perf scripts python: exported-sql-viewer.py: Use new 'has_calls' column
[linux/fpc-iii.git] / drivers / md / dm.c
blob5475081dcbd6736d37b7fb319b4ef3f72084a0c3
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
29 #define DM_MSG_PREFIX "core"
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
38 static const char *_name = DM_NAME;
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
43 static DEFINE_IDR(_minor_idr);
45 static DEFINE_SPINLOCK(_minor_lock);
47 static void do_deferred_remove(struct work_struct *w);
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
51 static struct workqueue_struct *deferred_remove_workqueue;
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
56 void dm_issue_global_event(void)
58 atomic_inc(&dm_global_event_nr);
59 wake_up(&dm_global_eventq);
63 * One of these is allocated (on-stack) per original bio.
65 struct clone_info {
66 struct dm_table *map;
67 struct bio *bio;
68 struct dm_io *io;
69 sector_t sector;
70 unsigned sector_count;
74 * One of these is allocated per clone bio.
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 unsigned magic;
79 struct dm_io *io;
80 struct dm_target *ti;
81 unsigned target_bio_nr;
82 unsigned *len_ptr;
83 bool inside_dm_io;
84 struct bio clone;
88 * One of these is allocated per original bio.
89 * It contains the first clone used for that original.
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 unsigned magic;
94 struct mapped_device *md;
95 blk_status_t status;
96 atomic_t io_count;
97 struct bio *orig_bio;
98 unsigned long start_time;
99 spinlock_t endio_lock;
100 struct dm_stats_aux stats_aux;
101 /* last member of dm_target_io is 'struct bio' */
102 struct dm_target_io tio;
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 if (!tio->inside_dm_io)
109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
116 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 if (io->magic == DM_IO_MAGIC)
118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 BUG_ON(io->magic != DM_TIO_MAGIC);
120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
130 #define MINOR_ALLOCED ((void *)-1)
133 * Bits for the md->flags field.
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
148 * For mempools pre-allocation at the table loading time.
150 struct dm_md_mempools {
151 struct bio_set bs;
152 struct bio_set io_bs;
155 struct table_device {
156 struct list_head list;
157 refcount_t count;
158 struct dm_dev dm_dev;
162 * Bio-based DM's mempools' reserved IOs set by the user.
164 #define RESERVED_BIO_BASED_IOS 16
165 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
167 static int __dm_get_module_param_int(int *module_param, int min, int max)
169 int param = READ_ONCE(*module_param);
170 int modified_param = 0;
171 bool modified = true;
173 if (param < min)
174 modified_param = min;
175 else if (param > max)
176 modified_param = max;
177 else
178 modified = false;
180 if (modified) {
181 (void)cmpxchg(module_param, param, modified_param);
182 param = modified_param;
185 return param;
188 unsigned __dm_get_module_param(unsigned *module_param,
189 unsigned def, unsigned max)
191 unsigned param = READ_ONCE(*module_param);
192 unsigned modified_param = 0;
194 if (!param)
195 modified_param = def;
196 else if (param > max)
197 modified_param = max;
199 if (modified_param) {
200 (void)cmpxchg(module_param, param, modified_param);
201 param = modified_param;
204 return param;
207 unsigned dm_get_reserved_bio_based_ios(void)
209 return __dm_get_module_param(&reserved_bio_based_ios,
210 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
212 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
214 static unsigned dm_get_numa_node(void)
216 return __dm_get_module_param_int(&dm_numa_node,
217 DM_NUMA_NODE, num_online_nodes() - 1);
220 static int __init local_init(void)
222 int r;
224 r = dm_uevent_init();
225 if (r)
226 return r;
228 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
229 if (!deferred_remove_workqueue) {
230 r = -ENOMEM;
231 goto out_uevent_exit;
234 _major = major;
235 r = register_blkdev(_major, _name);
236 if (r < 0)
237 goto out_free_workqueue;
239 if (!_major)
240 _major = r;
242 return 0;
244 out_free_workqueue:
245 destroy_workqueue(deferred_remove_workqueue);
246 out_uevent_exit:
247 dm_uevent_exit();
249 return r;
252 static void local_exit(void)
254 flush_scheduled_work();
255 destroy_workqueue(deferred_remove_workqueue);
257 unregister_blkdev(_major, _name);
258 dm_uevent_exit();
260 _major = 0;
262 DMINFO("cleaned up");
265 static int (*_inits[])(void) __initdata = {
266 local_init,
267 dm_target_init,
268 dm_linear_init,
269 dm_stripe_init,
270 dm_io_init,
271 dm_kcopyd_init,
272 dm_interface_init,
273 dm_statistics_init,
276 static void (*_exits[])(void) = {
277 local_exit,
278 dm_target_exit,
279 dm_linear_exit,
280 dm_stripe_exit,
281 dm_io_exit,
282 dm_kcopyd_exit,
283 dm_interface_exit,
284 dm_statistics_exit,
287 static int __init dm_init(void)
289 const int count = ARRAY_SIZE(_inits);
291 int r, i;
293 for (i = 0; i < count; i++) {
294 r = _inits[i]();
295 if (r)
296 goto bad;
299 return 0;
301 bad:
302 while (i--)
303 _exits[i]();
305 return r;
308 static void __exit dm_exit(void)
310 int i = ARRAY_SIZE(_exits);
312 while (i--)
313 _exits[i]();
316 * Should be empty by this point.
