1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/perf_event.h>
3 #include <linux/types.h>
5 #include <asm/perf_event.h>
9 #include "../perf_event.h"
14 } lbr_desc
[LBR_FORMAT_MAX_KNOWN
+ 1] = {
15 [LBR_FORMAT_EIP_FLAGS
] = LBR_EIP_FLAGS
,
16 [LBR_FORMAT_EIP_FLAGS2
] = LBR_EIP_FLAGS
| LBR_TSX
,
20 * Intel LBR_SELECT bits
21 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
23 * Hardware branch filter (not available on all CPUs)
25 #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
26 #define LBR_USER_BIT 1 /* do not capture at ring > 0 */
27 #define LBR_JCC_BIT 2 /* do not capture conditional branches */
28 #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
29 #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
30 #define LBR_RETURN_BIT 5 /* do not capture near returns */
31 #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
32 #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
33 #define LBR_FAR_BIT 8 /* do not capture far branches */
34 #define LBR_CALL_STACK_BIT 9 /* enable call stack */
37 * Following bit only exists in Linux; we mask it out before writing it to
38 * the actual MSR. But it helps the constraint perf code to understand
39 * that this is a separate configuration.
41 #define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */
43 #define LBR_KERNEL (1 << LBR_KERNEL_BIT)
44 #define LBR_USER (1 << LBR_USER_BIT)
45 #define LBR_JCC (1 << LBR_JCC_BIT)
46 #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
47 #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
48 #define LBR_RETURN (1 << LBR_RETURN_BIT)
49 #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
50 #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
51 #define LBR_FAR (1 << LBR_FAR_BIT)
52 #define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
53 #define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT)
55 #define LBR_PLM (LBR_KERNEL | LBR_USER)
57 #define LBR_SEL_MASK 0x3ff /* valid bits in LBR_SELECT */
58 #define LBR_NOT_SUPP -1 /* LBR filter not supported */
59 #define LBR_IGN 0 /* ignored */
70 #define LBR_FROM_FLAG_MISPRED BIT_ULL(63)
71 #define LBR_FROM_FLAG_IN_TX BIT_ULL(62)
72 #define LBR_FROM_FLAG_ABORT BIT_ULL(61)
74 #define LBR_FROM_SIGNEXT_2MSB (BIT_ULL(60) | BIT_ULL(59))
77 * x86control flow change classification
78 * x86control flow changes include branches, interrupts, traps, faults
81 X86_BR_NONE
= 0, /* unknown */
83 X86_BR_USER
= 1 << 0, /* branch target is user */
84 X86_BR_KERNEL
= 1 << 1, /* branch target is kernel */
86 X86_BR_CALL
= 1 << 2, /* call */
87 X86_BR_RET
= 1 << 3, /* return */
88 X86_BR_SYSCALL
= 1 << 4, /* syscall */
89 X86_BR_SYSRET
= 1 << 5, /* syscall return */
90 X86_BR_INT
= 1 << 6, /* sw interrupt */
91 X86_BR_IRET
= 1 << 7, /* return from interrupt */
92 X86_BR_JCC
= 1 << 8, /* conditional */
93 X86_BR_JMP
= 1 << 9, /* jump */
94 X86_BR_IRQ
= 1 << 10,/* hw interrupt or trap or fault */
95 X86_BR_IND_CALL
= 1 << 11,/* indirect calls */
96 X86_BR_ABORT
= 1 << 12,/* transaction abort */
97 X86_BR_IN_TX
= 1 << 13,/* in transaction */
98 X86_BR_NO_TX
= 1 << 14,/* not in transaction */
99 X86_BR_ZERO_CALL
= 1 << 15,/* zero length call */
100 X86_BR_CALL_STACK
= 1 << 16,/* call stack */
101 X86_BR_IND_JMP
= 1 << 17,/* indirect jump */
103 X86_BR_TYPE_SAVE
= 1 << 18,/* indicate to save branch type */
107 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
108 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
125 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
127 #define X86_BR_ANY_CALL \
138 * Hardware branch filter for Arch LBR
140 #define ARCH_LBR_KERNEL_BIT 1 /* capture at ring0 */
141 #define ARCH_LBR_USER_BIT 2 /* capture at ring > 0 */
142 #define ARCH_LBR_CALL_STACK_BIT 3 /* enable call stack */
143 #define ARCH_LBR_JCC_BIT 16 /* capture conditional branches */
144 #define ARCH_LBR_REL_JMP_BIT 17 /* capture relative jumps */
145 #define ARCH_LBR_IND_JMP_BIT 18 /* capture indirect jumps */
146 #define ARCH_LBR_REL_CALL_BIT 19 /* capture relative calls */
147 #define ARCH_LBR_IND_CALL_BIT 20 /* capture indirect calls */
148 #define ARCH_LBR_RETURN_BIT 21 /* capture near returns */
149 #define ARCH_LBR_OTHER_BRANCH_BIT 22 /* capture other branches */
151 #define ARCH_LBR_KERNEL (1ULL << ARCH_LBR_KERNEL_BIT)
152 #define ARCH_LBR_USER (1ULL << ARCH_LBR_USER_BIT)
153 #define ARCH_LBR_CALL_STACK (1ULL << ARCH_LBR_CALL_STACK_BIT)
154 #define ARCH_LBR_JCC (1ULL << ARCH_LBR_JCC_BIT)
155 #define ARCH_LBR_REL_JMP (1ULL << ARCH_LBR_REL_JMP_BIT)
156 #define ARCH_LBR_IND_JMP (1ULL << ARCH_LBR_IND_JMP_BIT)
157 #define ARCH_LBR_REL_CALL (1ULL << ARCH_LBR_REL_CALL_BIT)
158 #define ARCH_LBR_IND_CALL (1ULL << ARCH_LBR_IND_CALL_BIT)
159 #define ARCH_LBR_RETURN (1ULL << ARCH_LBR_RETURN_BIT)
160 #define ARCH_LBR_OTHER_BRANCH (1ULL << ARCH_LBR_OTHER_BRANCH_BIT)
162 #define ARCH_LBR_ANY \
169 ARCH_LBR_OTHER_BRANCH)
171 #define ARCH_LBR_CTL_MASK 0x7f000e
173 static void intel_pmu_lbr_filter(struct cpu_hw_events
*cpuc
);
175 static __always_inline
bool is_lbr_call_stack_bit_set(u64 config
)
177 if (static_cpu_has(X86_FEATURE_ARCH_LBR
))
178 return !!(config
& ARCH_LBR_CALL_STACK
);
180 return !!(config
& LBR_CALL_STACK
);
184 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
185 * otherwise it becomes near impossible to get a reliable stack.
188 static void __intel_pmu_lbr_enable(bool pmi
)
190 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
191 u64 debugctl
, lbr_select
= 0, orig_debugctl
;
194 * No need to unfreeze manually, as v4 can do that as part
195 * of the GLOBAL_STATUS ack.
197 if (pmi
&& x86_pmu
.version
>= 4)
201 * No need to reprogram LBR_SELECT in a PMI, as it
205 lbr_select
= cpuc
->lbr_sel
->config
& x86_pmu
.lbr_sel_mask
;
206 if (!static_cpu_has(X86_FEATURE_ARCH_LBR
) && !pmi
&& cpuc
->lbr_sel
)
207 wrmsrl(MSR_LBR_SELECT
, lbr_select
);
209 rdmsrl(MSR_IA32_DEBUGCTLMSR
, debugctl
);
210 orig_debugctl
= debugctl
;
212 if (!static_cpu_has(X86_FEATURE_ARCH_LBR
))
213 debugctl
|= DEBUGCTLMSR_LBR
;
215 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
216 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
217 * may cause superfluous increase/decrease of LBR_TOS.
