1 // SPDX-License-Identifier: GPL-2.0-only
3 * bpf_jit_comp64.c: eBPF JIT compiler
5 * Copyright 2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
8 * Based on the powerpc classic BPF JIT compiler by Matt Evans
10 #include <linux/moduleloader.h>
11 #include <asm/cacheflush.h>
12 #include <asm/asm-compat.h>
13 #include <linux/netdevice.h>
14 #include <linux/filter.h>
15 #include <linux/if_vlan.h>
16 #include <asm/kprobes.h>
17 #include <linux/bpf.h>
19 #include "bpf_jit64.h"
21 static void bpf_jit_fill_ill_insns(void *area
, unsigned int size
)
23 memset32(area
, BREAKPOINT_INSTRUCTION
, size
/4);
26 static inline void bpf_flush_icache(void *start
, void *end
)
29 flush_icache_range((unsigned long)start
, (unsigned long)end
);
32 static inline bool bpf_is_seen_register(struct codegen_context
*ctx
, int i
)
34 return (ctx
->seen
& (1 << (31 - b2p
[i
])));
37 static inline void bpf_set_seen_register(struct codegen_context
*ctx
, int i
)
39 ctx
->seen
|= (1 << (31 - b2p
[i
]));
42 static inline bool bpf_has_stack_frame(struct codegen_context
*ctx
)
45 * We only need a stack frame if:
46 * - we call other functions (kernel helpers), or
47 * - the bpf program uses its stack area
48 * The latter condition is deduced from the usage of BPF_REG_FP
50 return ctx
->seen
& SEEN_FUNC
|| bpf_is_seen_register(ctx
, BPF_REG_FP
);
54 * When not setting up our own stackframe, the redzone usage is:
56 * [ prev sp ] <-------------
58 * sp (r1) ---> [ stack pointer ] --------------
59 * [ nv gpr save area ] 6*8
62 * [ unused red zone ] 208 bytes protected
64 static int bpf_jit_stack_local(struct codegen_context
*ctx
)
66 if (bpf_has_stack_frame(ctx
))
67 return STACK_FRAME_MIN_SIZE
+ ctx
->stack_size
;
69 return -(BPF_PPC_STACK_SAVE
+ 16);
72 static int bpf_jit_stack_tailcallcnt(struct codegen_context
*ctx
)
74 return bpf_jit_stack_local(ctx
) + 8;
77 static int bpf_jit_stack_offsetof(struct codegen_context
*ctx
, int reg
)
79 if (reg
>= BPF_PPC_NVR_MIN
&& reg
< 32)
80 return (bpf_has_stack_frame(ctx
) ?
81 (BPF_PPC_STACKFRAME
+ ctx
->stack_size
) : 0)
84 pr_err("BPF JIT is asking about unknown registers");
88 static void bpf_jit_build_prologue(u32
*image
, struct codegen_context
*ctx
)
93 * Initialize tail_call_cnt if we do tail calls.
94 * Otherwise, put in NOPs so that it can be skipped when we are
95 * invoked through a tail call.
97 if (ctx
->seen
& SEEN_TAILCALL
) {
98 EMIT(PPC_RAW_LI(b2p
[TMP_REG_1
], 0));
99 /* this goes in the redzone */
100 PPC_BPF_STL(b2p
[TMP_REG_1
], 1, -(BPF_PPC_STACK_SAVE
+ 8));
106 #define BPF_TAILCALL_PROLOGUE_SIZE 8
108 if (bpf_has_stack_frame(ctx
)) {
110 * We need a stack frame, but we don't necessarily need to
111 * save/restore LR unless we call other functions
113 if (ctx
->seen
& SEEN_FUNC
) {
114 EMIT(PPC_INST_MFLR
| __PPC_RT(R0
));
115 PPC_BPF_STL(0, 1, PPC_LR_STKOFF
);
118 PPC_BPF_STLU(1, 1, -(BPF_PPC_STACKFRAME
+ ctx
->stack_size
));
122 * Back up non-volatile regs -- BPF registers 6-10
123 * If we haven't created our own stack frame, we save these
124 * in the protected zone below the previous stack frame
126 for (i
= BPF_REG_6
; i
<= BPF_REG_10
; i
++)
127 if (bpf_is_seen_register(ctx
, i
))
128 PPC_BPF_STL(b2p
[i
], 1, bpf_jit_stack_offsetof(ctx
, b2p
[i
]));
130 /* Setup frame pointer to point to the bpf stack area */
131 if (bpf_is_seen_register(ctx
, BPF_REG_FP
))
132 EMIT(PPC_RAW_ADDI(b2p
[BPF_REG_FP
], 1,
133 STACK_FRAME_MIN_SIZE
+ ctx
->stack_size
));
136 static void bpf_jit_emit_common_epilogue(u32
*image
, struct codegen_context
*ctx
)
141 for (i
= BPF_REG_6
; i
<= BPF_REG_10
; i
++)
142 if (bpf_is_seen_register(ctx
, i
))
143 PPC_BPF_LL(b2p
[i
], 1, bpf_jit_stack_offsetof(ctx
, b2p
[i
]));
145 /* Tear down our stack frame */
146 if (bpf_has_stack_frame(ctx
)) {
147 EMIT(PPC_RAW_ADDI(1, 1, BPF_PPC_STACKFRAME
+ ctx
->stack_size
));
148 if (ctx
->seen
& SEEN_FUNC
) {
149 PPC_BPF_LL(0, 1, PPC_LR_STKOFF
);
150 EMIT(PPC_RAW_MTLR(0));
155 static void bpf_jit_build_epilogue(u32
*image
, struct codegen_context
*ctx
)
157 bpf_jit_emit_common_epilogue(image
, ctx
);
159 /* Move result to r3 */
160 EMIT(PPC_RAW_MR(3, b2p
[BPF_REG_0
]));
165 static void bpf_jit_emit_func_call_hlp(u32
*image
, struct codegen_context
*ctx
,
168 #ifdef PPC64_ELF_ABI_v1
169 /* func points to the function descriptor */
170 PPC_LI64(b2p
[TMP_REG_2
], func
);
171 /* Load actual entry point from function descriptor */
172 PPC_BPF_LL(b2p
[TMP_REG_1
], b2p
[TMP_REG_2
], 0);
173 /* ... and move it to LR */
174 EMIT(PPC_RAW_MTLR(b2p
[TMP_REG_1
]));
176 * Load TOC from function descriptor at offset 8.
177 * We can clobber r2 since we get called through a
178 * function pointer (so caller will save/restore r2)
179 * and since we don't use a TOC ourself.
