Merge tag 'linux-kselftest-kunit-fixes-5.11-rc3' of git://git.kernel.org/pub/scm...
[linux/fpc-iii.git] / arch / powerpc / mm / slice.c
blob82b45b1cb9737bc5eca274383b064dc191540a4c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * address space "slices" (meta-segments) support
5 * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
7 * Based on hugetlb implementation
9 * Copyright (C) 2003 David Gibson, IBM Corporation.
12 #undef DEBUG
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/export.h>
20 #include <linux/hugetlb.h>
21 #include <linux/sched/mm.h>
22 #include <linux/security.h>
23 #include <asm/mman.h>
24 #include <asm/mmu.h>
25 #include <asm/copro.h>
26 #include <asm/hugetlb.h>
27 #include <asm/mmu_context.h>
29 static DEFINE_SPINLOCK(slice_convert_lock);
31 #ifdef DEBUG
32 int _slice_debug = 1;
34 static void slice_print_mask(const char *label, const struct slice_mask *mask)
36 if (!_slice_debug)
37 return;
38 pr_devel("%s low_slice: %*pbl\n", label,
39 (int)SLICE_NUM_LOW, &mask->low_slices);
40 pr_devel("%s high_slice: %*pbl\n", label,
41 (int)SLICE_NUM_HIGH, mask->high_slices);
44 #define slice_dbg(fmt...) do { if (_slice_debug) pr_devel(fmt); } while (0)
46 #else
48 static void slice_print_mask(const char *label, const struct slice_mask *mask) {}
49 #define slice_dbg(fmt...)
51 #endif
53 static inline notrace bool slice_addr_is_low(unsigned long addr)
55 u64 tmp = (u64)addr;
57 return tmp < SLICE_LOW_TOP;
60 static void slice_range_to_mask(unsigned long start, unsigned long len,
61 struct slice_mask *ret)
63 unsigned long end = start + len - 1;
65 ret->low_slices = 0;
66 if (SLICE_NUM_HIGH)
67 bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
69 if (slice_addr_is_low(start)) {
70 unsigned long mend = min(end,
71 (unsigned long)(SLICE_LOW_TOP - 1));
73 ret->low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
74 - (1u << GET_LOW_SLICE_INDEX(start));
77 if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) {
78 unsigned long start_index = GET_HIGH_SLICE_INDEX(start);
79 unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT));
80 unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index;
82 bitmap_set(ret->high_slices, start_index, count);
86 static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
87 unsigned long len)
89 struct vm_area_struct *vma;
91 if ((mm_ctx_slb_addr_limit(&mm->context) - len) < addr)
92 return 0;
93 vma = find_vma(mm, addr);
94 return (!vma || (addr + len) <= vm_start_gap(vma));
97 static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
99 return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
100 1ul << SLICE_LOW_SHIFT);
103 static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
105 unsigned long start = slice << SLICE_HIGH_SHIFT;
106 unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);
108 /* Hack, so that each addresses is controlled by exactly one
109 * of the high or low area bitmaps, the first high area starts
110 * at 4GB, not 0 */
111 if (start == 0)
112 start = (unsigned long)SLICE_LOW_TOP;
114 return !slice_area_is_free(mm, start, end - start);
117 static void slice_mask_for_free(struct mm_struct *mm, struct slice_mask *ret,
118 unsigned long high_limit)
120 unsigned long i;
122 ret->low_slices = 0;
123 if (SLICE_NUM_HIGH)
124 bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
126 for (i = 0; i < SLICE_NUM_LOW; i++)
127 if (!slice_low_has_vma(mm, i))
128 ret->low_slices |= 1u << i;
130 if (slice_addr_is_low(high_limit - 1))
131 return;
133 for (i = 0; i < GET_HIGH_SLICE_INDEX(high_limit); i++)
134 if (!slice_high_has_vma(mm, i))
135 __set_bit(i, ret->high_slices);
138 static bool slice_check_range_fits(struct mm_struct *mm,
139 const struct slice_mask *available,
140 unsigned long start, unsigned long len)
142 unsigned long end = start + len - 1;
