1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * PowerPC64 SLB support.
5 * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
6 * Based on earlier code written by:
7 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
8 * Copyright (c) 2001 Dave Engebretsen
9 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
12 #include <asm/asm-prototypes.h>
14 #include <asm/mmu_context.h>
16 #include <asm/ppc-opcode.h>
17 #include <asm/cputable.h>
18 #include <asm/cacheflush.h>
20 #include <linux/compiler.h>
21 #include <linux/context_tracking.h>
22 #include <linux/mm_types.h>
23 #include <linux/pgtable.h>
26 #include <asm/code-patching.h>
31 static long slb_allocate_user(struct mm_struct
*mm
, unsigned long ea
);
33 bool stress_slb_enabled __initdata
;
35 static int __init
parse_stress_slb(char *p
)
37 stress_slb_enabled
= true;
40 early_param("stress_slb", parse_stress_slb
);
42 __ro_after_init
DEFINE_STATIC_KEY_FALSE(stress_slb_key
);
44 static void assert_slb_presence(bool present
, unsigned long ea
)
46 #ifdef CONFIG_DEBUG_VM
49 WARN_ON_ONCE(mfmsr() & MSR_EE
);
51 if (!cpu_has_feature(CPU_FTR_ARCH_206
))
55 * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware
56 * ignores all other bits from 0-27, so just clear them all.
58 ea
&= ~((1UL << SID_SHIFT
) - 1);
59 asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp
) : "r"(ea
) : "cr0");
61 WARN_ON(present
== (tmp
== 0));
65 static inline void slb_shadow_update(unsigned long ea
, int ssize
,
69 struct slb_shadow
*p
= get_slb_shadow();
72 * Clear the ESID first so the entry is not valid while we are
73 * updating it. No write barriers are needed here, provided
74 * we only update the current CPU's SLB shadow buffer.
76 WRITE_ONCE(p
->save_area
[index
].esid
, 0);
77 WRITE_ONCE(p
->save_area
[index
].vsid
, cpu_to_be64(mk_vsid_data(ea
, ssize
, flags
)));
78 WRITE_ONCE(p
->save_area
[index
].esid
, cpu_to_be64(mk_esid_data(ea
, ssize
, index
)));
81 static inline void slb_shadow_clear(enum slb_index index
)
83 WRITE_ONCE(get_slb_shadow()->save_area
[index
].esid
, cpu_to_be64(index
));
86 static inline void create_shadowed_slbe(unsigned long ea
, int ssize
,
91 * Updating the shadow buffer before writing the SLB ensures
92 * we don't get a stale entry here if we get preempted by PHYP
93 * between these two statements.
95 slb_shadow_update(ea
, ssize
, flags
, index
);
97 assert_slb_presence(false, ea
);
98 asm volatile("slbmte %0,%1" :
99 : "r" (mk_vsid_data(ea
, ssize
, flags
)),
100 "r" (mk_esid_data(ea
, ssize
, index
))
105 * Insert bolted entries into SLB (which may not be empty, so don't clear
108 void __slb_restore_bolted_realmode(void)
110 struct slb_shadow
*p
= get_slb_shadow();
111 enum slb_index index
;
113 /* No isync needed because realmode. */
114 for (index
= 0; index
< SLB_NUM_BOLTED
; index
++) {
115 asm volatile("slbmte %0,%1" :
116 : "r" (be64_to_cpu(p
->save_area
[index
].vsid
)),
117 "r" (be64_to_cpu(p
->save_area
[index
].esid
)));
120 assert_slb_presence(true, local_paca
->kstack
);
124 * Insert the bolted entries into an empty SLB.
126 void slb_restore_bolted_realmode(void)
128 __slb_restore_bolted_realmode();
129 get_paca()->slb_cache_ptr
= 0;
131 get_paca()->slb_kern_bitmap
= (1U << SLB_NUM_BOLTED
) - 1;
132 get_paca()->slb_used_bitmap
= get_paca()->slb_kern_bitmap
;
136 * This flushes all SLB entries including 0, so it must be realmode.
