2 * builtin-timechart.c - make an svg timechart of system activity
4 * (C) Copyright 2009 Intel Corporation
7 * Arjan van de Ven <arjan@linux.intel.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
17 #include <traceevent/event-parse.h>
21 #include "util/util.h"
23 #include "util/color.h"
24 #include <linux/list.h>
25 #include "util/cache.h"
26 #include "util/evlist.h"
27 #include "util/evsel.h"
28 #include <linux/kernel.h>
29 #include <linux/rbtree.h>
30 #include <linux/time64.h>
31 #include "util/symbol.h"
32 #include "util/thread.h"
33 #include "util/callchain.h"
36 #include "util/header.h"
37 #include <subcmd/parse-options.h>
38 #include "util/parse-events.h"
39 #include "util/event.h"
40 #include "util/session.h"
41 #include "util/svghelper.h"
42 #include "util/tool.h"
43 #include "util/data.h"
44 #include "util/debug.h"
46 #define SUPPORT_OLD_POWER_EVENTS 1
47 #define PWR_EVENT_EXIT -1
54 struct perf_tool tool
;
55 struct per_pid
*all_data
;
56 struct power_event
*power_events
;
57 struct wake_event
*wake_events
;
60 u64 min_freq
, /* Lowest CPU frequency seen */
61 max_freq
, /* Highest CPU frequency seen */
63 first_time
, last_time
;
69 /* IO related settings */
82 * Datastructure layout:
83 * We keep an list of "pid"s, matching the kernels notion of a task struct.
84 * Each "pid" entry, has a list of "comm"s.
85 * this is because we want to track different programs different, while
86 * exec will reuse the original pid (by design).
87 * Each comm has a list of samples that will be used to draw
103 struct per_pidcomm
*all
;
104 struct per_pidcomm
*current
;
109 struct per_pidcomm
*next
;
125 struct cpu_sample
*samples
;
126 struct io_sample
*io_samples
;
129 struct sample_wrapper
{
130 struct sample_wrapper
*next
;
133 unsigned char data
[0];
137 #define TYPE_RUNNING 1
138 #define TYPE_WAITING 2
139 #define TYPE_BLOCKED 3
142 struct cpu_sample
*next
;
148 const char *backtrace
;
161 struct io_sample
*next
;
176 struct power_event
*next
;
185 struct wake_event
*next
;
189 const char *backtrace
;
192 struct process_filter
{
195 struct process_filter
*next
;
198 static struct process_filter
*process_filter
;
201 static struct per_pid
*find_create_pid(struct timechart
*tchart
, int pid
)
203 struct per_pid
*cursor
= tchart
->all_data
;
206 if (cursor
->pid
== pid
)
208 cursor
= cursor
->next
;
210 cursor
= zalloc(sizeof(*cursor
));
211 assert(cursor
!= NULL
);
213 cursor
->next
= tchart
->all_data
;
214 tchart
->all_data
= cursor
;
218 static void pid_set_comm(struct timechart
*tchart
, int pid
, char *comm
)
221 struct per_pidcomm
*c
;
222 p
= find_create_pid(tchart
, pid
);
225 if (c
->comm
&& strcmp(c
->comm
, comm
) == 0) {
230 c
->comm
= strdup(comm
);
236 c
= zalloc(sizeof(*c
));
238 c
->comm
= strdup(comm
);
244 static void pid_fork(struct timechart
*tchart
, int pid
, int ppid
, u64 timestamp
)
246 struct per_pid
*p
, *pp
;
247 p
= find_create_pid(tchart
, pid
);
248 pp
= find_create_pid(tchart
, ppid
);
250 if (pp
->current
&& pp
->current
->comm
&& !p
->current
)
251 pid_set_comm(tchart
, pid
, pp
->current
->comm
);
253 p
->start_time
= timestamp
;
254 if (p
->current
&& !p
->current
->start_time
) {
255 p
->current
->start_time
= timestamp
;
256 p
->current
->state_since
= timestamp
;
260 static void pid_exit(struct timechart
*tchart
, int pid
, u64 timestamp
)
263 p
= find_create_pid(tchart
, pid
);
264 p
->end_time
= timestamp
;
266 p
->current
->end_time
= timestamp
;
269 static void pid_put_sample(struct timechart
*tchart
, int pid
, int type
,
270 unsigned int cpu
, u64 start
, u64 end
,
271 const char *backtrace
)
274 struct per_pidcomm
*c
;
275 struct cpu_sample
*sample
;
277 p
= find_create_pid(tchart
, pid
);
280 c
= zalloc(sizeof(*c
));
287 sample
= zalloc(sizeof(*sample
));
288 assert(sample
!= NULL
);
289 sample
->start_time
= start
;
290 sample
->end_time
= end
;
292 sample
->next
= c
->samples
;
294 sample
->backtrace
= backtrace
;
297 if (sample
->type
== TYPE_RUNNING
&& end
> start
&& start
> 0) {
298 c
->total_time
+= (end
-start
);
299 p
->total_time
+= (end
-start
);
302 if (c
->start_time
== 0 || c
->start_time
> start
)
303 c
->start_time
= start
;
304 if (p
->start_time
== 0 || p
->start_time
> start
)
305 p
->start_time
= start
;
308 #define MAX_CPUS 4096
310 static u64 cpus_cstate_start_times
[MAX_CPUS
];
311 static int cpus_cstate_state
[MAX_CPUS
];
312 static u64 cpus_pstate_start_times
[MAX_CPUS
];
313 static u64 cpus_pstate_state
[MAX_CPUS
];
315 static int process_comm_event(struct perf_tool
*tool
,
316 union perf_event
*event
,
317 struct perf_sample
*sample __maybe_unused
,
318 struct machine
*machine __maybe_unused
)
320 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
321 pid_set_comm(tchart
, event
->comm
.tid
, event
->comm
.comm
);
325 static int process_fork_event(struct perf_tool