143 u64 low_slices = 0;
145 if (slice_addr_is_low(start)) {
146 unsigned long mend = min(end,
147 (unsigned long)(SLICE_LOW_TOP - 1));
149 low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
150 - (1u << GET_LOW_SLICE_INDEX(start));
152 if ((low_slices & available->low_slices) != low_slices)
153 return false;
155 if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) {
156 unsigned long start_index = GET_HIGH_SLICE_INDEX(start);
157 unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT));
158 unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index;
159 unsigned long i;
161 for (i = start_index; i < start_index + count; i++) {
162 if (!test_bit(i, available->high_slices))
163 return false;
167 return true;
170 static void slice_flush_segments(void *parm)
172 #ifdef CONFIG_PPC64
173 struct mm_struct *mm = parm;
174 unsigned long flags;
176 if (mm != current->active_mm)
177 return;
179 copy_mm_to_paca(current->active_mm);
181 local_irq_save(flags);
182 slb_flush_and_restore_bolted();
183 local_irq_restore(flags);
184 #endif
187 static void slice_convert(struct mm_struct *mm,
188 const struct slice_mask *mask, int psize)
190 int index, mask_index;
191 /* Write the new slice psize bits */
192 unsigned char *hpsizes, *lpsizes;
193 struct slice_mask *psize_mask, *old_mask;
194 unsigned long i, flags;
195 int old_psize;
197 slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
198 slice_print_mask(" mask", mask);
200 psize_mask = slice_mask_for_size(&mm->context, psize);
202 /* We need to use a spinlock here to protect against
203 * concurrent 64k -> 4k demotion ...
205 spin_lock_irqsave(&slice_convert_lock, flags);
207 lpsizes = mm_ctx_low_slices(&mm->context);
208 for (i = 0; i < SLICE_NUM_LOW; i++) {
209 if (!(mask->low_slices & (1u << i)))
210 continue;
212 mask_index = i & 0x1;
213 index = i >> 1;
215 /* Update the slice_mask */
216 old_psize = (lpsizes[index] >> (mask_index * 4)) & 0xf;
217 old_mask = slice_mask_for_size(&mm->context, old_psize);
218 old_mask->low_slices &= ~(1u << i);
219 psize_mask->low_slices |= 1u << i;
221 /* Update the sizes array */
222 lpsizes[index] = (lpsizes[index] & ~(0xf << (mask_index * 4))) |
223 (((unsigned long)psize) << (mask_index * 4));
226 hpsizes = mm_ctx_high_slices(&mm->context);
227 for (i = 0; i < GET_HIGH_SLICE_INDEX(mm_ctx_slb_addr_limit(&mm->context)); i++) {
228 if (!test_bit(i, mask->high_slices))
229 continue;
231 mask_index = i & 0x1;
232 index = i >> 1;
234 /* Update the slice_mask */
235 old_psize = (hpsizes[index] >> (mask_index * 4)) & 0xf;
236 old_mask = slice_mask_for_size(&mm->context, old_psize);
237 __clear_bit(i, old_mask->high_slices);
238 __set_bit(i, psize_mask->high_slices);
240 /* Update the sizes array */
241 hpsizes[index] = (hpsizes[index] & ~(0xf << (mask_index * 4))) |
242 (((unsigned long)psize) << (mask_index * 4));
245 slice_dbg(" lsps=%lx, hsps=%lx\n",
246 (unsigned long)mm_ctx_low_slices(&mm->context),
247 (unsigned long)mm_ctx_high_slices(&mm->context));
249 spin_unlock_irqrestore(&slice_convert_lock, flags);
251 copro_flush_all_slbs(mm);
255 * Compute which slice addr is part of;
256 * set *boundary_addr to the start or end boundary of that slice
257 * (depending on 'end' parameter);
258 * return boolean indicating if the slice is marked as available in the
259 * 'available' slice_mark.
261 static bool slice_scan_available(unsigned long addr,
262 const struct slice_mask *available,
263 int end, unsigned long *boundary_addr)
265 unsigned long slice;
266 if (slice_addr_is_low(addr)) {
267 slice = GET_LOW_SLICE_INDEX(addr);
268 *boundary_addr = (slice + end) << SLICE_LOW_SHIFT;
269 return !!(available->low_slices & (1u << slice));
270 } else {
271 slice = GET_HIGH_SLICE_INDEX(addr);
272 *boundary_addr = (slice + end) ?