181 PPC_BPF_LL(2, b2p
[TMP_REG_2
], 8);
183 /* We can clobber r12 */
184 PPC_FUNC_ADDR(12, func
);
185 EMIT(PPC_RAW_MTLR(12));
187 EMIT(PPC_RAW_BLRL());
190 static void bpf_jit_emit_func_call_rel(u32
*image
, struct codegen_context
*ctx
,
193 unsigned int i
, ctx_idx
= ctx
->idx
;
195 /* Load function address into r12 */
198 /* For bpf-to-bpf function calls, the callee's address is unknown
199 * until the last extra pass. As seen above, we use PPC_LI64() to
200 * load the callee's address, but this may optimize the number of
201 * instructions required based on the nature of the address.
203 * Since we don't want the number of instructions emitted to change,
204 * we pad the optimized PPC_LI64() call with NOPs to guarantee that
205 * we always have a five-instruction sequence, which is the maximum
206 * that PPC_LI64() can emit.
208 for (i
= ctx
->idx
- ctx_idx
; i
< 5; i
++)
211 #ifdef PPC64_ELF_ABI_v1
213 * Load TOC from function descriptor at offset 8.
214 * We can clobber r2 since we get called through a
215 * function pointer (so caller will save/restore r2)
216 * and since we don't use a TOC ourself.
218 PPC_BPF_LL(2, 12, 8);
219 /* Load actual entry point from function descriptor */
220 PPC_BPF_LL(12, 12, 0);
223 EMIT(PPC_RAW_MTLR(12));
224 EMIT(PPC_RAW_BLRL());
227 static void bpf_jit_emit_tail_call(u32
*image
, struct codegen_context
*ctx
, u32 out
)
230 * By now, the eBPF program has already setup parameters in r3, r4 and r5
231 * r3/BPF_REG_1 - pointer to ctx -- passed as is to the next bpf program
232 * r4/BPF_REG_2 - pointer to bpf_array
233 * r5/BPF_REG_3 - index in bpf_array
235 int b2p_bpf_array
= b2p
[BPF_REG_2
];
236 int b2p_index
= b2p
[BPF_REG_3
];
239 * if (index >= array->map.max_entries)
242 EMIT(PPC_RAW_LWZ(b2p
[TMP_REG_1
], b2p_bpf_array
, offsetof(struct bpf_array
, map
.max_entries
)));
243 EMIT(PPC_RAW_RLWINM(b2p_index
, b2p_index
, 0, 0, 31));
244 EMIT(PPC_RAW_CMPLW(b2p_index
, b2p
[TMP_REG_1
]));
245 PPC_BCC(COND_GE
, out
);
248 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
251 PPC_BPF_LL(b2p
[TMP_REG_1
], 1, bpf_jit_stack_tailcallcnt(ctx
));
252 EMIT(PPC_RAW_CMPLWI(b2p
[TMP_REG_1
], MAX_TAIL_CALL_CNT
));
253 PPC_BCC(COND_GT
, out
);
258 EMIT(PPC_RAW_ADDI(b2p
[TMP_REG_1
], b2p
[TMP_REG_1
], 1));
259 PPC_BPF_STL(b2p
[TMP_REG_1
], 1, bpf_jit_stack_tailcallcnt(ctx
));
261 /* prog = array->ptrs[index]; */
262 EMIT(PPC_RAW_MULI(b2p
[TMP_REG_1
], b2p_index
, 8));
263 EMIT(PPC_RAW_ADD(b2p
[TMP_REG_1
], b2p
[TMP_REG_1
], b2p_bpf_array
));
264 PPC_BPF_LL(b2p
[TMP_REG_1
], b2p
[TMP_REG_1
], offsetof(struct bpf_array
, ptrs
));
270 EMIT(PPC_RAW_CMPLDI(b2p
[TMP_REG_1
], 0));
271 PPC_BCC(COND_EQ
, out
);
273 /* goto *(prog->bpf_func + prologue_size); */
274 PPC_BPF_LL(b2p
[TMP_REG_1
], b2p
[TMP_REG_1
], offsetof(struct bpf_prog
, bpf_func
));
275 #ifdef PPC64_ELF_ABI_v1
276 /* skip past the function descriptor */
277 EMIT(PPC_RAW_ADDI(b2p
[TMP_REG_1
], b2p
[TMP_REG_1
],
278 FUNCTION_DESCR_SIZE
+ BPF_TAILCALL_PROLOGUE_SIZE
));
280 EMIT(PPC_RAW_ADDI(b2p
[TMP_REG_1
], b2p
[TMP_REG_1
], BPF_TAILCALL_PROLOGUE_SIZE
));
282 EMIT(PPC_RAW_MTCTR(b2p
[TMP_REG_1
]));
284 /* tear down stack, restore NVRs, ... */
285 bpf_jit_emit_common_epilogue(image
, ctx
);
287 EMIT(PPC_RAW_BCTR());
291 /* Assemble the body code between the prologue & epilogue */
292 static int bpf_jit_build_body(struct bpf_prog
*fp
, u32
*image
,
293 struct codegen_context
*ctx
,
294 u32
*addrs
, bool extra_pass
)
296 const struct bpf_insn
*insn
= fp
->insnsi
;
300 /* Start of epilogue code - will only be valid 2nd pass onwards */
301 u32 exit_addr
= addrs
[flen
];
303 for (i
= 0; i
< flen
; i
++) {
304 u32 code
= insn
[i
].code
;
305 u32 dst_reg
= b2p
[insn
[i
].dst_reg
];
306 u32 src_reg
= b2p
[insn
[i
].src_reg
];
307 s16 off
= insn
[i
].off
;
308 s32 imm
= insn
[i
].imm
;
309 bool func_addr_fixed
;
316 * addrs[] maps a BPF bytecode address into a real offset from
317 * the start of the body code.