138 void slb_flush_all_realmode(void)
140 asm volatile("slbmte %0,%0; slbia" : : "r" (0));
143 static __always_inline
void __slb_flush_and_restore_bolted(bool preserve_kernel_lookaside
)
145 struct slb_shadow
*p
= get_slb_shadow();
146 unsigned long ksp_esid_data
, ksp_vsid_data
;
150 * SLBIA IH=1 on ISA v2.05 and newer processors may preserve lookaside
151 * information created with Class=0 entries, which we use for kernel
152 * SLB entries (the SLB entries themselves are still invalidated).
154 * Older processors will ignore this optimisation. Over-invalidation
155 * is fine because we never rely on lookaside information existing.
157 if (preserve_kernel_lookaside
)
162 ksp_esid_data
= be64_to_cpu(p
->save_area
[KSTACK_INDEX
].esid
);
163 ksp_vsid_data
= be64_to_cpu(p
->save_area
[KSTACK_INDEX
].vsid
);
165 asm volatile(PPC_SLBIA(%0)" \n"
174 * This flushes non-bolted entries, it can be run in virtual mode. Must
175 * be called with interrupts disabled.
177 void slb_flush_and_restore_bolted(void)
179 BUILD_BUG_ON(SLB_NUM_BOLTED
!= 2);
181 WARN_ON(!irqs_disabled());
184 * We can't take a PMU exception in the following code, so hard
185 * disable interrupts.
190 __slb_flush_and_restore_bolted(false);
193 assert_slb_presence(true, get_paca()->kstack
);
195 get_paca()->slb_cache_ptr
= 0;
197 get_paca()->slb_kern_bitmap
= (1U << SLB_NUM_BOLTED
) - 1;
198 get_paca()->slb_used_bitmap
= get_paca()->slb_kern_bitmap
;
201 void slb_save_contents(struct slb_entry
*slb_ptr
)
206 /* Save slb_cache_ptr value. */
207 get_paca()->slb_save_cache_ptr
= get_paca()->slb_cache_ptr
;
212 for (i
= 0; i
< mmu_slb_size
; i
++) {
213 asm volatile("slbmfee %0,%1" : "=r" (e
) : "r" (i
));
214 asm volatile("slbmfev %0,%1" : "=r" (v
) : "r" (i
));
221 void slb_dump_contents(struct slb_entry
*slb_ptr
)
230 pr_err("SLB contents of cpu 0x%x\n", smp_processor_id());
232 for (i
= 0; i
< mmu_slb_size
; i
++) {
240 pr_err("%02d %016lx %016lx %s\n", i
, e
, v
,
241 (e
& SLB_ESID_V
) ? "VALID" : "NOT VALID");
243 if (!(e
& SLB_ESID_V
))
246 llp
= v
& SLB_VSID_LLP
;
247 if (v
& SLB_VSID_B_1T
) {
248 pr_err(" 1T ESID=%9lx VSID=%13lx LLP:%3lx\n",
250 (v
& ~SLB_VSID_B
) >> SLB_VSID_SHIFT_1T
, llp
);
252 pr_err(" 256M ESID=%9lx VSID=%13lx LLP:%3lx\n",
254 (v
& ~SLB_VSID_B
) >> SLB_VSID_SHIFT
, llp
);
258 if (!early_cpu_has_feature(CPU_FTR_ARCH_300
)) {
259 /* RR is not so useful as it's often not used for allocation */
260 pr_err("SLB RR allocator index %d\n", get_paca()->stab_rr
);
262 /* Dump slb cache entires as well. */
263 pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr
);
264 pr_err("Valid SLB cache entries:\n");
265 n
= min_t(int, get_paca()->slb_save_cache_ptr
, SLB_CACHE_ENTRIES
);
266 for (i
= 0; i
< n
; i
++)
267 pr_err("%02d EA[0-35]=%9x\n", i
, get_paca()->slb_cache
[i
]);
268 pr_err("Rest of SLB cache entries:\n");
269 for (i
= n
; i
< SLB_CACHE_ENTRIES
; i
++)
270 pr_err("%02d EA[0-35]=%9x\n", i
, get_paca()->slb_cache
[i
]);
274 void slb_vmalloc_update(void)
277 * vmalloc is not bolted, so just have to flush non-bolted.
