Merge tag 'linux-kselftest-kunit-fixes-5.11-rc3' of git://git.kernel.org/pub/scm...
[linux/fpc-iii.git] / arch / powerpc / mm / hugetlbpage.c
blob8b3cc4d688e8b4c0cc4b76245b0e2912617746fd
1 /*
2 * PPC Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/moduleparam.h>
19 #include <linux/swap.h>
20 #include <linux/swapops.h>
21 #include <linux/kmemleak.h>
22 #include <asm/pgalloc.h>
23 #include <asm/tlb.h>
24 #include <asm/setup.h>
25 #include <asm/hugetlb.h>
26 #include <asm/pte-walk.h>
28 bool hugetlb_disabled = false;
30 #define hugepd_none(hpd) (hpd_val(hpd) == 0)
32 #define PTE_T_ORDER (__builtin_ffs(sizeof(pte_basic_t)) - \
33 __builtin_ffs(sizeof(void *)))
35 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
38 * Only called for hugetlbfs pages, hence can ignore THP and the
39 * irq disabled walk.
41 return __find_linux_pte(mm->pgd, addr, NULL, NULL);
44 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
45 unsigned long address, unsigned int pdshift,
46 unsigned int pshift, spinlock_t *ptl)
48 struct kmem_cache *cachep;
49 pte_t *new;
50 int i;
51 int num_hugepd;
53 if (pshift >= pdshift) {
54 cachep = PGT_CACHE(PTE_T_ORDER);
55 num_hugepd = 1 << (pshift - pdshift);
56 } else {
57 cachep = PGT_CACHE(pdshift - pshift);
58 num_hugepd = 1;
61 if (!cachep) {
62 WARN_ONCE(1, "No page table cache created for hugetlb tables");
63 return -ENOMEM;
66 new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
68 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
69 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
71 if (!new)
72 return -ENOMEM;
75 * Make sure other cpus find the hugepd set only after a
76 * properly initialized page table is visible to them.
77 * For more details look for comment in __pte_alloc().
79 smp_wmb();
81 spin_lock(ptl);
83 * We have multiple higher-level entries that point to the same
84 * actual pte location. Fill in each as we go and backtrack on error.
85 * We need all of these so the DTLB pgtable walk code can find the
86 * right higher-level entry without knowing if it's a hugepage or not.
88 for (i = 0; i < num_hugepd; i++, hpdp++) {
89 if (unlikely(!hugepd_none(*hpdp)))
90 break;
91 hugepd_populate(hpdp, new, pshift);
93 /* If we bailed from the for loop early, an error occurred, clean up */
94 if (i < num_hugepd) {
95 for (i = i - 1 ; i >= 0; i--, hpdp--)
96 *hpdp = __hugepd(0);
97 kmem_cache_free(cachep, new);
98 } else {
99 kmemleak_ignore(new);
101 spin_unlock(ptl);
102 return 0;
106 * At this point we do the placement change only for BOOK3S 64. This would
107 * possibly work on other subarchs.
