Merge tag 'linux-kselftest-kunit-fixes-5.11-rc3' of git://git.kernel.org/pub/scm...
[linux/fpc-iii.git] / arch / powerpc / mm / init_64.c
blob386be136026e8da9515a62667e481bcc96288e58
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PowerPC version
4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
7 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
8 * Copyright (C) 1996 Paul Mackerras
10 * Derived from "arch/i386/mm/init.c"
11 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
13 * Dave Engebretsen <engebret@us.ibm.com>
14 * Rework for PPC64 port.
17 #undef DEBUG
19 #include <linux/signal.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/stddef.h>
29 #include <linux/vmalloc.h>
30 #include <linux/init.h>
31 #include <linux/delay.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/nodemask.h>
35 #include <linux/module.h>
36 #include <linux/poison.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
39 #include <linux/slab.h>
40 #include <linux/of_fdt.h>
41 #include <linux/libfdt.h>
42 #include <linux/memremap.h>
44 #include <asm/pgalloc.h>
45 #include <asm/page.h>
46 #include <asm/prom.h>
47 #include <asm/rtas.h>
48 #include <asm/io.h>
49 #include <asm/mmu_context.h>
50 #include <asm/mmu.h>
51 #include <linux/uaccess.h>
52 #include <asm/smp.h>
53 #include <asm/machdep.h>
54 #include <asm/tlb.h>
55 #include <asm/eeh.h>
56 #include <asm/processor.h>
57 #include <asm/mmzone.h>
58 #include <asm/cputable.h>
59 #include <asm/sections.h>
60 #include <asm/iommu.h>
61 #include <asm/vdso.h>
63 #include <mm/mmu_decl.h>
65 #ifdef CONFIG_SPARSEMEM_VMEMMAP
67 * Given an address within the vmemmap, determine the page that
68 * represents the start of the subsection it is within. Note that we have to
69 * do this by hand as the proffered address may not be correctly aligned.
70 * Subtraction of non-aligned pointers produces undefined results.
72 static struct page * __meminit vmemmap_subsection_start(unsigned long vmemmap_addr)
74 unsigned long start_pfn;
75 unsigned long offset = vmemmap_addr - ((unsigned long)(vmemmap));
77 /* Return the pfn of the start of the section. */
78 start_pfn = (offset / sizeof(struct page)) & PAGE_SUBSECTION_MASK;
79 return pfn_to_page(start_pfn);
83 * Since memory is added in sub-section chunks, before creating a new vmemmap
84 * mapping, the kernel should check whether there is an existing memmap mapping
85 * covering the new subsection added. This is needed because kernel can map
86 * vmemmap area using 16MB pages which will cover a memory range of 16G. Such
87 * a range covers multiple subsections (2M)
89 * If any subsection in the 16G range mapped by vmemmap is valid we consider the
90 * vmemmap populated (There is a page table entry already present). We can't do
91 * a page table lookup here because with the hash translation we don't keep
92 * vmemmap details in linux page table.
94 static int __meminit vmemmap_populated(unsigned long vmemmap_addr, int vmemmap_map_size)
96 struct page *start;
97 unsigned long vmemmap_end = vmemmap_addr + vmemmap_map_size;
98 start = vmemmap_subsection_start(vmemmap_addr);
100 for (; (unsigned long)start < vmemmap_end; start += PAGES_PER_SUBSECTION)
102 * pfn valid check here is intended to really check
103 * whether we have any subsection already initialized
104 * in this range.
106 if (pfn_valid(page_to_pfn(start)))
107 return 1;
109 return 0;
113 * vmemmap virtual address space management does not have a traditonal page
114 * table to track which virtual struct pages are backed by physical mapping.
115 * The virtual to physical mappings are tracked in a simple linked list
116 * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
117 * all times where as the 'next' list maintains the available
118 * vmemmap_backing structures which have been deleted from the
119 * 'vmemmap_global' list during system runtime (memory hotplug remove
120 * operation). The freed 'vmemmap_backing' structures are reused later when
121 * new requests come in without allocating fresh memory. This pointer also
122 * tracks the allocated 'vmemmap_backing' structures as we allocate one
123 * full page memory at a time when we dont have any.
125 struct vmemmap_backing *vmemmap_list;
126 static struct vmemmap_backing *next;
129 * The same pointer 'next' tracks individual chunks inside the allocated
130 * full page during the boot time and again tracks the freeed nodes during
131 * runtime. It is racy but it does not happen as they are separated by the
132 * boot process. Will create problem if some how we have memory hotplug
133 * operation during boot !!
