_PAGE_2M;
298 } else {
299 mapping_size = PAGE_SIZE;
300 psize = mmu_virtual_psize;
303 vaddr = (unsigned long)__va(addr);
305 if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
306 overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
307 prot = PAGE_KERNEL_X;
308 exec = true;
309 } else {
310 prot = _prot;
311 exec = false;
314 if (mapping_size != previous_size || exec != prev_exec) {
315 print_mapping(start, addr, previous_size, prev_exec);
316 start = addr;
319 rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
320 if (rc)
321 return rc;
323 update_page_count(psize, 1);
326 print_mapping(start, addr, mapping_size, exec);
327 return 0;
330 static void __init radix_init_pgtable(void)
332 unsigned long rts_field;
333 phys_addr_t start, end;
334 u64 i;
336 /* We don't support slb for radix */
337 mmu_slb_size = 0;
340 * Create the linear mapping
342 for_each_mem_range(i, &start, &end) {
344 * The memblock allocator is up at this point, so the
345 * page tables will be allocated within the range. No
346 * need or a node (which we don't have yet).
349 if (end >= RADIX_VMALLOC_START) {
350 pr_warn("Outside the supported range\n");
351 continue;
354 WARN_ON(create_physical_mapping(start, end,
355 radix_mem_block_size,
356 -1, PAGE_KERNEL));
359 /* Find out how many PID bits are supported */
360 if (!cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
361 if (!mmu_pid_bits)
362 mmu_pid_bits = 20;
363 mmu_base_pid = 1;
364 } else if (cpu_has_feature(CPU_FTR_HVMODE)) {
365 if (!mmu_pid_bits)
366 mmu_pid_bits = 20;
367 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
369 * When KVM is possible, we only use the top half of the
370 * PID space to avoid collisions between host and guest PIDs
371 * which can cause problems due to prefetch when exiting the
372 * guest with AIL=3
374 mmu_base_pid = 1 << (mmu_pid_bits - 1);
375 #else
376 mmu_base_pid = 1;
377 #endif
378 } else {
379 /* The guest uses the bottom half of the PID space */
380 if (!mmu_pid_bits)
381 mmu_pid_bits = 19;
382 mmu_base_pid = 1;
386 * Allocate Partition table and process table for the
387 * host.
389 BUG_ON(PRTB_SIZE_SHIFT > 36);
390 process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
392 * Fill in the process table.
394 rts_field = radix__get_tree_size();
395 process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
398 * The init_mm context is given the first available (non-zero) PID,
399 * which is the "guard PID" and contains no page table. PIDR should
400 * never be set to zero because that duplicates the kernel address
401 * space at the 0x0... offset (quadrant 0)!
403 * An arbitrary PID that may later be allocated by the PID allocator
404 * for userspace processes must not be used either, because that
405 * would cause stale user mappings for that PID on CPUs outside of
406 * the TLB invalidation scheme (because it won't be in mm_cpumask).
408 * So permanently carve out one PID for the purpose of a guard PID.