*tool
,
326 union perf_event
*event
,
327 struct perf_sample
*sample __maybe_unused
,
328 struct machine
*machine __maybe_unused
)
330 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
331 pid_fork(tchart
, event
->fork
.pid
, event
->fork
.ppid
, event
->fork
.time
);
335 static int process_exit_event(struct perf_tool
*tool
,
336 union perf_event
*event
,
337 struct perf_sample
*sample __maybe_unused
,
338 struct machine
*machine __maybe_unused
)
340 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
341 pid_exit(tchart
, event
->fork
.pid
, event
->fork
.time
);
345 #ifdef SUPPORT_OLD_POWER_EVENTS
346 static int use_old_power_events
;
349 static void c_state_start(int cpu
, u64 timestamp
, int state
)
351 cpus_cstate_start_times
[cpu
] = timestamp
;
352 cpus_cstate_state
[cpu
] = state
;
355 static void c_state_end(struct timechart
*tchart
, int cpu
, u64 timestamp
)
357 struct power_event
*pwr
= zalloc(sizeof(*pwr
));
362 pwr
->state
= cpus_cstate_state
[cpu
];
363 pwr
->start_time
= cpus_cstate_start_times
[cpu
];
364 pwr
->end_time
= timestamp
;
367 pwr
->next
= tchart
->power_events
;
369 tchart
->power_events
= pwr
;
372 static void p_state_change(struct timechart
*tchart
, int cpu
, u64 timestamp
, u64 new_freq
)
374 struct power_event
*pwr
;
376 if (new_freq
> 8000000) /* detect invalid data */
379 pwr
= zalloc(sizeof(*pwr
));
383 pwr
->state
= cpus_pstate_state
[cpu
];
384 pwr
->start_time
= cpus_pstate_start_times
[cpu
];
385 pwr
->end_time
= timestamp
;
388 pwr
->next
= tchart
->power_events
;
390 if (!pwr
->start_time
)
391 pwr
->start_time
= tchart
->first_time
;
393 tchart
->power_events
= pwr
;
395 cpus_pstate_state
[cpu
] = new_freq
;
396 cpus_pstate_start_times
[cpu
] = timestamp
;
398 if ((u64
)new_freq
> tchart
->max_freq
)
399 tchart
->max_freq
= new_freq
;
401 if (new_freq
< tchart
->min_freq
|| tchart
->min_freq
== 0)
402 tchart
->min_freq
= new_freq
;
404 if (new_freq
== tchart
->max_freq
- 1000)
405 tchart
->turbo_frequency
= tchart
->max_freq
;
408 static void sched_wakeup(struct timechart
*tchart
, int cpu
, u64 timestamp
,
409 int waker
, int wakee
, u8 flags
, const char *backtrace
)
412 struct wake_event
*we
= zalloc(sizeof(*we
));
417 we
->time
= timestamp
;
419 we
->backtrace
= backtrace
;
421 if ((flags
& TRACE_FLAG_HARDIRQ
) || (flags
& TRACE_FLAG_SOFTIRQ
))
425 we
->next
= tchart
->wake_events
;
426 tchart
->wake_events
= we
;
427 p
= find_create_pid(tchart
, we
->wakee
);
429 if (p
&& p
->current
&& p
->current
->state
== TYPE_NONE
) {
430 p
->current
->state_since
= timestamp
;
431 p
->current
->state
= TYPE_WAITING
;
433 if (p
&& p
->current
&& p
->current
->state
== TYPE_BLOCKED
) {
434 pid_put_sample(tchart
, p
->pid
, p
->current
->state
, cpu
,
435 p
->current
->state_since
, timestamp
, NULL
);
436 p
->current
->state_since
= timestamp
;
437 p
->current
->state
= TYPE_WAITING
;
441 static void sched_switch(struct timechart
*tchart
, int cpu
, u64 timestamp
,
442 int prev_pid
, int next_pid
, u64 prev_state
,
443 const char *backtrace
)
445 struct per_pid
*p
= NULL
, *prev_p
;
447 prev_p
= find_create_pid(tchart
, prev_pid
);
449 p
= find_create_pid(tchart
, next_pid
);
451 if (prev_p
->current
&& prev_p
->current
->state
!= TYPE_NONE
)
452 pid_put_sample(tchart
, prev_pid
, TYPE_RUNNING
, cpu
,
453 prev_p
->current
->state_since
, timestamp
,
455 if (p
&& p
->current
) {
456 if (p
->current
->state
!= TYPE_NONE
)
457 pid_put_sample(tchart
, next_pid
, p
->current
->state
, cpu
,
458 p
->current
->state_since
, timestamp
,
461 p
->current
->state_since
= timestamp
;
462 p
->current
->state
= TYPE_RUNNING
;
465 if (prev_p
->current
) {
466 prev_p
->current
->state
= TYPE_NONE
;
467 prev_p
->current
->state_since
= timestamp
;
469 prev_p
->current
->state
= TYPE_BLOCKED
;
471 prev_p
->current
->state
= TYPE_WAITING
;
475 static const char *cat_backtrace(union perf_event
*event
,
476 struct perf_sample
*sample
,
477 struct machine
*machine
)
479 struct addr_location al
;
483 u8 cpumode
= PERF_RECORD_MISC_USER
;
484 struct addr_location tal
;
485 struct ip_callchain
*chain
= sample
->callchain
;
486 FILE *f
= open_memstream(&p
, &p_len
);
489 perror("open_memstream error");
496 if (machine__resolve(machine
, &al
, sample
) < 0) {
497 fprintf(stderr
, "problem processing %d event, skipping it.\n",
502 for (i
= 0; i
< chain
->nr
; i
++) {
505 if (callchain_param
.order
== ORDER_CALLEE
)
508 ip
= chain
->ips
[chain
->nr
- i
- 1];
510 if (ip
>= PERF_CONTEXT_MAX
) {
512 case PERF_CONTEXT_HV
:
513 cpumode
= PERF_RECORD_MISC_HYPERVISOR
;
515 case PERF_CONTEXT_KERNEL
:
516 cpumode
= PERF_RECORD_MISC_KERNEL
;
518 case PERF_CONTEXT_USER
:
519 cpumode
= PERF_RECORD_MISC_USER
;
522 pr_debug("invalid callchain context: "
523 "%"PRId64
"\n", (s64
) ip
);
526 * It seems the callchain is corrupted.
