1 /* SPDX-License-Identifier: GPL-2.0 */
2 #include <linux/jump_label.h>
3 #include <asm/unwind_hints.h>
4 #include <asm/cpufeatures.h>
5 #include <asm/page_types.h>
6 #include <asm/percpu.h>
7 #include <asm/asm-offsets.h>
8 #include <asm/processor-flags.h>
12 x86 function call convention, 64-bit:
13 -------------------------------------
14 arguments | callee-saved | extra caller-saved | return
15 [callee-clobbered] | | [callee-clobbered] |
16 ---------------------------------------------------------------------------
17 rdi rsi rdx rcx r8-9 | rbx rbp [*] r12-15 | r10-11 | rax, rdx [**]
19 ( rsp is obviously invariant across normal function calls. (gcc can 'merge'
20 functions when it sees tail-call optimization possibilities) rflags is
21 clobbered. Leftover arguments are passed over the stack frame.)
23 [*] In the frame-pointers case rbp is fixed to the stack frame.
25 [**] for struct return values wider than 64 bits the return convention is a
26 bit more complex: up to 128 bits width we return small structures
27 straight in rax, rdx. For structures larger than that (3 words or
28 larger) the caller puts a pointer to an on-stack return struct
29 [allocated in the caller's stack frame] into the first argument - i.e.
30 into rdi. All other arguments shift up by one in this case.
31 Fortunately this case is rare in the kernel.
33 For 32-bit we have the following conventions - kernel is built with
34 -mregparm=3 and -freg-struct-return:
36 x86 function calling convention, 32-bit:
37 ----------------------------------------
38 arguments | callee-saved | extra caller-saved | return
39 [callee-clobbered] | | [callee-clobbered] |
40 -------------------------------------------------------------------------
41 eax edx ecx | ebx edi esi ebp [*] | <none> | eax, edx [**]
43 ( here too esp is obviously invariant across normal function calls. eflags
44 is clobbered. Leftover arguments are passed over the stack frame. )
46 [*] In the frame-pointers case ebp is fixed to the stack frame.
48 [**] We build with -freg-struct-return, which on 32-bit means similar
49 semantics as on 64-bit: edx can be used for a second return value
50 (i.e. covering integer and structure sizes up to 64 bits) - after that
51 it gets more complex and more expensive: 3-word or larger struct returns
52 get done in the caller's frame and the pointer to the return struct goes
53 into regparm0, i.e. eax - the other arguments shift up and the
54 function's register parameters degenerate to regparm=2 in essence.
61 * 64-bit system call stack frame layout defines and helpers,
65 /* The layout forms the "struct pt_regs" on the stack: */
67 * C ABI says these regs are callee-preserved. They aren't saved on kernel entry
68 * unless syscall needs a complete, fully filled "struct pt_regs".
76 /* These regs are callee-clobbered. Always saved on kernel entry. */
87 * On syscall entry, this is syscall#. On CPU exception, this is error code.