410 init_mm.context.id = mmu_base_pid;
411 mmu_base_pid++;
414 static void __init radix_init_partition_table(void)
416 unsigned long rts_field, dw0, dw1;
418 mmu_partition_table_init();
419 rts_field = radix__get_tree_size();
420 dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
421 dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR;
422 mmu_partition_table_set_entry(0, dw0, dw1, false);
424 pr_info("Initializing Radix MMU\n");
427 static int __init get_idx_from_shift(unsigned int shift)
429 int idx = -1;
431 switch (shift) {
432 case 0xc:
433 idx = MMU_PAGE_4K;
434 break;
435 case 0x10:
436 idx = MMU_PAGE_64K;
437 break;
438 case 0x15:
439 idx = MMU_PAGE_2M;
440 break;
441 case 0x1e:
442 idx = MMU_PAGE_1G;
443 break;
445 return idx;
448 static int __init radix_dt_scan_page_sizes(unsigned long node,
449 const char *uname, int depth,
450 void *data)
452 int size = 0;
453 int shift, idx;
454 unsigned int ap;
455 const __be32 *prop;
456 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
458 /* We are scanning "cpu" nodes only */
459 if (type == NULL || strcmp(type, "cpu") != 0)
460 return 0;
462 /* Find MMU PID size */
463 prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
464 if (prop && size == 4)
465 mmu_pid_bits = be32_to_cpup(prop);
467 /* Grab page size encodings */
468 prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
469 if (!prop)
470 return 0;
472 pr_info("Page sizes from device-tree:\n");
473 for (; size >= 4; size -= 4, ++prop) {
475 struct mmu_psize_def *def;
477 /* top 3 bit is AP encoding */
478 shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
479 ap = be32_to_cpu(prop[0]) >> 29;
480 pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
482 idx = get_idx_from_shift(shift);
483 if (idx < 0)
484 continue;
486 def = &mmu_psize_defs[idx];
487 def->shift = shift;
488 def->ap = ap;
491 /* needed ? */
492 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
493 return 1;
496 #ifdef CONFIG_MEMORY_HOTPLUG
497 static int __init probe_memory_block_size(unsigned long node, const char *uname, int
498 depth, void *data)
500 unsigned long *mem_block_size = (unsigned long *)data;
501 const __be32 *prop;
502 int len;
504 if (depth != 1)
505 return 0;
507 if (strcmp(uname, "ibm,dynamic-reconfiguration-memory"))
508 return 0;
510 prop = of_get_flat_dt_prop(node, "ibm,lmb-size", &len);
512 if (!prop || len < dt_root_size_cells * sizeof(__be32))
514 * Nothing in the device tree
516 *mem_block_size = MIN_MEMORY_BLOCK_SIZE;
517 else
518 *mem_block_size = of_read_number(prop, dt_root_size_cells);
519 return 1;
522 static unsigned long radix_memory_block_size(void)
524 unsigned long mem_block_size = MIN_MEMORY_BLOCK_SIZE;
527 * OPAL firmware feature is set by now. Hence we are ok
528 * to test OPAL feature.
530 if (firmware_has_feature(FW_FEATURE_OPAL))
531 mem_block_size = 1UL * 1024 * 1024 * 1024;
532 else
533 of_scan_flat_dt(probe_memory_block_size, &mem_block_size);
535 return mem_block_size;
538 #else /* CONFIG_MEMORY_HOTPLUG */
540 static unsigned long radix_memory_block_size(void)
542 return 1UL * 1024 * 1024 * 1024;
545 #endif /* CONFIG_MEMORY_HOTPLUG */
548 void __init radix__early_init_devtree(void)
550 int rc;
553 * Try to find the available page sizes in the device-tree
555 rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
556 if (!rc) {
558 * No page size details found in device tree.
559 * Let's assume we have page 4k and 64k support
561 mmu_psize_defs[MMU_PAGE_4K].shift = 12;
562 mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
564 mmu_psize_defs[MMU_PAGE_64K].shift = 16;
565 mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
569 * Max mapping size used when mapping pages. We don't use
570 * ppc_md.memory_block_size() here because this get called
571 * early and we don't have machine probe called yet. Also
572 * the pseries implementation only check for ibm,lmb-size.
573 * All hypervisor supporting radix do expose that device
574 * tree node.
576 radix_mem_block_size = radix_memory_block_size();
577 return;
580 static void radix_init_amor(void)
583 * In HV mode, we init AMOR (Authority Mask Override Register) so that
584 * the hypervisor and guest can setup IAMR (Instruction Authority Mask
585 * Register), enable key 0 and set it to 1.