318 idr_destroy(&_minor_idr);
322 * Block device functions
324 int dm_deleting_md(struct mapped_device *md)
326 return test_bit(DMF_DELETING, &md->flags);
329 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
331 struct mapped_device *md;
333 spin_lock(&_minor_lock);
335 md = bdev->bd_disk->private_data;
336 if (!md)
337 goto out;
339 if (test_bit(DMF_FREEING, &md->flags) ||
340 dm_deleting_md(md)) {
341 md = NULL;
342 goto out;
345 dm_get(md);
346 atomic_inc(&md->open_count);
347 out:
348 spin_unlock(&_minor_lock);
350 return md ? 0 : -ENXIO;
353 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
355 struct mapped_device *md;
357 spin_lock(&_minor_lock);
359 md = disk->private_data;
360 if (WARN_ON(!md))
361 goto out;
363 if (atomic_dec_and_test(&md->open_count) &&
364 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
365 queue_work(deferred_remove_workqueue, &deferred_remove_work);
367 dm_put(md);
368 out:
369 spin_unlock(&_minor_lock);
372 int dm_open_count(struct mapped_device *md)
374 return atomic_read(&md->open_count);
378 * Guarantees nothing is using the device before it's deleted.
380 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
382 int r = 0;
384 spin_lock(&_minor_lock);
386 if (dm_open_count(md)) {
387 r = -EBUSY;
388 if (mark_deferred)
389 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
390 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
391 r = -EEXIST;
392 else
393 set_bit(DMF_DELETING, &md->flags);
395 spin_unlock(&_minor_lock);
397 return r;
400 int dm_cancel_deferred_remove(struct mapped_device *md)
402 int r = 0;
404 spin_lock(&_minor_lock);
406 if (test_bit(DMF_DELETING, &md->flags))
407 r = -EBUSY;
408 else
409 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
411 spin_unlock(&_minor_lock);
413 return r;
416 static void do_deferred_remove(struct work_struct *w)
418 dm_deferred_remove();
421 sector_t dm_get_size(struct mapped_device *md)
423 return get_capacity(md->disk);
426 struct request_queue *dm_get_md_queue(struct mapped_device *md)
428 return md->queue;
431 struct dm_stats *dm_get_stats(struct mapped_device *md)
433 return &md->stats;
436 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
438 struct mapped_device *md = bdev->bd_disk->private_data;
440 return dm_get_geometry(md, geo);
443 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
444 struct blk_zone *zones, unsigned int *nr_zones,
445 gfp_t gfp_mask)
447 #ifdef CONFIG_BLK_DEV_ZONED
448 struct mapped_device *md = disk->private_data;
449 struct dm_target *tgt;
450 struct dm_table *map;
451 int srcu_idx, ret;
453 if (dm_suspended_md(md))
454 return -EAGAIN;
456 map = dm_get_live_table(md, &srcu_idx);
457 if (!map)
458 return -EIO;
460 tgt = dm_table_find_target(map, sector);
461 if (!dm_target_is_valid(tgt)) {
462 ret = -EIO;
463 goto out;
467 * If we are executing this, we already know that the block device
468 * is a zoned device and so each target should have support for that
469 * type of drive. A missing report_zones method means that the target
470 * driver has a problem.
472 if (WARN_ON(!tgt->type->report_zones)) {
473 ret = -EIO;
474 goto out;
478 * blkdev_report_zones() will loop and call this again to cover all the
479 * zones of the target, eventually moving on to the next target.
480 * So there is no need to loop here trying to fill the entire array
481 * of zones.