219 if (is_lbr_call_stack_bit_set(lbr_select
))
220 debugctl
&= ~DEBUGCTLMSR_FREEZE_LBRS_ON_PMI
;
222 debugctl
|= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI
;
224 if (orig_debugctl
!= debugctl
)
225 wrmsrl(MSR_IA32_DEBUGCTLMSR
, debugctl
);
227 if (static_cpu_has(X86_FEATURE_ARCH_LBR
))
228 wrmsrl(MSR_ARCH_LBR_CTL
, lbr_select
| ARCH_LBR_CTL_LBREN
);
231 static void __intel_pmu_lbr_disable(void)
235 if (static_cpu_has(X86_FEATURE_ARCH_LBR
)) {
236 wrmsrl(MSR_ARCH_LBR_CTL
, 0);
240 rdmsrl(MSR_IA32_DEBUGCTLMSR
, debugctl
);
241 debugctl
&= ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_FREEZE_LBRS_ON_PMI
);
242 wrmsrl(MSR_IA32_DEBUGCTLMSR
, debugctl
);
245 void intel_pmu_lbr_reset_32(void)
249 for (i
= 0; i
< x86_pmu
.lbr_nr
; i
++)
250 wrmsrl(x86_pmu
.lbr_from
+ i
, 0);
253 void intel_pmu_lbr_reset_64(void)
257 for (i
= 0; i
< x86_pmu
.lbr_nr
; i
++) {
258 wrmsrl(x86_pmu
.lbr_from
+ i
, 0);
259 wrmsrl(x86_pmu
.lbr_to
+ i
, 0);
260 if (x86_pmu
.intel_cap
.lbr_format
== LBR_FORMAT_INFO
)
261 wrmsrl(x86_pmu
.lbr_info
+ i
, 0);
265 static void intel_pmu_arch_lbr_reset(void)
267 /* Write to ARCH_LBR_DEPTH MSR, all LBR entries are reset to 0 */
268 wrmsrl(MSR_ARCH_LBR_DEPTH
, x86_pmu
.lbr_nr
);
271 void intel_pmu_lbr_reset(void)
273 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
280 cpuc
->last_task_ctx
= NULL
;
281 cpuc
->last_log_id
= 0;
285 * TOS = most recently recorded branch
287 static inline u64
intel_pmu_lbr_tos(void)
291 rdmsrl(x86_pmu
.lbr_tos
, tos
);
301 * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
302 * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
303 * TSX is not supported they have no consistent behavior:
305 * - For wrmsr(), bits 61:62 are considered part of the sign extension.
306 * - For HW updates (branch captures) bits 61:62 are always OFF and are not
307 * part of the sign extension.
311 * 1) LBR has TSX format
312 * 2) CPU has no TSX support enabled
314 * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
315 * value from rdmsr() must be converted to have a 61 bits sign extension,
316 * ignoring the TSX flags.
318 static inline bool lbr_from_signext_quirk_needed(void)
320 int lbr_format
= x86_pmu
.intel_cap
.lbr_format
;
321 bool tsx_support
= boot_cpu_has(X86_FEATURE_HLE
) ||
322 boot_cpu_has(X86_FEATURE_RTM
);
324 return !tsx_support
&& (lbr_desc
[lbr_format
] & LBR_TSX
);
327 static DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key
);
329 /* If quirk is enabled, ensure sign extension is 63 bits: */
330 inline u64
lbr_from_signext_quirk_wr(u64 val
)
332 if (static_branch_unlikely(&lbr_from_quirk_key
)) {
334 * Sign extend into bits 61:62 while preserving bit 63.
336 * Quirk is enabled when TSX is disabled. Therefore TSX bits
337 * in val are always OFF and must be changed to be sign
338 * extension bits. Since bits 59:60 are guaranteed to be
339 * part of the sign extension bits, we can just copy them
342 val
|= (LBR_FROM_SIGNEXT_2MSB
& val
) << 2;
348 * If quirk is needed, ensure sign extension is 61 bits:
350 static u64
lbr_from_signext_quirk_rd(u64 val
)
352 if (static_branch_unlikely(&lbr_from_quirk_key
)) {
354 * Quirk is on when TSX is not enabled. Therefore TSX
355 * flags must be read as OFF.
357 val
&= ~(LBR_FROM_FLAG_IN_TX
| LBR_FROM_FLAG_ABORT
);
362 static __always_inline
void wrlbr_from(unsigned int idx
, u64 val
)
364 val
= lbr_from_signext_quirk_wr(val
);
365 wrmsrl(x86_pmu
.lbr_from
+ idx
, val
);
368 static __always_inline
void wrlbr_to(unsigned int idx
, u64 val
)
370 wrmsrl(x86_pmu
.lbr_to
+ idx
, val
);
373 static __always_inline
void wrlbr_info(unsigned int idx
, u64 val
)
375 wrmsrl(x86_pmu
.lbr_info
+ idx
, val
);
378 static __always_inline u64
rdlbr_from(unsigned int idx
, struct lbr_entry
*lbr
)
385 rdmsrl(x86_pmu
.lbr_from
+ idx
, val
);
387 return lbr_from_signext_quirk_rd(val
);
390 static __always_inline u64
rdlbr_to(unsigned int idx
, struct lbr_entry
*lbr
)
397 rdmsrl(x86_pmu
.lbr_to
+ idx
, val
);
402 static __always_inline u64
rdlbr_info(unsigned int idx
, struct lbr_entry
*lbr
)
409 rdmsrl(x86_pmu
.lbr_info
+ idx
, val
);
415 wrlbr_all(struct lbr_entry
*lbr
, unsigned int idx
, bool need_info
)
417 wrlbr_from(idx
, lbr
->from
);
418 wrlbr_to(idx
, lbr
->to
);
420 wrlbr_info(idx
, lbr
->info
);
424 rdlbr_all(struct lbr_entry
*lbr
, unsigned int idx
, bool need_info
)
426 u64 from
= rdlbr_from(idx
, NULL
);
428 /* Don't read invalid entry */
433 lbr
->to
= rdlbr_to(idx
, NULL
);
435 lbr
->info
= rdlbr_info(idx
, NULL
);
440 void intel_pmu_lbr_restore(void *ctx
)
442 bool need_info
= x86_pmu
.intel_cap
.lbr_format
== LBR_FORMAT_INFO
;
443 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
444 struct x86_perf_task_context
*task_ctx
= ctx
;
446 unsigned lbr_idx
, mask
;
447 u64 tos
= task_ctx
->tos
;
449 mask
= x86_pmu
.lbr_nr
- 1;
450 for (i
= 0; i
< task_ctx
->valid_lbrs
; i
++) {
451 lbr_idx
= (tos
- i
) & mask
;
452 wrlbr_all(&task_ctx
->lbr
[i
], lbr_idx
, need_info
);
455 for (; i
< x86_pmu
.lbr_nr
; i
++) {
456 lbr_idx
= (tos
- i
) & mask
;
457 wrlbr_from(lbr_idx
, 0);
458 wrlbr_to(lbr_idx
, 0);
459 if (x86_pmu
.intel_cap
.lbr_format
== LBR_FORMAT_INFO
)
460 wrlbr_info(lbr_idx
, 0);
463 wrmsrl(x86_pmu
.lbr_tos
, tos
);
465 if (cpuc
->lbr_select
)
466 wrmsrl(MSR_LBR_SELECT
, task_ctx
->lbr_sel
);
469 static void intel_pmu_arch_lbr_restore(void *ctx
)
471 struct x86_perf_task_context_arch_lbr
*task_ctx
= ctx
;
472 struct lbr_entry
*entries
= task_ctx
->entries
;
475 /* Fast reset the LBRs before restore if the call stack is not full. */
476 if (!entries
[x86_pmu
.lbr_nr
- 1].from
)
477 intel_pmu_arch_lbr_reset();
479 for (i
= 0; i
< x86_pmu
.lbr_nr
; i
++) {
480 if (!entries
[i
].from
)
482 wrlbr_all(&entries
[i
], i
, true);
487 * Restore the Architecture LBR state from the xsave area in the perf
488 * context data for the task via the XRSTORS instruction.