536 thread__find_addr_location(al
.thread
, cpumode
,
537 MAP__FUNCTION
, ip
, &tal
);
540 fprintf(f
, "..... %016" PRIx64
" %s\n", ip
,
543 fprintf(f
, "..... %016" PRIx64
"\n", ip
);
546 addr_location__put(&al
);
553 typedef int (*tracepoint_handler
)(struct timechart
*tchart
,
554 struct perf_evsel
*evsel
,
555 struct perf_sample
*sample
,
556 const char *backtrace
);
558 static int process_sample_event(struct perf_tool
*tool
,
559 union perf_event
*event
,
560 struct perf_sample
*sample
,
561 struct perf_evsel
*evsel
,
562 struct machine
*machine
)
564 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
566 if (evsel
->attr
.sample_type
& PERF_SAMPLE_TIME
) {
567 if (!tchart
->first_time
|| tchart
->first_time
> sample
->time
)
568 tchart
->first_time
= sample
->time
;
569 if (tchart
->last_time
< sample
->time
)
570 tchart
->last_time
= sample
->time
;
573 if (evsel
->handler
!= NULL
) {
574 tracepoint_handler f
= evsel
->handler
;
575 return f(tchart
, evsel
, sample
,
576 cat_backtrace(event
, sample
, machine
));
583 process_sample_cpu_idle(struct timechart
*tchart __maybe_unused
,
584 struct perf_evsel
*evsel
,
585 struct perf_sample
*sample
,
586 const char *backtrace __maybe_unused
)
588 u32 state
= perf_evsel__intval(evsel
, sample
, "state");
589 u32 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
591 if (state
== (u32
)PWR_EVENT_EXIT
)
592 c_state_end(tchart
, cpu_id
, sample
->time
);
594 c_state_start(cpu_id
, sample
->time
, state
);
599 process_sample_cpu_frequency(struct timechart
*tchart
,
600 struct perf_evsel
*evsel
,
601 struct perf_sample
*sample
,
602 const char *backtrace __maybe_unused
)
604 u32 state
= perf_evsel__intval(evsel
, sample
, "state");
605 u32 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
607 p_state_change(tchart
, cpu_id
, sample
->time
, state
);
612 process_sample_sched_wakeup(struct timechart
*tchart
,
613 struct perf_evsel
*evsel
,
614 struct perf_sample
*sample
,
615 const char *backtrace
)
617 u8 flags
= perf_evsel__intval(evsel
, sample
, "common_flags");
618 int waker
= perf_evsel__intval(evsel
, sample
, "common_pid");
619 int wakee
= perf_evsel__intval(evsel
, sample
, "pid");
621 sched_wakeup(tchart
, sample
->cpu
, sample
->time
, waker
, wakee
, flags
, backtrace
);
626 process_sample_sched_switch(struct timechart
*tchart
,
627 struct perf_evsel
*evsel
,
628 struct perf_sample
*sample
,
629 const char *backtrace
)
631 int prev_pid
= perf_evsel__intval(evsel
, sample
, "prev_pid");
632 int next_pid
= perf_evsel__intval(evsel
, sample
, "next_pid");
633 u64 prev_state
= perf_evsel__intval(evsel
, sample
, "prev_state");
635 sched_switch(tchart
, sample
->cpu
, sample
->time
, prev_pid
, next_pid
,
636 prev_state
, backtrace
);
640 #ifdef SUPPORT_OLD_POWER_EVENTS
642 process_sample_power_start(struct timechart
*tchart __maybe_unused
,
643 struct perf_evsel
*evsel
,
644 struct perf_sample
*sample
,
645 const char *backtrace __maybe_unused
)
647 u64 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
648 u64 value
= perf_evsel__intval(evsel
, sample
, "value");
650 c_state_start(cpu_id
, sample
->time
, value
);
655 process_sample_power_end(struct timechart
*tchart
,
656 struct perf_evsel
*evsel __maybe_unused
,
657 struct perf_sample
*sample
,
658 const char *backtrace __maybe_unused
)
660 c_state_end(tchart
, sample
->cpu
, sample
->time
);
665 process_sample_power_frequency(struct timechart
*tchart
,
666 struct perf_evsel
*evsel
,
667 struct perf_sample
*sample
,
668 const char *backtrace __maybe_unused
)
670 u64 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
671 u64 value
= perf_evsel__intval(evsel
, sample
, "value");
673 p_state_change(tchart
, cpu_id
, sample
->time
, value
);
676 #endif /* SUPPORT_OLD_POWER_EVENTS */
679 * After the last sample we need to wrap up the current C/P state
680 * and close out each CPU for these.
682 static void end_sample_processing(struct timechart
*tchart
)
685 struct power_event
*pwr
;
687 for (cpu
= 0; cpu
<= tchart
->numcpus
; cpu
++) {
690 pwr
= zalloc(sizeof(*pwr
));
694 pwr
->state
= cpus_cstate_state
[cpu
];
695 pwr
->start_time
= cpus_cstate_start_times
[cpu
];
696 pwr
->end_time
= tchart
->last_time
;
699 pwr
->next
= tchart
->power_events
;
701 tchart
->power_events
= pwr
;
705 pwr
= zalloc(sizeof(*pwr
));
709 pwr
->state
= cpus_pstate_state
[cpu
];
710 pwr
->start_time
= cpus_pstate_start_times
[cpu
];
711 pwr
->end_time
= tchart
->last_time
;
714 pwr
->next
= tchart
->power_events
;
716 if (!pwr
->start_time
)
717 pwr
->start_time
= tchart
->first_time
;
719 pwr
->state
= tchart
->min_freq
;
720 tchart
->power_events
= pwr
;
724 static int pid_begin_io_sample(struct timechart
*tchart
, int pid
, int type
,
727 struct per_pid
*p
= find_create_pid(tchart
, pid
);
728 struct per_pidcomm
*c
= p
->current
;
729 struct io_sample
*sample
;
730 struct io_sample
*prev
;
733 c
= zalloc(sizeof(*c
));
741 prev
= c
->io_samples
;
743 if (prev
&& prev
->start_time
&& !prev
->end_time
) {
744 pr_warning("Skip invalid start event: "
745 "previous event already started!\n");
747 /* remove previous event that has been started,
748 * we are not sure we will ever get an end for it */
749 c
->io_samples
= prev
->next
;
754 sample
= zalloc(sizeof(*sample
));