587 * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
589 mtspr(SPRN_AMOR, (3ul << 62));
592 void __init radix__early_init_mmu(void)
594 unsigned long lpcr;
596 #ifdef CONFIG_PPC_64K_PAGES
597 /* PAGE_SIZE mappings */
598 mmu_virtual_psize = MMU_PAGE_64K;
599 #else
600 mmu_virtual_psize = MMU_PAGE_4K;
601 #endif
603 #ifdef CONFIG_SPARSEMEM_VMEMMAP
604 /* vmemmap mapping */
605 if (mmu_psize_defs[MMU_PAGE_2M].shift) {
607 * map vmemmap using 2M if available
609 mmu_vmemmap_psize = MMU_PAGE_2M;
610 } else
611 mmu_vmemmap_psize = mmu_virtual_psize;
612 #endif
614 * initialize page table size
616 __pte_index_size = RADIX_PTE_INDEX_SIZE;
617 __pmd_index_size = RADIX_PMD_INDEX_SIZE;
618 __pud_index_size = RADIX_PUD_INDEX_SIZE;
619 __pgd_index_size = RADIX_PGD_INDEX_SIZE;
620 __pud_cache_index = RADIX_PUD_INDEX_SIZE;
621 __pte_table_size = RADIX_PTE_TABLE_SIZE;
622 __pmd_table_size = RADIX_PMD_TABLE_SIZE;
623 __pud_table_size = RADIX_PUD_TABLE_SIZE;
624 __pgd_table_size = RADIX_PGD_TABLE_SIZE;
626 __pmd_val_bits = RADIX_PMD_VAL_BITS;
627 __pud_val_bits = RADIX_PUD_VAL_BITS;
628 __pgd_val_bits = RADIX_PGD_VAL_BITS;
630 __kernel_virt_start = RADIX_KERN_VIRT_START;
631 __vmalloc_start = RADIX_VMALLOC_START;
632 __vmalloc_end = RADIX_VMALLOC_END;
633 __kernel_io_start = RADIX_KERN_IO_START;
634 __kernel_io_end = RADIX_KERN_IO_END;
635 vmemmap = (struct page *)RADIX_VMEMMAP_START;
636 ioremap_bot = IOREMAP_BASE;
638 #ifdef CONFIG_PCI
639 pci_io_base = ISA_IO_BASE;
640 #endif
641 __pte_frag_nr = RADIX_PTE_FRAG_NR;
642 __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
643 __pmd_frag_nr = RADIX_PMD_FRAG_NR;
644 __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
646 radix_init_pgtable();
648 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
649 lpcr = mfspr(SPRN_LPCR);
650 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
651 radix_init_partition_table();
652 radix_init_amor();
653 } else {
654 radix_init_pseries();
657 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
659 /* Switch to the guard PID before turning on MMU */
660 radix__switch_mmu_context(NULL, &init_mm);
661 tlbiel_all();
664 void radix__early_init_mmu_secondary(void)
666 unsigned long lpcr;
668 * update partition table control register and UPRT
670 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
671 lpcr = mfspr(SPRN_LPCR);
672 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
674 set_ptcr_when_no_uv(__pa(partition_tb) |
675 (PATB_SIZE_SHIFT - 12));
677 radix_init_amor();
680 radix__switch_mmu_context(NULL, &init_mm);
681 tlbiel_all();
683 /* Make sure userspace can't change the AMR */
684 mtspr(SPRN_UAMOR, 0);
687 void radix__mmu_cleanup_all(void)
689 unsigned long lpcr;
691 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
692 lpcr = mfspr(SPRN_LPCR);
693 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
694 set_ptcr_when_no_uv(0);
695 powernv_set_nmmu_ptcr(0);
696 radix__flush_tlb_all();
700 #ifdef CONFIG_MEMORY_HOTPLUG
701 static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
703 pte_t *pte;
704 int i;
706 for (i = 0; i < PTRS_PER_PTE; i++) {
707 pte = pte_start + i;
708 if (!pte_none(*pte))
709 return;
712 pte_free_kernel(&init_mm, pte_start);
713 pmd_clear(pmd);
716 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
718 pmd_t *pmd;
719 int i;
721 for (i = 0; i < PTRS_PER_PMD; i++) {
722 pmd = pmd_start + i;
723 if (!pmd_none(*pmd))
724 return;
727 pmd_free(&init_mm, pmd_start);
728 pud_clear(pud);
731 static void free_pud_table(pud_t *pud_start, p4d_t *p4d)
733 pud_t *pud;
734 int i;
736 for (i = 0; i < PTRS_PER_PUD; i++) {
737 pud = pud_start + i;
738 if (!pud_none(*pud))
739 return;