490 static void intel_pmu_arch_lbr_xrstors(void *ctx
)
492 struct x86_perf_task_context_arch_lbr_xsave
*task_ctx
= ctx
;
494 copy_kernel_to_dynamic_supervisor(&task_ctx
->xsave
, XFEATURE_MASK_LBR
);
497 static __always_inline
bool lbr_is_reset_in_cstate(void *ctx
)
499 if (static_cpu_has(X86_FEATURE_ARCH_LBR
))
500 return x86_pmu
.lbr_deep_c_reset
&& !rdlbr_from(0, NULL
);
502 return !rdlbr_from(((struct x86_perf_task_context
*)ctx
)->tos
, NULL
);
505 static void __intel_pmu_lbr_restore(void *ctx
)
507 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
509 if (task_context_opt(ctx
)->lbr_callstack_users
== 0 ||
510 task_context_opt(ctx
)->lbr_stack_state
== LBR_NONE
) {
511 intel_pmu_lbr_reset();
516 * Does not restore the LBR registers, if
517 * - No one else touched them, and
518 * - Was not cleared in Cstate
520 if ((ctx
== cpuc
->last_task_ctx
) &&
521 (task_context_opt(ctx
)->log_id
== cpuc
->last_log_id
) &&
522 !lbr_is_reset_in_cstate(ctx
)) {
523 task_context_opt(ctx
)->lbr_stack_state
= LBR_NONE
;
527 x86_pmu
.lbr_restore(ctx
);
529 task_context_opt(ctx
)->lbr_stack_state
= LBR_NONE
;
532 void intel_pmu_lbr_save(void *ctx
)
534 bool need_info
= x86_pmu
.intel_cap
.lbr_format
== LBR_FORMAT_INFO
;
535 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
536 struct x86_perf_task_context
*task_ctx
= ctx
;
537 unsigned lbr_idx
, mask
;
541 mask
= x86_pmu
.lbr_nr
- 1;
542 tos
= intel_pmu_lbr_tos();
543 for (i
= 0; i
< x86_pmu
.lbr_nr
; i
++) {
544 lbr_idx
= (tos
- i
) & mask
;
545 if (!rdlbr_all(&task_ctx
->lbr
[i
], lbr_idx
, need_info
))
548 task_ctx
->valid_lbrs
= i
;
551 if (cpuc
->lbr_select
)
552 rdmsrl(MSR_LBR_SELECT
, task_ctx
->lbr_sel
);
555 static void intel_pmu_arch_lbr_save(void *ctx
)
557 struct x86_perf_task_context_arch_lbr
*task_ctx
= ctx
;
558 struct lbr_entry
*entries
= task_ctx
->entries
;
561 for (i
= 0; i
< x86_pmu
.lbr_nr
; i
++) {
562 if (!rdlbr_all(&entries
[i
], i
, true))
566 /* LBR call stack is not full. Reset is required in restore. */
567 if (i
< x86_pmu
.lbr_nr
)
568 entries
[x86_pmu
.lbr_nr
- 1].from
= 0;
572 * Save the Architecture LBR state to the xsave area in the perf
573 * context data for the task via the XSAVES instruction.
575 static void intel_pmu_arch_lbr_xsaves(void *ctx
)
577 struct x86_perf_task_context_arch_lbr_xsave
*task_ctx
= ctx
;
579 copy_dynamic_supervisor_to_kernel(&task_ctx
->xsave
, XFEATURE_MASK_LBR
);
582 static void __intel_pmu_lbr_save(void *ctx
)
584 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
586 if (task_context_opt(ctx
)->lbr_callstack_users
== 0) {
587 task_context_opt(ctx
)->lbr_stack_state
= LBR_NONE
;
591 x86_pmu
.lbr_save(ctx
);
593 task_context_opt(ctx
)->lbr_stack_state
= LBR_VALID
;
595 cpuc
->last_task_ctx
= ctx
;
596 cpuc
->last_log_id
= ++task_context_opt(ctx
)->log_id
;
599 void intel_pmu_lbr_swap_task_ctx(struct perf_event_context
*prev
,
600 struct perf_event_context
*next
)
602 void *prev_ctx_data
, *next_ctx_data
;
604 swap(prev
->task_ctx_data
, next
->task_ctx_data
);
607 * Architecture specific synchronization makes sense in
608 * case both prev->task_ctx_data and next->task_ctx_data
609 * pointers are allocated.
612 prev_ctx_data
= next
->task_ctx_data
;
613 next_ctx_data
= prev
->task_ctx_data
;
615 if (!prev_ctx_data
|| !next_ctx_data
)
618 swap(task_context_opt(prev_ctx_data
)->lbr_callstack_users
,
619 task_context_opt(next_ctx_data
)->lbr_callstack_users
);
622 void intel_pmu_lbr_sched_task(struct perf_event_context
*ctx
, bool sched_in
)
624 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
627 if (!cpuc
->lbr_users
)
631 * If LBR callstack feature is enabled and the stack was saved when
632 * the task was scheduled out, restore the stack. Otherwise flush
635 task_ctx
= ctx
? ctx
->task_ctx_data
: NULL
;
638 __intel_pmu_lbr_restore(task_ctx
);
640 __intel_pmu_lbr_save(task_ctx
);
645 * Since a context switch can flip the address space and LBR entries
646 * are not tagged with an identifier, we need to wipe the LBR, even for
647 * per-cpu events. You simply cannot resolve the branches from the old
651 intel_pmu_lbr_reset();
654 static inline bool branch_user_callstack(unsigned br_sel
)
656 return (br_sel
& X86_BR_USER
) && (br_sel
& X86_BR_CALL_STACK
);
659 void intel_pmu_lbr_add(struct perf_event
*event
)
661 struct kmem_cache
*kmem_cache
= event
->pmu
->task_ctx_cache
;
662 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
667 if (event
->hw
.flags
& PERF_X86_EVENT_LBR_SELECT
)
668 cpuc
->lbr_select
= 1;
670 cpuc
->br_sel
= event
->hw
.branch_reg
.reg
;
672 if (branch_user_callstack(cpuc
->br_sel
) && event
->ctx
->task_ctx_data
)
673 task_context_opt(event
->ctx
->task_ctx_data
)->lbr_callstack_users
++;
676 * Request pmu::sched_task() callback, which will fire inside the
677 * regular perf event scheduling, so that call will:
679 * - restore or wipe; when LBR-callstack,
682 * when this is from __perf_event_task_sched_in().
684 * However, if this is from perf_install_in_context(), no such callback
685 * will follow and we'll need to reset the LBR here if this is the
688 * The problem is, we cannot tell these cases apart... but we can
689 * exclude the biggest chunk of cases by looking at
690 * event->total_time_running. An event that has accrued runtime cannot
691 * be 'new'. Conversely, a new event can get installed through the
692 * context switch path for the first time.
694 if (x86_pmu
.intel_cap
.pebs_baseline
&& event
->attr
.precise_ip
> 0)
695 cpuc
->lbr_pebs_users
++;
696 perf_sched_cb_inc(event
->ctx
->pmu
);
697 if (!cpuc
->lbr_users
++ && !event
->total_time_running
)
698 intel_pmu_lbr_reset();
700 if (static_cpu_has(X86_FEATURE_ARCH_LBR
) &&
701 kmem_cache
&& !cpuc
->lbr_xsave
&&
702 (cpuc
->lbr_users
!= cpuc
->lbr_pebs_users
))
703 cpuc
->lbr_xsave
= kmem_cache_alloc(kmem_cache
, GFP_KERNEL
);
706 void release_lbr_buffers(void)
708 struct kmem_cache
*kmem_cache
= x86_get_pmu()->task_ctx_cache
;
709 struct cpu_hw_events
*cpuc
;
712 if (!static_cpu_has(X86_FEATURE_ARCH_LBR
))
715 for_each_possible_cpu(cpu
) {
716 cpuc
= per_cpu_ptr(&cpu_hw_events
, cpu
);
717 if (kmem_cache
&& cpuc
->lbr_xsave
) {
718 kmem_cache_free(kmem_cache
, cpuc
->lbr_xsave
);
719 cpuc
->lbr_xsave
= NULL
;
724 void intel_pmu_lbr_del(struct perf_event
*event
)
726 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
731 if (branch_user_callstack(cpuc