279 slb_flush_and_restore_bolted();
282 static bool preload_hit(struct thread_info
*ti
, unsigned long esid
)
286 for (i
= 0; i
< ti
->slb_preload_nr
; i
++) {
289 idx
= (ti
->slb_preload_tail
+ i
) % SLB_PRELOAD_NR
;
290 if (esid
== ti
->slb_preload_esid
[idx
])
296 static bool preload_add(struct thread_info
*ti
, unsigned long ea
)
301 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
)) {
302 /* EAs are stored >> 28 so 256MB segments don't need clearing */
303 if (ea
& ESID_MASK_1T
)
307 esid
= ea
>> SID_SHIFT
;
309 if (preload_hit(ti
, esid
))
312 idx
= (ti
->slb_preload_tail
+ ti
->slb_preload_nr
) % SLB_PRELOAD_NR
;
313 ti
->slb_preload_esid
[idx
] = esid
;
314 if (ti
->slb_preload_nr
== SLB_PRELOAD_NR
)
315 ti
->slb_preload_tail
= (ti
->slb_preload_tail
+ 1) % SLB_PRELOAD_NR
;
317 ti
->slb_preload_nr
++;
322 static void preload_age(struct thread_info
*ti
)
324 if (!ti
->slb_preload_nr
)
326 ti
->slb_preload_nr
--;
327 ti
->slb_preload_tail
= (ti
->slb_preload_tail
+ 1) % SLB_PRELOAD_NR
;
330 void slb_setup_new_exec(void)
332 struct thread_info
*ti
= current_thread_info();
333 struct mm_struct
*mm
= current
->mm
;
334 unsigned long exec
= 0x10000000;
336 WARN_ON(irqs_disabled());
339 * preload cache can only be used to determine whether a SLB
340 * entry exists if it does not start to overflow.
342 if (ti
->slb_preload_nr
+ 2 > SLB_PRELOAD_NR
)
348 * We have no good place to clear the slb preload cache on exec,
349 * flush_thread is about the earliest arch hook but that happens
350 * after we switch to the mm and have aleady preloaded the SLBEs.
352 * For the most part that's probably okay to use entries from the
353 * previous exec, they will age out if unused. It may turn out to
354 * be an advantage to clear the cache before switching to it,
359 * preload some userspace segments into the SLB.
360 * Almost all 32 and 64bit PowerPC executables are linked at
361 * 0x10000000 so it makes sense to preload this segment.