742 pud_free(&init_mm, pud_start);
743 p4d_clear(p4d);
746 static void remove_pte_table(pte_t *pte_start, unsigned long addr,
747 unsigned long end)
749 unsigned long next;
750 pte_t *pte;
752 pte = pte_start + pte_index(addr);
753 for (; addr < end; addr = next, pte++) {
754 next = (addr + PAGE_SIZE) & PAGE_MASK;
755 if (next > end)
756 next = end;
758 if (!pte_present(*pte))
759 continue;
761 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
763 * The vmemmap_free() and remove_section_mapping()
764 * codepaths call us with aligned addresses.
766 WARN_ONCE(1, "%s: unaligned range\n", __func__);
767 continue;
770 pte_clear(&init_mm, addr, pte);
774 static void __meminit remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
775 unsigned long end)
777 unsigned long next;
778 pte_t *pte_base;
779 pmd_t *pmd;
781 pmd = pmd_start + pmd_index(addr);
782 for (; addr < end; addr = next, pmd++) {
783 next = pmd_addr_end(addr, end);
785 if (!pmd_present(*pmd))
786 continue;
788 if (pmd_is_leaf(*pmd)) {
789 if (!IS_ALIGNED(addr, PMD_SIZE) ||
790 !IS_ALIGNED(next, PMD_SIZE)) {
791 WARN_ONCE(1, "%s: unaligned range\n", __func__);
792 continue;
794 pte_clear(&init_mm, addr, (pte_t *)pmd);
795 continue;
798 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
799 remove_pte_table(pte_base, addr, next);
800 free_pte_table(pte_base, pmd);
804 static void __meminit remove_pud_table(pud_t *pud_start, unsigned long addr,
805 unsigned long end)
807 unsigned long next;
808 pmd_t *pmd_base;
809 pud_t *pud;
811 pud = pud_start + pud_index(addr);
812 for (; addr < end; addr = next, pud++) {
813 next = pud_addr_end(addr, end);
815 if (!pud_present(*pud))
816 continue;
818 if (pud_is_leaf(*pud)) {
819 if (!IS_ALIGNED(addr, PUD_SIZE) ||
820 !IS_ALIGNED(next, PUD_SIZE)) {
821 WARN_ONCE(1, "%s: unaligned range\n", __func__);
822 continue;
824 pte_clear(&init_mm, addr, (pte_t *)pud);
825 continue;
828 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
829 remove_pmd_table(pmd_base, addr, next);
830 free_pmd_table(pmd_base, pud);
834 static void __meminit remove_pagetable(unsigned long start, unsigned long end)
836 unsigned long addr, next;
837 pud_t *pud_base;
838 pgd_t *pgd;
839 p4d_t *p4d;
841 spin_lock(&init_mm.page_table_lock);
843 for (addr = start; addr < end; addr = next) {
844 next = pgd_addr_end(addr, end);
846 pgd = pgd_offset_k(addr);
847 p4d = p4d_offset(pgd, addr);
848 if (!p4d_present(*p4d))
849 continue;
851 if (p4d_is_leaf(*p4d)) {
852 if (!IS_ALIGNED(addr, P4D_SIZE) ||
853 !IS_ALIGNED(next, P4D_SIZE)) {
854 WARN_ONCE(1, "%s: unaligned range\n", __func__);
855 continue;
858 pte_clear(&init_mm, addr, (pte_t *)pgd);
859 continue;
862 pud_base = (pud_t *)p4d_page_vaddr(*p4d);
863 remove_pud_table(pud_base, addr, next);
864 free_pud_table(pud_base, p4d);
867 spin_unlock(&init_mm.page_table_lock);
868 radix__flush_tlb_kernel_range(start, end);
871 int __meminit radix__create_section_mapping(unsigned long start,
872 unsigned long end, int nid,
873 pgprot_t prot)
875 if (end >= RADIX_VMALLOC_START) {
876 pr_warn("Outside the supported range\n");
877 return -1;
880 return create_physical_mapping(__pa(start), __pa(end),
881 radix_mem_block_size, nid, prot);
884 int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
886 remove_pagetable(start, end);
887 return 0;
889 #endif /* CONFIG_MEMORY_HOTPLUG */
891 #ifdef CONFIG_SPARSEMEM_VMEMMAP
892 static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
893 pgprot_t flags, unsigned int map_page_size,
894 int nid)
896 return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
899 int __meminit radix__vmemmap_create_mapping(unsigned long start,