273 ((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP;
274 return !!test_bit(slice, available->high_slices);
278 static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
279 unsigned long len,
280 const struct slice_mask *available,
281 int psize, unsigned long high_limit)
283 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
284 unsigned long addr, found, next_end;
285 struct vm_unmapped_area_info info;
287 info.flags = 0;
288 info.length = len;
289 info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
290 info.align_offset = 0;
292 addr = TASK_UNMAPPED_BASE;
294 * Check till the allow max value for this mmap request
296 while (addr < high_limit) {
297 info.low_limit = addr;
298 if (!slice_scan_available(addr, available, 1, &addr))
299 continue;
301 next_slice:
303 * At this point [info.low_limit; addr) covers
304 * available slices only and ends at a slice boundary.
305 * Check if we need to reduce the range, or if we can
306 * extend it to cover the next available slice.
308 if (addr >= high_limit)
309 addr = high_limit;
310 else if (slice_scan_available(addr, available, 1, &next_end)) {
311 addr = next_end;
312 goto next_slice;
314 info.high_limit = addr;
316 found = vm_unmapped_area(&info);
317 if (!(found & ~PAGE_MASK))
318 return found;
321 return -ENOMEM;
324 static unsigned long slice_find_area_topdown(struct mm_struct *mm,
325 unsigned long len,
326 const struct slice_mask *available,
327 int psize, unsigned long high_limit)
329 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
330 unsigned long addr, found, prev;
331 struct vm_unmapped_area_info info;
332 unsigned long min_addr = max(PAGE_SIZE, mmap_min_addr);
334 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
335 info.length = len;
336 info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
337 info.align_offset = 0;
339 addr = mm->mmap_base;
341 * If we are trying to allocate above DEFAULT_MAP_WINDOW
342 * Add the different to the mmap_base.
343 * Only for that request for which high_limit is above
344 * DEFAULT_MAP_WINDOW we should apply this.
346 if (high_limit > DEFAULT_MAP_WINDOW)
347 addr += mm_ctx_slb_addr_limit(&mm->context) - DEFAULT_MAP_WINDOW;
349 while (addr > min_addr) {
350 info.high_limit = addr;
351 if (!slice_scan_available(addr - 1, available, 0, &addr))
352 continue;
354 prev_slice:
356 * At this point [addr; info.high_limit) covers
357 * available slices only and starts at a slice boundary.
358 * Check if we need to reduce the range, or if we can
359 * extend it to cover the previous available slice.
361 if (addr < min_addr)
362 addr = min_addr;
363 else if (slice_scan_available(addr - 1, available, 0, &prev)) {
364 addr = prev;
365 goto prev_slice;
367 info.low_limit = addr;
369 found = vm_unmapped_area(&info);
370 if (!(found & ~PAGE_MASK))
371 return found;
375 * A failed mmap() very likely causes application failure,
376 * so fall back to the bottom-up function here. This scenario
377 * can happen with large stack limits and large mmap()
378 * allocations.
