Merge tag 'linux-kselftest-kunit-fixes-5.11-rc3' of git://git.kernel.org/pub/scm...
[linux/fpc-iii.git] / arch / powerpc / mm / fault.c
blob8961b44f350cd66480905e33dcc753337cf467f6
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PowerPC version
4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 * Derived from "arch/i386/mm/fault.c"
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Modified by Cort Dougan and Paul Mackerras.
11 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/pagemap.h>
22 #include <linux/ptrace.h>
23 #include <linux/mman.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/highmem.h>
27 #include <linux/extable.h>
28 #include <linux/kprobes.h>
29 #include <linux/kdebug.h>
30 #include <linux/perf_event.h>
31 #include <linux/ratelimit.h>
32 #include <linux/context_tracking.h>
33 #include <linux/hugetlb.h>
34 #include <linux/uaccess.h>
36 #include <asm/firmware.h>
37 #include <asm/page.h>
38 #include <asm/mmu.h>
39 #include <asm/mmu_context.h>
40 #include <asm/siginfo.h>
41 #include <asm/debug.h>
42 #include <asm/kup.h>
43 #include <asm/inst.h>
47 * do_page_fault error handling helpers
50 static int
51 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
54 * If we are in kernel mode, bail out with a SEGV, this will
55 * be caught by the assembly which will restore the non-volatile
56 * registers before calling bad_page_fault()
58 if (!user_mode(regs))
59 return SIGSEGV;
61 _exception(SIGSEGV, regs, si_code, address);
63 return 0;
66 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
68 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
71 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
73 struct mm_struct *mm = current->mm;
76 * Something tried to access memory that isn't in our memory map..
77 * Fix it, but check if it's kernel or user first..
79 mmap_read_unlock(mm);
81 return __bad_area_nosemaphore(regs, address, si_code);
84 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
86 return __bad_area(regs, address, SEGV_MAPERR);
89 #ifdef CONFIG_PPC_MEM_KEYS
90 static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
91 struct vm_area_struct *vma)
93 struct mm_struct *mm = current->mm;
94 int pkey;
97 * We don't try to fetch the pkey from page table because reading
98 * page table without locking doesn't guarantee stable pte value.
99 * Hence the pkey value that we return to userspace can be different
100 * from the pkey that actually caused access error.
102 * It does *not* guarantee that the VMA we find here
103 * was the one that we faulted on.
105 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
106 * 2. T1 : set AMR to deny access to pkey=4, touches, page
107 * 3. T1 : faults...
108 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
109 * 5. T1 : enters fault handler, takes mmap_lock, etc...
110 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
111 * faulted on a pte with its pkey=4.
113 pkey = vma_pkey(vma);
115 mmap_read_unlock(mm);
118 * If we are in kernel mode, bail out with a SEGV, this will
119 * be caught by the assembly which will restore the non-volatile
120 * registers before calling bad_page_fault()
122 if (!user_mode(regs))
123 return SIGSEGV;
125 _exception_pkey(regs, address, pkey);
127 return 0;
129 #endif
131 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
133 return __bad_area(regs, address, SEGV_ACCERR);
136 static int do_sigbus(struct pt_regs *regs, unsigned long address,
137 vm_fault_t fault)
139 if (!user_mode(regs))
140 return SIGBUS;
142 current->thread.trap_nr = BUS_ADRERR;
143 #ifdef CONFIG_MEMORY_FAILURE
144 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
145 unsigned int lsb = 0; /* shutup gcc */
147 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
148 current->comm, current->pid, address);
150 if (fault & VM_FAULT_HWPOISON_LARGE)
151 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
152 if (fault & VM_FAULT_HWPOISON)
153 lsb = PAGE_SHIFT;
155 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
156 return 0;
159 #endif
160 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
161 return 0;
164 static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
165 vm_fault_t fault)
168 * Kernel page fault interrupted by SIGKILL. We have no reason to
169 * continue processing.
171 if (fatal_signal_pending(current) && !user_mode(regs))
172 return SIGKILL;
174 /* Out of memory */
175 if (fault & VM_FAULT_OOM) {
177 * We ran out of memory, or some other thing happened to us that
178 * made us unable to handle the page fault gracefully.