900 unsigned long page_size,
901 unsigned long phys)
903 /* Create a PTE encoding */
904 unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
905 int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
906 int ret;
908 if ((start + page_size) >= RADIX_VMEMMAP_END) {
909 pr_warn("Outside the supported range\n");
910 return -1;
913 ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
914 BUG_ON(ret);
916 return 0;
919 #ifdef CONFIG_MEMORY_HOTPLUG
920 void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
922 remove_pagetable(start, start + page_size);
924 #endif
925 #endif
927 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
929 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
930 pmd_t *pmdp, unsigned long clr,
931 unsigned long set)
933 unsigned long old;
935 #ifdef CONFIG_DEBUG_VM
936 WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
937 assert_spin_locked(pmd_lockptr(mm, pmdp));
938 #endif
940 old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
941 trace_hugepage_update(addr, old, clr, set);
943 return old;
946 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
947 pmd_t *pmdp)
950 pmd_t pmd;
952 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
953 VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
954 VM_BUG_ON(pmd_devmap(*pmdp));
956 * khugepaged calls this for normal pmd
958 pmd = *pmdp;
959 pmd_clear(pmdp);
962 * pmdp collapse_flush need to ensure that there are no parallel gup
963 * walk after this call. This is needed so that we can have stable
964 * page ref count when collapsing a page. We don't allow a collapse page
965 * if we have gup taken on the page. We can ensure that by sending IPI
966 * because gup walk happens with IRQ disabled.
968 serialize_against_pte_lookup(vma->vm_mm);
970 radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
972 return pmd;
976 * For us pgtable_t is pte_t *. Inorder to save the deposisted
977 * page table, we consider the allocated page table as a list
978 * head. On withdraw we need to make sure we zero out the used
979 * list_head memory area.
981 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
982 pgtable_t pgtable)
984 struct list_head *lh = (struct list_head *) pgtable;
986 assert_spin_locked(pmd_lockptr(mm, pmdp));
988 /* FIFO */
989 if (!pmd_huge_pte(mm, pmdp))
990 INIT_LIST_HEAD(lh);
991 else
992 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
993 pmd_huge_pte(mm, pmdp) = pgtable;
996 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
998 pte_t *ptep;
999 pgtable_t pgtable;
1000 struct list_head *lh;
1002 assert_spin_locked(pmd_lockptr(mm, pmdp));
1004 /* FIFO */
1005 pgtable = pmd_huge_pte(mm, pmdp);
1006 lh = (struct list_head *) pgtable;
1007 if (list_empty(lh))
1008 pmd_huge_pte(mm, pmdp) = NULL;
1009 else {
1010 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1011 list_del(lh);
1013 ptep = (pte_t *) pgtable;
1014 *ptep = __pte(0);
1015 ptep++;
1016 *ptep = __pte(0);
1017 return pgtable;
1020 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1021 unsigned long addr, pmd_t *pmdp)
1023 pmd_t old_pmd;
1024 unsigned long old;
1026 old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1027 old_pmd = __pmd(old);
1028 return old_pmd;
1031 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1033 void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
1034 pte_t entry, unsigned long address, int psize)
1036 struct mm_struct *mm = vma->vm_mm;
1037 unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
1038 _PAGE_RW | _PAGE_EXEC);
1040 unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1042 * To avoid NMMU hang while relaxing access, we need mark
1043 * the pte invalid in between.