319 addrs
[i
] = ctx
->idx
* 4;
322 * As an optimization, we note down which non-volatile registers
323 * are used so that we can only save/restore those in our
324 * prologue and epilogue. We do this here regardless of whether
325 * the actual BPF instruction uses src/dst registers or not
326 * (for instance, BPF_CALL does not use them). The expectation
327 * is that those instructions will have src_reg/dst_reg set to
328 * 0. Even otherwise, we just lose some prologue/epilogue
329 * optimization but everything else should work without
332 if (dst_reg
>= BPF_PPC_NVR_MIN
&& dst_reg
< 32)
333 bpf_set_seen_register(ctx
, insn
[i
].dst_reg
);
334 if (src_reg
>= BPF_PPC_NVR_MIN
&& src_reg
< 32)
335 bpf_set_seen_register(ctx
, insn
[i
].src_reg
);
339 * Arithmetic operations: ADD/SUB/MUL/DIV/MOD/NEG
341 case BPF_ALU
| BPF_ADD
| BPF_X
: /* (u32) dst += (u32) src */
342 case BPF_ALU64
| BPF_ADD
| BPF_X
: /* dst += src */
343 EMIT(PPC_RAW_ADD(dst_reg
, dst_reg
, src_reg
));
344 goto bpf_alu32_trunc
;
345 case BPF_ALU
| BPF_SUB
| BPF_X
: /* (u32) dst -= (u32) src */
346 case BPF_ALU64
| BPF_SUB
| BPF_X
: /* dst -= src */
347 EMIT(PPC_RAW_SUB(dst_reg
, dst_reg
, src_reg
));
348 goto bpf_alu32_trunc
;
349 case BPF_ALU
| BPF_ADD
| BPF_K
: /* (u32) dst += (u32) imm */
350 case BPF_ALU
| BPF_SUB
| BPF_K
: /* (u32) dst -= (u32) imm */
351 case BPF_ALU64
| BPF_ADD
| BPF_K
: /* dst += imm */
352 case BPF_ALU64
| BPF_SUB
| BPF_K
: /* dst -= imm */
353 if (BPF_OP(code
) == BPF_SUB
)
356 if (imm
>= -32768 && imm
< 32768)
357 EMIT(PPC_RAW_ADDI(dst_reg
, dst_reg
, IMM_L(imm
)));
359 PPC_LI32(b2p
[TMP_REG_1
], imm
);
360 EMIT(PPC_RAW_ADD(dst_reg
, dst_reg
, b2p
[TMP_REG_1
]));
363 goto bpf_alu32_trunc
;
364 case BPF_ALU
| BPF_MUL
| BPF_X
: /* (u32) dst *= (u32) src */
365 case BPF_ALU64
| BPF_MUL
| BPF_X
: /* dst *= src */
366 if (BPF_CLASS(code
) == BPF_ALU
)
367 EMIT(PPC_RAW_MULW(dst_reg
, dst_reg
, src_reg
));
369 EMIT(PPC_RAW_MULD(dst_reg
, dst_reg
, src_reg
));
370 goto bpf_alu32_trunc
;
371 case BPF_ALU
| BPF_MUL
| BPF_K
: /* (u32) dst *= (u32) imm */
372 case BPF_ALU64
| BPF_MUL
| BPF_K
: /* dst *= imm */
373 if (imm
>= -32768 && imm
< 32768)
374 EMIT(PPC_RAW_MULI(dst_reg
, dst_reg
, IMM_L(imm
)));
376 PPC_LI32(b2p
[TMP_REG_1
], imm
);
377 if (BPF_CLASS(code
) == BPF_ALU
)
378 EMIT(PPC_RAW_MULW(dst_reg
, dst_reg
,
381 EMIT(PPC_RAW_MULD(dst_reg
, dst_reg
,
384 goto bpf_alu32_trunc
;
385 case BPF_ALU
| BPF_DIV
| BPF_X
: /* (u32) dst /= (u32) src */
386 case BPF_ALU
| BPF_MOD
| BPF_X
: /* (u32) dst %= (u32) src */
387 if (BPF_OP(code
) == BPF_MOD
) {
388 EMIT(PPC_RAW_DIVWU(b2p
[TMP_REG_1
], dst_reg
, src_reg
));
389 EMIT(PPC_RAW_MULW(b2p
[TMP_REG_1
], src_reg
,
391 EMIT(PPC_RAW_SUB(dst_reg
, dst_reg
, b2p
[TMP_REG_1
]));
393 EMIT(PPC_RAW_DIVWU(dst_reg
, dst_reg
, src_reg
));
394 goto bpf_alu32_trunc
;
395 case BPF_ALU64
| BPF_DIV
| BPF_X
: /* dst /= src */
396 case BPF_ALU64
| BPF_MOD
| BPF_X
: /* dst %= src */
397 if (BPF_OP(code
) == BPF_MOD
) {
398 EMIT(PPC_RAW_DIVDU(b2p
[TMP_REG_1
], dst_reg
, src_reg
));
399 EMIT(PPC_RAW_MULD(b2p
[TMP_REG_1
], src_reg
,
401 EMIT(PPC_RAW_SUB(dst_reg
, dst_reg
, b2p
[TMP_REG_1
]));
403 EMIT(PPC_RAW_DIVDU(dst_reg
, dst_reg
, src_reg
));
405 case BPF_ALU
| BPF_MOD
| BPF_K
: /* (u32) dst %= (u32) imm */
406 case BPF_ALU
| BPF_DIV
| BPF_K
: /* (u32) dst /= (u32) imm */
407 case BPF_ALU64
| BPF_MOD
| BPF_K
: /* dst %= imm */
408 case BPF_ALU64
| BPF_DIV
| BPF_K
: /* dst /= imm */
412 goto bpf_alu32_trunc
;
414 PPC_LI32(b2p
[TMP_REG_1
], imm
);
415 switch (BPF_CLASS(code
)) {
417 if (BPF_OP(code
) == BPF_MOD
) {
418 EMIT(PPC_RAW_DIVWU(b2p
[TMP_REG_2
],
421 EMIT(PPC_RAW_MULW(b2p
[TMP_REG_1
],
424 EMIT(PPC_RAW_SUB(dst_reg
, dst_reg
,
427 EMIT(PPC_RAW_DIVWU(dst_reg
, dst_reg
,
431 if (BPF_OP(code
) == BPF_MOD
) {
432 EMIT(PPC_RAW_DIVDU(b2p
[TMP_REG_2
],
435 EMIT(PPC_RAW_MULD(b2p
[TMP_REG_1
],
438 EMIT(PPC_RAW_SUB(dst_reg
, dst_reg
,
441 EMIT(PPC_RAW_DIVDU(dst_reg
, dst_reg
,
445 goto bpf_alu32_trunc
;
446 case BPF_ALU
| BPF_NEG
: /* (u32) dst = -dst */
447 case BPF_ALU64
| BPF_NEG
: /* dst = -dst */
448 EMIT(PPC_RAW_NEG(dst_reg
, dst_reg
));
449 goto bpf_alu32_trunc
;
452 * Logical operations: AND/OR/XOR/[A]LSH/[A]RSH
454 case BPF_ALU
| BPF_AND
| BPF_X
: /* (u32) dst = dst & src */
455 case BPF_ALU64
| BPF_AND
| BPF_X
: /* dst = dst & src */
456 EMIT(PPC_RAW_AND(dst_reg
, dst_reg
, src_reg
));
457 goto bpf_alu32_trunc
;
458 case BPF_ALU
| BPF_AND
| BPF_K
: /* (u32) dst = dst & imm */
459 case BPF_ALU64
| BPF_AND
| BPF_K
: /* dst = dst & imm */