->br_sel
) &&
732 event
->ctx
->task_ctx_data
)
733 task_context_opt(event
->ctx
->task_ctx_data
)->lbr_callstack_users
--;
735 if (event
->hw
.flags
& PERF_X86_EVENT_LBR_SELECT
)
736 cpuc
->lbr_select
= 0;
738 if (x86_pmu
.intel_cap
.pebs_baseline
&& event
->attr
.precise_ip
> 0)
739 cpuc
->lbr_pebs_users
--;
741 WARN_ON_ONCE(cpuc
->lbr_users
< 0);
742 WARN_ON_ONCE(cpuc
->lbr_pebs_users
< 0);
743 perf_sched_cb_dec(event
->ctx
->pmu
);
746 static inline bool vlbr_exclude_host(void)
748 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
750 return test_bit(INTEL_PMC_IDX_FIXED_VLBR
,
751 (unsigned long *)&cpuc
->intel_ctrl_guest_mask
);
754 void intel_pmu_lbr_enable_all(bool pmi
)
756 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
758 if (cpuc
->lbr_users
&& !vlbr_exclude_host())
759 __intel_pmu_lbr_enable(pmi
);
762 void intel_pmu_lbr_disable_all(void)
764 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
766 if (cpuc
->lbr_users
&& !vlbr_exclude_host())
767 __intel_pmu_lbr_disable();
770 void intel_pmu_lbr_read_32(struct cpu_hw_events
*cpuc
)
772 unsigned long mask
= x86_pmu
.lbr_nr
- 1;
773 u64 tos
= intel_pmu_lbr_tos();
776 for (i
= 0; i
< x86_pmu
.lbr_nr
; i
++) {
777 unsigned long lbr_idx
= (tos
- i
) & mask
;
786 rdmsrl(x86_pmu
.lbr_from
+ lbr_idx
, msr_lastbranch
.lbr
);
788 cpuc
->lbr_entries
[i
].from
= msr_lastbranch
.from
;
789 cpuc
->lbr_entries
[i
].to
= msr_lastbranch
.to
;
790 cpuc
->lbr_entries
[i
].mispred
= 0;
791 cpuc
->lbr_entries
[i
].predicted
= 0;
792 cpuc
->lbr_entries
[i
].in_tx
= 0;
793 cpuc
->lbr_entries
[i
].abort
= 0;
794 cpuc
->lbr_entries
[i
].cycles
= 0;
795 cpuc
->lbr_entries
[i
].type
= 0;
796 cpuc
->lbr_entries
[i
].reserved
= 0;
798 cpuc
->lbr_stack
.nr
= i
;
799 cpuc
->lbr_stack
.hw_idx
= tos
;
803 * Due to lack of segmentation in Linux the effective address (offset)
804 * is the same as the linear address, allowing us to merge the LIP and EIP
807 void intel_pmu_lbr_read_64(struct cpu_hw_events
*cpuc
)
809 bool need_info
= false, call_stack
= false;
810 unsigned long mask
= x86_pmu
.lbr_nr
- 1;
811 int lbr_format
= x86_pmu
.intel_cap
.lbr_format
;
812 u64 tos
= intel_pmu_lbr_tos();
815 int num
= x86_pmu
.lbr_nr
;
818 need_info
= !(cpuc
->lbr_sel
->config
& LBR_NO_INFO
);
819 if (cpuc
->lbr_sel
->config
& LBR_CALL_STACK
)
823 for (i
= 0; i
< num
; i
++) {
824 unsigned long lbr_idx
= (tos
- i
) & mask
;
825 u64 from
, to
, mis
= 0, pred
= 0, in_tx
= 0, abort
= 0;
828 int lbr_flags
= lbr_desc
[lbr_format
];
830 from
= rdlbr_from(lbr_idx
, NULL
);
831 to
= rdlbr_to(lbr_idx
, NULL
);
834 * Read LBR call stack entries
835 * until invalid entry (0s) is detected.
837 if (call_stack
&& !from
)
840 if (lbr_format
== LBR_FORMAT_INFO
&& need_info
) {
843 info
= rdlbr_info(lbr_idx
, NULL
);
844 mis
= !!(info
& LBR_INFO_MISPRED
);
846 in_tx
= !!(info
& LBR_INFO_IN_TX
);
847 abort
= !!(info
& LBR_INFO_ABORT
);
848 cycles
= (info
& LBR_INFO_CYCLES
);
851 if (lbr_format
== LBR_FORMAT_TIME
) {
852 mis
= !!(from
& LBR_FROM_FLAG_MISPRED
);
855 cycles
= ((to
>> 48) & LBR_INFO_CYCLES
);
857 to
= (u64
)((((s64
)to
) << 16) >> 16);
860 if (lbr_flags
& LBR_EIP_FLAGS
) {
861 mis
= !!(from
& LBR_FROM_FLAG_MISPRED
);
865 if (lbr_flags
& LBR_TSX
) {
866 in_tx
= !!(from
& LBR_FROM_FLAG_IN_TX
);
867 abort
= !!(from
& LBR_FROM_FLAG_ABORT
);
870 from
= (u64
)((((s64
)from
) << skip
) >> skip
);
873 * Some CPUs report duplicated abort records,
874 * with the second entry not having an abort bit set.
875 * Skip them here. This loop runs backwards,
876 * so we need to undo the previous record.
877 * If the abort just happened outside the window
878 * the extra entry cannot be removed.
880 if (abort
&& x86_pmu
.lbr_double_abort
&& out
> 0)
883 cpuc
->lbr_entries
[out
].from
= from
;
884 cpuc
->lbr_entries
[out
].to
= to
;
885 cpuc
->lbr_entries
[out
].mispred
= mis
;
886 cpuc
->lbr_entries
[out
].predicted
= pred
;
887 cpuc
->lbr_entries
[out
].in_tx
= in_tx
;
888 cpuc
->lbr_entries
[out
].abort
= abort
;
889 cpuc
->lbr_entries
[out
].cycles
= cycles
;
890 cpuc
->lbr_entries
[out
].type
= 0;
891 cpuc
->lbr_entries
[out
].reserved
= 0;
894 cpuc
->lbr_stack
.nr
= out
;
895 cpuc
->lbr_stack
.hw_idx
= tos
;
898 static __always_inline
int get_lbr_br_type(u64 info
)
900 if (!static_cpu_has(X86_FEATURE_ARCH_LBR
) || !x86_pmu
.lbr_br_type
)
903 return (info
& LBR_INFO_BR_TYPE
) >> LBR_INFO_BR_TYPE_OFFSET
;
906 static __always_inline
bool get_lbr_mispred(u64 info
)
908 if (static_cpu_has(X86_FEATURE_ARCH_LBR
) && !x86_pmu
.lbr_mispred
)
911 return !!(info
& LBR_INFO_MISPRED
);
914 static __always_inline
bool get_lbr_predicted(u64 info
)
916 if (static_cpu_has(X86_FEATURE_ARCH_LBR
) && !x86_pmu
.lbr_mispred
)
919 return !(info
& LBR_INFO_MISPRED
);
922 static __always_inline u16
get_lbr_cycles(u64 info
)
924 if (static_cpu_has(X86_FEATURE_ARCH_LBR
) &&
925 !(x86_pmu
.lbr_timed_lbr
&& info
& LBR_INFO_CYC_CNT_VALID
))
928 return info
& LBR_INFO_CYCLES
;
931 static void intel_pmu_store_lbr(struct cpu_hw_events
*cpuc
,
932 struct lbr_entry
*entries
)
934 struct perf_branch_entry
*e
;
935 struct lbr_entry
*lbr
;
939 for (i
= 0; i
< x86_pmu
.lbr_nr
; i
++) {
940 lbr
= entries
? &entries
[i
] : NULL
;
941 e
= &cpuc
->lbr_entries
[i
];
943 from
= rdlbr_from(i
, lbr
);
945 * Read LBR entries until invalid entry (0s) is detected.
950 to
= rdlbr_to(i
, lbr
);
951 info
= rdlbr_info(i
, lbr
);
955 e
->mispred
= get_lbr_mispred(info
);
956 e
->predicted
= get_lbr_predicted(info
);
957 e
->in_tx
= !!(info
& LBR_INFO_IN_TX
);
958 e
->abort
= !!(info
& LBR_INFO_ABORT
);
959 e
->cycles
= get_lbr_cycles(info
);
960 e
->type
= get_lbr_br_type(info
);
964 cpuc
->lbr_stack
.nr
= i
;
967 static void intel_pmu_arch_lbr_read(struct cpu_hw_events
*cpuc
)
969 intel_pmu_store_lbr(cpuc
, NULL
);
972 static void intel_pmu_arch_lbr_read_xsave(struct cpu_hw_events
*cpuc
)
974 struct x86_perf_task_context_arch_lbr_xsave
*xsave
= cpuc
->lbr_xsave
;
977 intel_pmu_store_lbr(cpuc
, NULL
);
980 copy_dynamic_supervisor_to_kernel(&xsave
->xsave
, XFEATURE_MASK_LBR
);
982 intel_pmu_store_lbr(cpuc
, xsave
->lbr
.entries
);
985 void intel_pmu_lbr_read(void)
987 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
990 * Don't read when all LBRs users are using adaptive PEBS.
992 * This could be smarter and actually check the event,
993 * but this simple approach seems to work for now.