757 sample
->start_time
= start
;
760 sample
->next
= c
->io_samples
;
761 c
->io_samples
= sample
;
763 if (c
->start_time
== 0 || c
->start_time
> start
)
764 c
->start_time
= start
;
769 static int pid_end_io_sample(struct timechart
*tchart
, int pid
, int type
,
772 struct per_pid
*p
= find_create_pid(tchart
, pid
);
773 struct per_pidcomm
*c
= p
->current
;
774 struct io_sample
*sample
, *prev
;
777 pr_warning("Invalid pidcomm!\n");
781 sample
= c
->io_samples
;
783 if (!sample
) /* skip partially captured events */
786 if (sample
->end_time
) {
787 pr_warning("Skip invalid end event: "
788 "previous event already ended!\n");
792 if (sample
->type
!= type
) {
793 pr_warning("Skip invalid end event: invalid event type!\n");
797 sample
->end_time
= end
;
800 /* we want to be able to see small and fast transfers, so make them
801 * at least min_time long, but don't overlap them */
802 if (sample
->end_time
- sample
->start_time
< tchart
->min_time
)
803 sample
->end_time
= sample
->start_time
+ tchart
->min_time
;
804 if (prev
&& sample
->start_time
< prev
->end_time
) {
805 if (prev
->err
) /* try to make errors more visible */
806 sample
->start_time
= prev
->end_time
;
808 prev
->end_time
= sample
->start_time
;
813 } else if (type
== IOTYPE_READ
|| type
== IOTYPE_WRITE
||
814 type
== IOTYPE_TX
|| type
== IOTYPE_RX
) {
816 if ((u64
)ret
> c
->max_bytes
)
819 c
->total_bytes
+= ret
;
820 p
->total_bytes
+= ret
;
824 /* merge two requests to make svg smaller and render-friendly */
826 prev
->type
== sample
->type
&&
827 prev
->err
== sample
->err
&&
828 prev
->fd
== sample
->fd
&&
829 prev
->end_time
+ tchart
->merge_dist
>= sample
->start_time
) {
831 sample
->bytes
+= prev
->bytes
;
832 sample
->merges
+= prev
->merges
+ 1;
834 sample
->start_time
= prev
->start_time
;
835 sample
->next
= prev
->next
;
838 if (!sample
->err
&& sample
->bytes
> c
->max_bytes
)
839 c
->max_bytes
= sample
->bytes
;
848 process_enter_read(struct timechart
*tchart
,
849 struct perf_evsel
*evsel
,
850 struct perf_sample
*sample
)
852 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
853 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_READ
,
858 process_exit_read(struct timechart
*tchart
,
859 struct perf_evsel
*evsel
,
860 struct perf_sample
*sample
)
862 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
863 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_READ
,
868 process_enter_write(struct timechart
*tchart
,
869 struct perf_evsel
*evsel
,
870 struct perf_sample
*sample
)
872 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
873 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_WRITE
,
878 process_exit_write(struct timechart
*tchart
,
879 struct perf_evsel
*evsel
,
880 struct perf_sample
*sample
)
882 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
883 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_WRITE
,
888 process_enter_sync(struct timechart
*tchart
,
889 struct perf_evsel
*evsel
,
890 struct perf_sample
*sample
)
892 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
893 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_SYNC
,
898 process_exit_sync(struct timechart
*tchart
,
899 struct perf_evsel
*evsel
,
900 struct perf_sample
*sample
)
902 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
903 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_SYNC
,
908 process_enter_tx(struct timechart
*tchart
,
909 struct perf_evsel
*evsel
,
910 struct perf_sample
*sample
)
912 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
913 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_TX
,
918 process_exit_tx(struct timechart
*tchart
,
919 struct perf_evsel
*evsel
,
920 struct perf_sample
*sample
)
922 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
923 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_TX
,
928 process_enter_rx(struct timechart
*tchart
,
929 struct perf_evsel
*evsel
,
930 struct perf_sample
*sample
)
932 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
933 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_RX
,
938 process_exit_rx(struct timechart
*tchart
,
939 struct perf_evsel
*evsel
,
940 struct perf_sample
*sample
)
942 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
943 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_RX
,
948 process_enter_poll(struct timechart
*tchart
,
949 struct perf_evsel
*evsel
,
950 struct perf_sample
*sample
)
952 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
953 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_POLL
,
958 process_exit_poll(struct timechart
*tchart
,
959 struct perf_evsel
*evsel
,
960 struct perf_sample
*sample
)
962 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
963 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_POLL
,
968 * Sort the pid datastructure
970 static void sort_pids(struct timechart
*tchart
)
972 struct per_pid
*new_list
, *p
, *cursor
, *prev
;
973 /* sort by ppid first, then by pid, lowest to highest */
977 while (tchart
->all_data
) {
978 p
= tchart
->all_data
;
979 tchart
->all_data
= p
->next
;
982 if (new_list
== NULL
) {
990 if (cursor
->ppid
> p
->ppid
||
991 (cursor
->ppid
== p
->ppid
&& cursor
->pid
> p
->pid
)) {
992 /* must insert before */
994 p
->next
= prev
->next
;
1007 cursor