461 EMIT(PPC_RAW_ANDI(dst_reg
, dst_reg
, IMM_L(imm
)));
464 PPC_LI32(b2p
[TMP_REG_1
], imm
);
465 EMIT(PPC_RAW_AND(dst_reg
, dst_reg
, b2p
[TMP_REG_1
]));
467 goto bpf_alu32_trunc
;
468 case BPF_ALU
| BPF_OR
| BPF_X
: /* dst = (u32) dst | (u32) src */
469 case BPF_ALU64
| BPF_OR
| BPF_X
: /* dst = dst | src */
470 EMIT(PPC_RAW_OR(dst_reg
, dst_reg
, src_reg
));
471 goto bpf_alu32_trunc
;
472 case BPF_ALU
| BPF_OR
| BPF_K
:/* dst = (u32) dst | (u32) imm */
473 case BPF_ALU64
| BPF_OR
| BPF_K
:/* dst = dst | imm */
474 if (imm
< 0 && BPF_CLASS(code
) == BPF_ALU64
) {
476 PPC_LI32(b2p
[TMP_REG_1
], imm
);
477 EMIT(PPC_RAW_OR(dst_reg
, dst_reg
, b2p
[TMP_REG_1
]));
480 EMIT(PPC_RAW_ORI(dst_reg
, dst_reg
, IMM_L(imm
)));
482 EMIT(PPC_RAW_ORIS(dst_reg
, dst_reg
, IMM_H(imm
)));
484 goto bpf_alu32_trunc
;
485 case BPF_ALU
| BPF_XOR
| BPF_X
: /* (u32) dst ^= src */
486 case BPF_ALU64
| BPF_XOR
| BPF_X
: /* dst ^= src */
487 EMIT(PPC_RAW_XOR(dst_reg
, dst_reg
, src_reg
));
488 goto bpf_alu32_trunc
;
489 case BPF_ALU
| BPF_XOR
| BPF_K
: /* (u32) dst ^= (u32) imm */
490 case BPF_ALU64
| BPF_XOR
| BPF_K
: /* dst ^= imm */
491 if (imm
< 0 && BPF_CLASS(code
) == BPF_ALU64
) {
493 PPC_LI32(b2p
[TMP_REG_1
], imm
);
494 EMIT(PPC_RAW_XOR(dst_reg
, dst_reg
, b2p
[TMP_REG_1
]));
497 EMIT(PPC_RAW_XORI(dst_reg
, dst_reg
, IMM_L(imm
)));
499 EMIT(PPC_RAW_XORIS(dst_reg
, dst_reg
, IMM_H(imm
)));
501 goto bpf_alu32_trunc
;
502 case BPF_ALU
| BPF_LSH
| BPF_X
: /* (u32) dst <<= (u32) src */
503 /* slw clears top 32 bits */
504 EMIT(PPC_RAW_SLW(dst_reg
, dst_reg
, src_reg
));
505 /* skip zero extension move, but set address map. */
506 if (insn_is_zext(&insn
[i
+ 1]))
507 addrs
[++i
] = ctx
->idx
* 4;
509 case BPF_ALU64
| BPF_LSH
| BPF_X
: /* dst <<= src; */
510 EMIT(PPC_RAW_SLD(dst_reg
, dst_reg
, src_reg
));
512 case BPF_ALU
| BPF_LSH
| BPF_K
: /* (u32) dst <<== (u32) imm */
513 /* with imm 0, we still need to clear top 32 bits */
514 EMIT(PPC_RAW_SLWI(dst_reg
, dst_reg
, imm
));
515 if (insn_is_zext(&insn
[i
+ 1]))
516 addrs
[++i
] = ctx
->idx
* 4;
518 case BPF_ALU64
| BPF_LSH
| BPF_K
: /* dst <<== imm */
520 EMIT(PPC_RAW_SLDI(dst_reg
, dst_reg
, imm
));
522 case BPF_ALU
| BPF_RSH
| BPF_X
: /* (u32) dst >>= (u32) src */
523 EMIT(PPC_RAW_SRW(dst_reg
, dst_reg
, src_reg
));
524 if (insn_is_zext(&insn
[i
+ 1]))
525 addrs
[++i
] = ctx
->idx
* 4;
527 case BPF_ALU64
| BPF_RSH
| BPF_X
: /* dst >>= src */
528 EMIT(PPC_RAW_SRD(dst_reg
, dst_reg
, src_reg
));
530 case BPF_ALU
| BPF_RSH
| BPF_K
: /* (u32) dst >>= (u32) imm */
531 EMIT(PPC_RAW_SRWI(dst_reg
, dst_reg
, imm
));
532 if (insn_is_zext(&insn
[i
+ 1]))
533 addrs
[++i
] = ctx
->idx
* 4;
535 case BPF_ALU64
| BPF_RSH
| BPF_K
: /* dst >>= imm */
537 EMIT(PPC_RAW_SRDI(dst_reg
, dst_reg
, imm
));
539 case BPF_ALU
| BPF_ARSH
| BPF_X
: /* (s32) dst >>= src */
540 EMIT(PPC_RAW_SRAW(dst_reg
, dst_reg
, src_reg
));
541 goto bpf_alu32_trunc
;
542 case BPF_ALU64
| BPF_ARSH
| BPF_X
: /* (s64) dst >>= src */
543 EMIT(PPC_RAW_SRAD(dst_reg
, dst_reg
, src_reg
));
545 case BPF_ALU
| BPF_ARSH
| BPF_K
: /* (s32) dst >>= imm */
546 EMIT(PPC_RAW_SRAWI(dst_reg
, dst_reg
, imm
));
547 goto bpf_alu32_trunc
;
548 case BPF_ALU64
| BPF_ARSH
| BPF_K
: /* (s64) dst >>= imm */
550 EMIT(PPC_RAW_SRADI(dst_reg
, dst_reg
, imm
));
556 case BPF_ALU
| BPF_MOV
| BPF_X
: /* (u32) dst = src */
557 case BPF_ALU64
| BPF_MOV
| BPF_X
: /* dst = src */
559 /* special mov32 for zext */
560 EMIT(PPC_RAW_RLWINM(dst_reg
, dst_reg
, 0, 0, 31));
563 EMIT(PPC_RAW_MR(dst_reg
, src_reg
));
564 goto bpf_alu32_trunc
;
565 case BPF_ALU
| BPF_MOV
| BPF_K
: /* (u32) dst = imm */
566 case BPF_ALU64
| BPF_MOV
| BPF_K
: /* dst = (s64) imm */
567 PPC_LI32(dst_reg
, imm
);
569 goto bpf_alu32_trunc
;
570 else if (insn_is_zext(&insn
[i
+ 1]))
571 addrs
[++i
] = ctx
->idx
* 4;
575 /* Truncate to 32-bits */
576 if (BPF_CLASS(code
) == BPF_ALU
&& !fp
->aux
->verifier_zext
)
577 EMIT(PPC_RAW_RLWINM(dst_reg
, dst_reg
, 0, 0, 31));
583 case BPF_ALU
| BPF_END
| BPF_FROM_LE
:
584 case BPF_ALU
| BPF_END
| BPF_FROM_BE
:
585 #ifdef __BIG_ENDIAN__
586 if (BPF_SRC(code
) == BPF_FROM_BE
)
588 #else /* !__BIG_ENDIAN__ */
589 if (BPF_SRC(code
) == BPF_FROM_LE
)
594 /* Rotate 8 bits left & mask with 0x0000ff00 */
595 EMIT(PPC_RAW_RLWINM(b2p
[TMP_REG_1
], dst_reg
, 8, 16, 23));
596 /* Rotate 8 bits right & insert LSB to reg */
597 EMIT(PPC_RAW_RLWIMI(b2p
[TMP_REG_1
], dst_reg
, 24, 24, 31));
598 /* Move result back to dst_reg */
599 EMIT(PPC_RAW_MR(dst_reg
, b2p
[TMP_REG_1
]));
603 * Rotate word left by 8 bits:
