2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
27 #include <linux/refcount.h>
29 #define DM_MSG_PREFIX "core"
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
38 static const char *_name
= DM_NAME
;
40 static unsigned int major
= 0;
41 static unsigned int _major
= 0;
43 static DEFINE_IDR(_minor_idr
);
45 static DEFINE_SPINLOCK(_minor_lock
);
47 static void do_deferred_remove(struct work_struct
*w
);
49 static DECLARE_WORK(deferred_remove_work
, do_deferred_remove
);
51 static struct workqueue_struct
*deferred_remove_workqueue
;
53 atomic_t dm_global_event_nr
= ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq
);
56 void dm_issue_global_event(void)
58 atomic_inc(&dm_global_event_nr
);
59 wake_up(&dm_global_eventq
);
63 * One of these is allocated (on-stack) per original bio.
70 unsigned sector_count
;
74 * One of these is allocated per clone bio.
76 #define DM_TIO_MAGIC 7282014
81 unsigned target_bio_nr
;
88 * One of these is allocated per original bio.
89 * It contains the first clone used for that original.
91 #define DM_IO_MAGIC 5191977
94 struct mapped_device
*md
;
98 unsigned long start_time
;
99 spinlock_t endio_lock
;
100 struct dm_stats_aux stats_aux
;
101 /* last member of dm_target_io is 'struct bio' */
102 struct dm_target_io tio
;
105 void *dm_per_bio_data(struct bio
*bio
, size_t data_size
)
107 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
108 if (!tio
->inside_dm_io
)
109 return (char *)bio
- offsetof(struct dm_target_io
, clone
) - data_size
;
110 return (char *)bio
- offsetof(struct dm_target_io
, clone
) - offsetof(struct dm_io
, tio
) - data_size
;
112 EXPORT_SYMBOL_GPL(dm_per_bio_data
);
114 struct bio
*dm_bio_from_per_bio_data(void *data
, size_t data_size
)
116 struct dm_io
*io
= (struct dm_io
*)((char *)data
+ data_size
);
117 if (io
->magic
== DM_IO_MAGIC
)
118 return (struct bio
*)((char *)io
+ offsetof(struct dm_io
, tio
) + offsetof(struct dm_target_io
, clone
));
119 BUG_ON(io
->magic
!= DM_TIO_MAGIC
);
120 return (struct bio
*)((char *)io
+ offsetof(struct dm_target_io
, clone
));
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data
);
124 unsigned dm_bio_get_target_bio_nr(const struct bio
*bio
)
126 return container_of(bio
, struct dm_target_io
, clone
)->target_bio_nr
;
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr
);
130 #define MINOR_ALLOCED ((void *)-1)
133 * Bits for the md->flags field.
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node
= DM_NUMA_NODE
;
148 * For mempools pre-allocation at the table loading time.
150 struct dm_md_mempools
{
152 struct bio_set io_bs
;
155 struct table_device
{
156 struct list_head list
;
158 struct dm_dev dm_dev
;
162 * Bio-based DM's mempools' reserved IOs set by the user.
164 #define RESERVED_BIO_BASED_IOS 16
165 static unsigned reserved_bio_based_ios
= RESERVED_BIO_BASED_IOS
;
167 static int __dm_get_module_param_int(int *module_param
, int min
, int max
)
169 int param
= READ_ONCE(*module_param
);
170 int modified_param
= 0;
171 bool modified
= true;
174 modified_param
= min
;
175 else if (param
> max
)
176 modified_param
= max
;
181 (void)cmpxchg(module_param
, param
, modified_param
);
182 param
= modified_param
;
188 unsigned __dm_get_module_param(unsigned *module_param
,
189 unsigned def
, unsigned max
)
191 unsigned param
= READ_ONCE(*module_param
);
192 unsigned modified_param
= 0;
195 modified_param
= def
;
196 else if (param
> max
)
197 modified_param
= max
;
199 if (modified_param
) {
200 (void)cmpxchg(module_param
, param
, modified_param
);
201 param
= modified_param
;
207 unsigned dm_get_reserved_bio_based_ios(void)
209 return __dm_get_module_param(&reserved_bio_based_ios
,
210 RESERVED_BIO_BASED_IOS
, DM_RESERVED_MAX_IOS
);
212 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios
);
214 static unsigned dm_get_numa_node(void)
216 return __dm_get_module_param_int(&dm_numa_node
,
217 DM_NUMA_NODE
, num_online_nodes() - 1);
220 static int __init
local_init(void)
224 r
= dm_uevent_init();
228 deferred_remove_workqueue
= alloc_workqueue("kdmremove", WQ_UNBOUND
, 1);
229 if (!deferred_remove_workqueue
) {
231 goto out_uevent_exit
;
235 r
= register_blkdev(_major
, _name
);
237 goto out_free_workqueue
;
245 destroy_workqueue(deferred_remove_workqueue
);
252 static void local_exit(void)
254 flush_scheduled_work();
255 destroy_workqueue(deferred_remove_workqueue
);
257 unregister_blkdev(_major
, _name
);
262 DMINFO("cleaned up");
265 static int (*_inits
[])(void) __initdata
= {
276 static void (*_exits
[])(void) = {
287 static int __init
dm_init(void)
289 const int count
= ARRAY_SIZE(_inits
);
293 for (i
= 0; i
< count
; i
++) {
308 static void __exit
dm_exit(void)
310 int i
= ARRAY_SIZE(_exits
);
316 * Should be empty by this point.
318 idr_destroy(&_minor_idr
);
322 * Block device functions
324 int dm_deleting_md(struct mapped_device
*md
)
326 return test_bit(DMF_DELETING
, &md
->flags
);
329 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
331 struct mapped_device
*md
;
333 spin_lock(&_minor_lock
);
335 md
= bdev
->bd_disk
->private_data
;
339 if (test_bit(DMF_FREEING
, &md
->flags
) ||
340 dm_deleting_md(md
)) {
346 atomic_inc(&md
->open_count
);
348 spin_unlock(&_minor_lock
);
350 return md
? 0 : -ENXIO
;
353 static void dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
355 struct mapped_device
*md
;
357 spin_lock(&_minor_lock
);
359 md
= disk
->private_data
;
363 if (atomic_dec_and_test(&md
->open_count
) &&
364 (test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
)))
365 queue_work(deferred_remove_workqueue
, &deferred_remove_work
);
369 spin_unlock(&_minor_lock
);
372 int dm_open_count(struct mapped_device
*md
)
374 return atomic_read(&md
->open_count
);
378 * Guarantees nothing is using the device before it's deleted.
380 int dm_lock_for_deletion(struct mapped_device
*md
, bool mark_deferred
, bool only_deferred
)
384 spin_lock(&_minor_lock
);
386 if (dm_open_count(md
)) {
389 set_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
390 } else if (only_deferred
&& !test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
))
393 set_bit(DMF_DELETING
, &md
->flags
);
395 spin_unlock(&_minor_lock
);
400 int dm_cancel_deferred_remove(struct mapped_device
*md
)
404 spin_lock(&_minor_lock
);
406 if (test_bit(DMF_DELETING
, &md
->flags
))
409 clear_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
411 spin_unlock(&_minor_lock
);
416 static void do_deferred_remove(struct work_struct
*w
)
418 dm_deferred_remove();
421 sector_t
dm_get_size(struct mapped_device
*md
)
423 return get_capacity(md
->disk
);
426 struct request_queue
*dm_get_md_queue(struct mapped_device
*md
)
431 struct dm_stats
*dm_get_stats(struct mapped_device
*md
)
436 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
438 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
440 return dm_get_geometry(md
, geo
);
443 static int dm_blk_report_zones(struct gendisk
*disk
, sector_t sector
,
444 struct blk_zone
*zones
, unsigned int *nr_zones
,
447 #ifdef CONFIG_BLK_DEV_ZONED
448 struct mapped_device
*md
= disk
->private_data
;
449 struct dm_target
*tgt
;
450 struct dm_table
*map
;
453 if (dm_suspended_md(md
))
456 map
= dm_get_live_table(md
, &srcu_idx
);
460 tgt
= dm_table_find_target(map
, sector
);
461 if (!dm_target_is_valid(tgt
)) {
467 * If we are executing this, we already know that the block device
468 * is a zoned device and so each target should have support for that
469 * type of drive. A missing report_zones method means that the target
470 * driver has a problem.
472 if (WARN_ON(!tgt
->type
->report_zones
)) {
478 * blkdev_report_zones() will loop and call this again to cover all the
479 * zones of the target, eventually moving on to the next target.
480 * So there is no need to loop here trying to fill the entire array
483 ret
= tgt
->type
->report_zones(tgt
, sector
, zones
,
487 dm_put_live_table(md
, srcu_idx
);
494 static int dm_prepare_ioctl(struct mapped_device
*md
, int *srcu_idx
,
495 struct block_device
**bdev
)
496 __acquires(md
->io_barrier
)
498 struct dm_target
*tgt
;
499 struct dm_table
*map
;
504 map
= dm_get_live_table(md
, srcu_idx
);
505 if (!map
|| !dm_table_get_size(map
))
508 /* We only support devices that have a single target */
509 if (dm_table_get_num_targets(map
) != 1)
512 tgt
= dm_table_get_target(map
, 0);
513 if (!tgt
->type
->prepare_ioctl
)
516 if (dm_suspended_md(md
))
519 r
= tgt
->type
->prepare_ioctl(tgt
, bdev
);
520 if (r
== -ENOTCONN
&& !fatal_signal_pending(current
)) {
521 dm_put_live_table(md
, *srcu_idx
);
529 static void dm_unprepare_ioctl(struct mapped_device
*md
, int srcu_idx
)
530 __releases(md
->io_barrier
)
532 dm_put_live_table(md
, srcu_idx
);
535 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
536 unsigned int cmd
, unsigned long arg
)
538 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
541 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
547 * Target determined this ioctl is being issued against a
548 * subset of the parent bdev; require extra privileges.