380 return slice_find_area_bottomup(mm, len, available, psize, high_limit);
384 static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
385 const struct slice_mask *mask, int psize,
386 int topdown, unsigned long high_limit)
388 if (topdown)
389 return slice_find_area_topdown(mm, len, mask, psize, high_limit);
390 else
391 return slice_find_area_bottomup(mm, len, mask, psize, high_limit);
394 static inline void slice_copy_mask(struct slice_mask *dst,
395 const struct slice_mask *src)
397 dst->low_slices = src->low_slices;
398 if (!SLICE_NUM_HIGH)
399 return;
400 bitmap_copy(dst->high_slices, src->high_slices, SLICE_NUM_HIGH);
403 static inline void slice_or_mask(struct slice_mask *dst,
404 const struct slice_mask *src1,
405 const struct slice_mask *src2)
407 dst->low_slices = src1->low_slices | src2->low_slices;
408 if (!SLICE_NUM_HIGH)
409 return;
410 bitmap_or(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH);
413 static inline void slice_andnot_mask(struct slice_mask *dst,
414 const struct slice_mask *src1,
415 const struct slice_mask *src2)
417 dst->low_slices = src1->low_slices & ~src2->low_slices;
418 if (!SLICE_NUM_HIGH)
419 return;
420 bitmap_andnot(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH);
423 #ifdef CONFIG_PPC_64K_PAGES
424 #define MMU_PAGE_BASE MMU_PAGE_64K
425 #else
426 #define MMU_PAGE_BASE MMU_PAGE_4K
427 #endif
429 unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
430 unsigned long flags, unsigned int psize,
431 int topdown)
433 struct slice_mask good_mask;
434 struct slice_mask potential_mask;
435 const struct slice_mask *maskp;
436 const struct slice_mask *compat_maskp = NULL;
437 int fixed = (flags & MAP_FIXED);
438 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
439 unsigned long page_size = 1UL << pshift;
440 struct mm_struct *mm = current->mm;
441 unsigned long newaddr;
442 unsigned long high_limit;
444 high_limit = DEFAULT_MAP_WINDOW;
445 if (addr >= high_limit || (fixed && (addr + len > high_limit)))
446 high_limit = TASK_SIZE;
448 if (len > high_limit)
449 return -ENOMEM;
450 if (len & (page_size - 1))
451 return -EINVAL;
452 if (fixed) {
453 if (addr & (page_size - 1))
454 return -EINVAL;
455 if (addr > high_limit - len)
456 return -ENOMEM;
459 if (high_limit > mm_ctx_slb_addr_limit(&mm->context)) {
461 * Increasing the slb_addr_limit does not require
462 * slice mask cache to be recalculated because it should
463 * be already initialised beyond the old address limit.
465 mm_ctx_set_slb_addr_limit(&mm->context, high_limit);
467 on_each_cpu(slice_flush_segments, mm, 1);
470 /* Sanity checks */
471 BUG_ON(mm->task_size == 0);
472 BUG_ON(mm_ctx_slb_addr_limit(&mm->context) == 0);
473 VM_BUG_ON(radix_enabled());
475 slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
476 slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n",
477 addr, len, flags, topdown);
479 /* If hint, make sure it matches our alignment restrictions */
480 if (!fixed && addr) {
481 addr = ALIGN(addr, page_size);
482 slice_dbg(" aligned addr=%lx\n", addr);
483 /* Ignore hint if it's too large or overlaps a VMA */
484 if (addr > high_limit - len || addr < mmap_min_addr ||
485 !slice_area_is_free(mm, addr, len))
486 addr = 0;
489 /* First make up a "good" mask of slices that have the right size
490 * already
492 maskp = slice_mask_for_size(&mm->context, psize);
495 * Here "good" means slices that are already the right page size,
496 * "compat" means slices that have a compatible page size (i.e.
497 * 4k in a 64k pagesize kernel), and "free" means slices without
498 * any VMAs.
500 * If MAP_FIXED:
501 * check if fits in good | compat => OK
502 * check if fits in good | compat | free => convert free
503 * else bad
504 * If have hint:
505 * check if hint fits in good => OK
506 * check if hint fits in good | free => convert free
507 * Otherwise:
508 * search in good, found => OK
509 * search in good | free, found => convert free
510 * search in good | compat | free, found => convert free.
514 * If we support combo pages, we can allow 64k pages in 4k slices
515 * The mask copies could be avoided in most cases here if we had
516 * a pointer to good mask for the next code to use.