604 * 2 bytes are already in their final position
605 * -- byte 2 and 4 (of bytes 1, 2, 3 and 4)
607 EMIT(PPC_RAW_RLWINM(b2p
[TMP_REG_1
], dst_reg
, 8, 0, 31));
608 /* Rotate 24 bits and insert byte 1 */
609 EMIT(PPC_RAW_RLWIMI(b2p
[TMP_REG_1
], dst_reg
, 24, 0, 7));
610 /* Rotate 24 bits and insert byte 3 */
611 EMIT(PPC_RAW_RLWIMI(b2p
[TMP_REG_1
], dst_reg
, 24, 16, 23));
612 EMIT(PPC_RAW_MR(dst_reg
, b2p
[TMP_REG_1
]));
616 * Way easier and faster(?) to store the value
617 * into stack and then use ldbrx
619 * ctx->seen will be reliable in pass2, but
620 * the instructions generated will remain the
621 * same across all passes
623 PPC_BPF_STL(dst_reg
, 1, bpf_jit_stack_local(ctx
));
624 EMIT(PPC_RAW_ADDI(b2p
[TMP_REG_1
], 1, bpf_jit_stack_local(ctx
)));
625 EMIT(PPC_RAW_LDBRX(dst_reg
, 0, b2p
[TMP_REG_1
]));
633 /* zero-extend 16 bits into 64 bits */
634 EMIT(PPC_RAW_RLDICL(dst_reg
, dst_reg
, 0, 48));
635 if (insn_is_zext(&insn
[i
+ 1]))
636 addrs
[++i
] = ctx
->idx
* 4;
639 if (!fp
->aux
->verifier_zext
)
640 /* zero-extend 32 bits into 64 bits */
641 EMIT(PPC_RAW_RLDICL(dst_reg
, dst_reg
, 0, 32));
652 case BPF_STX
| BPF_MEM
| BPF_B
: /* *(u8 *)(dst + off) = src */
653 case BPF_ST
| BPF_MEM
| BPF_B
: /* *(u8 *)(dst + off) = imm */
654 if (BPF_CLASS(code
) == BPF_ST
) {
655 EMIT(PPC_RAW_LI(b2p
[TMP_REG_1
], imm
));
656 src_reg
= b2p
[TMP_REG_1
];
658 EMIT(PPC_RAW_STB(src_reg
, dst_reg
, off
));
660 case BPF_STX
| BPF_MEM
| BPF_H
: /* (u16 *)(dst + off) = src */
661 case BPF_ST
| BPF_MEM
| BPF_H
: /* (u16 *)(dst + off) = imm */
662 if (BPF_CLASS(code
) == BPF_ST
) {
663 EMIT(PPC_RAW_LI(b2p
[TMP_REG_1
], imm
));
664 src_reg
= b2p
[TMP_REG_1
];
666 EMIT(PPC_RAW_STH(src_reg
, dst_reg
, off
));
668 case BPF_STX
| BPF_MEM
| BPF_W
: /* *(u32 *)(dst + off) = src */
669 case BPF_ST
| BPF_MEM
| BPF_W
: /* *(u32 *)(dst + off) = imm */
670 if (BPF_CLASS(code
) == BPF_ST
) {
671 PPC_LI32(b2p
[TMP_REG_1
], imm
);
672 src_reg
= b2p
[TMP_REG_1
];
674 EMIT(PPC_RAW_STW(src_reg
, dst_reg
, off
));
676 case BPF_STX
| BPF_MEM
| BPF_DW
: /* (u64 *)(dst + off) = src */
677 case BPF_ST
| BPF_MEM
| BPF_DW
: /* *(u64 *)(dst + off) = imm */
678 if (BPF_CLASS(code
) == BPF_ST
) {
679 PPC_LI32(b2p
[TMP_REG_1
], imm
);
680 src_reg
= b2p
[TMP_REG_1
];
682 PPC_BPF_STL(src_reg
, dst_reg
, off
);
686 * BPF_STX XADD (atomic_add)
688 /* *(u32 *)(dst + off) += src */
689 case BPF_STX
| BPF_XADD
| BPF_W
:
690 /* Get EA into TMP_REG_1 */
691 EMIT(PPC_RAW_ADDI(b2p
[TMP_REG_1
], dst_reg
, off
));
692 tmp_idx
= ctx
->idx
* 4;
693 /* load value from memory into TMP_REG_2 */
694 EMIT(PPC_RAW_LWARX(b2p
[TMP_REG_2
], 0, b2p
[TMP_REG_1
], 0));
695 /* add value from src_reg into this */
696 EMIT(PPC_RAW_ADD(b2p
[TMP_REG_2
], b2p
[TMP_REG_2
], src_reg
));
697 /* store result back */
698 EMIT(PPC_RAW_STWCX(b2p
[TMP_REG_2
], 0, b2p
[TMP_REG_1
]));
699 /* we're done if this succeeded */
700 PPC_BCC_SHORT(COND_NE
, tmp_idx
);
702 /* *(u64 *)(dst + off) += src */
703 case BPF_STX
| BPF_XADD
| BPF_DW
:
704 EMIT(PPC_RAW_ADDI(b2p
[TMP_REG_1
], dst_reg
, off
));
705 tmp_idx
= ctx
->idx
* 4;
706 EMIT(PPC_RAW_LDARX(b2p
[TMP_REG_2
], 0, b2p
[TMP_REG_1
], 0));
707 EMIT(PPC_RAW_ADD(b2p
[TMP_REG_2
], b2p
[TMP_REG_2
], src_reg
));
708 EMIT(PPC_RAW_STDCX(b2p
[TMP_REG_2
], 0, b2p
[TMP_REG_1
]));
709 PPC_BCC_SHORT(COND_NE
, tmp_idx
);
715 /* dst = *(u8 *)(ul) (src + off) */
716 case BPF_LDX
| BPF_MEM
| BPF_B
:
717 EMIT(PPC_RAW_LBZ(dst_reg
, src_reg
, off
));
718 if (insn_is_zext(&insn
[i
+ 1]))
719 addrs
[++i
] = ctx
->idx
* 4;
721 /* dst = *(u16 *)(ul) (src + off) */
722 case BPF_LDX
| BPF_MEM
| BPF_H
:
723 EMIT(PPC_RAW_LHZ(dst_reg
, src_reg
, off
));
724 if (insn_is_zext(&insn
[i
+ 1]))
725 addrs
[++i
] = ctx
->idx
* 4;
727 /* dst = *(u32 *)(ul) (src + off) */
728 case BPF_LDX
| BPF_MEM
| BPF_W
:
729 EMIT(PPC_RAW_LWZ(dst_reg
, src_reg
, off
));
730 if (insn_is_zext(&insn
[i
+ 1]))
731 addrs
[++i
] = ctx
->idx
* 4;
733 /* dst = *(u64 *)(ul) (src + off) */
734 case BPF_LDX
| BPF_MEM
| BPF_DW
:
735 PPC_BPF_LL(dst_reg
, src_reg
, off
);
740 * 16 byte instruction that uses two 'struct bpf_insn'
742 case BPF_LD
| BPF_IMM
| BPF_DW
: /* dst = (u64) imm */
743 imm64
= ((u64
)(u32
) insn
[i
].imm
) |
744 (((u64
)(u32
) insn
[i
+1].imm
) << 32);
745 /* Adjust for two bpf instructions */
746 addrs
[++i
] = ctx
->idx
* 4;
747 PPC_LI64(dst_reg
, imm64
);
753 case BPF_JMP
| BPF_EXIT
:
755 * If this isn't the very last instruction, branch to
756 * the epilogue. If we _are_ the last instruction,
757 * we'll just fall through to the epilogue.