550 if (!capable(CAP_SYS_RAWIO
)) {
552 "%s: sending ioctl %x to DM device without required privilege.",
559 r
= __blkdev_driver_ioctl(bdev
, mode
, cmd
, arg
);
561 dm_unprepare_ioctl(md
, srcu_idx
);
565 static void start_io_acct(struct dm_io
*io
);
567 static struct dm_io
*alloc_io(struct mapped_device
*md
, struct bio
*bio
)
570 struct dm_target_io
*tio
;
573 clone
= bio_alloc_bioset(GFP_NOIO
, 0, &md
->io_bs
);
577 tio
= container_of(clone
, struct dm_target_io
, clone
);
578 tio
->inside_dm_io
= true;
581 io
= container_of(tio
, struct dm_io
, tio
);
582 io
->magic
= DM_IO_MAGIC
;
584 atomic_set(&io
->io_count
, 1);
587 spin_lock_init(&io
->endio_lock
);
594 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
596 bio_put(&io
->tio
.clone
);
599 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
, struct dm_target
*ti
,
600 unsigned target_bio_nr
, gfp_t gfp_mask
)
602 struct dm_target_io
*tio
;
604 if (!ci
->io
->tio
.io
) {
605 /* the dm_target_io embedded in ci->io is available */
608 struct bio
*clone
= bio_alloc_bioset(gfp_mask
, 0, &ci
->io
->md
->bs
);
612 tio
= container_of(clone
, struct dm_target_io
, clone
);
613 tio
->inside_dm_io
= false;
616 tio
->magic
= DM_TIO_MAGIC
;
619 tio
->target_bio_nr
= target_bio_nr
;
624 static void free_tio(struct dm_target_io
*tio
)
626 if (tio
->inside_dm_io
)
628 bio_put(&tio
->clone
);
631 static bool md_in_flight_bios(struct mapped_device
*md
)
634 struct hd_struct
*part
= &dm_disk(md
)->part0
;
637 for_each_possible_cpu(cpu
) {
638 sum
+= part_stat_local_read_cpu(part
, in_flight
[0], cpu
);
639 sum
+= part_stat_local_read_cpu(part
, in_flight
[1], cpu
);
645 static bool md_in_flight(struct mapped_device
*md
)
647 if (queue_is_mq(md
->queue
))
648 return blk_mq_queue_inflight(md
->queue
);
650 return md_in_flight_bios(md
);
653 static void start_io_acct(struct dm_io
*io
)
655 struct mapped_device
*md
= io
->md
;
656 struct bio
*bio
= io
->orig_bio
;
658 io
->start_time
= jiffies
;
660 generic_start_io_acct(md
->queue
, bio_op(bio
), bio_sectors(bio
),
661 &dm_disk(md
)->part0
);
663 if (unlikely(dm_stats_used(&md
->stats
)))
664 dm_stats_account_io(&md
->stats
, bio_data_dir(bio
),
665 bio
->bi_iter
.bi_sector
, bio_sectors(bio
),
666 false, 0, &io
->stats_aux
);
669 static void end_io_acct(struct dm_io
*io
)
671 struct mapped_device
*md
= io
->md
;
672 struct bio
*bio
= io
->orig_bio
;
673 unsigned long duration
= jiffies
- io
->start_time
;
675 generic_end_io_acct(md
->queue
, bio_op(bio
), &dm_disk(md
)->part0
,
678 if (unlikely(dm_stats_used(&md
->stats
)))
679 dm_stats_account_io(&md
->stats
, bio_data_dir(bio
),
680 bio
->bi_iter
.bi_sector
, bio_sectors(bio
),
681 true, duration
, &io
->stats_aux
);
683 /* nudge anyone waiting on suspend queue */
684 if (unlikely(wq_has_sleeper(&md
->wait
)))
689 * Add the bio to the list of deferred io.
691 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
695 spin_lock_irqsave(&md
->deferred_lock
, flags
);
696 bio_list_add(&md
->deferred
, bio
);
697 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
698 queue_work(md
->wq
, &md
->work
);
702 * Everyone (including functions in this file), should use this
703 * function to access the md->map field, and make sure they call
704 * dm_put_live_table() when finished.
706 struct dm_table
*dm_get_live_table(struct mapped_device
*md
, int *srcu_idx
) __acquires(md
->io_barrier
)
708 *srcu_idx
= srcu_read_lock(&md
->io_barrier
);
710 return srcu_dereference(md
->map
, &md
->io_barrier
);
713 void dm_put_live_table(struct mapped_device
*md
, int srcu_idx
) __releases(md
->io_barrier
)
715 srcu_read_unlock(&md
->io_barrier
, srcu_idx
);
718 void dm_sync_table(struct mapped_device
*md
)
720 synchronize_srcu(&md
->io_barrier
);
721 synchronize_rcu_expedited();
725 * A fast alternative to dm_get_live_table/dm_put_live_table.
726 * The caller must not block between these two functions.
728 static struct dm_table
*dm_get_live_table_fast(struct mapped_device
*md
) __acquires(RCU
)
731 return rcu_dereference(md
->map
);
734 static void dm_put_live_table_fast(struct mapped_device
*md
) __releases(RCU
)
739 static char *_dm_claim_ptr
= "I belong to device-mapper";
742 * Open a table device so we can use it as a map destination.
744 static int open_table_device(struct table_device
*td
, dev_t dev
,
745 struct mapped_device
*md
)
747 struct block_device
*bdev
;
751 BUG_ON(td
->dm_dev
.bdev
);
753 bdev
= blkdev_get_by_dev(dev
, td
->dm_dev
.mode
| FMODE_EXCL
, _dm_claim_ptr
);
755 return PTR_ERR(bdev
);
757 r
= bd_link_disk_holder(bdev
, dm_disk(md
));
759 blkdev_put(bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
763 td
->dm_dev
.bdev
= bdev
;
764 td
->dm_dev
.dax_dev
= dax_get_by_host(bdev
->bd_disk
->disk_name
);
769 * Close a table device that we've been using.
771 static void close_table_device(struct table_device
*td
, struct mapped_device
*md
)
773 if (!td
->dm_dev
.bdev
)
776 bd_unlink_disk_holder(td
->dm_dev
.bdev
, dm_disk(md
));
777 blkdev_put(td
->dm_dev
.bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
778 put_dax(td
->dm_dev
.dax_dev
);
779 td
->dm_dev
.bdev
= NULL
;
780 td
->dm_dev
.dax_dev
= NULL
;
783 static struct table_device
*find_table_device(struct list_head
*l
, dev_t dev
,
786 struct table_device
*td
;
788 list_for_each_entry(td
, l
, list
)
789 if (td
->dm_dev
.bdev
->bd_dev
== dev
&& td
->dm_dev
.mode
== mode
)
795 int dm_get_table_device(struct mapped_device
*md
, dev_t dev
, fmode_t mode
,
796 struct dm_dev
**result
)
799 struct table_device
*td
;
801 mutex_lock(&md
->table_devices_lock
);
802 td
= find_table_device(&md
->table_devices
, dev
, mode
);
804 td
= kmalloc_node(sizeof(*td
), GFP_KERNEL
, md
->numa_node_id
);
806 mutex_unlock(&md
->table_devices_lock
);
810 td
->dm_dev
.mode
= mode
;
811 td
->dm_dev
.bdev
= NULL
;
813 if ((r
= open_table_device(td
, dev
, md
))) {
814 mutex_unlock(&md
->table_devices_lock
);
819 format_dev_t(td
->dm_dev
.name
, dev
);
821 refcount_set(&td
->count
, 1);
822 list_add(&td
->list
, &md
->table_devices
);
824 refcount_inc(&td
->count
);
826 mutex_unlock(&md
->table_devices_lock
);
828 *result
= &td
->dm_dev
;
831 EXPORT_SYMBOL_GPL(dm_get_table_device
);
833 void dm_put_table_device(struct mapped_device
*md
, struct dm_dev
*d
)
835 struct table_device
*td
= container_of(d
, struct table_device
, dm_dev
);
837 mutex_lock(&md
->table_devices_lock
);
838 if (refcount_dec_and_test(&td
->count
)) {
839 close_table_device(td
, md
);
843 mutex_unlock(&md
->table_devices_lock
);
845 EXPORT_SYMBOL(dm_put_table_device
);
847 static void free_table_devices(struct list_head
*devices
)
849 struct list_head
*tmp
, *next
;
851 list_for_each_safe(tmp
, next
, devices
) {
852 struct table_device
*td
= list_entry(tmp
, struct table_device
, list
);
854 DMWARN("dm_destroy: %s still exists with %d references",
855 td
->dm_dev
.name
, refcount_read(&td
->count
));
861 * Get the geometry associated with a dm device
863 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
871 * Set the geometry of a device.
873 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
875 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
877 if (geo
->start
> sz
) {
878 DMWARN("Start sector is beyond the geometry limits.");
887 static int __noflush_suspending(struct mapped_device
*md
)
889 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
893 * Decrements the number of outstanding ios that a bio has been
894 * cloned into, completing the original io if necc.
896 static void dec_pending(struct dm_io
*io
, blk_status_t error
)
899 blk_status_t io_error
;
901 struct mapped_device
*md
= io
->md
;
903 /* Push-back supersedes any I/O errors */
904 if (unlikely(error
)) {
905 spin_lock_irqsave(&io
->endio_lock
, flags
);
906 if (!(io
->status
== BLK_STS_DM_REQUEUE
&& __noflush_suspending(md
)))
908 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
911 if (atomic_dec_and_test(&io
->io_count
)) {
912 if (io
->status
== BLK_STS_DM_REQUEUE
) {
914 * Target requested pushing back the I/O.
916 spin_lock_irqsave(&md
->deferred_lock
, flags
);
917 if (__noflush_suspending(md
))
918 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
919 bio_list_add_head(&md
->deferred
, io
->orig_bio
);
921 /* noflush suspend was interrupted. */
922 io
->status
= BLK_STS_IOERR
;
923 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
926 io_error
= io
->status
;
931 if (io_error
== BLK_STS_DM_REQUEUE
)
934 if ((bio
->bi_opf
& REQ_PREFLUSH
) && bio
->bi_iter
.bi_size
) {
936 * Preflush done for flush with data, reissue
937 * without REQ_PREFLUSH.