995 if (!cpuc
->lbr_users
|| vlbr_exclude_host() ||
996 cpuc
->lbr_users
== cpuc
->lbr_pebs_users
)
999 x86_pmu
.lbr_read(cpuc
);
1001 intel_pmu_lbr_filter(cpuc
);
1005 * SW filter is used:
1006 * - in case there is no HW filter
1007 * - in case the HW filter has errata or limitations
1009 static int intel_pmu_setup_sw_lbr_filter(struct perf_event
*event
)
1011 u64 br_type
= event
->attr
.branch_sample_type
;
1014 if (br_type
& PERF_SAMPLE_BRANCH_USER
)
1015 mask
|= X86_BR_USER
;
1017 if (br_type
& PERF_SAMPLE_BRANCH_KERNEL
)
1018 mask
|= X86_BR_KERNEL
;
1020 /* we ignore BRANCH_HV here */
1022 if (br_type
& PERF_SAMPLE_BRANCH_ANY
)
1025 if (br_type
& PERF_SAMPLE_BRANCH_ANY_CALL
)
1026 mask
|= X86_BR_ANY_CALL
;
1028 if (br_type
& PERF_SAMPLE_BRANCH_ANY_RETURN
)
1029 mask
|= X86_BR_RET
| X86_BR_IRET
| X86_BR_SYSRET
;
1031 if (br_type
& PERF_SAMPLE_BRANCH_IND_CALL
)
1032 mask
|= X86_BR_IND_CALL
;
1034 if (br_type
& PERF_SAMPLE_BRANCH_ABORT_TX
)
1035 mask
|= X86_BR_ABORT
;
1037 if (br_type
& PERF_SAMPLE_BRANCH_IN_TX
)
1038 mask
|= X86_BR_IN_TX
;
1040 if (br_type
& PERF_SAMPLE_BRANCH_NO_TX
)
1041 mask
|= X86_BR_NO_TX
;
1043 if (br_type
& PERF_SAMPLE_BRANCH_COND
)
1046 if (br_type
& PERF_SAMPLE_BRANCH_CALL_STACK
) {
1047 if (!x86_pmu_has_lbr_callstack())
1049 if (mask
& ~(X86_BR_USER
| X86_BR_KERNEL
))
1051 mask
|= X86_BR_CALL
| X86_BR_IND_CALL
| X86_BR_RET
|
1055 if (br_type
& PERF_SAMPLE_BRANCH_IND_JUMP
)
1056 mask
|= X86_BR_IND_JMP
;
1058 if (br_type
& PERF_SAMPLE_BRANCH_CALL
)
1059 mask
|= X86_BR_CALL
| X86_BR_ZERO_CALL
;
1061 if (br_type
& PERF_SAMPLE_BRANCH_TYPE_SAVE
)
1062 mask
|= X86_BR_TYPE_SAVE
;
1065 * stash actual user request into reg, it may
1066 * be used by fixup code for some CPU
1068 event
->hw
.branch_reg
.reg
= mask
;
1073 * setup the HW LBR filter
1074 * Used only when available, may not be enough to disambiguate
1075 * all branches, may need the help of the SW filter
1077 static int intel_pmu_setup_hw_lbr_filter(struct perf_event
*event
)
1079 struct hw_perf_event_extra
*reg
;
1080 u64 br_type
= event
->attr
.branch_sample_type
;
1084 for (i
= 0; i
< PERF_SAMPLE_BRANCH_MAX_SHIFT
; i
++) {
1085 if (!(br_type
& (1ULL << i
)))
1088 v
= x86_pmu
.lbr_sel_map
[i
];
1089 if (v
== LBR_NOT_SUPP
)
1096 reg
= &event
->hw
.branch_reg
;
1097 reg
->idx
= EXTRA_REG_LBR
;
1099 if (static_cpu_has(X86_FEATURE_ARCH_LBR
)) {
1105 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
1106 * in suppress mode. So LBR_SELECT should be set to
1107 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
1108 * But the 10th bit LBR_CALL_STACK does not operate
1111 reg
->config
= mask
^ (x86_pmu
.lbr_sel_mask
& ~LBR_CALL_STACK
);
1113 if ((br_type
& PERF_SAMPLE_BRANCH_NO_CYCLES
) &&
1114 (br_type
& PERF_SAMPLE_BRANCH_NO_FLAGS
) &&
1115 (x86_pmu
.intel_cap
.lbr_format
== LBR_FORMAT_INFO
))
1116 reg
->config
|= LBR_NO_INFO
;
1121 int intel_pmu_setup_lbr_filter(struct perf_event
*event
)
1126 * no LBR on this PMU
1128 if (!x86_pmu
.lbr_nr
)
1132 * setup SW LBR filter
1134 ret
= intel_pmu_setup_sw_lbr_filter(event
);
1139 * setup HW LBR filter, if any
1141 if (x86_pmu
.lbr_sel_map
)
1142 ret
= intel_pmu_setup_hw_lbr_filter(event
);
1148 * return the type of control flow change at address "from"
1149 * instruction is not necessarily a branch (in case of interrupt).
1151 * The branch type returned also includes the priv level of the
1152 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
1154 * If a branch type is unknown OR the instruction cannot be
1155 * decoded (e.g., text page not present), then X86_BR_NONE is
1158 static int branch_type(unsigned long from
, unsigned long to
, int abort
)
1162 int bytes_read
, bytes_left
;
1163 int ret
= X86_BR_NONE
;
1164 int ext
, to_plm
, from_plm
;
1165 u8 buf
[MAX_INSN_SIZE
];
1168 to_plm
= kernel_ip(to
) ? X86_BR_KERNEL
: X86_BR_USER
;
1169 from_plm
= kernel_ip(from
) ? X86_BR_KERNEL
: X86_BR_USER
;
1172 * maybe zero if lbr did not fill up after a reset by the time
1173 * we get a PMU interrupt
1175 if (from
== 0 || to
== 0)
1179 return X86_BR_ABORT
| to_plm
;
1181 if (from_plm
== X86_BR_USER
) {
1183 * can happen if measuring at the user level only
1184 * and we interrupt in a kernel thread, e.g., idle.
1189 /* may fail if text not present */
1190 bytes_left
= copy_from_user_nmi(buf
, (void __user
*)from
,
1192 bytes_read
= MAX_INSN_SIZE
- bytes_left
;
1199 * The LBR logs any address in the IP, even if the IP just
1200 * faulted. This means userspace can control the from address.
1201 * Ensure we don't blindy read any address by validating it is
1202 * a known text address.
1204 if (kernel_text_address(from
)) {
1205 addr
= (void *)from
;
1207 * Assume we can get the maximum possible size
1208 * when grabbing kernel data. This is not
1209 * _strictly_ true since we could possibly be
1210 * executing up next to a memory hole, but
1211 * it is very unlikely to be a problem.
1213 bytes_read
= MAX_INSN_SIZE
;
1220 * decoder needs to know the ABI especially
1221 * on 64-bit systems running 32-bit apps
1223 #ifdef CONFIG_X86_64
1224 is64
= kernel_ip((unsigned long)addr
) || any_64bit_mode(current_pt_regs());
1226 insn_init(&insn
, addr
, bytes_read
, is64
);
1227 insn_get_opcode(&insn
);
1228 if (!insn
.opcode
.got
)
1229 return X86_BR_ABORT
;
1231 switch (insn
.opcode
.bytes
[0]) {
1233 switch (insn
.opcode
.bytes
[1]) {
1234 case 0x05: /* syscall */
1235 case 0x34: /* sysenter */
1236 ret
= X86_BR_SYSCALL
;
1238 case 0x07: /* sysret */
1239 case 0x35: /* sysexit */
1240 ret
= X86_BR_SYSRET
;
1242 case 0x80 ... 0x8f: /* conditional */
1249 case 0x70 ... 0x7f: /* conditional */
1252 case 0xc2: /* near ret */
1253 case 0xc3: /* near ret */
1254 case 0xca: /* far ret */
1255 case 0xcb: /* far ret */
1258 case 0xcf: /* iret */
1261 case 0xcc ... 0xce: /* int */
1264 case 0xe8: /* call near rel */
1265 insn_get_immediate(&insn
);
1266 if (insn
.immediate1
.value
== 0) {
1267 /* zero length call */
1268 ret
= X86_BR_ZERO_CALL
;
1272 case 0x9a: /* call far absolute */
1275 case 0xe0 ... 0xe3: /* loop jmp */
1278 case 0xe9 ... 0xeb: /* jmp */
1281 case 0xff: /* call near absolute, call far absolute ind */
1282 insn_get_modrm(&insn
);
1283 ext
= (insn
.modrm
.bytes
[0] >> 3) & 0x7;
1285 case 2: /* near ind call */
1286 case 3: /* far ind call */
1287 ret
= X86_BR_IND_CALL
;
1291 ret
= X86_BR_IND_JMP
;
1299 * interrupts, traps, faults (and thus ring transition) may
1300 * occur on any instructions. Thus, to classify them correctly,
1301 * we need to first look at the from and to priv levels. If they
1302 * are different and to is in the kernel, then it indicates
1303 * a ring transition. If the from instruction is not a ring
1304 * transition instr (syscall, systenter, int), then it means
1305 * it was a irq, trap or fault.