483 ret = tgt->type->report_zones(tgt, sector, zones,
484 nr_zones, gfp_mask);
486 out:
487 dm_put_live_table(md, srcu_idx);
488 return ret;
489 #else
490 return -ENOTSUPP;
491 #endif
494 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
495 struct block_device **bdev)
496 __acquires(md->io_barrier)
498 struct dm_target *tgt;
499 struct dm_table *map;
500 int r;
502 retry:
503 r = -ENOTTY;
504 map = dm_get_live_table(md, srcu_idx);
505 if (!map || !dm_table_get_size(map))
506 return r;
508 /* We only support devices that have a single target */
509 if (dm_table_get_num_targets(map) != 1)
510 return r;
512 tgt = dm_table_get_target(map, 0);
513 if (!tgt->type->prepare_ioctl)
514 return r;
516 if (dm_suspended_md(md))
517 return -EAGAIN;
519 r = tgt->type->prepare_ioctl(tgt, bdev);
520 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
521 dm_put_live_table(md, *srcu_idx);
522 msleep(10);
523 goto retry;
526 return r;
529 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
530 __releases(md->io_barrier)
532 dm_put_live_table(md, srcu_idx);
535 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
536 unsigned int cmd, unsigned long arg)
538 struct mapped_device *md = bdev->bd_disk->private_data;
539 int r, srcu_idx;
541 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
542 if (r < 0)
543 goto out;
545 if (r > 0) {
547 * Target determined this ioctl is being issued against a
548 * subset of the parent bdev; require extra privileges.
550 if (!capable(CAP_SYS_RAWIO)) {
551 DMWARN_LIMIT(
552 "%s: sending ioctl %x to DM device without required privilege.",
553 current->comm, cmd);
554 r = -ENOIOCTLCMD;
555 goto out;
559 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
560 out:
561 dm_unprepare_ioctl(md, srcu_idx);
562 return r;
565 static void start_io_acct(struct dm_io *io);
567 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
569 struct dm_io *io;
570 struct dm_target_io *tio;
571 struct bio *clone;
573 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
574 if (!clone)
575 return NULL;
577 tio = container_of(clone, struct dm_target_io, clone);
578 tio->inside_dm_io = true;
579 tio->io = NULL;
581 io = container_of(tio, struct dm_io, tio);
582 io->magic = DM_IO_MAGIC;
583 io->status = 0;
584 atomic_set(&io->io_count, 1);
585 io->orig_bio = bio;
586 io->md = md;
587 spin_lock_init(&io->endio_lock);
589 start_io_acct(io);
591 return io;
594 static void free_io(struct mapped_device *md, struct dm_io *io)
596 bio_put(&io->tio.clone);
599 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
600 unsigned target_bio_nr, gfp_t gfp_mask)
602 struct dm_target_io *tio;
604 if (!ci->io->tio.io) {
605 /* the dm_target_io embedded in ci->io is available */
606 tio = &ci->io->tio;
607 } else {
608 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
609 if (!clone)
610 return NULL;
612 tio = container_of(clone, struct dm_target_io, clone);
613 tio->inside_dm_io = false;
616 tio->magic = DM_TIO_MAGIC;
617 tio->io = ci->io;
618 tio->ti = ti;
619 tio->target_bio_nr = target_bio_nr;
621 return tio;
624 static void free_tio(struct dm_target_io *tio)
626 if (tio->inside_dm_io)
627 return;
628 bio_put(&tio->clone);
631 static bool md_in_flight_bios(struct mapped_device *md)
633 int cpu;
634 struct hd_struct *part = &dm_disk(md)->part0;
635 long sum = 0;
637 for_each_possible_cpu(cpu) {
638 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
639 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
642 return sum != 0;
645 static bool md_in_flight(struct mapped_device *md)
647 if (queue_is_mq(md->queue))
648 return blk_mq_queue_inflight(md->queue);
649 else
650 return md_in_flight_bios(md);
653 static void start_io_acct(struct dm_io *io)
655 struct mapped_device *md = io->md;
656 struct bio *bio = io->orig_bio;
658 io->start_time = jiffies;
660 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
661 &dm_disk(md)->part0);
663 if (unlikely(dm_stats_used(&md->stats)))
664 dm_stats_account_io(&md->stats, bio_data_dir(bio),
665 bio->bi_iter.bi_sector, bio_sectors(bio),
666 false, 0, &io->stats_aux);
669 static void end_io_acct(struct dm_io *io)
671 struct mapped_device *md = io->md;
672 struct bio *bio = io->orig_bio;
673 unsigned long duration = jiffies - io->start_time;
675 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
676 io->start_time);
678 if (unlikely(dm_stats_used(&md->stats)))
679 dm_stats_account_io(&md->stats, bio_data_dir(bio),
680 bio->bi_iter.bi_sector, bio_sectors(bio),
681 true, duration, &io->stats_aux);
683 /* nudge anyone waiting on suspend queue */
684 if (unlikely(wq_has_sleeper(&md->wait)))
685 wake_up(&md->wait);
689 * Add the bio to the list of deferred io.