= cursor
->next
;
1012 tchart
->all_data
= new_list
;
1016 static void draw_c_p_states(struct timechart
*tchart
)
1018 struct power_event
*pwr
;
1019 pwr
= tchart
->power_events
;
1022 * two pass drawing so that the P state bars are on top of the C state blocks
1025 if (pwr
->type
== CSTATE
)
1026 svg_cstate(pwr
->cpu
, pwr
->start_time
, pwr
->end_time
, pwr
->state
);
1030 pwr
= tchart
->power_events
;
1032 if (pwr
->type
== PSTATE
) {
1034 pwr
->state
= tchart
->min_freq
;
1035 svg_pstate(pwr
->cpu
, pwr
->start_time
, pwr
->end_time
, pwr
->state
);
1041 static void draw_wakeups(struct timechart
*tchart
)
1043 struct wake_event
*we
;
1045 struct per_pidcomm
*c
;
1047 we
= tchart
->wake_events
;
1049 int from
= 0, to
= 0;
1050 char *task_from
= NULL
, *task_to
= NULL
;
1052 /* locate the column of the waker and wakee */
1053 p
= tchart
->all_data
;
1055 if (p
->pid
== we
->waker
|| p
->pid
== we
->wakee
) {
1058 if (c
->Y
&& c
->start_time
<= we
->time
&& c
->end_time
>= we
->time
) {
1059 if (p
->pid
== we
->waker
&& !from
) {
1061 task_from
= strdup(c
->comm
);
1063 if (p
->pid
== we
->wakee
&& !to
) {
1065 task_to
= strdup(c
->comm
);
1072 if (p
->pid
== we
->waker
&& !from
) {
1074 task_from
= strdup(c
->comm
);
1076 if (p
->pid
== we
->wakee
&& !to
) {
1078 task_to
= strdup(c
->comm
);
1087 task_from
= malloc(40);
1088 sprintf(task_from
, "[%i]", we
->waker
);
1091 task_to
= malloc(40);
1092 sprintf(task_to
, "[%i]", we
->wakee
);
1095 if (we
->waker
== -1)
1096 svg_interrupt(we
->time
, to
, we
->backtrace
);
1097 else if (from
&& to
&& abs(from
- to
) == 1)
1098 svg_wakeline(we
->time
, from
, to
, we
->backtrace
);
1100 svg_partial_wakeline(we
->time
, from
, task_from
, to
,
1101 task_to
, we
->backtrace
);
1109 static void draw_cpu_usage(struct timechart
*tchart
)
1112 struct per_pidcomm
*c
;
1113 struct cpu_sample
*sample
;
1114 p
= tchart
->all_data
;
1118 sample
= c
->samples
;
1120 if (sample
->type
== TYPE_RUNNING
) {
1121 svg_process(sample
->cpu
,
1129 sample
= sample
->next
;
1137 static void draw_io_bars(struct timechart
*tchart
)
1143 struct per_pidcomm
*c
;
1144 struct io_sample
*sample
;
1147 p
= tchart
->all_data
;
1157 svg_box(Y
, c
->start_time
, c
->end_time
, "process3");
1158 sample
= c
->io_samples
;
1159 for (sample
= c
->io_samples
; sample
; sample
= sample
->next
) {
1160 double h
= (double)sample
->bytes
/ c
->max_bytes
;
1162 if (tchart
->skip_eagain
&&
1163 sample
->err
== -EAGAIN
)
1169 if (sample
->type
== IOTYPE_SYNC
)
1174 sample
->err
? "error" : "sync",
1178 else if (sample
->type
== IOTYPE_POLL
)
1183 sample
->err
? "error" : "poll",
1187 else if (sample
->type
== IOTYPE_READ
)
1192 sample
->err
? "error" : "disk",
1196 else if (sample
->type
== IOTYPE_WRITE
)
1201 sample
->err
? "error" : "disk",
1205 else if (sample
->type
== IOTYPE_RX
)
1210 sample
->err
? "error" : "net",
1214 else if (sample
->type
== IOTYPE_TX
)
1219 sample
->err
? "error" : "net",
1226 bytes
= c
->total_bytes
;
1228 bytes
= bytes
/ 1024;
1232 bytes
= bytes
/ 1024;
1236 bytes
= bytes
/ 1024;
1241 sprintf(comm
, "%s:%i (%3.1f %sbytes)", c
->comm
?: "", p
->pid
, bytes
, suf
);
1242 svg_text(Y
, c
->start_time
, comm
);
1252 static void draw_process_bars(struct timechart
*tchart
)
1255 struct per_pidcomm
*c
;
1256 struct cpu_sample
*sample
;
1259 Y
= 2 * tchart
->numcpus
+ 2;
1261 p
= tchart
->all_data
;
1271 svg_box(Y
, c
->start_time
, c
->end_time
, "process");
1272 sample
= c
->samples
;
1274 if (sample
->type
== TYPE_RUNNING
)
1275 svg_running(Y
, sample
->cpu
,
1279 if (sample
->type
== TYPE_BLOCKED
)
1280 svg_blocked(Y
, sample
->cpu
,
1284 if (sample
->type
== TYPE_WAITING
)
1285 svg_waiting(Y
, sample
->cpu
,
1289 sample
= sample
->next
;
1294 if (c
->total_time
> 5000000000) /* 5 seconds */
1295 sprintf(comm
, "%s:%i (%2.2fs)", c
->comm
, p
->pid
, c
->total_time
/ (double)NSEC_PER_SEC
);
1297 sprintf(comm
, "%s:%i (%3.1fms)", c
->comm
, p
->pid
, c
->total_time
/ (double)NSEC_PER_MSEC
);
1299 svg_text(Y
, c
->start_time
, comm
);
1309 static void add_process_filter(const char *string
)
1311 int pid
= strtoull(string
, NULL
, 10);
1312 struct process_filter
*filt
= malloc(sizeof(*filt
));
1317 filt
->name
= strdup(string
);
1319 filt
->next
= process_filter
;
1321 process_filter
= filt
;
1324 static int passes_filter(struct per_pid
*p
, struct per_pidcomm
*c
)
1326 struct process_filter
*filt
;
1327 if (!process_filter
)
1330 filt
= process_filter
;
1332 if (filt
->pid
&& p
->pid
== filt
->pid
)
1334 if (strcmp(filt
->name
, c
->comm
) == 0)
1341 static int determine_display_tasks_filtered(struct timechart
*tchart
)
1344 struct per_pidcomm
*c
;
1347 p
= tchart
->all_data
;
1350 if (p
->start_time
== 1)
1351 p
->start_time
= tchart
->first_time
;
1353 /* no exit marker, task kept running to the end */
1354 if (p
->end_time
== 0)
1355 p
->end_time
= tchart
->last_time
;
1362 if (c
->start_time
== 1)
1363 c
->start_time
= tchart
->first_time
;
1365 if (passes_filter(p
, c
)) {
1371 if (c
->end_time
== 0)
1372 c
->end_time
= tchart
->last_time
;
1381 static int determine_display_tasks(struct timechart
*tchart
, u64 threshold
)
1384 struct per_pidcomm
*c
;
1387 p
= tchart
->all_data
;
1390 if (p
->start_time
== 1)
1391 p
->start_time
= tchart