939 bio
->bi_opf
&= ~REQ_PREFLUSH
;
942 /* done with normal IO or empty flush */
944 bio
->bi_status
= io_error
;
950 void disable_discard(struct mapped_device
*md
)
952 struct queue_limits
*limits
= dm_get_queue_limits(md
);
954 /* device doesn't really support DISCARD, disable it */
955 limits
->max_discard_sectors
= 0;
956 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
, md
->queue
);
959 void disable_write_same(struct mapped_device
*md
)
961 struct queue_limits
*limits
= dm_get_queue_limits(md
);
963 /* device doesn't really support WRITE SAME, disable it */
964 limits
->max_write_same_sectors
= 0;
967 void disable_write_zeroes(struct mapped_device
*md
)
969 struct queue_limits
*limits
= dm_get_queue_limits(md
);
971 /* device doesn't really support WRITE ZEROES, disable it */
972 limits
->max_write_zeroes_sectors
= 0;
975 static void clone_endio(struct bio
*bio
)
977 blk_status_t error
= bio
->bi_status
;
978 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
979 struct dm_io
*io
= tio
->io
;
980 struct mapped_device
*md
= tio
->io
->md
;
981 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
983 if (unlikely(error
== BLK_STS_TARGET
) && md
->type
!= DM_TYPE_NVME_BIO_BASED
) {
984 if (bio_op(bio
) == REQ_OP_DISCARD
&&
985 !bio
->bi_disk
->queue
->limits
.max_discard_sectors
)
987 else if (bio_op(bio
) == REQ_OP_WRITE_SAME
&&
988 !bio
->bi_disk
->queue
->limits
.max_write_same_sectors
)
989 disable_write_same(md
);
990 else if (bio_op(bio
) == REQ_OP_WRITE_ZEROES
&&
991 !bio
->bi_disk
->queue
->limits
.max_write_zeroes_sectors
)
992 disable_write_zeroes(md
);
996 int r
= endio(tio
->ti
, bio
, &error
);
998 case DM_ENDIO_REQUEUE
:
999 error
= BLK_STS_DM_REQUEUE
;
1003 case DM_ENDIO_INCOMPLETE
:
1004 /* The target will handle the io */
1007 DMWARN("unimplemented target endio return value: %d", r
);
1013 dec_pending(io
, error
);
1017 * Return maximum size of I/O possible at the supplied sector up to the current
1020 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
1022 sector_t target_offset
= dm_target_offset(ti
, sector
);
1024 return ti
->len
- target_offset
;
1027 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
1029 sector_t len
= max_io_len_target_boundary(sector
, ti
);
1030 sector_t offset
, max_len
;
1033 * Does the target need to split even further?
1035 if (ti
->max_io_len
) {
1036 offset
= dm_target_offset(ti
, sector
);
1037 if (unlikely(ti
->max_io_len
& (ti
->max_io_len
- 1)))
1038 max_len
= sector_div(offset
, ti
->max_io_len
);
1040 max_len
= offset
& (ti
->max_io_len
- 1);
1041 max_len
= ti
->max_io_len
- max_len
;
1050 int dm_set_target_max_io_len(struct dm_target
*ti
, sector_t len
)
1052 if (len
> UINT_MAX
) {
1053 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1054 (unsigned long long)len
, UINT_MAX
);
1055 ti
->error
= "Maximum size of target IO is too large";
1059 ti
->max_io_len
= (uint32_t) len
;
1063 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len
);
1065 static struct dm_target
*dm_dax_get_live_target(struct mapped_device
*md
,
1066 sector_t sector
, int *srcu_idx
)
1067 __acquires(md
->io_barrier
)
1069 struct dm_table
*map
;
1070 struct dm_target
*ti
;
1072 map
= dm_get_live_table(md
, srcu_idx
);
1076 ti
= dm_table_find_target(map
, sector
);
1077 if (!dm_target_is_valid(ti
))
1083 static long dm_dax_direct_access(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1084 long nr_pages
, void **kaddr
, pfn_t
*pfn
)
1086 struct mapped_device
*md
= dax_get_private(dax_dev
);
1087 sector_t sector
= pgoff
* PAGE_SECTORS
;
1088 struct dm_target
*ti
;
1089 long len
, ret
= -EIO
;
1092 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1096 if (!ti
->type
->direct_access
)
1098 len
= max_io_len(sector
, ti
) / PAGE_SECTORS
;
1101 nr_pages
= min(len
, nr_pages
);
1102 ret
= ti
->type
->direct_access(ti
, pgoff
, nr_pages
, kaddr
, pfn
);
1105 dm_put_live_table(md
, srcu_idx
);
1110 static bool dm_dax_supported(struct dax_device
*dax_dev
, struct block_device
*bdev
,
1111 int blocksize
, sector_t start
, sector_t len
)
1113 struct mapped_device
*md
= dax_get_private(dax_dev
);
1114 struct dm_table
*map
;
1118 map
= dm_get_live_table(md
, &srcu_idx
);
1122 ret
= dm_table_supports_dax(map
, blocksize
);
1124 dm_put_live_table(md
, srcu_idx
);
1129 static size_t dm_dax_copy_from_iter(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1130 void *addr
, size_t bytes
, struct iov_iter
*i
)
1132 struct mapped_device
*md
= dax_get_private(dax_dev
);
1133 sector_t sector
= pgoff
* PAGE_SECTORS
;
1134 struct dm_target
*ti
;
1138 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1142 if (!ti
->type
->dax_copy_from_iter
) {
1143 ret
= copy_from_iter(addr
, bytes
, i
);
1146 ret
= ti
->type
->dax_copy_from_iter(ti
, pgoff
, addr
, bytes
, i
);
1148 dm_put_live_table(md
, srcu_idx
);
1153 static size_t dm_dax_copy_to_iter(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1154 void *addr
, size_t bytes
, struct iov_iter
*i
)
1156 struct mapped_device
*md
= dax_get_private(dax_dev
);
1157 sector_t sector
= pgoff
* PAGE_SECTORS
;
1158 struct dm_target
*ti
;
1162 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1166 if (!ti
->type
->dax_copy_to_iter
) {
1167 ret
= copy_to_iter(addr
, bytes
, i
);
1170 ret
= ti
->type
->dax_copy_to_iter(ti
, pgoff
, addr
, bytes
, i
);
1172 dm_put_live_table(md
, srcu_idx
);
1178 * A target may call dm_accept_partial_bio only from the map routine. It is
1179 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1181 * dm_accept_partial_bio informs the dm that the target only wants to process
1182 * additional n_sectors sectors of the bio and the rest of the data should be
1183 * sent in a next bio.
1185 * A diagram that explains the arithmetics:
1186 * +--------------------+---------------+-------+
1188 * +--------------------+---------------+-------+
1190 * <-------------- *tio->len_ptr --------------->
1191 * <------- bi_size ------->
1194 * Region 1 was already iterated over with bio_advance or similar function.
1195 * (it may be empty if the target doesn't use bio_advance)
1196 * Region 2 is the remaining bio size that the target wants to process.
1197 * (it may be empty if region 1 is non-empty, although there is no reason
1199 * The target requires that region 3 is to be sent in the next bio.
1201 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1202 * the partially processed part (the sum of regions 1+2) must be the same for all
1203 * copies of the bio.
1205 void dm_accept_partial_bio(struct bio
*bio
, unsigned n_sectors
)
1207 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
1208 unsigned bi_size
= bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
;
1209 BUG_ON(bio
->bi_opf
& REQ_PREFLUSH
);
1210 BUG_ON(bi_size
> *tio
->len_ptr
);
1211 BUG_ON(n_sectors
> bi_size
);
1212 *tio
->len_ptr
-= bi_size
- n_sectors
;
1213 bio
->bi_iter
.bi_size
= n_sectors
<< SECTOR_SHIFT
;
1215 EXPORT_SYMBOL_GPL(dm_accept_partial_bio
);
1218 * The zone descriptors obtained with a zone report indicate
1219 * zone positions within the underlying device of the target. The zone
1220 * descriptors must be remapped to match their position within the dm device.
1221 * The caller target should obtain the zones information using
1222 * blkdev_report_zones() to ensure that remapping for partition offset is
1225 void dm_remap_zone_report(struct dm_target
*ti
, sector_t start
,
1226 struct blk_zone
*zones
, unsigned int *nr_zones
)
1228 #ifdef CONFIG_BLK_DEV_ZONED
1229 struct blk_zone
*zone
;
1230 unsigned int nrz
= *nr_zones
;
1234 * Remap the start sector and write pointer position of the zones in
1235 * the array. Since we may have obtained from the target underlying
1236 * device more zones that the target size, also adjust the number
1239 for (i
= 0; i
< nrz
; i
++) {
1241 if (zone
->start
>= start
+ ti
->len
) {
1242 memset(zone
, 0, sizeof(struct blk_zone
) * (nrz
- i
));
1246 zone
->start
= zone
->start
+ ti
->begin
- start
;
1247 if (zone
->type
== BLK_ZONE_TYPE_CONVENTIONAL
)
1250 if (zone
->cond
== BLK_ZONE_COND_FULL
)
1251 zone
->wp
= zone
->start
+ zone
->len
;
1252 else if (zone
->cond
== BLK_ZONE_COND_EMPTY
)
1253 zone
->wp
= zone
->start
;
1255 zone
->wp
= zone
->wp
+ ti
->begin
- start
;
1259 #else /* !CONFIG_BLK_DEV_ZONED */
1263 EXPORT_SYMBOL_GPL(dm_remap_zone_report
);
1265 static blk_qc_t
__map_bio(struct dm_target_io
*tio
)
1269 struct bio
*clone
= &tio
->clone
;
1270 struct dm_io
*io
= tio
->io
;
1271 struct mapped_device
*md
= io
->md
;
1272 struct dm_target
*ti
= tio
->ti
;
1273 blk_qc_t ret
= BLK_QC_T_NONE
;
1275 clone
->bi_end_io
= clone_endio
;
1278 * Map the clone. If r == 0 we don't need to do
1279 * anything, the target has assumed ownership of
1282 atomic_inc(&io
->io_count
);
1283 sector
= clone
->bi_iter
.bi_sector
;
1285 r
= ti
->type
->map(ti
, clone
);
1287 case DM_MAPIO_SUBMITTED
:
1289 case DM_MAPIO_REMAPPED
:
1290 /* the bio has been remapped so dispatch it */
1291 trace_block_bio_remap(clone
->bi_disk
->queue
, clone
,
1292 bio_dev(io
->orig_bio
), sector
);
1293 if (md
->type
== DM_TYPE_NVME_BIO_BASED
)
1294 ret
= direct_make_request(clone
);
1296 ret
= generic_make_request(clone
);
1300 dec_pending(io
, BLK_STS_IOERR
);
1302 case DM_MAPIO_REQUEUE
:
1304 dec_pending(io
, BLK_STS_DM_REQUEUE
);
1307 DMWARN("unimplemented target map return value: %d", r
);
1314 static void bio_setup_sector(struct bio
*bio
, sector_t sector
, unsigned len
)
1316 bio
->bi_iter
.bi_sector
= sector
;
1317 bio
->bi_iter
.bi_size
= to_bytes(len
);
1321 * Creates a bio that consists of range of complete bvecs.