109 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
111 pgd_t *pg;
112 p4d_t *p4;
113 pud_t *pu;
114 pmd_t *pm;
115 hugepd_t *hpdp = NULL;
116 unsigned pshift = __ffs(sz);
117 unsigned pdshift = PGDIR_SHIFT;
118 spinlock_t *ptl;
120 addr &= ~(sz-1);
121 pg = pgd_offset(mm, addr);
122 p4 = p4d_offset(pg, addr);
124 #ifdef CONFIG_PPC_BOOK3S_64
125 if (pshift == PGDIR_SHIFT)
126 /* 16GB huge page */
127 return (pte_t *) p4;
128 else if (pshift > PUD_SHIFT) {
130 * We need to use hugepd table
132 ptl = &mm->page_table_lock;
133 hpdp = (hugepd_t *)p4;
134 } else {
135 pdshift = PUD_SHIFT;
136 pu = pud_alloc(mm, p4, addr);
137 if (!pu)
138 return NULL;
139 if (pshift == PUD_SHIFT)
140 return (pte_t *)pu;
141 else if (pshift > PMD_SHIFT) {
142 ptl = pud_lockptr(mm, pu);
143 hpdp = (hugepd_t *)pu;
144 } else {
145 pdshift = PMD_SHIFT;
146 pm = pmd_alloc(mm, pu, addr);
147 if (!pm)
148 return NULL;
149 if (pshift == PMD_SHIFT)
150 /* 16MB hugepage */
151 return (pte_t *)pm;
152 else {
153 ptl = pmd_lockptr(mm, pm);
154 hpdp = (hugepd_t *)pm;
158 #else
159 if (pshift >= PGDIR_SHIFT) {
160 ptl = &mm->page_table_lock;
161 hpdp = (hugepd_t *)p4;
162 } else {
163 pdshift = PUD_SHIFT;
164 pu = pud_alloc(mm, p4, addr);
165 if (!pu)
166 return NULL;
167 if (pshift >= PUD_SHIFT) {
168 ptl = pud_lockptr(mm, pu);
169 hpdp = (hugepd_t *)pu;
170 } else {
171 pdshift = PMD_SHIFT;
172 pm = pmd_alloc(mm, pu, addr);
173 if (!pm)
174 return NULL;
175 ptl = pmd_lockptr(mm, pm);
176 hpdp = (hugepd_t *)pm;
179 #endif
180 if (!hpdp)
181 return NULL;
183 if (IS_ENABLED(CONFIG_PPC_8xx) && pshift < PMD_SHIFT)
184 return pte_alloc_map(mm, (pmd_t *)hpdp, addr);
186 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
188 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
189 pdshift, pshift, ptl))
190 return NULL;
192 return hugepte_offset(*hpdp, addr, pdshift);
195 #ifdef CONFIG_PPC_BOOK3S_64
197 * Tracks gpages after the device tree is scanned and before the
198 * huge_boot_pages list is ready on pseries.
200 #define MAX_NUMBER_GPAGES 1024
201 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
202 __initdata static unsigned nr_gpages;
205 * Build list of addresses of gigantic pages. This function is used in early
206 * boot before the buddy allocator is setup.
208 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
210 if (!addr)
211 return;
212 while (number_of_pages > 0) {
213 gpage_freearray[nr_gpages] = addr;
214 nr_gpages++;
215 number_of_pages--;
216 addr += page_size;
220 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
222 struct huge_bootmem_page *m;
223 if (nr_gpages == 0)
224 return 0;
225 m = phys_to_virt(gpage_freearray[--nr_gpages]);
226 gpage_freearray[nr_gpages] = 0;
227 list_add(&m->list, &huge_boot_pages);
228 m->hstate = hstate;
229 return 1;
231 #endif
234 int __init alloc_bootmem_huge_page(struct hstate *h)
237 #ifdef CONFIG_PPC_BOOK3S_64
238 if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
239 return pseries_alloc_bootmem_huge_page(h);
240 #endif
241 return __alloc_bootmem_huge_page(h);
244 #ifndef CONFIG_PPC_BOOK3S_64
245 #define HUGEPD_FREELIST_SIZE \
246 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
248 struct hugepd_freelist {
249 struct rcu_head rcu;
250 unsigned int index;
251 void *ptes[];
254 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
256 static void hugepd_free_rcu_callback(struct rcu_head *head)
258 struct hugepd_freelist *batch =
259 container_of(head, struct hugepd_freelist, rcu);
260 unsigned int i;
262 for (i = 0; i < batch->index; i++)
263 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
265 free_page((unsigned long)batch);
268 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
270 struct hugepd_freelist **batchp;
272 batchp = &get_cpu_var(hugepd_freelist_cur);
274 if (atomic_read(&tlb->mm->mm_users) < 2 ||
275 mm_is_thread_local(tlb->mm)) {
276 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
277 put_cpu_var(hugepd_freelist_cur);
278 return;
281 if (*batchp == NULL) {