518 if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) {
519 compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K);
520 if (fixed)
521 slice_or_mask(&good_mask, maskp, compat_maskp);
522 else
523 slice_copy_mask(&good_mask, maskp);
524 } else {
525 slice_copy_mask(&good_mask, maskp);
528 slice_print_mask(" good_mask", &good_mask);
529 if (compat_maskp)
530 slice_print_mask(" compat_mask", compat_maskp);
532 /* First check hint if it's valid or if we have MAP_FIXED */
533 if (addr != 0 || fixed) {
534 /* Check if we fit in the good mask. If we do, we just return,
535 * nothing else to do
537 if (slice_check_range_fits(mm, &good_mask, addr, len)) {
538 slice_dbg(" fits good !\n");
539 newaddr = addr;
540 goto return_addr;
542 } else {
543 /* Now let's see if we can find something in the existing
544 * slices for that size
546 newaddr = slice_find_area(mm, len, &good_mask,
547 psize, topdown, high_limit);
548 if (newaddr != -ENOMEM) {
549 /* Found within the good mask, we don't have to setup,
550 * we thus return directly
552 slice_dbg(" found area at 0x%lx\n", newaddr);
553 goto return_addr;
557 * We don't fit in the good mask, check what other slices are
558 * empty and thus can be converted
560 slice_mask_for_free(mm, &potential_mask, high_limit);
561 slice_or_mask(&potential_mask, &potential_mask, &good_mask);
562 slice_print_mask(" potential", &potential_mask);
564 if (addr != 0 || fixed) {
565 if (slice_check_range_fits(mm, &potential_mask, addr, len)) {
566 slice_dbg(" fits potential !\n");
567 newaddr = addr;
568 goto convert;
572 /* If we have MAP_FIXED and failed the above steps, then error out */
573 if (fixed)
574 return -EBUSY;
576 slice_dbg(" search...\n");
578 /* If we had a hint that didn't work out, see if we can fit
579 * anywhere in the good area.
581 if (addr) {
582 newaddr = slice_find_area(mm, len, &good_mask,
583 psize, topdown, high_limit);
584 if (newaddr != -ENOMEM) {
585 slice_dbg(" found area at 0x%lx\n", newaddr);
586 goto return_addr;
590 /* Now let's see if we can find something in the existing slices
591 * for that size plus free slices
593 newaddr = slice_find_area(mm, len, &potential_mask,
594 psize, topdown, high_limit);
596 if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && newaddr == -ENOMEM &&
597 psize == MMU_PAGE_64K) {
598 /* retry the search with 4k-page slices included */
599 slice_or_mask(&potential_mask, &potential_mask, compat_maskp);
600 newaddr = slice_find_area(mm, len, &potential_mask,
601 psize, topdown, high_limit);
604 if (newaddr == -ENOMEM)
605 return -ENOMEM;
607 slice_range_to_mask(newaddr, len, &potential_mask);
608 slice_dbg(" found potential area at 0x%lx\n", newaddr);
609 slice_print_mask(" mask", &potential_mask);
611 convert:
613 * Try to allocate the context before we do slice convert
614 * so that we handle the context allocation failure gracefully.
616 if (need_extra_context(mm, newaddr)) {
617 if (alloc_extended_context(mm, newaddr) < 0)
618 return -ENOMEM;
621 slice_andnot_mask(&potential_mask, &potential_mask, &good_mask);
622 if (compat_maskp && !fixed)
623 slice_andnot_mask(&potential_mask, &potential_mask, compat_maskp);
624 if (potential_mask.low_slices ||
625 (SLICE_NUM_HIGH &&
626 !bitmap_empty(potential_mask.high_slices, SLICE_NUM_HIGH))) {
627 slice_convert(mm, &potential_mask, psize);
628 if (psize > MMU_PAGE_BASE)
629 on_each_cpu(slice_flush_segments, mm, 1);
631 return newaddr;
633 return_addr:
634 if (need_extra_context(mm, newaddr)) {
635 if (alloc_extended_context(mm, newaddr) < 0)
636 return -ENOMEM;
638 return newaddr;
640 EXPORT_SYMBOL_GPL(slice_get_unmapped_area);
642 unsigned long arch_get_unmapped_area(struct file *filp,
643 unsigned long addr,
644 unsigned long len,
645 unsigned long pgoff,
646 unsigned long flags)
648 return slice_get_unmapped_area(addr, len, flags,
649 mm_ctx_user_psize(&current->mm->context), 0);
652 unsigned long arch_get_unmapped_area_topdown(struct file *filp,
653 const unsigned long addr0,
654 const unsigned long len,
655 const unsigned long pgoff,
656 const unsigned long flags)
658 return slice_get_unmapped_area(addr0, len, flags,
659 mm_ctx_user_psize(&current->mm->context), 1);
662 unsigned int notrace get_slice_psize(struct mm_struct *mm, unsigned long addr)
664 unsigned char *psizes;
665 int index, mask_index;
667 VM_BUG_ON(radix_enabled());
669 if (slice_addr_is_low(addr)) {
670 psizes = mm_ctx_low_slices(&mm->context);
671 index = GET_LOW_SLICE_INDEX(addr);
672 } else {
673 psizes = mm_ctx_high_slices(&mm->context);
674 index = GET_HIGH_SLICE_INDEX(addr);
676 mask_index = index & 0x1;
677 return (psizes[index >> 1] >> (mask_index * 4)) & 0xf;
679 EXPORT_SYMBOL_GPL(get_slice_psize);
681 void slice_init_new_context_exec(struct mm_struct *mm)
683 unsigned char *hpsizes, *lpsizes;
684 struct slice_mask *mask;
685 unsigned int psize = mmu_virtual_psize;
687 slice_dbg("slice_init_new_context_exec(mm=%p)\n", mm);
690 * In the case of exec, use the default limit. In the
691 * case of fork it is just inherited from the mm being
692 * duplicated.