1307 * we have no way of detecting kernel to kernel faults.
1309 if (from_plm
== X86_BR_USER
&& to_plm
== X86_BR_KERNEL
1310 && ret
!= X86_BR_SYSCALL
&& ret
!= X86_BR_INT
)
1314 * branch priv level determined by target as
1315 * is done by HW when LBR_SELECT is implemented
1317 if (ret
!= X86_BR_NONE
)
1323 #define X86_BR_TYPE_MAP_MAX 16
1325 static int branch_map
[X86_BR_TYPE_MAP_MAX
] = {
1326 PERF_BR_CALL
, /* X86_BR_CALL */
1327 PERF_BR_RET
, /* X86_BR_RET */
1328 PERF_BR_SYSCALL
, /* X86_BR_SYSCALL */
1329 PERF_BR_SYSRET
, /* X86_BR_SYSRET */
1330 PERF_BR_UNKNOWN
, /* X86_BR_INT */
1331 PERF_BR_UNKNOWN
, /* X86_BR_IRET */
1332 PERF_BR_COND
, /* X86_BR_JCC */
1333 PERF_BR_UNCOND
, /* X86_BR_JMP */
1334 PERF_BR_UNKNOWN
, /* X86_BR_IRQ */
1335 PERF_BR_IND_CALL
, /* X86_BR_IND_CALL */
1336 PERF_BR_UNKNOWN
, /* X86_BR_ABORT */
1337 PERF_BR_UNKNOWN
, /* X86_BR_IN_TX */
1338 PERF_BR_UNKNOWN
, /* X86_BR_NO_TX */
1339 PERF_BR_CALL
, /* X86_BR_ZERO_CALL */
1340 PERF_BR_UNKNOWN
, /* X86_BR_CALL_STACK */
1341 PERF_BR_IND
, /* X86_BR_IND_JMP */
1345 common_branch_type(int type
)
1349 type
>>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */
1353 if (i
< X86_BR_TYPE_MAP_MAX
)
1354 return branch_map
[i
];
1357 return PERF_BR_UNKNOWN
;
1361 ARCH_LBR_BR_TYPE_JCC
= 0,
1362 ARCH_LBR_BR_TYPE_NEAR_IND_JMP
= 1,
1363 ARCH_LBR_BR_TYPE_NEAR_REL_JMP
= 2,
1364 ARCH_LBR_BR_TYPE_NEAR_IND_CALL
= 3,
1365 ARCH_LBR_BR_TYPE_NEAR_REL_CALL
= 4,
1366 ARCH_LBR_BR_TYPE_NEAR_RET
= 5,
1367 ARCH_LBR_BR_TYPE_KNOWN_MAX
= ARCH_LBR_BR_TYPE_NEAR_RET
,
1369 ARCH_LBR_BR_TYPE_MAP_MAX
= 16,
1372 static const int arch_lbr_br_type_map
[ARCH_LBR_BR_TYPE_MAP_MAX
] = {
1373 [ARCH_LBR_BR_TYPE_JCC
] = X86_BR_JCC
,
1374 [ARCH_LBR_BR_TYPE_NEAR_IND_JMP
] = X86_BR_IND_JMP
,
1375 [ARCH_LBR_BR_TYPE_NEAR_REL_JMP
] = X86_BR_JMP
,
1376 [ARCH_LBR_BR_TYPE_NEAR_IND_CALL
] = X86_BR_IND_CALL
,
1377 [ARCH_LBR_BR_TYPE_NEAR_REL_CALL
] = X86_BR_CALL
,
1378 [ARCH_LBR_BR_TYPE_NEAR_RET
] = X86_BR_RET
,
1382 * implement actual branch filter based on user demand.
1383 * Hardware may not exactly satisfy that request, thus
1384 * we need to inspect opcodes. Mismatched branches are
1385 * discarded. Therefore, the number of branches returned
1386 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
1389 intel_pmu_lbr_filter(struct cpu_hw_events
*cpuc
)
1392 int br_sel
= cpuc
->br_sel
;
1393 int i
, j
, type
, to_plm
;
1394 bool compress
= false;
1396 /* if sampling all branches, then nothing to filter */
1397 if (((br_sel
& X86_BR_ALL
) == X86_BR_ALL
) &&
1398 ((br_sel
& X86_BR_TYPE_SAVE
) != X86_BR_TYPE_SAVE
))
1401 for (i
= 0; i
< cpuc
->lbr_stack
.nr
; i
++) {
1403 from
= cpuc
->lbr_entries
[i
].from
;
1404 to
= cpuc
->lbr_entries
[i
].to
;
1405 type
= cpuc
->lbr_entries
[i
].type
;
1408 * Parse the branch type recorded in LBR_x_INFO MSR.
1409 * Doesn't support OTHER_BRANCH decoding for now.
1410 * OTHER_BRANCH branch type still rely on software decoding.
1412 if (static_cpu_has(X86_FEATURE_ARCH_LBR
) &&
1413 type
<= ARCH_LBR_BR_TYPE_KNOWN_MAX
) {
1414 to_plm
= kernel_ip(to
) ? X86_BR_KERNEL
: X86_BR_USER
;
1415 type
= arch_lbr_br_type_map
[type
] | to_plm
;
1417 type
= branch_type(from
, to
, cpuc
->lbr_entries
[i
].abort
);
1418 if (type
!= X86_BR_NONE
&& (br_sel
& X86_BR_ANYTX
)) {
1419 if (cpuc
->lbr_entries
[i
].in_tx
)
1420 type
|= X86_BR_IN_TX
;
1422 type
|= X86_BR_NO_TX
;
1425 /* if type does not correspond, then discard */
1426 if (type
== X86_BR_NONE
|| (br_sel
& type
) != type
) {
1427 cpuc
->lbr_entries
[i
].from
= 0;
1431 if ((br_sel
& X86_BR_TYPE_SAVE
) == X86_BR_TYPE_SAVE
)
1432 cpuc
->lbr_entries
[i
].type
= common_branch_type(type
);
1438 /* remove all entries with from=0 */
1439 for (i
= 0; i
< cpuc
->lbr_stack
.nr
; ) {
1440 if (!cpuc
->lbr_entries
[i
].from
) {
1442 while (++j
< cpuc
->lbr_stack
.nr
)
1443 cpuc
->lbr_entries
[j
-1] = cpuc
->lbr_entries
[j
];
1444 cpuc
->lbr_stack
.nr
--;
1445 if (!cpuc
->lbr_entries
[i
].from
)
1452 void intel_pmu_store_pebs_lbrs(struct lbr_entry
*lbr
)
1454 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1456 /* Cannot get TOS for large PEBS and Arch LBR */
1457 if (static_cpu_has(X86_FEATURE_ARCH_LBR
) ||
1458 (cpuc
->n_pebs
== cpuc
->n_large_pebs
))
1459 cpuc
->lbr_stack
.hw_idx
= -1ULL;
1461 cpuc
->lbr_stack
.hw_idx
= intel_pmu_lbr_tos();
1463 intel_pmu_store_lbr(cpuc
, lbr
);
1464 intel_pmu_lbr_filter(cpuc
);
1468 * Map interface branch filters onto LBR filters
1470 static const int nhm_lbr_sel_map
[PERF_SAMPLE_BRANCH_MAX_SHIFT
] = {
1471 [PERF_SAMPLE_BRANCH_ANY_SHIFT
] = LBR_ANY
,
1472 [PERF_SAMPLE_BRANCH_USER_SHIFT
] = LBR_USER
,
1473 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT
] = LBR_KERNEL
,
1474 [PERF_SAMPLE_BRANCH_HV_SHIFT
] = LBR_IGN
,
1475 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT
] = LBR_RETURN
| LBR_REL_JMP
1476 | LBR_IND_JMP
| LBR_FAR
,
1478 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
1480 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT
] =
1481 LBR_REL_CALL
| LBR_IND_CALL
| LBR_REL_JMP
| LBR_IND_JMP
| LBR_FAR
,
1483 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1485 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT
] = LBR_IND_CALL
| LBR_IND_JMP
,
1486 [PERF_SAMPLE_BRANCH_COND_SHIFT
] = LBR_JCC
,
1487 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT
] = LBR_IND_JMP
,
1490 static const int snb_lbr_sel_map
[PERF_SAMPLE_BRANCH_MAX_SHIFT
] = {
1491 [PERF_SAMPLE_BRANCH_ANY_SHIFT
] = LBR_ANY
,
1492 [PERF_SAMPLE_BRANCH_USER_SHIFT
] = LBR_USER
,
1493 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT
] = LBR_KERNEL
,
1494 [PERF_SAMPLE_BRANCH_HV_SHIFT
] = LBR_IGN
,
1495 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT
] = LBR_RETURN
| LBR_FAR
,
1496 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT
] = LBR_REL_CALL
| LBR_IND_CALL
1498 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT
] = LBR_IND_CALL
,
1499 [PERF_SAMPLE_BRANCH_COND_SHIFT
] = LBR_JCC
,
1500 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT
] = LBR_IND_JMP
,
1501 [PERF_SAMPLE_BRANCH_CALL_SHIFT
] = LBR_REL_CALL
,
1504 static const int hsw_lbr_sel_map
[PERF_SAMPLE_BRANCH_MAX_SHIFT
] = {
1505 [PERF_SAMPLE_BRANCH_ANY_SHIFT
] = LBR_ANY
,
1506 [PERF_SAMPLE_BRANCH_USER_SHIFT
] = LBR_USER
,
1507 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT
] = LBR_KERNEL
,
1508 [PERF_SAMPLE_BRANCH_HV_SHIFT
] = LBR_IGN
,
1509 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT
] = LBR_RETURN
| LBR_FAR
,
1510 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT
] = LBR_REL_CALL
| LBR_IND_CALL
1512 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT
] = LBR_IND_CALL
,
1513 [PERF_SAMPLE_BRANCH_COND_SHIFT
] = LBR_JCC
,
1514 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT
] = LBR_REL_CALL
| LBR_IND_CALL
1515 | LBR_RETURN
| LBR_CALL_STACK
,
1516 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT
] = LBR_IND_JMP
,
1517 [PERF_SAMPLE_BRANCH_CALL_SHIFT
] = LBR_REL_CALL
,
1520 static int arch_lbr_ctl_map
[PERF_SAMPLE_BRANCH_MAX_SHIFT
] = {
1521 [PERF_SAMPLE_BRANCH_ANY_SHIFT
] = ARCH_LBR_ANY
,
1522 [PERF_SAMPLE_BRANCH_USER_SHIFT
] = ARCH_LBR_USER
,
1523 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT
] = ARCH_LBR_KERNEL
,
1524 [PERF_SAMPLE_BRANCH_HV_SHIFT
] = LBR_IGN
,
1525 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT
] = ARCH_LBR_RETURN
|
1526 ARCH_LBR_OTHER_BRANCH
,
1527 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT
] = ARCH_LBR_REL_CALL
|
1529 ARCH_LBR_OTHER_BRANCH
,
1530 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT
] = ARCH_LBR_IND_CALL
,
1531 [PERF_SAMPLE_BRANCH_COND_SHIFT
] = ARCH_LBR_JCC
,
1532 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT
] = ARCH_LBR_REL_CALL
|
1535 ARCH_LBR_CALL_STACK
,
1536 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT
] = ARCH_LBR_IND_JMP
,
1537 [PERF_SAMPLE_BRANCH_CALL_SHIFT
] = ARCH_LBR_REL_CALL
,
1541 void __init
intel_pmu_lbr_init_core(void)
1544 x86_pmu
.lbr_tos
= MSR_LBR_TOS
;
1545 x86_pmu
.lbr_from
= MSR_LBR_CORE_FROM
;
1546 x86_pmu
.lbr_to
= MSR_LBR_CORE_TO
;
1549 * SW branch filter usage:
1550 * - compensate for lack of HW filter
1554 /* nehalem/westmere */
1555 void __init
intel_pmu_lbr_init_nhm(void)
1557 x86_pmu
.lbr_nr
= 16;
1558 x86_pmu
.lbr_tos
= MSR_LBR_TOS
;
1559 x86_pmu
.lbr_from
= MSR_LBR_NHM_FROM
;
1560 x86_pmu
.lbr_to
= MSR_LBR_NHM_TO
;
1562 x86_pmu
.lbr_sel_mask
= LBR_SEL_MASK
;
1563 x86_pmu
.lbr_sel_map
= nhm_lbr_sel_map
;
1566 * SW branch filter usage:
1567 * - workaround LBR_SEL errata (see above)
1568 * - support syscall, sysret capture.
1569 * That requires LBR_FAR but that means far
1570 * jmp need to be filtered out
1575 void __init
intel_pmu_lbr_init_snb(void)
1577 x86_pmu
.lbr_nr
= 16;
1578 x86_pmu
.lbr_tos
= MSR_LBR_TOS
;
1579 x86_pmu
.lbr_from
= MSR_LBR_NHM_FROM
;
1580 x86_pmu
.lbr_to
= MSR_LBR_NHM_TO
;
1582 x86_pmu
.lbr_sel_mask
= LBR_SEL_MASK
;
1583 x86_pmu
.lbr_sel_map
= snb_lbr_sel_map
;
1586 * SW branch filter usage:
1587 * - support syscall, sysret capture.
1588 * That requires LBR_FAR but that means far
1589 * jmp need to be filtered out
1593 static inline struct kmem_cache
*
1594 create_lbr_kmem_cache(size_t size
, size_t align
)
1596 return kmem_cache_create("x86_lbr", size
, align
, 0, NULL
);
1600 void intel_pmu_lbr_init_hsw(void)
1602 size_t size
= sizeof(struct x86_perf_task_context
);
1604 x86_pmu
.lbr_nr
= 16;
1605 x86_pmu
.lbr_tos
= MSR_LBR_TOS
;
1606 x86_pmu
.lbr_from
= MSR_LBR_NHM_FROM
;
1607 x86_pmu
.lbr_to
= MSR_LBR_NHM_TO
;
1609 x86_pmu
.lbr_sel_mask
= LBR_SEL_MASK
;
1610 x86_pmu
.lbr_sel_map
= hsw_lbr_sel_map
;
1612 x86_get_pmu()->task_ctx_cache
= create_lbr_kmem_cache(size
, 0);
1614 if (lbr_from_signext_quirk_needed())
1615 static_branch_enable(&lbr_from_quirk_key
);
1619 __init
void intel_pmu_lbr_init_skl(void)
1621 size_t size
= sizeof(struct x86_perf_task_context
);
1623 x86_pmu
.lbr_nr
= 32;
1624 x86_pmu
.lbr_tos
= MSR_LBR_TOS
;
1625 x86_pmu
.lbr_from
= MSR_LBR_NHM_FROM
;
1626 x86_pmu
.lbr_to
= MSR_LBR_NHM_TO
;
1627 x86_pmu
.lbr_info
= MSR_LBR_INFO_0
;
1629 x86_pmu
.lbr_sel_mask
= LBR_SEL_MASK
;
1630 x86_pmu
.lbr_sel_map
= hsw_lbr_sel_map
;
1632 x86_get_pmu()->task_ctx_cache
= create_lbr_kmem_cache(size
, 0);
1635 * SW branch filter usage:
1636 * - support syscall, sysret capture.