363 if (!is_kernel_addr(exec
)) {
364 if (preload_add(ti
, exec
))
365 slb_allocate_user(mm
, exec
);
368 /* Libraries and mmaps. */
369 if (!is_kernel_addr(mm
->mmap_base
)) {
370 if (preload_add(ti
, mm
->mmap_base
))
371 slb_allocate_user(mm
, mm
->mmap_base
);
375 asm volatile("isync" : : : "memory");
380 void preload_new_slb_context(unsigned long start
, unsigned long sp
)
382 struct thread_info
*ti
= current_thread_info();
383 struct mm_struct
*mm
= current
->mm
;
384 unsigned long heap
= mm
->start_brk
;
386 WARN_ON(irqs_disabled());
389 if (ti
->slb_preload_nr
+ 3 > SLB_PRELOAD_NR
)
394 /* Userspace entry address. */
395 if (!is_kernel_addr(start
)) {
396 if (preload_add(ti
, start
))
397 slb_allocate_user(mm
, start
);
400 /* Top of stack, grows down. */
401 if (!is_kernel_addr(sp
)) {
402 if (preload_add(ti
, sp
))
403 slb_allocate_user(mm
, sp
);
406 /* Bottom of heap, grows up. */
407 if (heap
&& !is_kernel_addr(heap
)) {
408 if (preload_add(ti
, heap
))
409 slb_allocate_user(mm
, heap
);
413 asm volatile("isync" : : : "memory");
418 static void slb_cache_slbie_kernel(unsigned int index
)
420 unsigned long slbie_data
= get_paca()->slb_cache
[index
];
421 unsigned long ksp
= get_paca()->kstack
;
423 slbie_data
<<= SID_SHIFT
;
424 slbie_data
|= 0xc000000000000000ULL
;
425 if ((ksp
& slb_esid_mask(mmu_kernel_ssize
)) == slbie_data
)
427 slbie_data
|= mmu_kernel_ssize
<< SLBIE_SSIZE_SHIFT
;
429 asm volatile("slbie %0" : : "r" (slbie_data
));
432 static void slb_cache_slbie_user(unsigned int index
)
434 unsigned long slbie_data
= get_paca()->slb_cache
[index
];
436 slbie_data
<<= SID_SHIFT
;
437 slbie_data
|= user_segment_size(slbie_data
) << SLBIE_SSIZE_SHIFT
;
438 slbie_data
|= SLBIE_C
; /* user slbs have C=1 */
440 asm volatile("slbie %0" : : "r" (slbie_data
));
443 /* Flush all user entries from the segment table of the current processor. */
444 void switch_slb(struct task_struct
*tsk
, struct mm_struct
*mm
)
446 struct thread_info
*ti
= task_thread_info(tsk
);
450 * We need interrupts hard-disabled here, not just soft-disabled,
451 * so that a PMU interrupt can't occur, which might try to access
452 * user memory (to get a stack trace) and possible cause an SLB miss
453 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
458 __slb_flush_and_restore_bolted(false);
460 get_paca()->slb_cache_ptr
= 0;
461 get_paca()->slb_kern_bitmap
= (1U << SLB_NUM_BOLTED
) - 1;
463 } else if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
465 * SLBIA IH=3 invalidates all Class=1 SLBEs and their
466 * associated lookaside structures, which matches what
467 * switch_slb wants. So ARCH_300 does not use the slb
470 asm volatile(PPC_SLBIA(3));
473 unsigned long offset
= get_paca()->slb_cache_ptr
;
475 if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B
) &&
476 offset
<= SLB_CACHE_ENTRIES
) {
478 * Could assert_slb_presence(true) here, but
479 * hypervisor or machine check could have come
480 * in and removed the entry at this point.
483 for (i
= 0; i
< offset
; i
++)
484 slb_cache_slbie_user(i
);
486 /* Workaround POWER5 < DD2.1 issue */
487 if (!cpu_has_feature(CPU_FTR_ARCH_207S
) && offset
== 1)
488 slb_cache_slbie_user(0);
491 /* Flush but retain kernel lookaside information */
492 __slb_flush_and_restore_bolted(true);
495 get_paca()->slb_kern_bitmap
= (1U << SLB_NUM_BOLTED
) - 1;
498 get_paca()->slb_cache_ptr
= 0;
500 get_paca()->slb_used_bitmap
= get_paca()->slb_kern_bitmap
;
505 * We gradually age out SLBs after a number of context switches to
506 * reduce reload overhead of unused entries (like we do with FP/VEC
507 * reload). Each time we wrap 256 switches, take an entry out of the
510 tsk
->thread
.load_slb
++;
511 if (!tsk
->thread
.load_slb
) {
512 unsigned long pc
= KSTK_EIP(tsk
);
518 for (i
= 0; i
< ti
->slb_preload_nr
; i
++) {
522 idx
= (ti
->slb_preload_tail
+ i
) % SLB_PRELOAD_NR
;
523 ea
= (unsigned long)ti
->slb_preload_esid
[idx
] << SID_SHIFT
;
525 slb_allocate_user(mm
, ea
);
529 * Synchronize slbmte preloads with possible subsequent user memory
530 * address accesses by the kernel (user mode won't happen until
531 * rfid, which is safe).