88 * On hw interrupt, it's IRQ number:
91 /* Return frame for iretq */
98 #define SIZEOF_PTREGS 21*8
100 .macro PUSH_AND_CLEAR_REGS rdx
=%rdx rax
=%rax save_ret
=0
102 pushq
%rsi
/* pt_regs->si */
103 movq
8(%rsp
), %rsi
/* temporarily store the return address in %rsi */
104 movq
%rdi
, 8(%rsp
) /* pt_regs->di (overwriting original return address) */
106 pushq
%rdi
/* pt_regs->di */
107 pushq
%rsi
/* pt_regs->si */
109 pushq
\rdx
/* pt_regs->dx */
110 pushq
%rcx
/* pt_regs->cx */
111 pushq
\rax
/* pt_regs->ax */
112 pushq
%r8
/* pt_regs->r8 */
113 pushq
%r9
/* pt_regs->r9 */
114 pushq
%r10
/* pt_regs->r10 */
115 pushq
%r11
/* pt_regs->r11 */
116 pushq
%rbx
/* pt_regs->rbx */
117 pushq
%rbp
/* pt_regs->rbp */
118 pushq
%r12
/* pt_regs->r12 */
119 pushq
%r13
/* pt_regs->r13 */
120 pushq
%r14
/* pt_regs->r14 */
121 pushq
%r15
/* pt_regs->r15 */
125 pushq
%rsi
/* return address on top of stack */
129 * Sanitize registers of values that a speculation attack might
130 * otherwise want to exploit. The lower registers are likely clobbered
131 * well before they could be put to use in a speculative execution
134 xorl
%edx
, %edx
/* nospec dx */
135 xorl
%ecx
, %ecx
/* nospec cx */
136 xorl
%r8d
, %r8d
/* nospec r8 */
137 xorl
%r9d
, %r9d
/* nospec r9 */
138 xorl
%r10d
, %r10d
/* nospec r10 */
139 xorl
%r11d
, %r11d
/* nospec r11 */
140 xorl
%ebx
, %ebx
/* nospec rbx */
141 xorl
%ebp
, %ebp
/* nospec rbp */
142 xorl
%r12d
, %r12d
/* nospec r12 */
143 xorl
%r13d
, %r13d
/* nospec r13 */
144 xorl
%r14d
, %r14d
/* nospec r14 */
145 xorl
%r15d
, %r15d
/* nospec r15 */
149 .macro POP_REGS pop_rdi
=1 skip_r11rcx
=0
177 #ifdef CONFIG_PAGE_TABLE_ISOLATION
180 * PAGE_TABLE_ISOLATION PGDs are 8k. Flip bit 12 to switch between the two
183 #define PTI_USER_PGTABLE_BIT PAGE_SHIFT
184 #define PTI_USER_PGTABLE_MASK (1 << PTI_USER_PGTABLE_BIT)
185 #define PTI_USER_PCID_BIT X86_CR3_PTI_PCID_USER_BIT
186 #define PTI_USER_PCID_MASK (1 << PTI_USER_PCID_BIT)
187 #define PTI_USER_PGTABLE_AND_PCID_MASK (PTI_USER_PCID_MASK | PTI_USER_PGTABLE_MASK)
189 .macro SET_NOFLUSH_BIT reg
:req
190 bts $X86_CR3_PCID_NOFLUSH_BIT
, \reg
193 .macro ADJUST_KERNEL_CR3 reg
:req
194 ALTERNATIVE
"", "SET_NOFLUSH_BIT \reg", X86_FEATURE_PCID
195 /* Clear PCID and "PAGE_TABLE_ISOLATION bit", point CR3 at kernel pagetables: */
196 andq $
(~PTI_USER_PGTABLE_AND_PCID_MASK
), \reg
199 .macro SWITCH_TO_KERNEL_CR3 scratch_reg
:req
200 ALTERNATIVE
"jmp .Lend_\@", "", X86_FEATURE_PTI
201 mov
%cr3
, \scratch_reg
202 ADJUST_KERNEL_CR3 \scratch_reg
203 mov \scratch_reg
, %cr3
207 #define THIS_CPU_user_pcid_flush_mask \
208 PER_CPU_VAR(cpu_tlbstate) + TLB_STATE_user_pcid_flush_mask
210 .macro SWITCH_TO_USER_CR3_NOSTACK scratch_reg
:req scratch_reg2
:req
211 ALTERNATIVE
"jmp .Lend_\@", "", X86_FEATURE_PTI
212 mov
%cr3
, \scratch_reg
214 ALTERNATIVE
"jmp .Lwrcr3_\@", "", X86_FEATURE_PCID
217 * Test if the ASID needs a flush.