761 /* else fall through to the epilogue */
765 * Call kernel helper or bpf function
767 case BPF_JMP
| BPF_CALL
:
768 ctx
->seen
|= SEEN_FUNC
;
770 ret
= bpf_jit_get_func_addr(fp
, &insn
[i
], extra_pass
,
771 &func_addr
, &func_addr_fixed
);
776 bpf_jit_emit_func_call_hlp(image
, ctx
, func_addr
);
778 bpf_jit_emit_func_call_rel(image
, ctx
, func_addr
);
779 /* move return value from r3 to BPF_REG_0 */
780 EMIT(PPC_RAW_MR(b2p
[BPF_REG_0
], 3));
786 case BPF_JMP
| BPF_JA
:
787 PPC_JMP(addrs
[i
+ 1 + off
]);
790 case BPF_JMP
| BPF_JGT
| BPF_K
:
791 case BPF_JMP
| BPF_JGT
| BPF_X
:
792 case BPF_JMP
| BPF_JSGT
| BPF_K
:
793 case BPF_JMP
| BPF_JSGT
| BPF_X
:
794 case BPF_JMP32
| BPF_JGT
| BPF_K
:
795 case BPF_JMP32
| BPF_JGT
| BPF_X
:
796 case BPF_JMP32
| BPF_JSGT
| BPF_K
:
797 case BPF_JMP32
| BPF_JSGT
| BPF_X
:
800 case BPF_JMP
| BPF_JLT
| BPF_K
:
801 case BPF_JMP
| BPF_JLT
| BPF_X
:
802 case BPF_JMP
| BPF_JSLT
| BPF_K
:
803 case BPF_JMP
| BPF_JSLT
| BPF_X
:
804 case BPF_JMP32
| BPF_JLT
| BPF_K
:
805 case BPF_JMP32
| BPF_JLT
| BPF_X
:
806 case BPF_JMP32
| BPF_JSLT
| BPF_K
:
807 case BPF_JMP32
| BPF_JSLT
| BPF_X
:
810 case BPF_JMP
| BPF_JGE
| BPF_K
:
811 case BPF_JMP
| BPF_JGE
| BPF_X
:
812 case BPF_JMP
| BPF_JSGE
| BPF_K
:
813 case BPF_JMP
| BPF_JSGE
| BPF_X
:
814 case BPF_JMP32
| BPF_JGE
| BPF_K
:
815 case BPF_JMP32
| BPF_JGE
| BPF_X
:
816 case BPF_JMP32
| BPF_JSGE
| BPF_K
:
817 case BPF_JMP32
| BPF_JSGE
| BPF_X
:
820 case BPF_JMP
| BPF_JLE
| BPF_K
:
821 case BPF_JMP
| BPF_JLE
| BPF_X
:
822 case BPF_JMP
| BPF_JSLE
| BPF_K
:
823 case BPF_JMP
| BPF_JSLE
| BPF_X
:
824 case BPF_JMP32
| BPF_JLE
| BPF_K
:
825 case BPF_JMP32
| BPF_JLE
| BPF_X
:
826 case BPF_JMP32
| BPF_JSLE
| BPF_K
:
827 case BPF_JMP32
| BPF_JSLE
| BPF_X
:
830 case BPF_JMP
| BPF_JEQ
| BPF_K
:
831 case BPF_JMP
| BPF_JEQ
| BPF_X
:
832 case BPF_JMP32
| BPF_JEQ
| BPF_K
:
833 case BPF_JMP32
| BPF_JEQ
| BPF_X
:
836 case BPF_JMP
| BPF_JNE
| BPF_K
:
837 case BPF_JMP
| BPF_JNE
| BPF_X
:
838 case BPF_JMP32
| BPF_JNE
| BPF_K
:
839 case BPF_JMP32
| BPF_JNE
| BPF_X
:
842 case BPF_JMP
| BPF_JSET
| BPF_K
:
843 case BPF_JMP
| BPF_JSET
| BPF_X
:
844 case BPF_JMP32
| BPF_JSET
| BPF_K
:
845 case BPF_JMP32
| BPF_JSET
| BPF_X
:
851 case BPF_JMP
| BPF_JGT
| BPF_X
:
852 case BPF_JMP
| BPF_JLT
| BPF_X
:
853 case BPF_JMP
| BPF_JGE
| BPF_X
:
854 case BPF_JMP
| BPF_JLE
| BPF_X
:
855 case BPF_JMP
| BPF_JEQ
| BPF_X
:
856 case BPF_JMP
| BPF_JNE
| BPF_X
:
857 case BPF_JMP32
| BPF_JGT
| BPF_X
:
858 case BPF_JMP32
| BPF_JLT
| BPF_X
:
859 case BPF_JMP32
| BPF_JGE
| BPF_X
:
860 case BPF_JMP32
| BPF_JLE
| BPF_X
:
861 case BPF_JMP32
| BPF_JEQ
| BPF_X
:
862 case BPF_JMP32
| BPF_JNE
| BPF_X
:
863 /* unsigned comparison */
864 if (BPF_CLASS(code
) == BPF_JMP32
)
865 EMIT(PPC_RAW_CMPLW(dst_reg
, src_reg
));
867 EMIT(PPC_RAW_CMPLD(dst_reg
, src_reg
));
869 case BPF_JMP
| BPF_JSGT
| BPF_X
:
870 case BPF_JMP
| BPF_JSLT
| BPF_X
:
871 case BPF_JMP
| BPF_JSGE
| BPF_X
:
872 case BPF_JMP
| BPF_JSLE
| BPF_X
:
873 case BPF_JMP32
| BPF_JSGT
| BPF_X
:
874 case BPF_JMP32
| BPF_JSLT
| BPF_X
:
875 case BPF_JMP32
| BPF_JSGE
| BPF_X
:
876 case BPF_JMP32
| BPF_JSLE
| BPF_X
:
877 /* signed comparison */
878 if (BPF_CLASS(code
) == BPF_JMP32
)
879 EMIT(PPC_RAW_CMPW(dst_reg
, src_reg
));
881 EMIT(PPC_RAW_CMPD(dst_reg
, src_reg
));