282 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
283 (*batchp)->index = 0;
286 (*batchp)->ptes[(*batchp)->index++] = hugepte;
287 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
288 call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
289 *batchp = NULL;
291 put_cpu_var(hugepd_freelist_cur);
293 #else
294 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
295 #endif
297 /* Return true when the entry to be freed maps more than the area being freed */
298 static bool range_is_outside_limits(unsigned long start, unsigned long end,
299 unsigned long floor, unsigned long ceiling,
300 unsigned long mask)
302 if ((start & mask) < floor)
303 return true;
304 if (ceiling) {
305 ceiling &= mask;
306 if (!ceiling)
307 return true;
309 return end - 1 > ceiling - 1;
312 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
313 unsigned long start, unsigned long end,
314 unsigned long floor, unsigned long ceiling)
316 pte_t *hugepte = hugepd_page(*hpdp);
317 int i;
319 unsigned long pdmask = ~((1UL << pdshift) - 1);
320 unsigned int num_hugepd = 1;
321 unsigned int shift = hugepd_shift(*hpdp);
323 /* Note: On fsl the hpdp may be the first of several */
324 if (shift > pdshift)
325 num_hugepd = 1 << (shift - pdshift);
327 if (range_is_outside_limits(start, end, floor, ceiling, pdmask))
328 return;
330 for (i = 0; i < num_hugepd; i++, hpdp++)
331 *hpdp = __hugepd(0);
333 if (shift >= pdshift)
334 hugepd_free(tlb, hugepte);
335 else
336 pgtable_free_tlb(tlb, hugepte,
337 get_hugepd_cache_index(pdshift - shift));
340 static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
341 unsigned long addr, unsigned long end,
342 unsigned long floor, unsigned long ceiling)
344 pgtable_t token = pmd_pgtable(*pmd);
346 if (range_is_outside_limits(addr, end, floor, ceiling, PMD_MASK))
347 return;
349 pmd_clear(pmd);
350 pte_free_tlb(tlb, token, addr);
351 mm_dec_nr_ptes(tlb->mm);
354 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
355 unsigned long addr, unsigned long end,
356 unsigned long floor, unsigned long ceiling)
358 pmd_t *pmd;
359 unsigned long next;
360 unsigned long start;
362 start = addr;
363 do {
364 unsigned long more;
366 pmd = pmd_offset(pud, addr);
367 next = pmd_addr_end(addr, end);
368 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
369 if (pmd_none_or_clear_bad(pmd))
370 continue;
373 * if it is not hugepd pointer, we should already find
374 * it cleared.
376 WARN_ON(!IS_ENABLED(CONFIG_PPC_8xx));
378 hugetlb_free_pte_range(tlb, pmd, addr, end, floor, ceiling);
380 continue;
383 * Increment next by the size of the huge mapping since
384 * there may be more than one entry at this level for a
385 * single hugepage, but all of them point to
386 * the same kmem cache that holds the hugepte.
388 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
389 if (more > next)
390 next = more;
392 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
393 addr, next, floor, ceiling);
394 } while (addr = next, addr != end);
396 if (range_is_outside_limits(start, end, floor, ceiling, PUD_MASK))
397 return;
399 pmd = pmd_offset(pud, start & PUD_MASK);
400 pud_clear(pud);
401 pmd_free_tlb(tlb, pmd, start & PUD_MASK);
402 mm_dec_nr_pmds(tlb->mm);
405 static void hugetlb_free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
406 unsigned long addr, unsigned long end,
407 unsigned long floor, unsigned long ceiling)
409 pud_t *pud;
410 unsigned long next;
411 unsigned long start;
413 start = addr;
414 do {
415 pud = pud_offset(p4d, addr);
416 next = pud_addr_end(addr, end);
417 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
418 if (pud_none_or_clear_bad(pud))
419 continue;
420 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
421 ceiling);
422 } else {
423 unsigned long more;
425 * Increment next by the size of the huge mapping since
426 * there may be more than one entry at this level for a
427 * single hugepage, but all of them point to
428 * the same kmem cache that holds the hugepte.