180 if (!user_mode(regs))
181 return SIGSEGV;
182 pagefault_out_of_memory();
183 } else {
184 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
185 VM_FAULT_HWPOISON_LARGE))
186 return do_sigbus(regs, addr, fault);
187 else if (fault & VM_FAULT_SIGSEGV)
188 return bad_area_nosemaphore(regs, addr);
189 else
190 BUG();
192 return 0;
195 /* Is this a bad kernel fault ? */
196 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
197 unsigned long address, bool is_write)
199 int is_exec = TRAP(regs) == 0x400;
201 /* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */
202 if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT |
203 DSISR_PROTFAULT))) {
204 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
205 address >= TASK_SIZE ? "exec-protected" : "user",
206 address,
207 from_kuid(&init_user_ns, current_uid()));
209 // Kernel exec fault is always bad
210 return true;
213 // Kernel fault on kernel address is bad
214 if (address >= TASK_SIZE)
215 return true;
217 // Read/write fault blocked by KUAP is bad, it can never succeed.
218 if (bad_kuap_fault(regs, address, is_write)) {
219 pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
220 is_write ? "write" : "read", address,
221 from_kuid(&init_user_ns, current_uid()));
223 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
224 if (!search_exception_tables(regs->nip))
225 return true;
227 // Read/write fault in a valid region (the exception table search passed
228 // above), but blocked by KUAP is bad, it can never succeed.
229 return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
232 // What's left? Kernel fault on user and allowed by KUAP in the faulting context.
233 return false;
236 #ifdef CONFIG_PPC_MEM_KEYS
237 static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
238 struct vm_area_struct *vma)
241 * Make sure to check the VMA so that we do not perform
242 * faults just to hit a pkey fault as soon as we fill in a
243 * page. Only called for current mm, hence foreign == 0
245 if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
246 return true;
248 return false;
250 #endif
252 static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
255 * Allow execution from readable areas if the MMU does not
256 * provide separate controls over reading and executing.
258 * Note: That code used to not be enabled for 4xx/BookE.
259 * It is now as I/D cache coherency for these is done at
260 * set_pte_at() time and I see no reason why the test
261 * below wouldn't be valid on those processors. This -may-
262 * break programs compiled with a really old ABI though.
264 if (is_exec) {
265 return !(vma->vm_flags & VM_EXEC) &&
266 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
267 !(vma->vm_flags & (VM_READ | VM_WRITE)));
270 if (is_write) {
271 if (unlikely(!(vma->vm_flags & VM_WRITE)))
272 return true;
273 return false;
276 if (unlikely(!vma_is_accessible(vma)))
277 return true;
279 * We should ideally do the vma pkey access check here. But in the
280 * fault path, handle_mm_fault() also does the same check. To avoid
281 * these multiple checks, we skip it here and handle access error due
282 * to pkeys later.
284 return false;
287 #ifdef CONFIG_PPC_SMLPAR
288 static inline void cmo_account_page_fault(void)
290 if (firmware_has_feature(FW_FEATURE_CMO)) {
291 u32 page_ins;
293 preempt_disable();
294 page_ins = be32_to_cpu(get_lppaca()->page_ins);
295 page_ins += 1 << PAGE_FACTOR;
296 get_lppaca()->page_ins = cpu_to_be32(page_ins);
297 preempt_enable();
300 #else
301 static inline void cmo_account_page_fault(void) { }
302 #endif /* CONFIG_PPC_SMLPAR */
304 static void sanity_check_fault(bool is_write, bool is_user,
305 unsigned long error_code, unsigned long address)
308 * Userspace trying to access kernel address, we get PROTFAULT for that.
310 if (is_user && address >= TASK_SIZE) {
311 if ((long)address == -1)
312 return;
314 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
315 current->comm, current->pid, address,
316 from_kuid(&init_user_ns, current_uid()));
317 return;
320 if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
321 return;
324 * For hash translation mode, we should never get a
325 * PROTFAULT. Any update to pte to reduce access will result in us
326 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
327 * fault instead of DSISR_PROTFAULT.
329 * A pte update to relax the access will not result in a hash page table
330 * entry invalidate and hence can result in DSISR_PROTFAULT.