1323 static int clone_bio(struct dm_target_io
*tio
, struct bio
*bio
,
1324 sector_t sector
, unsigned len
)
1326 struct bio
*clone
= &tio
->clone
;
1328 __bio_clone_fast(clone
, bio
);
1330 if (bio_integrity(bio
)) {
1333 if (unlikely(!dm_target_has_integrity(tio
->ti
->type
) &&
1334 !dm_target_passes_integrity(tio
->ti
->type
))) {
1335 DMWARN("%s: the target %s doesn't support integrity data.",
1336 dm_device_name(tio
->io
->md
),
1337 tio
->ti
->type
->name
);
1341 r
= bio_integrity_clone(clone
, bio
, GFP_NOIO
);
1346 bio_advance(clone
, to_bytes(sector
- clone
->bi_iter
.bi_sector
));
1347 clone
->bi_iter
.bi_size
= to_bytes(len
);
1349 if (bio_integrity(bio
))
1350 bio_integrity_trim(clone
);
1355 static void alloc_multiple_bios(struct bio_list
*blist
, struct clone_info
*ci
,
1356 struct dm_target
*ti
, unsigned num_bios
)
1358 struct dm_target_io
*tio
;
1364 if (num_bios
== 1) {
1365 tio
= alloc_tio(ci
, ti
, 0, GFP_NOIO
);
1366 bio_list_add(blist
, &tio
->clone
);
1370 for (try = 0; try < 2; try++) {
1375 mutex_lock(&ci
->io
->md
->table_devices_lock
);
1376 for (bio_nr
= 0; bio_nr
< num_bios
; bio_nr
++) {
1377 tio
= alloc_tio(ci
, ti
, bio_nr
, try ? GFP_NOIO
: GFP_NOWAIT
);
1381 bio_list_add(blist
, &tio
->clone
);
1384 mutex_unlock(&ci
->io
->md
->table_devices_lock
);
1385 if (bio_nr
== num_bios
)
1388 while ((bio
= bio_list_pop(blist
))) {
1389 tio
= container_of(bio
, struct dm_target_io
, clone
);
1395 static blk_qc_t
__clone_and_map_simple_bio(struct clone_info
*ci
,
1396 struct dm_target_io
*tio
, unsigned *len
)
1398 struct bio
*clone
= &tio
->clone
;
1402 __bio_clone_fast(clone
, ci
->bio
);
1404 bio_setup_sector(clone
, ci
->sector
, *len
);
1406 return __map_bio(tio
);
1409 static void __send_duplicate_bios(struct clone_info
*ci
, struct dm_target
*ti
,
1410 unsigned num_bios
, unsigned *len
)
1412 struct bio_list blist
= BIO_EMPTY_LIST
;
1414 struct dm_target_io
*tio
;
1416 alloc_multiple_bios(&blist
, ci
, ti
, num_bios
);
1418 while ((bio
= bio_list_pop(&blist
))) {
1419 tio
= container_of(bio
, struct dm_target_io
, clone
);
1420 (void) __clone_and_map_simple_bio(ci
, tio
, len
);
1424 static int __send_empty_flush(struct clone_info
*ci
)
1426 unsigned target_nr
= 0;
1427 struct dm_target
*ti
;
1430 * Empty flush uses a statically initialized bio, as the base for
1431 * cloning. However, blkg association requires that a bdev is
1432 * associated with a gendisk, which doesn't happen until the bdev is
1433 * opened. So, blkg association is done at issue time of the flush
1434 * rather than when the device is created in alloc_dev().
1436 bio_set_dev(ci
->bio
, ci
->io
->md
->bdev
);
1438 BUG_ON(bio_has_data(ci
->bio
));
1439 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1440 __send_duplicate_bios(ci
, ti
, ti
->num_flush_bios
, NULL
);
1442 bio_disassociate_blkg(ci
->bio
);
1447 static int __clone_and_map_data_bio(struct clone_info
*ci
, struct dm_target
*ti
,
1448 sector_t sector
, unsigned *len
)
1450 struct bio
*bio
= ci
->bio
;
1451 struct dm_target_io
*tio
;
1454 tio
= alloc_tio(ci
, ti
, 0, GFP_NOIO
);
1456 r
= clone_bio(tio
, bio
, sector
, *len
);
1461 (void) __map_bio(tio
);
1466 typedef unsigned (*get_num_bios_fn
)(struct dm_target
*ti
);
1468 static unsigned get_num_discard_bios(struct dm_target
*ti
)
1470 return ti
->num_discard_bios
;
1473 static unsigned get_num_secure_erase_bios(struct dm_target
*ti
)
1475 return ti
->num_secure_erase_bios
;
1478 static unsigned get_num_write_same_bios(struct dm_target
*ti
)
1480 return ti
->num_write_same_bios
;
1483 static unsigned get_num_write_zeroes_bios(struct dm_target
*ti
)
1485 return ti
->num_write_zeroes_bios
;
1488 static int __send_changing_extent_only(struct clone_info
*ci
, struct dm_target
*ti
,
1494 * Even though the device advertised support for this type of
1495 * request, that does not mean every target supports it, and
1496 * reconfiguration might also have changed that since the
1497 * check was performed.
1502 len
= min((sector_t
)ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1504 __send_duplicate_bios(ci
, ti
, num_bios
, &len
);
1507 ci
->sector_count
-= len
;
1512 static int __send_discard(struct clone_info
*ci
, struct dm_target
*ti
)
1514 return __send_changing_extent_only(ci
, ti
, get_num_discard_bios(ti
));
1517 static int __send_secure_erase(struct clone_info
*ci
, struct dm_target
*ti
)
1519 return __send_changing_extent_only(ci
, ti
, get_num_secure_erase_bios(ti
));
1522 static int __send_write_same(struct clone_info
*ci
, struct dm_target
*ti
)
1524 return __send_changing_extent_only(ci
, ti
, get_num_write_same_bios(ti
));
1527 static int __send_write_zeroes(struct clone_info
*ci
, struct dm_target
*ti
)
1529 return __send_changing_extent_only(ci
, ti
, get_num_write_zeroes_bios(ti
));
1532 static bool is_abnormal_io(struct bio
*bio
)
1536 switch (bio_op(bio
)) {
1537 case REQ_OP_DISCARD
:
1538 case REQ_OP_SECURE_ERASE
:
1539 case REQ_OP_WRITE_SAME
:
1540 case REQ_OP_WRITE_ZEROES
:
1548 static bool __process_abnormal_io(struct clone_info
*ci
, struct dm_target
*ti
,
1551 struct bio
*bio
= ci
->bio
;
1553 if (bio_op(bio
) == REQ_OP_DISCARD
)
1554 *result
= __send_discard(ci
, ti
);
1555 else if (bio_op(bio
) == REQ_OP_SECURE_ERASE
)
1556 *result
= __send_secure_erase(ci
, ti
);
1557 else if (bio_op(bio
) == REQ_OP_WRITE_SAME
)
1558 *result
= __send_write_same(ci
, ti
);
1559 else if (bio_op(bio
) == REQ_OP_WRITE_ZEROES
)
1560 *result
= __send_write_zeroes(ci
, ti
);
1568 * Select the correct strategy for processing a non-flush bio.
1570 static int __split_and_process_non_flush(struct clone_info
*ci
)
1572 struct dm_target
*ti
;
1576 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1577 if (!dm_target_is_valid(ti
))
1580 if (__process_abnormal_io(ci
, ti
, &r
))
1583 len
= min_t(sector_t
, max_io_len(ci
->sector
, ti
), ci
->sector_count
);
1585 r
= __clone_and_map_data_bio(ci
, ti
, ci
->sector
, &len
);
1590 ci
->sector_count
-= len
;
1595 static void init_clone_info(struct clone_info
*ci
, struct mapped_device
*md
,
1596 struct dm_table
*map
, struct bio
*bio
)
1599 ci
->io
= alloc_io(md
, bio
);
1600 ci
->sector
= bio
->bi_iter
.bi_sector
;
1603 #define __dm_part_stat_sub(part, field, subnd) \
1604 (part_stat_get(part, field) -= (subnd))
1607 * Entry point to split a bio into clones and submit them to the targets.
1609 static blk_qc_t
__split_and_process_bio(struct mapped_device
*md
,
1610 struct dm_table
*map
, struct bio
*bio
)
1612 struct clone_info ci
;
1613 blk_qc_t ret
= BLK_QC_T_NONE
;
1616 init_clone_info(&ci
, md
, map
, bio
);
1618 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1619 struct bio flush_bio
;
1622 * Use an on-stack bio for this, it's safe since we don't
1623 * need to reference it after submit. It's just used as
1624 * the basis for the clone(s).