430 more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
431 if (more > next)
432 next = more;
434 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
435 addr, next, floor, ceiling);
437 } while (addr = next, addr != end);
439 if (range_is_outside_limits(start, end, floor, ceiling, PGDIR_MASK))
440 return;
442 pud = pud_offset(p4d, start & PGDIR_MASK);
443 p4d_clear(p4d);
444 pud_free_tlb(tlb, pud, start & PGDIR_MASK);
445 mm_dec_nr_puds(tlb->mm);
449 * This function frees user-level page tables of a process.
451 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
452 unsigned long addr, unsigned long end,
453 unsigned long floor, unsigned long ceiling)
455 pgd_t *pgd;
456 p4d_t *p4d;
457 unsigned long next;
460 * Because there are a number of different possible pagetable
461 * layouts for hugepage ranges, we limit knowledge of how
462 * things should be laid out to the allocation path
463 * (huge_pte_alloc(), above). Everything else works out the
464 * structure as it goes from information in the hugepd
465 * pointers. That means that we can't here use the
466 * optimization used in the normal page free_pgd_range(), of
467 * checking whether we're actually covering a large enough
468 * range to have to do anything at the top level of the walk
469 * instead of at the bottom.
471 * To make sense of this, you should probably go read the big
472 * block comment at the top of the normal free_pgd_range(),
473 * too.
476 do {
477 next = pgd_addr_end(addr, end);
478 pgd = pgd_offset(tlb->mm, addr);
479 p4d = p4d_offset(pgd, addr);
480 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
481 if (p4d_none_or_clear_bad(p4d))
482 continue;
483 hugetlb_free_pud_range(tlb, p4d, addr, next, floor, ceiling);
484 } else {
485 unsigned long more;
487 * Increment next by the size of the huge mapping since
488 * there may be more than one entry at the pgd level
489 * for a single hugepage, but all of them point to the
490 * same kmem cache that holds the hugepte.
492 more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
493 if (more > next)
494 next = more;
496 free_hugepd_range(tlb, (hugepd_t *)p4d, PGDIR_SHIFT,
497 addr, next, floor, ceiling);
499 } while (addr = next, addr != end);
502 struct page *follow_huge_pd(struct vm_area_struct *vma,
503 unsigned long address, hugepd_t hpd,
504 int flags, int pdshift)
506 pte_t *ptep;
507 spinlock_t *ptl;
508 struct page *page = NULL;
509 unsigned long mask;
510 int shift = hugepd_shift(hpd);
511 struct mm_struct *mm = vma->vm_mm;
513 retry:
515 * hugepage directory entries are protected by mm->page_table_lock
516 * Use this instead of huge_pte_lockptr
518 ptl = &mm->page_table_lock;
519 spin_lock(ptl);
521 ptep = hugepte_offset(hpd, address, pdshift);
522 if (pte_present(*ptep)) {
523 mask = (1UL << shift) - 1;
524 page = pte_page(*ptep);
525 page += ((address & mask) >> PAGE_SHIFT);
526 if (flags & FOLL_GET)
527 get_page(page);
528 } else {
529 if (is_hugetlb_entry_migration(*ptep)) {
530 spin_unlock(ptl);
531 __migration_entry_wait(mm, ptep, ptl);
532 goto retry;
535 spin_unlock(ptl);
536 return page;
539 #ifdef CONFIG_PPC_MM_SLICES
540 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
541 unsigned long len, unsigned long pgoff,
542 unsigned long flags)
544 struct hstate *hstate = hstate_file(file);
545 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
547 #ifdef CONFIG_PPC_RADIX_MMU
548 if (radix_enabled())
549 return radix__hugetlb_get_unmapped_area(file, addr, len,