331 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
332 * the special !is_write in the below conditional.
334 * For platforms that doesn't supports coherent icache and do support
335 * per page noexec bit, we do setup things such that we do the
336 * sync between D/I cache via fault. But that is handled via low level
337 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
338 * here in such case.
340 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
341 * check should handle those and hence we should fall to the bad_area
342 * handling correctly.
344 * For embedded with per page exec support that doesn't support coherent
345 * icache we do get PROTFAULT and we handle that D/I cache sync in
346 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
347 * is conditional for server MMU.
349 * For radix, we can get prot fault for autonuma case, because radix
350 * page table will have them marked noaccess for user.
352 if (radix_enabled() || is_write)
353 return;
355 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
359 * Define the correct "is_write" bit in error_code based
360 * on the processor family
362 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
363 #define page_fault_is_write(__err) ((__err) & ESR_DST)
364 #else
365 #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
366 #endif
368 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
369 #define page_fault_is_bad(__err) (0)
370 #elif defined(CONFIG_PPC_8xx)
371 #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
372 #elif defined(CONFIG_PPC64)
373 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S)
374 #else
375 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
376 #endif
379 * For 600- and 800-family processors, the error_code parameter is DSISR
380 * for a data fault, SRR1 for an instruction fault. For 400-family processors
381 * the error_code parameter is ESR for a data fault, 0 for an instruction
382 * fault.
383 * For 64-bit processors, the error_code parameter is
384 * - DSISR for a non-SLB data access fault,
385 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
386 * - 0 any SLB fault.
388 * The return value is 0 if the fault was handled, or the signal
389 * number if this is a kernel fault that can't be handled here.
391 static int __do_page_fault(struct pt_regs *regs, unsigned long address,
392 unsigned long error_code)
394 struct vm_area_struct * vma;
395 struct mm_struct *mm = current->mm;
396 unsigned int flags = FAULT_FLAG_DEFAULT;
397 int is_exec = TRAP(regs) == 0x400;
398 int is_user = user_mode(regs);
399 int is_write = page_fault_is_write(error_code);
400 vm_fault_t fault, major = 0;
401 bool kprobe_fault = kprobe_page_fault(regs, 11);
403 if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
404 return 0;
406 if (unlikely(page_fault_is_bad(error_code))) {
407 if (is_user) {
408 _exception(SIGBUS, regs, BUS_OBJERR, address);
409 return 0;
411 return SIGBUS;
414 /* Additional sanity check(s) */
415 sanity_check_fault(is_write, is_user, error_code, address);
418 * The kernel should never take an execute fault nor should it
419 * take a page fault to a kernel address or a page fault to a user
420 * address outside of dedicated places
422 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write)))
423 return SIGSEGV;
426 * If we're in an interrupt, have no user context or are running
427 * in a region with pagefaults disabled then we must not take the fault
429 if (unlikely(faulthandler_disabled() || !mm)) {
430 if (is_user)
431 printk_ratelimited(KERN_ERR "Page fault in user mode"
432 " with faulthandler_disabled()=%d"
433 " mm=%p\n",
434 faulthandler_disabled(), mm);
435 return bad_area_nosemaphore(regs, address);
438 /* We restore the interrupt state now */
439 if (!arch_irq_disabled_regs(regs))
440 local_irq_enable();
442 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
445 * We want to do this outside mmap_lock, because reading code around nip
446 * can result in fault, which will cause a deadlock when called with
447 * mmap_lock held
449 if (is_user)
450 flags |= FAULT_FLAG_USER;
451 if (is_write)
452 flags |= FAULT_FLAG_WRITE;
453 if (is_exec)
454 flags |= FAULT_FLAG_INSTRUCTION;
456 /* When running in the kernel we expect faults to occur only to
457 * addresses in user space. All other faults represent errors in the
458 * kernel and should generate an OOPS. Unfortunately, in the case of an
459 * erroneous fault occurring in a code path which already holds mmap_lock
460 * we will deadlock attempting to validate the fault against the
461 * address space. Luckily the kernel only validly references user
462 * space from well defined areas of code, which are listed in the
463 * exceptions table.
465 * As the vast majority of faults will be valid we will only perform
466 * the source reference check when there is a possibility of a deadlock.