691 static void queue_io(struct mapped_device *md, struct bio *bio)
693 unsigned long flags;
695 spin_lock_irqsave(&md->deferred_lock, flags);
696 bio_list_add(&md->deferred, bio);
697 spin_unlock_irqrestore(&md->deferred_lock, flags);
698 queue_work(md->wq, &md->work);
702 * Everyone (including functions in this file), should use this
703 * function to access the md->map field, and make sure they call
704 * dm_put_live_table() when finished.
706 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
708 *srcu_idx = srcu_read_lock(&md->io_barrier);
710 return srcu_dereference(md->map, &md->io_barrier);
713 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
715 srcu_read_unlock(&md->io_barrier, srcu_idx);
718 void dm_sync_table(struct mapped_device *md)
720 synchronize_srcu(&md->io_barrier);
721 synchronize_rcu_expedited();
725 * A fast alternative to dm_get_live_table/dm_put_live_table.
726 * The caller must not block between these two functions.
728 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
730 rcu_read_lock();
731 return rcu_dereference(md->map);
734 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
736 rcu_read_unlock();
739 static char *_dm_claim_ptr = "I belong to device-mapper";
742 * Open a table device so we can use it as a map destination.
744 static int open_table_device(struct table_device *td, dev_t dev,
745 struct mapped_device *md)
747 struct block_device *bdev;
749 int r;
751 BUG_ON(td->dm_dev.bdev);
753 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
754 if (IS_ERR(bdev))
755 return PTR_ERR(bdev);
757 r = bd_link_disk_holder(bdev, dm_disk(md));
758 if (r) {
759 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
760 return r;
763 td->dm_dev.bdev = bdev;
764 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
765 return 0;
769 * Close a table device that we've been using.
771 static void close_table_device(struct table_device *td, struct mapped_device *md)
773 if (!td->dm_dev.bdev)
774 return;
776 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
777 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
778 put_dax(td->dm_dev.dax_dev);
779 td->dm_dev.bdev = NULL;
780 td->dm_dev.dax_dev = NULL;
783 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
784 fmode_t mode)
786 struct table_device *td;
788 list_for_each_entry(td, l, list)
789 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
790 return td;
792 return NULL;
795 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
796 struct dm_dev **result)
798 int r;
799 struct table_device *td;
801 mutex_lock(&md->table_devices_lock);
802 td = find_table_device(&md->table_devices, dev, mode);
803 if (!td) {
804 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
805 if (!td) {
806 mutex_unlock(&md->table_devices_lock);
807 return -ENOMEM;
810 td->dm_dev.mode = mode;
811 td->dm_dev.bdev = NULL;
813 if ((r = open_table_device(td, dev, md))) {
814 mutex_unlock(&md->table_devices_lock);
815 kfree(td);
816 return r;
819 format_dev_t(td->dm_dev.name, dev);
821 refcount_set(&td->count, 1);
822 list_add(&td->list, &md->table_devices);
823 } else {
824 refcount_inc(&td->count);
826 mutex_unlock(&md->table_devices_lock);
828 *result = &td->dm_dev;
829 return 0;
831 EXPORT_SYMBOL_GPL(dm_get_table_device);
833 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
835 struct table_device *td = container_of(d, struct table_device, dm_dev);
837 mutex_lock(&md->table_devices_lock);
838 if (refcount_dec_and_test(&td->count)) {
839 close_table_device(td, md);
840 list_del(&td->list);
841 kfree(td);
843 mutex_unlock(&md->table_devices_lock);
845 EXPORT_SYMBOL(dm_put_table_device);
847 static void free_table_devices(struct list_head *devices)
849 struct list_head *tmp, *next;
851 list_for_each_safe(tmp, next, devices) {
852 struct table_device *td = list_entry(tmp, struct table_device, list);
854 DMWARN("dm_destroy: %s still exists with %d references",
855 td->dm_dev.name, refcount_read(&td->count));
856 kfree(td);
861 * Get the geometry associated with a dm device
863 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
865 *geo = md->geometry;
867 return 0;
871 * Set the geometry of a device.