1626 bio_init(&flush_bio
, NULL
, 0);
1627 flush_bio
.bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
| REQ_SYNC
;
1628 ci
.bio
= &flush_bio
;
1629 ci
.sector_count
= 0;
1630 error
= __send_empty_flush(&ci
);
1631 /* dec_pending submits any data associated with flush */
1632 } else if (bio_op(bio
) == REQ_OP_ZONE_RESET
) {
1634 ci
.sector_count
= 0;
1635 error
= __split_and_process_non_flush(&ci
);
1638 ci
.sector_count
= bio_sectors(bio
);
1639 while (ci
.sector_count
&& !error
) {
1640 error
= __split_and_process_non_flush(&ci
);
1641 if (current
->bio_list
&& ci
.sector_count
&& !error
) {
1643 * Remainder must be passed to generic_make_request()
1644 * so that it gets handled *after* bios already submitted
1645 * have been completely processed.
1646 * We take a clone of the original to store in
1647 * ci.io->orig_bio to be used by end_io_acct() and
1648 * for dec_pending to use for completion handling.
1650 struct bio
*b
= bio_split(bio
, bio_sectors(bio
) - ci
.sector_count
,
1651 GFP_NOIO
, &md
->queue
->bio_split
);
1652 ci
.io
->orig_bio
= b
;
1655 * Adjust IO stats for each split, otherwise upon queue
1656 * reentry there will be redundant IO accounting.
1657 * NOTE: this is a stop-gap fix, a proper fix involves
1658 * significant refactoring of DM core's bio splitting
1659 * (by eliminating DM's splitting and just using bio_split)
1662 __dm_part_stat_sub(&dm_disk(md
)->part0
,
1663 sectors
[op_stat_group(bio_op(bio
))], ci
.sector_count
);
1667 trace_block_split(md
->queue
, b
, bio
->bi_iter
.bi_sector
);
1668 ret
= generic_make_request(bio
);
1674 /* drop the extra reference count */
1675 dec_pending(ci
.io
, errno_to_blk_status(error
));
1680 * Optimized variant of __split_and_process_bio that leverages the
1681 * fact that targets that use it do _not_ have a need to split bios.
1683 static blk_qc_t
__process_bio(struct mapped_device
*md
, struct dm_table
*map
,
1684 struct bio
*bio
, struct dm_target
*ti
)
1686 struct clone_info ci
;
1687 blk_qc_t ret
= BLK_QC_T_NONE
;
1690 init_clone_info(&ci
, md
, map
, bio
);
1692 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1693 struct bio flush_bio
;
1696 * Use an on-stack bio for this, it's safe since we don't
1697 * need to reference it after submit. It's just used as
1698 * the basis for the clone(s).
1700 bio_init(&flush_bio
, NULL
, 0);
1701 flush_bio
.bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
| REQ_SYNC
;
1702 ci
.bio
= &flush_bio
;
1703 ci
.sector_count
= 0;
1704 error
= __send_empty_flush(&ci
);
1705 /* dec_pending submits any data associated with flush */
1707 struct dm_target_io
*tio
;
1710 ci
.sector_count
= bio_sectors(bio
);
1711 if (__process_abnormal_io(&ci
, ti
, &error
))
1714 tio
= alloc_tio(&ci
, ti
, 0, GFP_NOIO
);
1715 ret
= __clone_and_map_simple_bio(&ci
, tio
, NULL
);
1718 /* drop the extra reference count */
1719 dec_pending(ci
.io
, errno_to_blk_status(error
));
1723 static void dm_queue_split(struct mapped_device
*md
, struct dm_target
*ti
, struct bio
**bio
)
1725 unsigned len
, sector_count
;
1727 sector_count
= bio_sectors(*bio
);
1728 len
= min_t(sector_t
, max_io_len((*bio
)->bi_iter
.bi_sector
, ti
), sector_count
);
1730 if (sector_count
> len
) {
1731 struct bio
*split
= bio_split(*bio
, len
, GFP_NOIO
, &md
->queue
->bio_split
);
1733 bio_chain(split
, *bio
);
1734 trace_block_split(md
->queue
, split
, (*bio
)->bi_iter
.bi_sector
);
1735 generic_make_request(*bio
);
1740 static blk_qc_t
dm_process_bio(struct mapped_device
*md
,
1741 struct dm_table
*map
, struct bio
*bio
)
1743 blk_qc_t ret
= BLK_QC_T_NONE
;
1744 struct dm_target
*ti
= md
->immutable_target
;
1746 if (unlikely(!map
)) {
1752 ti
= dm_table_find_target(map
, bio
->bi_iter
.bi_sector
);
1753 if (unlikely(!ti
|| !dm_target_is_valid(ti
))) {
1760 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1761 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1764 if (current
->bio_list
) {
1765 blk_queue_split(md
->queue
, &bio
);
1766 if (!is_abnormal_io(bio
))
1767 dm_queue_split(md
, ti
, &bio
);
1770 if (dm_get_md_type(md
) == DM_TYPE_NVME_BIO_BASED
)
1771 return __process_bio(md
, map
, bio
, ti
);
1773 return __split_and_process_bio(md
, map
, bio
);
1776 static blk_qc_t
dm_make_request(struct request_queue
*q
, struct bio
*bio
)
1778 struct mapped_device
*md
= q
->queuedata
;
1779 blk_qc_t ret
= BLK_QC_T_NONE
;
1781 struct dm_table
*map
;
1783 map
= dm_get_live_table(md
, &srcu_idx
);
1785 /* if we're suspended, we have to queue this io for later */
1786 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1787 dm_put_live_table(md
, srcu_idx
);
1789 if (!(bio
->bi_opf
& REQ_RAHEAD
))
1796 ret
= dm_process_bio(md
, map
, bio
);
1798 dm_put_live_table(md
, srcu_idx
);
1802 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1805 struct mapped_device
*md
= congested_data
;
1806 struct dm_table
*map
;
1808 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1809 if (dm_request_based(md
)) {
1811 * With request-based DM we only need to check the
1812 * top-level queue for congestion.
1814 r
= md
->queue
->backing_dev_info
->wb
.state
& bdi_bits
;
1816 map
= dm_get_live_table_fast(md
);
1818 r
= dm_table_any_congested(map
, bdi_bits
);
1819 dm_put_live_table_fast(md
);
1826 /*-----------------------------------------------------------------
1827 * An IDR is used to keep track of allocated minor numbers.
1828 *---------------------------------------------------------------*/
1829 static void free_minor(int minor
)
1831 spin_lock(&_minor_lock
);
1832 idr_remove(&_minor_idr
, minor
);
1833 spin_unlock(&_minor_lock
);
1837 * See if the device with a specific minor # is free.
1839 static int specific_minor(int minor
)
1843 if (minor
>= (1 << MINORBITS
))
1846 idr_preload(GFP_KERNEL
);
1847 spin_lock(&_minor_lock
);
1849 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, minor
, minor
+ 1, GFP_NOWAIT
);
1851 spin_unlock(&_minor_lock
);
1854 return r
== -ENOSPC
? -EBUSY
: r
;
1858 static int next_free_minor(int *minor
)
1862 idr_preload(GFP_KERNEL
);
1863 spin_lock(&_minor_lock
);
1865 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, 0, 1 << MINORBITS
, GFP_NOWAIT
);
1867 spin_unlock(&_minor_lock
);
1875 static const struct block_device_operations dm_blk_dops
;
1876 static const struct dax_operations dm_dax_ops
;
1878 static void dm_wq_work(struct work_struct
*work
);
1880 static void dm_init_normal_md_queue(struct mapped_device
*md
)
1883 * Initialize aspects of queue that aren't relevant for blk-mq
1885 md
->queue
->backing_dev_info
->congested_fn
= dm_any_congested
;
1888 static void cleanup_mapped_device(struct mapped_device
*md
)
1891 destroy_workqueue(md
->wq
);
1892 bioset_exit(&md
->bs
);
1893 bioset_exit(&md
->io_bs
);
1896 kill_dax(md
->dax_dev
);
1897 put_dax(md
->dax_dev
);
1902 spin_lock(&_minor_lock
);
1903 md
->disk
->private_data
= NULL
;
1904 spin_unlock(&_minor_lock
);
1905 del_gendisk(md
->disk
);
1910 blk_cleanup_queue(md
->queue
);
1912 cleanup_srcu_struct(&md
->io_barrier
);
1919 mutex_destroy(&md
->suspend_lock
);
1920 mutex_destroy(&md
->type_lock
);
1921 mutex_destroy(&md
->table_devices_lock
);
1923 dm_mq_cleanup_mapped_device(md
);
1927 * Allocate and initialise a blank device with a given minor.