219 movq \scratch_reg
, \scratch_reg2
220 andq $
(0x7FF), \scratch_reg
/* mask ASID */
221 bt \scratch_reg
, THIS_CPU_user_pcid_flush_mask
224 /* Flush needed, clear the bit */
225 btr \scratch_reg
, THIS_CPU_user_pcid_flush_mask
226 movq \scratch_reg2
, \scratch_reg
230 movq \scratch_reg2
, \scratch_reg
231 SET_NOFLUSH_BIT \scratch_reg
234 /* Flip the ASID to the user version */
235 orq $
(PTI_USER_PCID_MASK
), \scratch_reg
238 /* Flip the PGD to the user version */
239 orq $
(PTI_USER_PGTABLE_MASK
), \scratch_reg
240 mov \scratch_reg
, %cr3
244 .macro SWITCH_TO_USER_CR3_STACK scratch_reg
:req
246 SWITCH_TO_USER_CR3_NOSTACK scratch_reg
=\scratch_reg scratch_reg2
=%rax
250 .macro SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg
:req save_reg
:req
251 ALTERNATIVE
"jmp .Ldone_\@", "", X86_FEATURE_PTI
252 movq
%cr3
, \scratch_reg
253 movq \scratch_reg
, \save_reg
255 * Test the user pagetable bit. If set, then the user page tables
256 * are active. If clear CR3 already has the kernel page table
259 bt $PTI_USER_PGTABLE_BIT
, \scratch_reg
262 ADJUST_KERNEL_CR3 \scratch_reg
263 movq \scratch_reg
, %cr3
268 .macro RESTORE_CR3 scratch_reg
:req save_reg
:req
269 ALTERNATIVE
"jmp .Lend_\@", "", X86_FEATURE_PTI
271 ALTERNATIVE
"jmp .Lwrcr3_\@", "", X86_FEATURE_PCID
274 * KERNEL pages can always resume with NOFLUSH as we do
277 bt $PTI_USER_PGTABLE_BIT
, \save_reg
281 * Check if there's a pending flush for the user ASID we're
284 movq \save_reg
, \scratch_reg
285 andq $
(0x7FF), \scratch_reg
286 bt \scratch_reg
, THIS_CPU_user_pcid_flush_mask
289 btr \scratch_reg
, THIS_CPU_user_pcid_flush_mask
293 SET_NOFLUSH_BIT \save_reg
297 * The CR3 write could be avoided when not changing its value,
298 * but would require a CR3 read *and* a scratch register.
304 #else /* CONFIG_PAGE_TABLE_ISOLATION=n: */
306 .macro SWITCH_TO_KERNEL_CR3 scratch_reg
:req
308 .macro SWITCH_TO_USER_CR3_NOSTACK scratch_reg
:req scratch_reg2
:req
310 .macro SWITCH_TO_USER_CR3_STACK scratch_reg
:req
312 .macro SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg
:req save_reg
:req
314 .macro RESTORE_CR3 scratch_reg
:req save_reg
:req
320 * Mitigate Spectre v1 for conditional swapgs code paths.
322 * FENCE_SWAPGS_USER_ENTRY is used in the user entry swapgs code path, to
323 * prevent a speculative swapgs when coming from kernel space.
325 * FENCE_SWAPGS_KERNEL_ENTRY is used in the kernel entry non-swapgs code path,
326 * to prevent the swapgs from getting speculatively skipped when coming from
329 .macro FENCE_SWAPGS_USER_ENTRY
330 ALTERNATIVE
"", "lfence", X86_FEATURE_FENCE_SWAPGS_USER
332 .macro FENCE_SWAPGS_KERNEL_ENTRY
333 ALTERNATIVE
"", "lfence", X86_FEATURE_FENCE_SWAPGS_KERNEL
336 .macro STACKLEAK_ERASE_NOCLOBBER
337 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
344 .macro SAVE_AND_SET_GSBASE scratch_reg
:req save_reg
:req
346 GET_PERCPU_BASE \scratch_reg
347 wrgsbase \scratch_reg
350 #else /* CONFIG_X86_64 */
351 # undef UNWIND_HINT_IRET_REGS
352 # define UNWIND_HINT_IRET_REGS
353 #endif /* !CONFIG_X86_64 */
355 .macro STACKLEAK_ERASE
356 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
364 * CPU/node NR is loaded from the limit (size) field of a special segment
365 * descriptor entry in GDT.
367 .macro LOAD_CPU_AND_NODE_SEG_LIMIT reg
:req
368 movq $__CPUNODE_SEG
, \reg
373 * Fetch the per-CPU GSBASE value for this processor and put it in @reg.
374 * We normally use %gs for accessing per-CPU data, but we are setting up
375 * %gs here and obviously can not use %gs itself to access per-CPU data.
377 * Do not use RDPID, because KVM loads guest's TSC_AUX on vm-entry and
378 * may not restore the host's value until the CPU returns to userspace.
379 * Thus the kernel would consume a guest's TSC_AUX if an NMI arrives
380 * while running KVM's run loop.
382 .macro GET_PERCPU_BASE reg
:req
383 LOAD_CPU_AND_NODE_SEG_LIMIT
\reg
384 andq $VDSO_CPUNODE_MASK
, \reg
385 movq
__per_cpu_offset(, \reg
, 8), \reg
390 .macro GET_PERCPU_BASE reg
:req
391 movq
pcpu_unit_offsets(%rip
), \reg
394 #endif /* CONFIG_SMP */