536 void slb_set_size(u16 size
)
541 void slb_initialize(void)
543 unsigned long linear_llp
, vmalloc_llp
, io_llp
;
544 unsigned long lflags
;
545 static int slb_encoding_inited
;
546 #ifdef CONFIG_SPARSEMEM_VMEMMAP
547 unsigned long vmemmap_llp
;
550 /* Prepare our SLB miss handler based on our page size */
551 linear_llp
= mmu_psize_defs
[mmu_linear_psize
].sllp
;
552 io_llp
= mmu_psize_defs
[mmu_io_psize
].sllp
;
553 vmalloc_llp
= mmu_psize_defs
[mmu_vmalloc_psize
].sllp
;
554 get_paca()->vmalloc_sllp
= SLB_VSID_KERNEL
| vmalloc_llp
;
555 #ifdef CONFIG_SPARSEMEM_VMEMMAP
556 vmemmap_llp
= mmu_psize_defs
[mmu_vmemmap_psize
].sllp
;
558 if (!slb_encoding_inited
) {
559 slb_encoding_inited
= 1;
560 pr_devel("SLB: linear LLP = %04lx\n", linear_llp
);
561 pr_devel("SLB: io LLP = %04lx\n", io_llp
);
562 #ifdef CONFIG_SPARSEMEM_VMEMMAP
563 pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp
);
567 get_paca()->stab_rr
= SLB_NUM_BOLTED
- 1;
568 get_paca()->slb_kern_bitmap
= (1U << SLB_NUM_BOLTED
) - 1;
569 get_paca()->slb_used_bitmap
= get_paca()->slb_kern_bitmap
;
571 lflags
= SLB_VSID_KERNEL
| linear_llp
;
573 /* Invalidate the entire SLB (even entry 0) & all the ERATS */
574 asm volatile("isync":::"memory");
575 asm volatile("slbmte %0,%0"::"r" (0) : "memory");
576 asm volatile("isync; slbia; isync":::"memory");
577 create_shadowed_slbe(PAGE_OFFSET
, mmu_kernel_ssize
, lflags
, LINEAR_INDEX
);
580 * For the boot cpu, we're running on the stack in init_thread_union,
581 * which is in the first segment of the linear mapping, and also
582 * get_paca()->kstack hasn't been initialized yet.
583 * For secondary cpus, we need to bolt the kernel stack entry now.
585 slb_shadow_clear(KSTACK_INDEX
);
586 if (raw_smp_processor_id() != boot_cpuid
&&
587 (get_paca()->kstack
& slb_esid_mask(mmu_kernel_ssize
)) > PAGE_OFFSET
)
588 create_shadowed_slbe(get_paca()->kstack
,
589 mmu_kernel_ssize
, lflags
, KSTACK_INDEX
);
591 asm volatile("isync":::"memory");
594 static void slb_cache_update(unsigned long esid_data
)
598 if (cpu_has_feature(CPU_FTR_ARCH_300
))
599 return; /* ISAv3.0B and later does not use slb_cache */
605 * Now update slb cache entries
607 slb_cache_index
= local_paca
->slb_cache_ptr
;
608 if (slb_cache_index
< SLB_CACHE_ENTRIES
) {
610 * We have space in slb cache for optimized switch_slb().
611 * Top 36 bits from esid_data as per ISA
613 local_paca
->slb_cache
[slb_cache_index
++] = esid_data
>> SID_SHIFT
;
614 local_paca
->slb_cache_ptr
++;
617 * Our cache is full and the current cache content strictly
618 * doesn't indicate the active SLB conents. Bump the ptr
619 * so that switch_slb() will ignore the cache.