135 static int num_left;
136 static int num_freed;
138 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
140 struct vmemmap_backing *vmem_back;
141 /* get from freed entries first */
142 if (num_freed) {
143 num_freed--;
144 vmem_back = next;
145 next = next->list;
147 return vmem_back;
150 /* allocate a page when required and hand out chunks */
151 if (!num_left) {
152 next = vmemmap_alloc_block(PAGE_SIZE, node);
153 if (unlikely(!next)) {
154 WARN_ON(1);
155 return NULL;
157 num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
160 num_left--;
162 return next++;
165 static __meminit int vmemmap_list_populate(unsigned long phys,
166 unsigned long start,
167 int node)
169 struct vmemmap_backing *vmem_back;
171 vmem_back = vmemmap_list_alloc(node);
172 if (unlikely(!vmem_back)) {
173 pr_debug("vmemap list allocation failed\n");
174 return -ENOMEM;
177 vmem_back->phys = phys;
178 vmem_back->virt_addr = start;
179 vmem_back->list = vmemmap_list;
181 vmemmap_list = vmem_back;
182 return 0;
185 static bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start,
186 unsigned long page_size)
188 unsigned long nr_pfn = page_size / sizeof(struct page);
189 unsigned long start_pfn = page_to_pfn((struct page *)start);
191 if ((start_pfn + nr_pfn) > altmap->end_pfn)
192 return true;
194 if (start_pfn < altmap->base_pfn)
195 return true;
197 return false;
200 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
201 struct vmem_altmap *altmap)
203 bool altmap_alloc;
204 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
206 /* Align to the page size of the linear mapping. */
207 start = ALIGN_DOWN(start, page_size);
209 pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
211 for (; start < end; start += page_size) {
212 void *p = NULL;
213 int rc;
216 * This vmemmap range is backing different subsections. If any
217 * of that subsection is marked valid, that means we already
218 * have initialized a page table covering this range and hence
219 * the vmemmap range is populated.
221 if (vmemmap_populated(start, page_size))
222 continue;
225 * Allocate from the altmap first if we have one. This may
226 * fail due to alignment issues when using 16MB hugepages, so
227 * fall back to system memory if the altmap allocation fail.
229 if (altmap && !altmap_cross_boundary(altmap, start, page_size)) {
230 p = vmemmap_alloc_block_buf(page_size, node, altmap);
231 if (!p)
232 pr_debug("altmap block allocation failed, falling back to system memory");
233 else
234 altmap_alloc = true;
236 if (!p) {
237 p = vmemmap_alloc_block_buf(page_size, node, NULL);
238 altmap_alloc = false;
240 if (!p)
241 return -ENOMEM;
243 if (vmemmap_list_populate(__pa(p), start, node)) {
245 * If we don't populate vmemap list, we don't have
246 * the ability to free the allocated vmemmap
247 * pages in section_deactivate. Hence free them
248 * here.
250 int nr_pfns = page_size >> PAGE_SHIFT;
251 unsigned long page_order = get_order(page_size);
253 if (altmap_alloc)
254 vmem_altmap_free(altmap, nr_pfns);
255 else
256 free_pages((unsigned long)p, page_order);
257 return -ENOMEM;
260 pr_debug(" * %016lx..%016lx allocated at %p\n",
261 start, start + page_size, p);
263 rc = vmemmap_create_mapping(start, page_size, __pa(p));
264 if (rc < 0) {
265 pr_warn("%s: Unable to create vmemmap mapping: %d\n",
266 __func__, rc);
267 return -EFAULT;
271 return 0;
274 #ifdef CONFIG_MEMORY_HOTPLUG
275 static unsigned long vmemmap_list_free(unsigned long start)
277 struct vmemmap_backing *vmem_back, *vmem_back_prev;
279 vmem_back_prev = vmem_back = vmemmap_list;
281 /* look for it with prev pointer recorded */
282 for (; vmem_back; vmem_back = vmem_back->list) {
283 if (vmem_back->virt_addr == start)
284 break;
285 vmem_back_prev = vmem_back;
288 if (unlikely(!vmem_back))
289 return 0;
291 /* remove it from vmemmap_list */
292 if (vmem_back == vmemmap_list) /* remove head */
293 vmemmap_list = vmem_back->list;
294 else
295 vmem_back_prev->list = vmem_back->list;
297 /* next point to this freed entry */
298 vmem_back->list = next;
299 next = vmem_back;
300 num_freed++;
302 return vmem_back->phys;
305 void __ref vmemmap_free(unsigned long start, unsigned long end,
306 struct vmem_altmap *altmap)
308 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
309 unsigned long page_order = get_order(page_size);
310 unsigned long alt_start = ~0, alt_end = ~0;
311 unsigned long base_pfn;
313 start = ALIGN_DOWN(start, page_size);
314 if (altmap) {
315 alt_start = altmap->base_pfn;
316 alt_end = altmap->base_pfn + altmap->reserve +
317 altmap->free + altmap->alloc + altmap->align;
320 pr_debug("vmemmap_free %lx...%lx\n", start, end);
322 for (; start < end; start += page_size) {
323 unsigned long nr_pages, addr;
324 struct page *page;
327 * We have already marked the subsection we are trying to remove
328 * invalid. So if we want to remove the vmemmap range, we
329 * need to make sure there is no subsection marked valid
330 * in this range.