->first_time
;
1393 /* no exit marker, task kept running to the end */
1394 if (p
->end_time
== 0)
1395 p
->end_time
= tchart
->last_time
;
1396 if (p
->total_time
>= threshold
)
1404 if (c
->start_time
== 1)
1405 c
->start_time
= tchart
->first_time
;
1407 if (c
->total_time
>= threshold
) {
1412 if (c
->end_time
== 0)
1413 c
->end_time
= tchart
->last_time
;
1422 static int determine_display_io_tasks(struct timechart
*timechart
, u64 threshold
)
1425 struct per_pidcomm
*c
;
1428 p
= timechart
->all_data
;
1430 /* no exit marker, task kept running to the end */
1431 if (p
->end_time
== 0)
1432 p
->end_time
= timechart
->last_time
;
1439 if (c
->total_bytes
>= threshold
) {
1444 if (c
->end_time
== 0)
1445 c
->end_time
= timechart
->last_time
;
1454 #define BYTES_THRESH (1 * 1024 * 1024)
1455 #define TIME_THRESH 10000000
1457 static void write_svg_file(struct timechart
*tchart
, const char *filename
)
1461 int thresh
= tchart
->io_events
? BYTES_THRESH
: TIME_THRESH
;
1463 if (tchart
->power_only
)
1464 tchart
->proc_num
= 0;
1466 /* We'd like to show at least proc_num tasks;
1467 * be less picky if we have fewer */
1470 count
= determine_display_tasks_filtered(tchart
);
1471 else if (tchart
->io_events
)
1472 count
= determine_display_io_tasks(tchart
, thresh
);
1474 count
= determine_display_tasks(tchart
, thresh
);
1476 } while (!process_filter
&& thresh
&& count
< tchart
->proc_num
);
1478 if (!tchart
->proc_num
)
1481 if (tchart
->io_events
) {
1482 open_svg(filename
, 0, count
, tchart
->first_time
, tchart
->last_time
);
1487 draw_io_bars(tchart
);
1489 open_svg(filename
, tchart
->numcpus
, count
, tchart
->first_time
, tchart
->last_time
);
1495 for (i
= 0; i
< tchart
->numcpus
; i
++)
1496 svg_cpu_box(i
, tchart
->max_freq
, tchart
->turbo_frequency
);
1498 draw_cpu_usage(tchart
);
1499 if (tchart
->proc_num
)
1500 draw_process_bars(tchart
);
1501 if (!tchart
->tasks_only
)
1502 draw_c_p_states(tchart
);
1503 if (tchart
->proc_num
)
1504 draw_wakeups(tchart
);
1510 static int process_header(struct perf_file_section
*section __maybe_unused
,
1511 struct perf_header
*ph
,
1513 int fd __maybe_unused
,
1516 struct timechart
*tchart
= data
;
1520 tchart
->numcpus
= ph
->env
.nr_cpus_avail
;
1523 case HEADER_CPU_TOPOLOGY
:
1524 if (!tchart
->topology
)
1527 if (svg_build_topology_map(ph
->env
.sibling_cores
,
1528 ph
->env
.nr_sibling_cores
,
1529 ph
->env
.sibling_threads
,
1530 ph
->env
.nr_sibling_threads
))
1531 fprintf(stderr
, "problem building topology\n");
1541 static int __cmd_timechart(struct timechart
*tchart
, const char *output_name
)
1543 const struct perf_evsel_str_handler power_tracepoints
[] = {
1544 { "power:cpu_idle", process_sample_cpu_idle
},
1545 { "power:cpu_frequency", process_sample_cpu_frequency
},
1546 { "sched:sched_wakeup", process_sample_sched_wakeup
},
1547 { "sched:sched_switch", process_sample_sched_switch
},
1548 #ifdef SUPPORT_OLD_POWER_EVENTS
1549 { "power:power_start", process_sample_power_start
},
1550 { "power:power_end", process_sample_power_end
},
1551 { "power:power_frequency", process_sample_power_frequency
},
1554 { "syscalls:sys_enter_read", process_enter_read
},
1555 { "syscalls:sys_enter_pread64", process_enter_read
},
1556 { "syscalls:sys_enter_readv", process_enter_read
},
1557 { "syscalls:sys_enter_preadv", process_enter_read
},
1558 { "syscalls:sys_enter_write", process_enter_write
},
1559 { "syscalls:sys_enter_pwrite64", process_enter_write
},
1560 { "syscalls:sys_enter_writev", process_enter_write
},
1561 { "syscalls:sys_enter_pwritev", process_enter_write
},
1562 { "syscalls:sys_enter_sync", process_enter_sync
},
1563 { "syscalls:sys_enter_sync_file_range", process_enter_sync
},
1564 { "syscalls:sys_enter_fsync", process_enter_sync
},
1565 { "syscalls:sys_enter_msync", process_enter_sync
},
1566 { "syscalls:sys_enter_recvfrom", process_enter_rx
},
1567 { "syscalls:sys_enter_recvmmsg", process_enter_rx
},
1568 { "syscalls:sys_enter_recvmsg", process_enter_rx
},
1569 { "syscalls:sys_enter_sendto", process_enter_tx
},
1570 { "syscalls:sys_enter_sendmsg", process_enter_tx
},
1571 { "syscalls:sys_enter_sendmmsg", process_enter_tx
},
1572 { "syscalls:sys_enter_epoll_pwait", process_enter_poll
},
1573 { "syscalls:sys_enter_epoll_wait", process_enter_poll
},
1574 { "syscalls:sys_enter_poll", process_enter_poll
},
1575 { "syscalls:sys_enter_ppoll", process_enter_poll
},
1576 { "syscalls:sys_enter_pselect6", process_enter_poll
},
1577 { "syscalls:sys_enter_select", process_enter_poll
},
1579 { "syscalls:sys_exit_read", process_exit_read
},
1580 { "syscalls:sys_exit_pread64", process_exit_read
},
1581 { "syscalls:sys_exit_readv", process_exit_read
},
1582 { "syscalls:sys_exit_preadv", process_exit_read
},
1583 { "syscalls:sys_exit_write", process_exit_write
},
1584 { "syscalls:sys_exit_pwrite64", process_exit_write
},
1585 { "syscalls:sys_exit_writev", process_exit_write
},
1586 { "syscalls:sys_exit_pwritev", process_exit_write
},
1587 { "syscalls:sys_exit_sync", process_exit_sync
},
1588 { "syscalls:sys_exit_sync_file_range", process_exit_sync
},
1589 { "syscalls:sys_exit_fsync", process_exit_sync
},
1590 { "syscalls:sys_exit_msync", process_exit_sync
},
1591 { "syscalls:sys_exit_recvfrom", process_exit_rx
},