621 local_paca
->slb_cache_ptr
= SLB_CACHE_ENTRIES
+ 1;
625 static enum slb_index
alloc_slb_index(bool kernel
)
627 enum slb_index index
;
630 * The allocation bitmaps can become out of synch with the SLB
631 * when the _switch code does slbie when bolting a new stack
632 * segment and it must not be anywhere else in the SLB. This leaves
633 * a kernel allocated entry that is unused in the SLB. With very
634 * large systems or small segment sizes, the bitmaps could slowly
635 * fill with these entries. They will eventually be cleared out
636 * by the round robin allocator in that case, so it's probably not
637 * worth accounting for.
641 * SLBs beyond 32 entries are allocated with stab_rr only
642 * POWER7/8/9 have 32 SLB entries, this could be expanded if a
643 * future CPU has more.
645 if (local_paca
->slb_used_bitmap
!= U32_MAX
) {
646 index
= ffz(local_paca
->slb_used_bitmap
);
647 local_paca
->slb_used_bitmap
|= 1U << index
;
649 local_paca
->slb_kern_bitmap
|= 1U << index
;
651 /* round-robin replacement of slb starting at SLB_NUM_BOLTED. */
652 index
= local_paca
->stab_rr
;
653 if (index
< (mmu_slb_size
- 1))
656 index
= SLB_NUM_BOLTED
;
657 local_paca
->stab_rr
= index
;
660 local_paca
->slb_kern_bitmap
|= 1U << index
;
662 local_paca
->slb_kern_bitmap
&= ~(1U << index
);
665 BUG_ON(index
< SLB_NUM_BOLTED
);
670 static long slb_insert_entry(unsigned long ea
, unsigned long context
,
671 unsigned long flags
, int ssize
, bool kernel
)
674 unsigned long vsid_data
, esid_data
;
675 enum slb_index index
;
677 vsid
= get_vsid(context
, ea
, ssize
);
682 * There must not be a kernel SLB fault in alloc_slb_index or before
683 * slbmte here or the allocation bitmaps could get out of whack with
686 * User SLB faults or preloads take this path which might get inlined
687 * into the caller, so add compiler barriers here to ensure unsafe
688 * memory accesses do not come between.
692 index
= alloc_slb_index(kernel
);
694 vsid_data
= __mk_vsid_data(vsid
, ssize
, flags
);
695 esid_data
= mk_esid_data(ea
, ssize
, index
);
698 * No need for an isync before or after this slbmte. The exception
699 * we enter with and the rfid we exit with are context synchronizing.
700 * User preloads should add isync afterwards in case the kernel
701 * accesses user memory before it returns to userspace with rfid.
703 assert_slb_presence(false, ea
);
705 int slb_cache_index
= local_paca
->slb_cache_ptr
;
708 * stress_slb() does not use slb cache, repurpose as a
709 * cache of inserted (non-bolted) kernel SLB entries. All
710 * non-bolted kernel entries are flushed on any user fault,
711 * or if there are already 3 non-boled kernel entries.