694 mm_ctx_set_slb_addr_limit(&mm->context, SLB_ADDR_LIMIT_DEFAULT);
695 mm_ctx_set_user_psize(&mm->context, psize);
698 * Set all slice psizes to the default.
700 lpsizes = mm_ctx_low_slices(&mm->context);
701 memset(lpsizes, (psize << 4) | psize, SLICE_NUM_LOW >> 1);
703 hpsizes = mm_ctx_high_slices(&mm->context);
704 memset(hpsizes, (psize << 4) | psize, SLICE_NUM_HIGH >> 1);
707 * Slice mask cache starts zeroed, fill the default size cache.
709 mask = slice_mask_for_size(&mm->context, psize);
710 mask->low_slices = ~0UL;
711 if (SLICE_NUM_HIGH)
712 bitmap_fill(mask->high_slices, SLICE_NUM_HIGH);
715 #ifdef CONFIG_PPC_BOOK3S_64
716 void slice_setup_new_exec(void)
718 struct mm_struct *mm = current->mm;
720 slice_dbg("slice_setup_new_exec(mm=%p)\n", mm);
722 if (!is_32bit_task())
723 return;
725 mm_ctx_set_slb_addr_limit(&mm->context, DEFAULT_MAP_WINDOW);
727 #endif
729 void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
730 unsigned long len, unsigned int psize)
732 struct slice_mask mask;
734 VM_BUG_ON(radix_enabled());
736 slice_range_to_mask(start, len, &mask);
737 slice_convert(mm, &mask, psize);
740 #ifdef CONFIG_HUGETLB_PAGE
742 * is_hugepage_only_range() is used by generic code to verify whether
743 * a normal mmap mapping (non hugetlbfs) is valid on a given area.
745 * until the generic code provides a more generic hook and/or starts
746 * calling arch get_unmapped_area for MAP_FIXED (which our implementation
747 * here knows how to deal with), we hijack it to keep standard mappings
748 * away from us.
750 * because of that generic code limitation, MAP_FIXED mapping cannot
751 * "convert" back a slice with no VMAs to the standard page size, only
752 * get_unmapped_area() can. It would be possible to fix it here but I
753 * prefer working on fixing the generic code instead.
755 * WARNING: This will not work if hugetlbfs isn't enabled since the
756 * generic code will redefine that function as 0 in that. This is ok
757 * for now as we only use slices with hugetlbfs enabled. This should
758 * be fixed as the generic code gets fixed.
760 int slice_is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
761 unsigned long len)
763 const struct slice_mask *maskp;
764 unsigned int psize = mm_ctx_user_psize(&mm->context);
766 VM_BUG_ON(radix_enabled());
768 maskp = slice_mask_for_size(&mm->context, psize);
770 /* We need to account for 4k slices too */
771 if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) {
772 const struct slice_mask *compat_maskp;
773 struct slice_mask available;
775 compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K);
776 slice_or_mask(&available, maskp, compat_maskp);
777 return !slice_check_range_fits(mm, &available, addr, len);
780 return !slice_check_range_fits(mm, maskp, addr, len);
782 #endif