1592 { "syscalls:sys_exit_recvmmsg", process_exit_rx
},
1593 { "syscalls:sys_exit_recvmsg", process_exit_rx
},
1594 { "syscalls:sys_exit_sendto", process_exit_tx
},
1595 { "syscalls:sys_exit_sendmsg", process_exit_tx
},
1596 { "syscalls:sys_exit_sendmmsg", process_exit_tx
},
1597 { "syscalls:sys_exit_epoll_pwait", process_exit_poll
},
1598 { "syscalls:sys_exit_epoll_wait", process_exit_poll
},
1599 { "syscalls:sys_exit_poll", process_exit_poll
},
1600 { "syscalls:sys_exit_ppoll", process_exit_poll
},
1601 { "syscalls:sys_exit_pselect6", process_exit_poll
},
1602 { "syscalls:sys_exit_select", process_exit_poll
},
1604 struct perf_data data
= {
1608 .mode
= PERF_DATA_MODE_READ
,
1609 .force
= tchart
->force
,
1612 struct perf_session
*session
= perf_session__new(&data
, false,
1616 if (session
== NULL
)
1619 symbol__init(&session
->header
.env
);
1621 (void)perf_header__process_sections(&session
->header
,
1622 perf_data__fd(session
->data
),
1626 if (!perf_session__has_traces(session
, "timechart record"))
1629 if (perf_session__set_tracepoints_handlers(session
,
1630 power_tracepoints
)) {
1631 pr_err("Initializing session tracepoint handlers failed\n");
1635 ret
= perf_session__process_events(session
);
1639 end_sample_processing(tchart
);
1643 write_svg_file(tchart
, output_name
);
1645 pr_info("Written %2.1f seconds of trace to %s.\n",
1646 (tchart
->last_time
- tchart
->first_time
) / (double)NSEC_PER_SEC
, output_name
);
1648 perf_session__delete(session
);
1652 static int timechart__io_record(int argc
, const char **argv
)
1654 unsigned int rec_argc
, i
;
1655 const char **rec_argv
;
1657 char *filter
= NULL
;
1659 const char * const common_args
[] = {
1660 "record", "-a", "-R", "-c", "1",
1662 unsigned int common_args_nr
= ARRAY_SIZE(common_args
);
1664 const char * const disk_events
[] = {
1665 "syscalls:sys_enter_read",
1666 "syscalls:sys_enter_pread64",
1667 "syscalls:sys_enter_readv",
1668 "syscalls:sys_enter_preadv",
1669 "syscalls:sys_enter_write",
1670 "syscalls:sys_enter_pwrite64",
1671 "syscalls:sys_enter_writev",
1672 "syscalls:sys_enter_pwritev",
1673 "syscalls:sys_enter_sync",
1674 "syscalls:sys_enter_sync_file_range",
1675 "syscalls:sys_enter_fsync",
1676 "syscalls:sys_enter_msync",
1678 "syscalls:sys_exit_read",
1679 "syscalls:sys_exit_pread64",
1680 "syscalls:sys_exit_readv",
1681 "syscalls:sys_exit_preadv",
1682 "syscalls:sys_exit_write",
1683 "syscalls:sys_exit_pwrite64",
1684 "syscalls:sys_exit_writev",
1685 "syscalls:sys_exit_pwritev",
1686 "syscalls:sys_exit_sync",
1687 "syscalls:sys_exit_sync_file_range",
1688 "syscalls:sys_exit_fsync",
1689 "syscalls:sys_exit_msync",
1691 unsigned int disk_events_nr
= ARRAY_SIZE(disk_events
);
1693 const char * const net_events
[] = {
1694 "syscalls:sys_enter_recvfrom",
1695 "syscalls:sys_enter_recvmmsg",
1696 "syscalls:sys_enter_recvmsg",
1697 "syscalls:sys_enter_sendto",
1698 "syscalls:sys_enter_sendmsg",
1699 "syscalls:sys_enter_sendmmsg",
1701 "syscalls:sys_exit_recvfrom",
1702 "syscalls:sys_exit_recvmmsg",
1703 "syscalls:sys_exit_recvmsg",
1704 "syscalls:sys_exit_sendto",
1705 "syscalls:sys_exit_sendmsg",
1706 "syscalls:sys_exit_sendmmsg",
1708 unsigned int net_events_nr
= ARRAY_SIZE(net_events
);
1710 const char * const poll_events
[] = {
1711 "syscalls:sys_enter_epoll_pwait",
1712 "syscalls:sys_enter_epoll_wait",
1713 "syscalls:sys_enter_poll",
1714 "syscalls:sys_enter_ppoll",
1715 "syscalls:sys_enter_pselect6",
1716 "syscalls:sys_enter_select",
1718 "syscalls:sys_exit_epoll_pwait",
1719 "syscalls:sys_exit_epoll_wait",
1720 "syscalls:sys_exit_poll",
1721 "syscalls:sys_exit_ppoll",
1722 "syscalls:sys_exit_pselect6",
1723 "syscalls:sys_exit_select",
1725 unsigned int poll_events_nr
= ARRAY_SIZE(poll_events
);
1727 rec_argc
= common_args_nr
+
1728 disk_events_nr
* 4 +
1730 poll_events_nr
* 4 +
1732 rec_argv
= calloc(rec_argc
+ 1, sizeof(char *));
1734 if (rec_argv
== NULL
)
1737 if (asprintf(&filter
, "common_pid != %d", getpid()) < 0) {
1743 for (i
= 0; i
< common_args_nr
; i
++)
1744 *p
++ = strdup(common_args
[i
]);
1746 for (i
= 0; i
< disk_events_nr
; i
++) {
1747 if (!is_valid_tracepoint(disk_events
[i
])) {
1753 *p
++ = strdup(disk_events
[i
]);
1757 for (i
= 0; i
< net_events_nr
; i
++) {
1758 if (!is_valid_tracepoint(net_events
[i
])) {
1764 *p
++ = strdup(net_events
[i
]);
1768 for (i
= 0; i
< poll_events_nr
; i
++) {
1769 if (!is_valid_tracepoint(poll_events
[i
])) {
1775 *p
++ = strdup(poll_events
[i
]);
1780 for (i
= 0; i
< (unsigned int)argc
; i
++)
1783 return cmd_record(rec_argc
, rec_argv
);
1787 static int timechart__record(struct timechart
*tchart
, int argc
, const char **argv
)
1789 unsigned int rec_argc
, i
, j
;
1790 const char **rec_argv
;
1792 unsigned int record_elems
;
1794 const char * const common_args
[] = {
1795 "record", "-a", "-R", "-c", "1",
1797 unsigned int common_args_nr
= ARRAY_SIZE(common_args
);
1799 const char * const backtrace_args
[] = {
1802 unsigned int backtrace_args_no
= ARRAY_SIZE(backtrace_args
);
1804 const char * const power_args
[] = {
1805 "-e", "power:cpu_frequency",
1806 "-e", "power:cpu_idle",
1808 unsigned int power_args_nr
= ARRAY_SIZE(power_args
);
1810 const char * const old_power_args
[] = {
1811 #ifdef SUPPORT_OLD_POWER_EVENTS