883 case BPF_JMP
| BPF_JSET
| BPF_X
:
884 case BPF_JMP32
| BPF_JSET
| BPF_X
:
885 if (BPF_CLASS(code
) == BPF_JMP
) {
886 EMIT(PPC_RAW_AND_DOT(b2p
[TMP_REG_1
], dst_reg
,
889 int tmp_reg
= b2p
[TMP_REG_1
];
891 EMIT(PPC_RAW_AND(tmp_reg
, dst_reg
, src_reg
));
892 EMIT(PPC_RAW_RLWINM_DOT(tmp_reg
, tmp_reg
, 0, 0,
896 case BPF_JMP
| BPF_JNE
| BPF_K
:
897 case BPF_JMP
| BPF_JEQ
| BPF_K
:
898 case BPF_JMP
| BPF_JGT
| BPF_K
:
899 case BPF_JMP
| BPF_JLT
| BPF_K
:
900 case BPF_JMP
| BPF_JGE
| BPF_K
:
901 case BPF_JMP
| BPF_JLE
| BPF_K
:
902 case BPF_JMP32
| BPF_JNE
| BPF_K
:
903 case BPF_JMP32
| BPF_JEQ
| BPF_K
:
904 case BPF_JMP32
| BPF_JGT
| BPF_K
:
905 case BPF_JMP32
| BPF_JLT
| BPF_K
:
906 case BPF_JMP32
| BPF_JGE
| BPF_K
:
907 case BPF_JMP32
| BPF_JLE
| BPF_K
:
909 bool is_jmp32
= BPF_CLASS(code
) == BPF_JMP32
;
912 * Need sign-extended load, so only positive
913 * values can be used as imm in cmpldi
915 if (imm
>= 0 && imm
< 32768) {
917 EMIT(PPC_RAW_CMPLWI(dst_reg
, imm
));
919 EMIT(PPC_RAW_CMPLDI(dst_reg
, imm
));
921 /* sign-extending load */
922 PPC_LI32(b2p
[TMP_REG_1
], imm
);
923 /* ... but unsigned comparison */
925 EMIT(PPC_RAW_CMPLW(dst_reg
,
928 EMIT(PPC_RAW_CMPLD(dst_reg
,
933 case BPF_JMP
| BPF_JSGT
| BPF_K
:
934 case BPF_JMP
| BPF_JSLT
| BPF_K
:
935 case BPF_JMP
| BPF_JSGE
| BPF_K
:
936 case BPF_JMP
| BPF_JSLE
| BPF_K
:
937 case BPF_JMP32
| BPF_JSGT
| BPF_K
:
938 case BPF_JMP32
| BPF_JSLT
| BPF_K
:
939 case BPF_JMP32
| BPF_JSGE
| BPF_K
:
940 case BPF_JMP32
| BPF_JSLE
| BPF_K
:
942 bool is_jmp32
= BPF_CLASS(code
) == BPF_JMP32
;
945 * signed comparison, so any 16-bit value
946 * can be used in cmpdi
948 if (imm
>= -32768 && imm
< 32768) {
950 EMIT(PPC_RAW_CMPWI(dst_reg
, imm
));
952 EMIT(PPC_RAW_CMPDI(dst_reg
, imm
));
954 PPC_LI32(b2p
[TMP_REG_1
], imm
);
956 EMIT(PPC_RAW_CMPW(dst_reg
,
959 EMIT(PPC_RAW_CMPD(dst_reg
,
964 case BPF_JMP
| BPF_JSET
| BPF_K
:
965 case BPF_JMP32
| BPF_JSET
| BPF_K
:
966 /* andi does not sign-extend the immediate */
967 if (imm
>= 0 && imm
< 32768)
968 /* PPC_ANDI is _only/always_ dot-form */
969 EMIT(PPC_RAW_ANDI(b2p
[TMP_REG_1
], dst_reg
, imm
));
971 int tmp_reg
= b2p
[TMP_REG_1
];
973 PPC_LI32(tmp_reg
, imm
);
974 if (BPF_CLASS(code
) == BPF_JMP
) {
975 EMIT(PPC_RAW_AND_DOT(tmp_reg
, dst_reg
,
978 EMIT(PPC_RAW_AND(tmp_reg
, dst_reg
,
980 EMIT(PPC_RAW_RLWINM_DOT(tmp_reg
, tmp_reg
,
986 PPC_BCC(true_cond
, addrs
[i
+ 1 + off
]);
992 case BPF_JMP
| BPF_TAIL_CALL
:
993 ctx
->seen
|= SEEN_TAILCALL
;
994 bpf_jit_emit_tail_call(image
, ctx
, addrs
[i
+ 1]);
999 * The filter contains something cruel & unusual.
1000 * We don't handle it, but also there shouldn't be
1001 * anything missing from our list.
1003 pr_err_ratelimited("eBPF filter opcode %04x (@%d) unsupported\n",
1009 /* Set end-of-body-code address for exit. */
1010 addrs
[i
] = ctx
->idx
* 4;
1015 /* Fix the branch target addresses for subprog calls */
1016 static int bpf_jit_fixup_subprog_calls(struct bpf_prog
*fp
, u32
*image
,
1017 struct codegen_context
*ctx
, u32
*addrs
)
1019 const struct bpf_insn
*insn
= fp
->insnsi
;
1020 bool func_addr_fixed
;
1025 for (i
= 0; i
< fp
->len
; i
++) {
1027 * During the extra pass, only the branch target addresses for
1028 * the subprog calls need to be fixed. All other instructions
1029 * can left untouched.