1637 * That requires LBR_FAR but that means far
1638 * jmp need to be filtered out
1643 void __init
intel_pmu_lbr_init_atom(void)
1646 * only models starting at stepping 10 seems
1647 * to have an operational LBR which can freeze
1650 if (boot_cpu_data
.x86_model
== 28
1651 && boot_cpu_data
.x86_stepping
< 10) {
1652 pr_cont("LBR disabled due to erratum");
1657 x86_pmu
.lbr_tos
= MSR_LBR_TOS
;
1658 x86_pmu
.lbr_from
= MSR_LBR_CORE_FROM
;
1659 x86_pmu
.lbr_to
= MSR_LBR_CORE_TO
;
1662 * SW branch filter usage:
1663 * - compensate for lack of HW filter
1668 void __init
intel_pmu_lbr_init_slm(void)
1671 x86_pmu
.lbr_tos
= MSR_LBR_TOS
;
1672 x86_pmu
.lbr_from
= MSR_LBR_CORE_FROM
;
1673 x86_pmu
.lbr_to
= MSR_LBR_CORE_TO
;
1675 x86_pmu
.lbr_sel_mask
= LBR_SEL_MASK
;
1676 x86_pmu
.lbr_sel_map
= nhm_lbr_sel_map
;
1679 * SW branch filter usage:
1680 * - compensate for lack of HW filter
1682 pr_cont("8-deep LBR, ");
1685 /* Knights Landing */
1686 void intel_pmu_lbr_init_knl(void)
1689 x86_pmu
.lbr_tos
= MSR_LBR_TOS
;
1690 x86_pmu
.lbr_from
= MSR_LBR_NHM_FROM
;
1691 x86_pmu
.lbr_to
= MSR_LBR_NHM_TO
;
1693 x86_pmu
.lbr_sel_mask
= LBR_SEL_MASK
;
1694 x86_pmu
.lbr_sel_map
= snb_lbr_sel_map
;
1696 /* Knights Landing does have MISPREDICT bit */
1697 if (x86_pmu
.intel_cap
.lbr_format
== LBR_FORMAT_LIP
)
1698 x86_pmu
.intel_cap
.lbr_format
= LBR_FORMAT_EIP_FLAGS
;
1702 * LBR state size is variable based on the max number of registers.
1703 * This calculates the expected state size, which should match
1704 * what the hardware enumerates for the size of XFEATURE_LBR.
1706 static inline unsigned int get_lbr_state_size(void)
1708 return sizeof(struct arch_lbr_state
) +
1709 x86_pmu
.lbr_nr
* sizeof(struct lbr_entry
);
1712 static bool is_arch_lbr_xsave_available(void)
1714 if (!boot_cpu_has(X86_FEATURE_XSAVES
))
1718 * Check the LBR state with the corresponding software structure.
1719 * Disable LBR XSAVES support if the size doesn't match.
1721 if (WARN_ON(xfeature_size(XFEATURE_LBR
) != get_lbr_state_size()))
1727 void __init
intel_pmu_arch_lbr_init(void)
1729 struct pmu
*pmu
= x86_get_pmu();
1730 union cpuid28_eax eax
;
1731 union cpuid28_ebx ebx
;
1732 union cpuid28_ecx ecx
;
1733 unsigned int unused_edx
;
1734 bool arch_lbr_xsave
;
1738 /* Arch LBR Capabilities */
1739 cpuid(28, &eax
.full
, &ebx
.full
, &ecx
.full
, &unused_edx
);
1741 lbr_nr
= fls(eax
.split
.lbr_depth_mask
) * 8;
1743 goto clear_arch_lbr
;
1745 /* Apply the max depth of Arch LBR */
1746 if (wrmsrl_safe(MSR_ARCH_LBR_DEPTH
, lbr_nr
))
1747 goto clear_arch_lbr
;
1749 x86_pmu
.lbr_depth_mask
= eax
.split
.lbr_depth_mask
;
1750 x86_pmu
.lbr_deep_c_reset
= eax
.split
.lbr_deep_c_reset
;
1751 x86_pmu
.lbr_lip
= eax
.split
.lbr_lip
;
1752 x86_pmu
.lbr_cpl
= ebx
.split
.lbr_cpl
;
1753 x86_pmu
.lbr_filter
= ebx
.split
.lbr_filter
;
1754 x86_pmu
.lbr_call_stack
= ebx
.split
.lbr_call_stack
;
1755 x86_pmu
.lbr_mispred
= ecx
.split
.lbr_mispred
;
1756 x86_pmu
.lbr_timed_lbr
= ecx
.split
.lbr_timed_lbr
;
1757 x86_pmu
.lbr_br_type
= ecx
.split
.lbr_br_type
;
1758 x86_pmu
.lbr_nr
= lbr_nr
;
1761 arch_lbr_xsave
= is_arch_lbr_xsave_available();
1762 if (arch_lbr_xsave
) {
1763 size
= sizeof(struct x86_perf_task_context_arch_lbr_xsave
) +
1764 get_lbr_state_size();
1765 pmu
->task_ctx_cache
= create_lbr_kmem_cache(size
,
1769 if (!pmu
->task_ctx_cache
) {
1770 arch_lbr_xsave
= false;
1772 size
= sizeof(struct x86_perf_task_context_arch_lbr
) +
1773 lbr_nr
* sizeof(struct lbr_entry
);
1774 pmu
->task_ctx_cache
= create_lbr_kmem_cache(size
, 0);
1777 x86_pmu
.lbr_from
= MSR_ARCH_LBR_FROM_0
;
1778 x86_pmu
.lbr_to
= MSR_ARCH_LBR_TO_0
;
1779 x86_pmu
.lbr_info
= MSR_ARCH_LBR_INFO_0
;
1781 /* LBR callstack requires both CPL and Branch Filtering support */
1782 if (!x86_pmu
.lbr_cpl
||
1783 !x86_pmu
.lbr_filter
||
1784 !x86_pmu
.lbr_call_stack
)
1785 arch_lbr_ctl_map
[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT
] = LBR_NOT_SUPP
;
1787 if (!x86_pmu
.lbr_cpl
) {
1788 arch_lbr_ctl_map
[PERF_SAMPLE_BRANCH_USER_SHIFT
] = LBR_NOT_SUPP
;
1789 arch_lbr_ctl_map
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT
] = LBR_NOT_SUPP
;
1790 } else if (!x86_pmu
.lbr_filter
) {
1791 arch_lbr_ctl_map
[PERF_SAMPLE_BRANCH_ANY_SHIFT
] = LBR_NOT_SUPP
;
1792 arch_lbr_ctl_map
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT
] = LBR_NOT_SUPP
;
1793 arch_lbr_ctl_map
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT
] = LBR_NOT_SUPP
;
1794 arch_lbr_ctl_map
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT
] = LBR_NOT_SUPP
;
1795 arch_lbr_ctl_map
[PERF_SAMPLE_BRANCH_COND_SHIFT
] = LBR_NOT_SUPP
;
1796 arch_lbr_ctl_map
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT
] = LBR_NOT_SUPP
;
1797 arch_lbr_ctl_map
[PERF_SAMPLE_BRANCH_CALL_SHIFT
] = LBR_NOT_SUPP
;
1800 x86_pmu
.lbr_ctl_mask
= ARCH_LBR_CTL_MASK
;
1801 x86_pmu
.lbr_ctl_map
= arch_lbr_ctl_map
;
1803 if (!x86_pmu
.lbr_cpl
&& !x86_pmu
.lbr_filter
)
1804 x86_pmu
.lbr_ctl_map
= NULL
;
1806 x86_pmu
.lbr_reset
= intel_pmu_arch_lbr_reset
;
1807 if (arch_lbr_xsave
) {
1808 x86_pmu
.lbr_save
= intel_pmu_arch_lbr_xsaves
;
1809 x86_pmu
.lbr_restore
= intel_pmu_arch_lbr_xrstors
;
1810 x86_pmu
.lbr_read
= intel_pmu_arch_lbr_read_xsave
;
1813 x86_pmu
.lbr_save
= intel_pmu_arch_lbr_save
;
1814 x86_pmu
.lbr_restore
= intel_pmu_arch_lbr_restore
;
1815 x86_pmu
.lbr_read
= intel_pmu_arch_lbr_read
;
1818 pr_cont("Architectural LBR, ");
1823 clear_cpu_cap(&boot_cpu_data
, X86_FEATURE_ARCH_LBR
);
1827 * x86_perf_get_lbr - get the LBR records information
1829 * @lbr: the caller's memory to store the LBR records information
1831 * Returns: 0 indicates the LBR info has been successfully obtained
1833 int x86_perf_get_lbr(struct x86_pmu_lbr
*lbr
)
1835 int lbr_fmt
= x86_pmu
.intel_cap
.lbr_format
;
1837 lbr
->nr
= x86_pmu
.lbr_nr
;
1838 lbr
->from
= x86_pmu
.lbr_from
;
1839 lbr
->to
= x86_pmu
.lbr_to
;
1840 lbr
->info
= (lbr_fmt
== LBR_FORMAT_INFO
) ? x86_pmu
.lbr_info
: 0;
1844 EXPORT_SYMBOL_GPL(x86_perf_get_lbr
);
1846 struct event_constraint vlbr_constraint
=
1847 __EVENT_CONSTRAINT(INTEL_FIXED_VLBR_EVENT
, (1ULL << INTEL_PMC_IDX_FIXED_VLBR
),
1848 FIXED_EVENT_FLAGS
, 1, 0, PERF_X86_EVENT_LBR_SELECT
);