1812 "-e", "power:power_start",
1813 "-e", "power:power_end",
1814 "-e", "power:power_frequency",
1817 unsigned int old_power_args_nr
= ARRAY_SIZE(old_power_args
);
1819 const char * const tasks_args
[] = {
1820 "-e", "sched:sched_wakeup",
1821 "-e", "sched:sched_switch",
1823 unsigned int tasks_args_nr
= ARRAY_SIZE(tasks_args
);
1825 #ifdef SUPPORT_OLD_POWER_EVENTS
1826 if (!is_valid_tracepoint("power:cpu_idle") &&
1827 is_valid_tracepoint("power:power_start")) {
1828 use_old_power_events
= 1;
1831 old_power_args_nr
= 0;
1835 if (tchart
->power_only
)
1838 if (tchart
->tasks_only
) {
1840 old_power_args_nr
= 0;
1843 if (!tchart
->with_backtrace
)
1844 backtrace_args_no
= 0;
1846 record_elems
= common_args_nr
+ tasks_args_nr
+
1847 power_args_nr
+ old_power_args_nr
+ backtrace_args_no
;
1849 rec_argc
= record_elems
+ argc
;
1850 rec_argv
= calloc(rec_argc
+ 1, sizeof(char *));
1852 if (rec_argv
== NULL
)
1856 for (i
= 0; i
< common_args_nr
; i
++)
1857 *p
++ = strdup(common_args
[i
]);
1859 for (i
= 0; i
< backtrace_args_no
; i
++)
1860 *p
++ = strdup(backtrace_args
[i
]);
1862 for (i
= 0; i
< tasks_args_nr
; i
++)
1863 *p
++ = strdup(tasks_args
[i
]);
1865 for (i
= 0; i
< power_args_nr
; i
++)
1866 *p
++ = strdup(power_args
[i
]);
1868 for (i
= 0; i
< old_power_args_nr
; i
++)
1869 *p
++ = strdup(old_power_args
[i
]);
1871 for (j
= 0; j
< (unsigned int)argc
; j
++)
1874 return cmd_record(rec_argc
, rec_argv
);
1878 parse_process(const struct option
*opt __maybe_unused
, const char *arg
,
1879 int __maybe_unused unset
)
1882 add_process_filter(arg
);
1887 parse_highlight(const struct option
*opt __maybe_unused
, const char *arg
,
1888 int __maybe_unused unset
)
1890 unsigned long duration
= strtoul(arg
, NULL
, 0);
1892 if (svg_highlight
|| svg_highlight_name
)
1896 svg_highlight
= duration
;
1898 svg_highlight_name
= strdup(arg
);
1904 parse_time(const struct option
*opt
, const char *arg
, int __maybe_unused unset
)
1907 u64
*value
= opt
->value
;
1909 if (sscanf(arg
, "%" PRIu64
"%cs", value
, &unit
) > 0) {
1912 *value
*= NSEC_PER_MSEC
;
1915 *value
*= NSEC_PER_USEC
;
1927 int cmd_timechart(int argc
, const char **argv
)
1929 struct timechart tchart
= {
1931 .comm
= process_comm_event
,
1932 .fork
= process_fork_event
,
1933 .exit
= process_exit_event
,
1934 .sample
= process_sample_event
,
1935 .ordered_events
= true,
1938 .min_time
= NSEC_PER_MSEC
,
1941 const char *output_name
= "output.svg";
1942 const struct option timechart_common_options
[] = {
1943 OPT_BOOLEAN('P', "power-only", &tchart
.power_only
, "output power data only"),
1944 OPT_BOOLEAN('T', "tasks-only", &tchart
.tasks_only
, "output processes data only"),
1947 const struct option timechart_options
[] = {
1948 OPT_STRING('i', "input", &input_name
, "file", "input file name"),
1949 OPT_STRING('o', "output", &output_name
, "file", "output file name"),
1950 OPT_INTEGER('w', "width", &svg_page_width
, "page width"),
1951 OPT_CALLBACK(0, "highlight", NULL
, "duration or task name",
1952 "highlight tasks. Pass duration in ns or process name.",
1954 OPT_CALLBACK('p', "process", NULL
, "process",
1955 "process selector. Pass a pid or process name.",
1957 OPT_CALLBACK(0, "symfs", NULL
, "directory",
1958 "Look for files with symbols relative to this directory",
1959 symbol__config_symfs
),
1960 OPT_INTEGER('n', "proc-num", &tchart
.proc_num
,
1961 "min. number of tasks to print"),
1962 OPT_BOOLEAN('t', "topology", &tchart
.topology
,
1963 "sort CPUs according to topology"),
1964 OPT_BOOLEAN(0, "io-skip-eagain", &tchart
.skip_eagain
,
1965 "skip EAGAIN errors"),
1966 OPT_CALLBACK(0, "io-min-time", &tchart
.min_time
, "time",
1967 "all IO faster than min-time will visually appear longer",
1969 OPT_CALLBACK(0, "io-merge-dist", &tchart
.merge_dist
, "time",
1970 "merge events that are merge-dist us apart",
1972 OPT_BOOLEAN('f', "force", &tchart
.force
, "don't complain, do it"),
1973 OPT_PARENT(timechart_common_options
),
1975 const char * const timechart_subcommands
[] = { "record", NULL
};
1976 const char *timechart_usage
[] = {
1977 "perf timechart [<options>] {record}",
1980 const struct option timechart_record_options
[] = {
1981 OPT_BOOLEAN('I', "io-only", &tchart
.io_only
,
1982 "record only IO data"),
1983 OPT_BOOLEAN('g', "callchain", &tchart
.with_backtrace
, "record callchain"),
1984 OPT_PARENT(timechart_common_options
),
1986 const char * const timechart_record_usage
[] = {
1987 "perf timechart record [<options>]",
1990 argc
= parse_options_subcommand(argc
, argv
, timechart_options
, timechart_subcommands
,
1991 timechart_usage
, PARSE_OPT_STOP_AT_NON_OPTION
);
1993 if (tchart
.power_only
&& tchart
.tasks_only
) {
1994 pr_err("-P and -T options cannot be used at the same time.\n");
1998 if (argc
&& !strncmp(argv
[0], "rec", 3)) {
1999 argc
= parse_options(argc
, argv
, timechart_record_options
,
2000 timechart_record_usage
,
2001 PARSE_OPT_STOP_AT_NON_OPTION
);
2003 if (tchart
.power_only
&& tchart
.tasks_only
) {
2004 pr_err("-P and -T options cannot be used at the same time.\n");
2009 return timechart__io_record(argc
, argv
);
2011 return timechart__record(&tchart
, argc
, argv
);
2013 usage_with_options(timechart_usage
, timechart_options
);
2017 return __cmd_timechart(&tchart
, output_name
);