467 * Attempt to lock the address space, if we cannot we then validate the
468 * source. If this is invalid we can skip the address space check,
469 * thus avoiding the deadlock.
471 if (unlikely(!mmap_read_trylock(mm))) {
472 if (!is_user && !search_exception_tables(regs->nip))
473 return bad_area_nosemaphore(regs, address);
475 retry:
476 mmap_read_lock(mm);
477 } else {
479 * The above down_read_trylock() might have succeeded in
480 * which case we'll have missed the might_sleep() from
481 * down_read():
483 might_sleep();
486 vma = find_vma(mm, address);
487 if (unlikely(!vma))
488 return bad_area(regs, address);
490 if (unlikely(vma->vm_start > address)) {
491 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
492 return bad_area(regs, address);
494 if (unlikely(expand_stack(vma, address)))
495 return bad_area(regs, address);
498 #ifdef CONFIG_PPC_MEM_KEYS
499 if (unlikely(access_pkey_error(is_write, is_exec,
500 (error_code & DSISR_KEYFAULT), vma)))
501 return bad_access_pkey(regs, address, vma);
502 #endif /* CONFIG_PPC_MEM_KEYS */
504 if (unlikely(access_error(is_write, is_exec, vma)))
505 return bad_access(regs, address);
508 * If for any reason at all we couldn't handle the fault,
509 * make sure we exit gracefully rather than endlessly redo
510 * the fault.
512 fault = handle_mm_fault(vma, address, flags, regs);
514 major |= fault & VM_FAULT_MAJOR;
516 if (fault_signal_pending(fault, regs))
517 return user_mode(regs) ? 0 : SIGBUS;
520 * Handle the retry right now, the mmap_lock has been released in that
521 * case.
523 if (unlikely(fault & VM_FAULT_RETRY)) {
524 if (flags & FAULT_FLAG_ALLOW_RETRY) {
525 flags |= FAULT_FLAG_TRIED;
526 goto retry;
530 mmap_read_unlock(current->mm);
532 if (unlikely(fault & VM_FAULT_ERROR))
533 return mm_fault_error(regs, address, fault);
536 * Major/minor page fault accounting.
538 if (major)
539 cmo_account_page_fault();
541 return 0;
543 NOKPROBE_SYMBOL(__do_page_fault);
545 int do_page_fault(struct pt_regs *regs, unsigned long address,
546 unsigned long error_code)
548 const struct exception_table_entry *entry;
549 enum ctx_state prev_state = exception_enter();
550 int rc = __do_page_fault(regs, address, error_code);
551 exception_exit(prev_state);
552 if (likely(!rc))
553 return 0;
555 entry = search_exception_tables(regs->nip);
556 if (unlikely(!entry))
557 return rc;
559 instruction_pointer_set(regs, extable_fixup(entry));
561 return 0;
563 NOKPROBE_SYMBOL(do_page_fault);
566 * bad_page_fault is called when we have a bad access from the kernel.
567 * It is called from the DSI and ISI handlers in head.S and from some
568 * of the procedures in traps.c.
570 void __bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
572 int is_write = page_fault_is_write(regs->dsisr);
574 /* kernel has accessed a bad area */
576 switch (TRAP(regs)) {
577 case 0x300:
578 case 0x380:
579 case 0xe00:
580 pr_alert("BUG: %s on %s at 0x%08lx\n",
581 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
582 "Unable to handle kernel data access",
583 is_write ? "write" : "read", regs->dar);
584 break;
585 case 0x400:
586 case 0x480:
587 pr_alert("BUG: Unable to handle kernel instruction fetch%s",
588 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
589 break;
590 case 0x600:
591 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
592 regs->dar);
593 break;
594 default:
595 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
596 regs->dar);
597 break;
599 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
600 regs->nip);
602 if (task_stack_end_corrupted(current))
603 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
605 die("Kernel access of bad area", regs, sig);
608 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
610 const struct exception_table_entry *entry;
612 /* Are we prepared to handle this fault? */
613 entry = search_exception_tables(instruction_pointer(regs));
614 if (entry)
615 instruction_pointer_set(regs, extable_fixup(entry));
616 else
617 __bad_page_fault(regs, address, sig);