550 pgoff, flags);
551 #endif
552 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
554 #endif
556 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
558 /* With radix we don't use slice, so derive it from vma*/
559 if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
560 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
562 return 1UL << mmu_psize_to_shift(psize);
564 return vma_kernel_pagesize(vma);
567 bool __init arch_hugetlb_valid_size(unsigned long size)
569 int shift = __ffs(size);
570 int mmu_psize;
572 /* Check that it is a page size supported by the hardware and
573 * that it fits within pagetable and slice limits. */
574 if (size <= PAGE_SIZE || !is_power_of_2(size))
575 return false;
577 mmu_psize = check_and_get_huge_psize(shift);
578 if (mmu_psize < 0)
579 return false;
581 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
583 return true;
586 static int __init add_huge_page_size(unsigned long long size)
588 int shift = __ffs(size);
590 if (!arch_hugetlb_valid_size((unsigned long)size))
591 return -EINVAL;
593 hugetlb_add_hstate(shift - PAGE_SHIFT);
594 return 0;
597 static int __init hugetlbpage_init(void)
599 bool configured = false;
600 int psize;
602 if (hugetlb_disabled) {
603 pr_info("HugeTLB support is disabled!\n");
604 return 0;
607 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
608 !mmu_has_feature(MMU_FTR_16M_PAGE))
609 return -ENODEV;
611 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
612 unsigned shift;
613 unsigned pdshift;
615 if (!mmu_psize_defs[psize].shift)
616 continue;
618 shift = mmu_psize_to_shift(psize);
620 #ifdef CONFIG_PPC_BOOK3S_64
621 if (shift > PGDIR_SHIFT)
622 continue;
623 else if (shift > PUD_SHIFT)
624 pdshift = PGDIR_SHIFT;
625 else if (shift > PMD_SHIFT)
626 pdshift = PUD_SHIFT;
627 else
628 pdshift = PMD_SHIFT;
629 #else
630 if (shift < PUD_SHIFT)
631 pdshift = PMD_SHIFT;
632 else if (shift < PGDIR_SHIFT)
633 pdshift = PUD_SHIFT;
634 else
635 pdshift = PGDIR_SHIFT;
636 #endif
638 if (add_huge_page_size(1ULL << shift) < 0)
639 continue;
641 * if we have pdshift and shift value same, we don't
642 * use pgt cache for hugepd.
644 if (pdshift > shift) {
645 if (!IS_ENABLED(CONFIG_PPC_8xx))
646 pgtable_cache_add(pdshift - shift);
647 } else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) ||
648 IS_ENABLED(CONFIG_PPC_8xx)) {
649 pgtable_cache_add(PTE_T_ORDER);
652 configured = true;
655 if (configured) {
656 if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
657 hugetlbpage_init_default();
658 } else
659 pr_info("Failed to initialize. Disabling HugeTLB");
661 return 0;
664 arch_initcall(hugetlbpage_init);
666 void flush_dcache_icache_hugepage(struct page *page)
668 int i;
669 void *start;
671 BUG_ON(!PageCompound(page));
673 for (i = 0; i < compound_nr(page); i++) {
674 if (!PageHighMem(page)) {
675 __flush_dcache_icache(page_address(page+i));
676 } else {
677 start = kmap_atomic(page+i);
678 __flush_dcache_icache(start);
679 kunmap_atomic(start);
684 void __init gigantic_hugetlb_cma_reserve(void)
686 unsigned long order = 0;
688 if (radix_enabled())
689 order = PUD_SHIFT - PAGE_SHIFT;
690 else if (!firmware_has_feature(FW_FEATURE_LPAR) && mmu_psize_defs[MMU_PAGE_16G].shift)
692 * For pseries we do use ibm,expected#pages for reserving 16G pages.
694 order = mmu_psize_to_shift(MMU_PAGE_16G) - PAGE_SHIFT;
696 if (order) {
697 VM_WARN_ON(order < MAX_ORDER);
698 hugetlb_cma_reserve(order);