713 BUILD_BUG_ON(SLB_CACHE_ENTRIES
< 3);
714 if (!kernel
|| slb_cache_index
== 3) {
717 for (i
= 0; i
< slb_cache_index
; i
++)
718 slb_cache_slbie_kernel(i
);
723 local_paca
->slb_cache
[slb_cache_index
++] = esid_data
>> SID_SHIFT
;
724 local_paca
->slb_cache_ptr
= slb_cache_index
;
726 asm volatile("slbmte %0, %1" : : "r" (vsid_data
), "r" (esid_data
));
731 slb_cache_update(esid_data
);
736 static long slb_allocate_kernel(unsigned long ea
, unsigned long id
)
738 unsigned long context
;
742 if (id
== LINEAR_MAP_REGION_ID
) {
744 /* We only support upto H_MAX_PHYSMEM_BITS */
745 if ((ea
& EA_MASK
) > (1UL << H_MAX_PHYSMEM_BITS
))
748 flags
= SLB_VSID_KERNEL
| mmu_psize_defs
[mmu_linear_psize
].sllp
;
750 #ifdef CONFIG_SPARSEMEM_VMEMMAP
751 } else if (id
== VMEMMAP_REGION_ID
) {
753 if (ea
>= H_VMEMMAP_END
)
756 flags
= SLB_VSID_KERNEL
| mmu_psize_defs
[mmu_vmemmap_psize
].sllp
;
758 } else if (id
== VMALLOC_REGION_ID
) {
760 if (ea
>= H_VMALLOC_END
)
763 flags
= local_paca
->vmalloc_sllp
;
765 } else if (id
== IO_REGION_ID
) {
767 if (ea
>= H_KERN_IO_END
)
770 flags
= SLB_VSID_KERNEL
| mmu_psize_defs
[mmu_io_psize
].sllp
;
776 ssize
= MMU_SEGSIZE_1T
;
777 if (!mmu_has_feature(MMU_FTR_1T_SEGMENT
))
778 ssize
= MMU_SEGSIZE_256M
;
780 context
= get_kernel_context(ea
);
782 return slb_insert_entry(ea
, context
, flags
, ssize
, true);
785 static long slb_allocate_user(struct mm_struct
*mm
, unsigned long ea
)
787 unsigned long context
;
793 * consider this as bad access if we take a SLB miss
794 * on an address above addr limit.
796 if (ea
>= mm_ctx_slb_addr_limit(&mm
->context
))
799 context
= get_user_context(&mm
->context
, ea
);
803 if (unlikely(ea
>= H_PGTABLE_RANGE
)) {
808 ssize
= user_segment_size(ea
);
810 bpsize
= get_slice_psize(mm
, ea
);
811 flags
= SLB_VSID_USER
| mmu_psize_defs
[bpsize
].sllp
;
813 return slb_insert_entry(ea
, context
, flags
, ssize
, false);
816 long do_slb_fault(struct pt_regs
*regs
, unsigned long ea
)
818 unsigned long id
= get_region_id(ea
);
820 /* IRQs are not reconciled here, so can't check irqs_disabled */
821 VM_WARN_ON(mfmsr() & MSR_EE
);
823 if (unlikely(!(regs
->msr
& MSR_RI
)))
827 * SLB kernel faults must be very careful not to touch anything
828 * that is not bolted. E.g., PACA and global variables are okay,
829 * mm->context stuff is not.
831 * SLB user faults can access all of kernel memory, but must be
832 * careful not to touch things like IRQ state because it is not
833 * "reconciled" here. The difficulty is that we must use
834 * fast_exception_return to return from kernel SLB faults without
835 * looking at possible non-bolted memory. We could test user vs
836 * kernel faults in the interrupt handler asm and do a full fault,
837 * reconcile, ret_from_except for user faults which would make them
838 * first class kernel code. But for performance it's probably nicer
839 * if they go via fast_exception_return too.
841 if (id
>= LINEAR_MAP_REGION_ID
) {
843 #ifdef CONFIG_DEBUG_VM
844 /* Catch recursive kernel SLB faults. */
845 BUG_ON(local_paca
->in_kernel_slb_handler
);
846 local_paca
->in_kernel_slb_handler
= 1;
848 err
= slb_allocate_kernel(ea
, id
);
849 #ifdef CONFIG_DEBUG_VM
850 local_paca
->in_kernel_slb_handler
= 0;
854 struct mm_struct
*mm
= current
->mm
;
860 err
= slb_allocate_user(mm
, ea
);
862 preload_add(current_thread_info(), ea
);
868 void do_bad_slb_fault(struct pt_regs
*regs
, unsigned long ea
, long err
)
870 if (err
== -EFAULT
) {
872 _exception(SIGSEGV
, regs
, SEGV_BNDERR
, ea
);
874 bad_page_fault(regs
, ea
, SIGSEGV
);
875 } else if (err
== -EINVAL
) {
876 unrecoverable_exception(regs
);