1929 static struct mapped_device
*alloc_dev(int minor
)
1931 int r
, numa_node_id
= dm_get_numa_node();
1932 struct mapped_device
*md
;
1935 md
= kvzalloc_node(sizeof(*md
), GFP_KERNEL
, numa_node_id
);
1937 DMWARN("unable to allocate device, out of memory.");
1941 if (!try_module_get(THIS_MODULE
))
1942 goto bad_module_get
;
1944 /* get a minor number for the dev */
1945 if (minor
== DM_ANY_MINOR
)
1946 r
= next_free_minor(&minor
);
1948 r
= specific_minor(minor
);
1952 r
= init_srcu_struct(&md
->io_barrier
);
1954 goto bad_io_barrier
;
1956 md
->numa_node_id
= numa_node_id
;
1957 md
->init_tio_pdu
= false;
1958 md
->type
= DM_TYPE_NONE
;
1959 mutex_init(&md
->suspend_lock
);
1960 mutex_init(&md
->type_lock
);
1961 mutex_init(&md
->table_devices_lock
);
1962 spin_lock_init(&md
->deferred_lock
);
1963 atomic_set(&md
->holders
, 1);
1964 atomic_set(&md
->open_count
, 0);
1965 atomic_set(&md
->event_nr
, 0);
1966 atomic_set(&md
->uevent_seq
, 0);
1967 INIT_LIST_HEAD(&md
->uevent_list
);
1968 INIT_LIST_HEAD(&md
->table_devices
);
1969 spin_lock_init(&md
->uevent_lock
);
1971 md
->queue
= blk_alloc_queue_node(GFP_KERNEL
, numa_node_id
);
1974 md
->queue
->queuedata
= md
;
1975 md
->queue
->backing_dev_info
->congested_data
= md
;
1977 md
->disk
= alloc_disk_node(1, md
->numa_node_id
);
1981 init_waitqueue_head(&md
->wait
);
1982 INIT_WORK(&md
->work
, dm_wq_work
);
1983 init_waitqueue_head(&md
->eventq
);
1984 init_completion(&md
->kobj_holder
.completion
);
1986 md
->disk
->major
= _major
;
1987 md
->disk
->first_minor
= minor
;
1988 md
->disk
->fops
= &dm_blk_dops
;
1989 md
->disk
->queue
= md
->queue
;
1990 md
->disk
->private_data
= md
;
1991 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1993 if (IS_ENABLED(CONFIG_DAX_DRIVER
)) {
1994 md
->dax_dev
= alloc_dax(md
, md
->disk
->disk_name
, &dm_dax_ops
);
1999 add_disk_no_queue_reg(md
->disk
);
2000 format_dev_t(md
->name
, MKDEV(_major
, minor
));
2002 md
->wq
= alloc_workqueue("kdmflush", WQ_MEM_RECLAIM
, 0);
2006 md
->bdev
= bdget_disk(md
->disk
, 0);
2010 dm_stats_init(&md
->stats
);
2012 /* Populate the mapping, nobody knows we exist yet */
2013 spin_lock(&_minor_lock
);
2014 old_md
= idr_replace(&_minor_idr
, md
, minor
);
2015 spin_unlock(&_minor_lock
);
2017 BUG_ON(old_md
!= MINOR_ALLOCED
);
2022 cleanup_mapped_device(md
);
2026 module_put(THIS_MODULE
);
2032 static void unlock_fs(struct mapped_device
*md
);
2034 static void free_dev(struct mapped_device
*md
)
2036 int minor
= MINOR(disk_devt(md
->disk
));
2040 cleanup_mapped_device(md
);
2042 free_table_devices(&md
->table_devices
);
2043 dm_stats_cleanup(&md
->stats
);
2046 module_put(THIS_MODULE
);
2050 static int __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
2052 struct dm_md_mempools
*p
= dm_table_get_md_mempools(t
);
2055 if (dm_table_bio_based(t
)) {
2057 * The md may already have mempools that need changing.
2058 * If so, reload bioset because front_pad may have changed
2059 * because a different table was loaded.
2061 bioset_exit(&md
->bs
);
2062 bioset_exit(&md
->io_bs
);
2064 } else if (bioset_initialized(&md
->bs
)) {
2066 * There's no need to reload with request-based dm
2067 * because the size of front_pad doesn't change.
2068 * Note for future: If you are to reload bioset,
2069 * prep-ed requests in the queue may refer
2070 * to bio from the old bioset, so you must walk
2071 * through the queue to unprep.
2077 bioset_initialized(&md
->bs
) ||
2078 bioset_initialized(&md
->io_bs
));
2080 ret
= bioset_init_from_src(&md
->bs
, &p
->bs
);
2083 ret
= bioset_init_from_src(&md
->io_bs
, &p
->io_bs
);
2085 bioset_exit(&md
->bs
);
2087 /* mempool bind completed, no longer need any mempools in the table */
2088 dm_table_free_md_mempools(t
);
2093 * Bind a table to the device.
2095 static void event_callback(void *context
)
2097 unsigned long flags
;
2099 struct mapped_device
*md
= (struct mapped_device
*) context
;
2101 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2102 list_splice_init(&md
->uevent_list
, &uevents
);
2103 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2105 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
2107 atomic_inc(&md
->event_nr
);
2108 wake_up(&md
->eventq
);
2109 dm_issue_global_event();
2113 * Protected by md->suspend_lock obtained by dm_swap_table().
2115 static void __set_size(struct mapped_device
*md
, sector_t size
)
2117 lockdep_assert_held(&md
->suspend_lock
);
2119 set_capacity(md
->disk
, size
);
2121 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
2125 * Returns old map, which caller must destroy.
2127 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2128 struct queue_limits
*limits
)
2130 struct dm_table
*old_map
;
2131 struct request_queue
*q
= md
->queue
;
2132 bool request_based
= dm_table_request_based(t
);
2136 lockdep_assert_held(&md
->suspend_lock
);
2138 size
= dm_table_get_size(t
);
2141 * Wipe any geometry if the size of the table changed.
2143 if (size
!= dm_get_size(md
))
2144 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2146 __set_size(md
, size
);
2148 dm_table_event_callback(t
, event_callback
, md
);
2151 * The queue hasn't been stopped yet, if the old table type wasn't
2152 * for request-based during suspension. So stop it to prevent
2153 * I/O mapping before resume.
2154 * This must be done before setting the queue restrictions,
2155 * because request-based dm may be run just after the setting.
2160 if (request_based
|| md
->type
== DM_TYPE_NVME_BIO_BASED
) {
2162 * Leverage the fact that request-based DM targets and
2163 * NVMe bio based targets are immutable singletons
2164 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2165 * and __process_bio.
2167 md
->immutable_target
= dm_table_get_immutable_target(t
);
2170 ret
= __bind_mempools(md
, t
);
2172 old_map
= ERR_PTR(ret
);
2176 old_map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2177 rcu_assign_pointer(md
->map
, (void *)t
);
2178 md
->immutable_target_type
= dm_table_get_immutable_target_type(t
);
2180 dm_table_set_restrictions(t
, q
, limits
);
2189 * Returns unbound table for the caller to free.
2191 static struct dm_table
*__unbind(struct mapped_device
*md
)
2193 struct dm_table
*map
= rcu_dereference_protected(md
->map
, 1);
2198 dm_table_event_callback(map
, NULL
, NULL
);
2199 RCU_INIT_POINTER(md
->map
, NULL
);
2206 * Constructor for a new device.
2208 int dm_create(int minor
, struct mapped_device
**result
)
2211 struct mapped_device
*md
;
2213 md
= alloc_dev(minor
);
2217 r
= dm_sysfs_init(md
);
2228 * Functions to manage md->type.
2229 * All are required to hold md->type_lock.
2231 void dm_lock_md_type(struct mapped_device
*md
)
2233 mutex_lock(&md
->type_lock
);
2236 void dm_unlock_md_type(struct mapped_device
*md
)
2238 mutex_unlock(&md
->type_lock
);
2241 void dm_set_md_type(struct mapped_device
*md
, enum dm_queue_mode type
)
2243 BUG_ON(!mutex_is_locked(&md
->type_lock
));
2247 enum dm_queue_mode
dm_get_md_type(struct mapped_device
*md
)
2252 struct target_type
*dm_get_immutable_target_type(struct mapped_device
*md
)
2254 return md
->immutable_target_type
;
2258 * The queue_limits are only valid as long as you have a reference
2261 struct queue_limits
*dm_get_queue_limits(struct mapped_device
*md
)
2263 BUG_ON(!atomic_read(&md
->holders
));
2264 return &md
->queue
->limits
;
2266 EXPORT_SYMBOL_GPL(dm_get_queue_limits
);
2269 * Setup the DM device's queue based on md's type
2271 int dm_setup_md_queue(struct mapped_device
*md
, struct dm_table
*t
)
2274 struct queue_limits limits
;
2275 enum dm_queue_mode type
= dm_get_md_type(md
);
2278 case DM_TYPE_REQUEST_BASED
:
2279 r
= dm_mq_init_request_queue(md
, t
);
2281 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2285 case DM_TYPE_BIO_BASED
:
2286 case DM_TYPE_DAX_BIO_BASED
:
2287 case DM_TYPE_NVME_BIO_BASED
:
2288 dm_init_normal_md_queue(md
);
2289 blk_queue_make_request(md
->queue
, dm_make_request
);
2296 r
= dm_calculate_queue_limits(t
, &limits
);
2298 DMERR("Cannot calculate initial queue limits");
2301 dm_table_set_restrictions(t
, md
->queue
, &limits
);
2302 blk_register_queue(md
->disk
);
2307 struct mapped_device
*dm_get_md(dev_t dev
)
2309 struct mapped_device
*md
;
2310 unsigned minor
= MINOR(dev
);
2312 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2315 spin_lock(&_minor_lock
);
2317 md
= idr_find(&_minor_idr
, minor
);
2318 if (!md
|| md
== MINOR_ALLOCED
|| (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2319 test_bit(DMF_FREEING
, &md
->flags
) || dm_deleting_md(md
)) {
2325 spin_unlock(&_minor_lock
);
2329 EXPORT_SYMBOL_GPL(dm_get_md
);
2331 void *dm_get_mdptr(struct mapped_device
*md
)
2333 return md
->interface_ptr
;
2336 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2338 md
->interface_ptr
= ptr
;
2341 void dm_get(struct mapped_device
*md
)
2343 atomic_inc(&md
->holders
);
2344 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2347 int dm_hold(struct mapped_device
*md
)
2349 spin_lock(&_minor_lock
);
2350 if (test_bit(DMF_FREEING
, &md
->flags
)) {
2351 spin_unlock(&_minor_lock
);
2355 spin_unlock(&_minor_lock
);
2358 EXPORT_SYMBOL_GPL(dm_hold
);
2360 const char *dm_device_name(struct mapped_device
*md
)
2364 EXPORT_SYMBOL_GPL(dm_device_name
);
2366 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2368 struct dm_table
*map
;
2373 spin_lock(&_minor_lock
);
2374 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2375 set_bit(DMF_FREEING
, &md
->flags
);
2376 spin_unlock(&_minor_lock
);
2378 blk_set_queue_dying(md
->queue
);
2381 * Take suspend_lock so that presuspend and postsuspend methods
2382 * do not race with internal suspend.