332 if (vmemmap_populated(start, page_size))
333 continue;
335 addr = vmemmap_list_free(start);
336 if (!addr)
337 continue;
339 page = pfn_to_page(addr >> PAGE_SHIFT);
340 nr_pages = 1 << page_order;
341 base_pfn = PHYS_PFN(addr);
343 if (base_pfn >= alt_start && base_pfn < alt_end) {
344 vmem_altmap_free(altmap, nr_pages);
345 } else if (PageReserved(page)) {
346 /* allocated from bootmem */
347 if (page_size < PAGE_SIZE) {
349 * this shouldn't happen, but if it is
350 * the case, leave the memory there
352 WARN_ON_ONCE(1);
353 } else {
354 while (nr_pages--)
355 free_reserved_page(page++);
357 } else {
358 free_pages((unsigned long)(__va(addr)), page_order);
361 vmemmap_remove_mapping(start, page_size);
364 #endif
365 void register_page_bootmem_memmap(unsigned long section_nr,
366 struct page *start_page, unsigned long size)
370 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
372 #ifdef CONFIG_PPC_BOOK3S_64
373 static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
375 static int __init parse_disable_radix(char *p)
377 bool val;
379 if (!p)
380 val = true;
381 else if (kstrtobool(p, &val))
382 return -EINVAL;
384 disable_radix = val;
386 return 0;
388 early_param("disable_radix", parse_disable_radix);
391 * If we're running under a hypervisor, we need to check the contents of
392 * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
393 * radix. If not, we clear the radix feature bit so we fall back to hash.
395 static void __init early_check_vec5(void)
397 unsigned long root, chosen;
398 int size;
399 const u8 *vec5;
400 u8 mmu_supported;
402 root = of_get_flat_dt_root();
403 chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
404 if (chosen == -FDT_ERR_NOTFOUND) {
405 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
406 return;
408 vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
409 if (!vec5) {
410 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
411 return;
413 if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
414 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
415 return;
418 /* Check for supported configuration */
419 mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
420 OV5_FEAT(OV5_MMU_SUPPORT);
421 if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
422 /* Hypervisor only supports radix - check enabled && GTSE */
423 if (!early_radix_enabled()) {
424 pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
426 if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
427 OV5_FEAT(OV5_RADIX_GTSE))) {
428 cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
429 } else
430 cur_cpu_spec->mmu_features |= MMU_FTR_GTSE;
431 /* Do radix anyway - the hypervisor said we had to */
432 cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
433 } else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
434 /* Hypervisor only supports hash - disable radix */
435 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
436 cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
440 void __init mmu_early_init_devtree(void)
442 /* Disable radix mode based on kernel command line. */
443 if (disable_radix)
444 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
447 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
448 * When running bare-metal, we can use radix if we like
449 * even though the ibm,architecture-vec-5 property created by
450 * skiboot doesn't have the necessary bits set.
452 if (!(mfmsr() & MSR_HV))
453 early_check_vec5();
455 if (early_radix_enabled()) {
456 radix__early_init_devtree();
458 * We have finalized the translation we are going to use by now.
459 * Radix mode is not limited by RMA / VRMA addressing.
460 * Hence don't limit memblock allocations.
462 ppc64_rma_size = ULONG_MAX;
463 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
464 } else
465 hash__early_init_devtree();
467 #endif /* CONFIG_PPC_BOOK3S_64 */