1031 * The JITed image length does not change because we already
1032 * ensure that the JITed instruction sequence for these calls
1033 * are of fixed length by padding them with NOPs.
1035 if (insn
[i
].code
== (BPF_JMP
| BPF_CALL
) &&
1036 insn
[i
].src_reg
== BPF_PSEUDO_CALL
) {
1037 ret
= bpf_jit_get_func_addr(fp
, &insn
[i
], true,
1044 * Save ctx->idx as this would currently point to the
1045 * end of the JITed image and set it to the offset of
1046 * the instruction sequence corresponding to the
1047 * subprog call temporarily.
1050 ctx
->idx
= addrs
[i
] / 4;
1051 bpf_jit_emit_func_call_rel(image
, ctx
, func_addr
);
1054 * Restore ctx->idx here. This is safe as the length
1055 * of the JITed sequence remains unchanged.
1064 struct powerpc64_jit_data
{
1065 struct bpf_binary_header
*header
;
1069 struct codegen_context ctx
;
1072 bool bpf_jit_needs_zext(void)
1077 struct bpf_prog
*bpf_int_jit_compile(struct bpf_prog
*fp
)
1084 struct powerpc64_jit_data
*jit_data
;
1085 struct codegen_context cgctx
;
1088 struct bpf_binary_header
*bpf_hdr
;
1089 struct bpf_prog
*org_fp
= fp
;
1090 struct bpf_prog
*tmp_fp
;
1091 bool bpf_blinded
= false;
1092 bool extra_pass
= false;
1094 if (!fp
->jit_requested
)
1097 tmp_fp
= bpf_jit_blind_constants(org_fp
);
1101 if (tmp_fp
!= org_fp
) {
1106 jit_data
= fp
->aux
->jit_data
;
1108 jit_data
= kzalloc(sizeof(*jit_data
), GFP_KERNEL
);
1113 fp
->aux
->jit_data
= jit_data
;
1117 addrs
= jit_data
->addrs
;
1119 cgctx
= jit_data
->ctx
;
1120 image
= jit_data
->image
;
1121 bpf_hdr
= jit_data
->header
;
1122 proglen
= jit_data
->proglen
;
1123 alloclen
= proglen
+ FUNCTION_DESCR_SIZE
;
1128 addrs
= kcalloc(flen
+ 1, sizeof(*addrs
), GFP_KERNEL
);
1129 if (addrs
== NULL
) {
1134 memset(&cgctx
, 0, sizeof(struct codegen_context
));
1136 /* Make sure that the stack is quadword aligned. */
1137 cgctx
.stack_size
= round_up(fp
->aux
->stack_depth
, 16);
1139 /* Scouting faux-generate pass 0 */
1140 if (bpf_jit_build_body(fp
, 0, &cgctx
, addrs
, false)) {
1141 /* We hit something illegal or unsupported. */
1147 * If we have seen a tail call, we need a second pass.
1148 * This is because bpf_jit_emit_common_epilogue() is called
1149 * from bpf_jit_emit_tail_call() with a not yet stable ctx->seen.
1151 if (cgctx
.seen
& SEEN_TAILCALL
) {
1153 if (bpf_jit_build_body(fp
, 0, &cgctx
, addrs
, false)) {
1160 * Pretend to build prologue, given the features we've seen. This will
1161 * update ctgtx.idx as it pretends to output instructions, then we can
1162 * calculate total size from idx.
1164 bpf_jit_build_prologue(0, &cgctx
);
1165 bpf_jit_build_epilogue(0, &cgctx
);
1167 proglen
= cgctx
.idx
* 4;
1168 alloclen
= proglen
+ FUNCTION_DESCR_SIZE
;
1170 bpf_hdr
= bpf_jit_binary_alloc(alloclen
, &image
, 4,
1171 bpf_jit_fill_ill_insns
);
1178 code_base
= (u32
*)(image
+ FUNCTION_DESCR_SIZE
);
1182 * Do not touch the prologue and epilogue as they will remain
1183 * unchanged. Only fix the branch target address for subprog
1184 * calls in the body.
1186 * This does not change the offsets and lengths of the subprog
1187 * call instruction sequences and hence, the size of the JITed
1190 bpf_jit_fixup_subprog_calls(fp
, code_base
, &cgctx
, addrs
);
1192 /* There is no need to perform the usual passes. */
1193 goto skip_codegen_passes
;
1196 /* Code generation passes 1-2 */
1197 for (pass
= 1; pass
< 3; pass
++) {
1198 /* Now build the prologue, body code & epilogue for real. */
1200 bpf_jit_build_prologue(code_base
, &cgctx
);
1201 bpf_jit_build_body(fp
, code_base
, &cgctx
, addrs
, extra_pass
);
1202 bpf_jit_build_epilogue(code_base
, &cgctx
);
1204 if (bpf_jit_enable
> 1)
1205 pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass
,
1206 proglen
- (cgctx
.idx
* 4), cgctx
.seen
);
1209 skip_codegen_passes
:
1210 if (bpf_jit_enable
> 1)
1212 * Note that we output the base address of the code_base
1213 * rather than image, since opcodes are in code_base.
1215 bpf_jit_dump(flen
, proglen
, pass
, code_base
);
1217 #ifdef PPC64_ELF_ABI_v1
1218 /* Function descriptor nastiness: Address + TOC */
1219 ((u64
*)image
)[0] = (u64
)code_base
;
1220 ((u64
*)image
)[1] = local_paca
->kernel_toc
;
1223 fp
->bpf_func
= (void *)image
;
1225 fp
->jited_len
= alloclen
;
1227 bpf_flush_icache(bpf_hdr
, (u8
*)bpf_hdr
+ (bpf_hdr
->pages
* PAGE_SIZE
));
1228 if (!fp
->is_func
|| extra_pass
) {
1229 bpf_prog_fill_jited_linfo(fp
, addrs
);
1233 fp
->aux
->jit_data
= NULL
;
1235 jit_data
->addrs
= addrs
;
1236 jit_data
->ctx
= cgctx
;
1237 jit_data
->proglen
= proglen
;
1238 jit_data
->image
= image
;
1239 jit_data
->header
= bpf_hdr
;
1244 bpf_jit_prog_release_other(fp
, fp
== org_fp
? tmp_fp
: org_fp
);
1249 /* Overriding bpf_jit_free() as we don't set images read-only. */
1250 void bpf_jit_free(struct bpf_prog
*fp
)
1252 unsigned long addr
= (unsigned long)fp
->bpf_func
& PAGE_MASK
;
1253 struct bpf_binary_header
*bpf_hdr
= (void *)addr
;
1256 bpf_jit_binary_free(bpf_hdr
);
1258 bpf_prog_unlock_free(fp
);