2384 mutex_lock(&md
->suspend_lock
);
2385 map
= dm_get_live_table(md
, &srcu_idx
);
2386 if (!dm_suspended_md(md
)) {
2387 dm_table_presuspend_targets(map
);
2388 dm_table_postsuspend_targets(map
);
2390 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2391 dm_put_live_table(md
, srcu_idx
);
2392 mutex_unlock(&md
->suspend_lock
);
2395 * Rare, but there may be I/O requests still going to complete,
2396 * for example. Wait for all references to disappear.
2397 * No one should increment the reference count of the mapped_device,
2398 * after the mapped_device state becomes DMF_FREEING.
2401 while (atomic_read(&md
->holders
))
2403 else if (atomic_read(&md
->holders
))
2404 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2405 dm_device_name(md
), atomic_read(&md
->holders
));
2408 dm_table_destroy(__unbind(md
));
2412 void dm_destroy(struct mapped_device
*md
)
2414 __dm_destroy(md
, true);
2417 void dm_destroy_immediate(struct mapped_device
*md
)
2419 __dm_destroy(md
, false);
2422 void dm_put(struct mapped_device
*md
)
2424 atomic_dec(&md
->holders
);
2426 EXPORT_SYMBOL_GPL(dm_put
);
2428 static int dm_wait_for_completion(struct mapped_device
*md
, long task_state
)
2434 prepare_to_wait(&md
->wait
, &wait
, task_state
);
2436 if (!md_in_flight(md
))
2439 if (signal_pending_state(task_state
, current
)) {
2446 finish_wait(&md
->wait
, &wait
);
2452 * Process the deferred bios
2454 static void dm_wq_work(struct work_struct
*work
)
2456 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2460 struct dm_table
*map
;
2462 map
= dm_get_live_table(md
, &srcu_idx
);
2464 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2465 spin_lock_irq(&md
->deferred_lock
);
2466 c
= bio_list_pop(&md
->deferred
);
2467 spin_unlock_irq(&md
->deferred_lock
);
2472 if (dm_request_based(md
))
2473 (void) generic_make_request(c
);
2475 (void) dm_process_bio(md
, map
, c
);
2478 dm_put_live_table(md
, srcu_idx
);
2481 static void dm_queue_flush(struct mapped_device
*md
)
2483 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2484 smp_mb__after_atomic();
2485 queue_work(md
->wq
, &md
->work
);
2489 * Swap in a new table, returning the old one for the caller to destroy.
2491 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2493 struct dm_table
*live_map
= NULL
, *map
= ERR_PTR(-EINVAL
);
2494 struct queue_limits limits
;
2497 mutex_lock(&md
->suspend_lock
);
2499 /* device must be suspended */
2500 if (!dm_suspended_md(md
))
2504 * If the new table has no data devices, retain the existing limits.
2505 * This helps multipath with queue_if_no_path if all paths disappear,
2506 * then new I/O is queued based on these limits, and then some paths
2509 if (dm_table_has_no_data_devices(table
)) {
2510 live_map
= dm_get_live_table_fast(md
);
2512 limits
= md
->queue
->limits
;
2513 dm_put_live_table_fast(md
);
2517 r
= dm_calculate_queue_limits(table
, &limits
);
2524 map
= __bind(md
, table
, &limits
);
2525 dm_issue_global_event();
2528 mutex_unlock(&md
->suspend_lock
);
2533 * Functions to lock and unlock any filesystem running on the
2536 static int lock_fs(struct mapped_device
*md
)
2540 WARN_ON(md
->frozen_sb
);
2542 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2543 if (IS_ERR(md
->frozen_sb
)) {
2544 r
= PTR_ERR(md
->frozen_sb
);
2545 md
->frozen_sb
= NULL
;
2549 set_bit(DMF_FROZEN
, &md
->flags
);
2554 static void unlock_fs(struct mapped_device
*md
)
2556 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2559 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2560 md
->frozen_sb
= NULL
;
2561 clear_bit(DMF_FROZEN
, &md
->flags
);
2565 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2566 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2567 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2569 * If __dm_suspend returns 0, the device is completely quiescent
2570 * now. There is no request-processing activity. All new requests
2571 * are being added to md->deferred list.
2573 static int __dm_suspend(struct mapped_device
*md
, struct dm_table
*map
,
2574 unsigned suspend_flags
, long task_state
,
2575 int dmf_suspended_flag
)
2577 bool do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
;
2578 bool noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
;
2581 lockdep_assert_held(&md
->suspend_lock
);
2584 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2585 * This flag is cleared before dm_suspend returns.
2588 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2590 pr_debug("%s: suspending with flush\n", dm_device_name(md
));
2593 * This gets reverted if there's an error later and the targets
2594 * provide the .presuspend_undo hook.
2596 dm_table_presuspend_targets(map
);
2599 * Flush I/O to the device.
2600 * Any I/O submitted after lock_fs() may not be flushed.
2601 * noflush takes precedence over do_lockfs.
2602 * (lock_fs() flushes I/Os and waits for them to complete.)
2604 if (!noflush
&& do_lockfs
) {
2607 dm_table_presuspend_undo_targets(map
);
2613 * Here we must make sure that no processes are submitting requests
2614 * to target drivers i.e. no one may be executing
2615 * __split_and_process_bio. This is called from dm_request and
2618 * To get all processes out of __split_and_process_bio in dm_request,
2619 * we take the write lock. To prevent any process from reentering
2620 * __split_and_process_bio from dm_request and quiesce the thread
2621 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2622 * flush_workqueue(md->wq).
2624 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2626 synchronize_srcu(&md
->io_barrier
);
2629 * Stop md->queue before flushing md->wq in case request-based
2630 * dm defers requests to md->wq from md->queue.
2632 if (dm_request_based(md
))
2633 dm_stop_queue(md
->queue
);
2635 flush_workqueue(md
->wq
);
2638 * At this point no more requests are entering target request routines.
2639 * We call dm_wait_for_completion to wait for all existing requests
2642 r
= dm_wait_for_completion(md
, task_state
);
2644 set_bit(dmf_suspended_flag
, &md
->flags
);
2647 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2649 synchronize_srcu(&md
->io_barrier
);
2651 /* were we interrupted ? */
2655 if (dm_request_based(md
))
2656 dm_start_queue(md
->queue
);
2659 dm_table_presuspend_undo_targets(map
);
2660 /* pushback list is already flushed, so skip flush */
2667 * We need to be able to change a mapping table under a mounted
2668 * filesystem. For example we might want to move some data in
2669 * the background. Before the table can be swapped with
2670 * dm_bind_table, dm_suspend must be called to flush any in
2671 * flight bios and ensure that any further io gets deferred.
2674 * Suspend mechanism in request-based dm.
2676 * 1. Flush all I/Os by lock_fs() if needed.
2677 * 2. Stop dispatching any I/O by stopping the request_queue.
2678 * 3. Wait for all in-flight I/Os to be completed or requeued.
2680 * To abort suspend, start the request_queue.
2682 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2684 struct dm_table
*map
= NULL
;
2688 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2690 if (dm_suspended_md(md
)) {
2695 if (dm_suspended_internally_md(md
)) {
2696 /* already internally suspended, wait for internal resume */
2697 mutex_unlock(&md
->suspend_lock
);
2698 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
2704 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2706 r
= __dm_suspend(md
, map
, suspend_flags
, TASK_INTERRUPTIBLE
, DMF_SUSPENDED
);
2710 dm_table_postsuspend_targets(map
);
2713 mutex_unlock(&md
->suspend_lock
);
2717 static int __dm_resume(struct mapped_device
*md
, struct dm_table
*map
)
2720 int r
= dm_table_resume_targets(map
);
2728 * Flushing deferred I/Os must be done after targets are resumed
2729 * so that mapping of targets can work correctly.
2730 * Request-based dm is queueing the deferred I/Os in its request_queue.
2732 if (dm_request_based(md
))
2733 dm_start_queue(md
->queue
);
2740 int dm_resume(struct mapped_device
*md
)
2743 struct dm_table
*map
= NULL
;
2747 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2749 if (!dm_suspended_md(md
))
2752 if (dm_suspended_internally_md(md
)) {
2753 /* already internally suspended, wait for internal resume */
2754 mutex_unlock(&md
->suspend_lock
);
2755 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
2761 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2762 if (!map
|| !dm_table_get_size(map
))
2765 r
= __dm_resume(md
, map
);
2769 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2771 mutex_unlock(&md
->suspend_lock
);
2777 * Internal suspend/resume works like userspace-driven suspend. It waits
2778 * until all bios finish and prevents issuing new bios to the target drivers.
2779 * It may be used only from the kernel.
2782 static void __dm_internal_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2784 struct dm_table
*map
= NULL
;
2786 lockdep_assert_held(&md
->suspend_lock
);
2788 if (md
->internal_suspend_count
++)
2789 return; /* nested internal suspend */
2791 if (dm_suspended_md(md
)) {
2792 set_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2793 return; /* nest suspend */
2796 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2799 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2800 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2801 * would require changing .presuspend to return an error -- avoid this
2802 * until there is a need for more elaborate variants of internal suspend.
2804 (void) __dm_suspend(md
, map
, suspend_flags
, TASK_UNINTERRUPTIBLE
,
2805 DMF_SUSPENDED_INTERNALLY
);
2807 dm_table_postsuspend_targets(map
);
2810 static void __dm_internal_resume(struct mapped_device
*md
)
2812 BUG_ON(!md
->internal_suspend_count
);
2814 if (--md
->internal_suspend_count
)
2815 return; /* resume from nested internal suspend */
2817 if (dm_suspended_md(md
))
2818 goto done
; /* resume from nested suspend */
2821 * NOTE: existing callers don't need to call dm_table_resume_targets
2822 * (which may fail -- so best to avoid it for now by passing NULL map)
2824 (void) __dm_resume(md
, NULL
);
2827 clear_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2828 smp_mb__after_atomic();
2829 wake_up_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
);
2832 void dm_internal_suspend_noflush(struct mapped_device
*md
)
2834 mutex_lock(&md
->suspend_lock
);
2835 __dm_internal_suspend(md
, DM_SUSPEND_NOFLUSH_FLAG
);
2836 mutex_unlock(&md
->suspend_lock
);
2838 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush
);
2840 void dm_internal_resume(struct mapped_device
*md
)
2842 mutex_lock(&md
->suspend_lock
);
2843 __dm_internal_resume(md
);
2844 mutex_unlock(&md
->suspend_lock
);
2846 EXPORT_SYMBOL_GPL(dm_internal_resume
);
2849 * Fast variants of internal suspend/resume hold md->suspend_lock,
2850 * which prevents interaction with userspace-driven suspend.