1045 if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) {
1046 unsigned long old_pte, new_pte;
1048 old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1050 * new value of pte
1052 new_pte = old_pte | set;
1053 radix__flush_tlb_page_psize(mm, address, psize);
1054 __radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1055 } else {
1056 __radix_pte_update(ptep, 0, set);
1058 * Book3S does not require a TLB flush when relaxing access
1059 * restrictions when the address space is not attached to a
1060 * NMMU, because the core MMU will reload the pte after taking
1061 * an access fault, which is defined by the architectue.
1064 /* See ptesync comment in radix__set_pte_at */
1067 void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
1068 unsigned long addr, pte_t *ptep,
1069 pte_t old_pte, pte_t pte)
1071 struct mm_struct *mm = vma->vm_mm;
1074 * To avoid NMMU hang while relaxing access we need to flush the tlb before
1075 * we set the new value. We need to do this only for radix, because hash
1076 * translation does flush when updating the linux pte.
1078 if (is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
1079 (atomic_read(&mm->context.copros) > 0))
1080 radix__flush_tlb_page(vma, addr);
1082 set_pte_at(mm, addr, ptep, pte);
1085 int __init arch_ioremap_pud_supported(void)
1087 /* HPT does not cope with large pages in the vmalloc area */
1088 return radix_enabled();
1091 int __init arch_ioremap_pmd_supported(void)
1093 return radix_enabled();
1096 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1098 return 0;
1101 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1103 pte_t *ptep = (pte_t *)pud;
1104 pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot);
1106 if (!radix_enabled())
1107 return 0;
1109 set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud);
1111 return 1;
1114 int pud_clear_huge(pud_t *pud)
1116 if (pud_huge(*pud)) {
1117 pud_clear(pud);
1118 return 1;
1121 return 0;
1124 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1126 pmd_t *pmd;
1127 int i;
1129 pmd = (pmd_t *)pud_page_vaddr(*pud);
1130 pud_clear(pud);
1132 flush_tlb_kernel_range(addr, addr + PUD_SIZE);
1134 for (i = 0; i < PTRS_PER_PMD; i++) {
1135 if (!pmd_none(pmd[i])) {
1136 pte_t *pte;
1137 pte = (pte_t *)pmd_page_vaddr(pmd[i]);
1139 pte_free_kernel(&init_mm, pte);
1143 pmd_free(&init_mm, pmd);
1145 return 1;
1148 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1150 pte_t *ptep = (pte_t *)pmd;
1151 pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot);
1153 if (!radix_enabled())
1154 return 0;
1156 set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd);
1158 return 1;
1161 int pmd_clear_huge(pmd_t *pmd)
1163 if (pmd_huge(*pmd)) {
1164 pmd_clear(pmd);
1165 return 1;
1168 return 0;
1171 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1173 pte_t *pte;
1175 pte = (pte_t *)pmd_page_vaddr(*pmd);
1176 pmd_clear(pmd);
1178 flush_tlb_kernel_range(addr, addr + PMD_SIZE);
1180 pte_free_kernel(&init_mm, pte);
1182 return 1;
1185 int __init arch_ioremap_p4d_supported(void)
1187 return 0;