2853 void dm_internal_suspend_fast(struct mapped_device
*md
)
2855 mutex_lock(&md
->suspend_lock
);
2856 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
2859 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2860 synchronize_srcu(&md
->io_barrier
);
2861 flush_workqueue(md
->wq
);
2862 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
2864 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast
);
2866 void dm_internal_resume_fast(struct mapped_device
*md
)
2868 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
2874 mutex_unlock(&md
->suspend_lock
);
2876 EXPORT_SYMBOL_GPL(dm_internal_resume_fast
);
2878 /*-----------------------------------------------------------------
2879 * Event notification.
2880 *---------------------------------------------------------------*/
2881 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2884 char udev_cookie
[DM_COOKIE_LENGTH
];
2885 char *envp
[] = { udev_cookie
, NULL
};
2888 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2890 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2891 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2892 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2897 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2899 return atomic_add_return(1, &md
->uevent_seq
);
2902 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2904 return atomic_read(&md
->event_nr
);
2907 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2909 return wait_event_interruptible(md
->eventq
,
2910 (event_nr
!= atomic_read(&md
->event_nr
)));
2913 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2915 unsigned long flags
;
2917 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2918 list_add(elist
, &md
->uevent_list
);
2919 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2923 * The gendisk is only valid as long as you have a reference
2926 struct gendisk
*dm_disk(struct mapped_device
*md
)
2930 EXPORT_SYMBOL_GPL(dm_disk
);
2932 struct kobject
*dm_kobject(struct mapped_device
*md
)
2934 return &md
->kobj_holder
.kobj
;
2937 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2939 struct mapped_device
*md
;
2941 md
= container_of(kobj
, struct mapped_device
, kobj_holder
.kobj
);
2943 spin_lock(&_minor_lock
);
2944 if (test_bit(DMF_FREEING
, &md
->flags
) || dm_deleting_md(md
)) {
2950 spin_unlock(&_minor_lock
);
2955 int dm_suspended_md(struct mapped_device
*md
)
2957 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2960 int dm_suspended_internally_md(struct mapped_device
*md
)
2962 return test_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2965 int dm_test_deferred_remove_flag(struct mapped_device
*md
)
2967 return test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
2970 int dm_suspended(struct dm_target
*ti
)
2972 return dm_suspended_md(dm_table_get_md(ti
->table
));
2974 EXPORT_SYMBOL_GPL(dm_suspended
);
2976 int dm_noflush_suspending(struct dm_target
*ti
)
2978 return __noflush_suspending(dm_table_get_md(ti
->table
));
2980 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2982 struct dm_md_mempools
*dm_alloc_md_mempools(struct mapped_device
*md
, enum dm_queue_mode type
,
2983 unsigned integrity
, unsigned per_io_data_size
,
2984 unsigned min_pool_size
)
2986 struct dm_md_mempools
*pools
= kzalloc_node(sizeof(*pools
), GFP_KERNEL
, md
->numa_node_id
);
2987 unsigned int pool_size
= 0;
2988 unsigned int front_pad
, io_front_pad
;
2995 case DM_TYPE_BIO_BASED
:
2996 case DM_TYPE_DAX_BIO_BASED
:
2997 case DM_TYPE_NVME_BIO_BASED
:
2998 pool_size
= max(dm_get_reserved_bio_based_ios(), min_pool_size
);
2999 front_pad
= roundup(per_io_data_size
, __alignof__(struct dm_target_io
)) + offsetof(struct dm_target_io
, clone
);
3000 io_front_pad
= roundup(front_pad
, __alignof__(struct dm_io
)) + offsetof(struct dm_io
, tio
);
3001 ret
= bioset_init(&pools
->io_bs
, pool_size
, io_front_pad
, 0);
3004 if (integrity
&& bioset_integrity_create(&pools
->io_bs
, pool_size
))
3007 case DM_TYPE_REQUEST_BASED
:
3008 pool_size
= max(dm_get_reserved_rq_based_ios(), min_pool_size
);
3009 front_pad
= offsetof(struct dm_rq_clone_bio_info
, clone
);
3010 /* per_io_data_size is used for blk-mq pdu at queue allocation */
3016 ret
= bioset_init(&pools
->bs
, pool_size
, front_pad
, 0);
3020 if (integrity
&& bioset_integrity_create(&pools
->bs
, pool_size
))
3026 dm_free_md_mempools(pools
);
3031 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
3036 bioset_exit(&pools
->bs
);
3037 bioset_exit(&pools
->io_bs
);
3049 static int dm_call_pr(struct block_device
*bdev
, iterate_devices_callout_fn fn
,
3052 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3053 struct dm_table
*table
;
3054 struct dm_target
*ti
;
3055 int ret
= -ENOTTY
, srcu_idx
;
3057 table
= dm_get_live_table(md
, &srcu_idx
);
3058 if (!table
|| !dm_table_get_size(table
))
3061 /* We only support devices that have a single target */
3062 if (dm_table_get_num_targets(table
) != 1)
3064 ti
= dm_table_get_target(table
, 0);
3067 if (!ti
->type
->iterate_devices
)
3070 ret
= ti
->type
->iterate_devices(ti
, fn
, data
);
3072 dm_put_live_table(md
, srcu_idx
);
3077 * For register / unregister we need to manually call out to every path.
3079 static int __dm_pr_register(struct dm_target
*ti
, struct dm_dev
*dev
,
3080 sector_t start
, sector_t len
, void *data
)
3082 struct dm_pr
*pr
= data
;
3083 const struct pr_ops
*ops
= dev
->bdev
->bd_disk
->fops
->pr_ops
;
3085 if (!ops
|| !ops
->pr_register
)
3087 return ops
->pr_register(dev
->bdev
, pr
->old_key
, pr
->new_key
, pr
->flags
);
3090 static int dm_pr_register(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
3101 ret
= dm_call_pr(bdev
, __dm_pr_register
, &pr
);
3102 if (ret
&& new_key
) {
3103 /* unregister all paths if we failed to register any path */
3104 pr
.old_key
= new_key
;
3107 pr
.fail_early
= false;
3108 dm_call_pr(bdev
, __dm_pr_register
, &pr
);
3114 static int dm_pr_reserve(struct block_device
*bdev
, u64 key
, enum pr_type type
,
3117 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3118 const struct pr_ops
*ops
;
3121 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3125 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3126 if (ops
&& ops
->pr_reserve
)
3127 r
= ops
->pr_reserve(bdev
, key
, type
, flags
);
3131 dm_unprepare_ioctl(md
, srcu_idx
);
3135 static int dm_pr_release(struct block_device
*bdev
, u64 key
, enum pr_type type
)
3137 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3138 const struct pr_ops
*ops
;
3141 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3145 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3146 if (ops
&& ops
->pr_release
)
3147 r
= ops
->pr_release(bdev
, key
, type
);
3151 dm_unprepare_ioctl(md
, srcu_idx
);
3155 static int dm_pr_preempt(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
3156 enum pr_type type
, bool abort
)
3158 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3159 const struct pr_ops
*ops
;
3162 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3166 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3167 if (ops
&& ops
->pr_preempt
)
3168 r
= ops
->pr_preempt(bdev
, old_key
, new_key
, type
, abort
);
3172 dm_unprepare_ioctl(md
, srcu_idx
);
3176 static int dm_pr_clear(struct block_device
*bdev
, u64 key
)
3178 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3179 const struct pr_ops
*ops
;
3182 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3186 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3187 if (ops
&& ops
->pr_clear
)
3188 r
= ops
->pr_clear(bdev
, key
);
3192 dm_unprepare_ioctl(md
, srcu_idx
);
3196 static const struct pr_ops dm_pr_ops
= {
3197 .pr_register
= dm_pr_register
,
3198 .pr_reserve
= dm_pr_reserve
,
3199 .pr_release
= dm_pr_release
,
3200 .pr_preempt
= dm_pr_preempt
,
3201 .pr_clear
= dm_pr_clear
,
3204 static const struct block_device_operations dm_blk_dops
= {
3205 .open
= dm_blk_open
,
3206 .release
= dm_blk_close
,
3207 .ioctl
= dm_blk_ioctl
,
3208 .getgeo
= dm_blk_getgeo
,
3209 .report_zones
= dm_blk_report_zones
,
3210 .pr_ops
= &dm_pr_ops
,
3211 .owner
= THIS_MODULE
3214 static const struct dax_operations dm_dax_ops
= {
3215 .direct_access
= dm_dax_direct_access
,
3216 .dax_supported
= dm_dax_supported
,
3217 .copy_from_iter
= dm_dax_copy_from_iter
,
3218 .copy_to_iter
= dm_dax_copy_to_iter
,
3224 module_init(dm_init
);
3225 module_exit(dm_exit
);
3227 module_param(major
, uint
, 0);
3228 MODULE_PARM_DESC(major
, "The major number of the device mapper");
3230 module_param(reserved_bio_based_ios
, uint
, S_IRUGO
| S_IWUSR
);
3231 MODULE_PARM_DESC(reserved_bio_based_ios
, "Reserved IOs in bio-based mempools");
3233 module_param(dm_numa_node
, int, S_IRUGO
| S_IWUSR
);
3234 MODULE_PARM_DESC(dm_numa_node
, "NUMA node for DM device memory allocations");
3236 MODULE_DESCRIPTION(DM_NAME
" driver");
3237 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3238 MODULE_LICENSE("GPL");