873 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
875 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
877 if (geo->start > sz) {
878 DMWARN("Start sector is beyond the geometry limits.");
879 return -EINVAL;
882 md->geometry = *geo;
884 return 0;
887 static int __noflush_suspending(struct mapped_device *md)
889 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
893 * Decrements the number of outstanding ios that a bio has been
894 * cloned into, completing the original io if necc.
896 static void dec_pending(struct dm_io *io, blk_status_t error)
898 unsigned long flags;
899 blk_status_t io_error;
900 struct bio *bio;
901 struct mapped_device *md = io->md;
903 /* Push-back supersedes any I/O errors */
904 if (unlikely(error)) {
905 spin_lock_irqsave(&io->endio_lock, flags);
906 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
907 io->status = error;
908 spin_unlock_irqrestore(&io->endio_lock, flags);
911 if (atomic_dec_and_test(&io->io_count)) {
912 if (io->status == BLK_STS_DM_REQUEUE) {
914 * Target requested pushing back the I/O.
916 spin_lock_irqsave(&md->deferred_lock, flags);
917 if (__noflush_suspending(md))
918 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
919 bio_list_add_head(&md->deferred, io->orig_bio);
920 else
921 /* noflush suspend was interrupted. */
922 io->status = BLK_STS_IOERR;
923 spin_unlock_irqrestore(&md->deferred_lock, flags);
926 io_error = io->status;
927 bio = io->orig_bio;
928 end_io_acct(io);
929 free_io(md, io);
931 if (io_error == BLK_STS_DM_REQUEUE)
932 return;
934 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
936 * Preflush done for flush with data, reissue
937 * without REQ_PREFLUSH.
939 bio->bi_opf &= ~REQ_PREFLUSH;
940 queue_io(md, bio);
941 } else {
942 /* done with normal IO or empty flush */
943 if (io_error)
944 bio->bi_status = io_error;
945 bio_endio(bio);
950 void disable_discard(struct mapped_device *md)
952 struct queue_limits *limits = dm_get_queue_limits(md);
954 /* device doesn't really support DISCARD, disable it */
955 limits->max_discard_sectors = 0;
956 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
959 void disable_write_same(struct mapped_device *md)
961 struct queue_limits *limits = dm_get_queue_limits(md);
963 /* device doesn't really support WRITE SAME, disable it */
964 limits->max_write_same_sectors = 0;
967 void disable_write_zeroes(struct mapped_device *md)
969 struct queue_limits *limits = dm_get_queue_limits(md);
971 /* device doesn't really support WRITE ZEROES, disable it */
972 limits->max_write_zeroes_sectors = 0;
975 static void clone_endio(struct bio *bio)
977 blk_status_t error = bio->bi_status;
978 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
979 struct dm_io *io = tio->io;
980 struct mapped_device *md = tio->io->md;
981 dm_endio_fn endio = tio->ti->type->end_io;
983 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
984 if (bio_op(bio) == REQ_OP_DISCARD &&
985 !bio->bi_disk->queue->limits.max_discard_sectors)
986 disable_discard(md);
987 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
988 !bio->bi_disk->queue->limits.max_write_same_sectors)
989 disable_write_same(md);
990 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
991 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
992 disable_write_zeroes(md);
995 if (endio) {
996 int r = endio(tio->ti, bio, &error);
997 switch (r) {
998 case DM_ENDIO_REQUEUE:
999 error = BLK_STS_DM_REQUEUE;
1000 /*FALLTHRU*/
1001 case DM_ENDIO_DONE:
1002 break;
1003 case DM_ENDIO_INCOMPLETE:
1004 /* The target will handle the io */
1005 return;
1006 default:
1007 DMWARN("unimplemented target endio return value: %d", r);
1008 BUG();
1012 free_tio(tio);
1013 dec_pending(io, error);
1017 * Return maximum size of I/O possible at the supplied sector up to the current
1018 * target boundary.
1020 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1022 sector_t target_offset = dm_target_offset(ti, sector);
1024 return ti->len - target_offset;
1027 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1029 sector_t len = max_io_len_target_boundary(sector, ti);
1030 sector_t offset, max_len;
1033 * Does the target need to split even further?
1035 if (ti->max_io_len) {
1036 offset = dm_target_offset(ti, sector);
1037 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1038 max_len = sector_div(offset, ti->max_io_len);
1039 else
1040 max_len = offset & (ti->max_io_len - 1);
1041 max_len = ti->max_io_len - max_len;
1043 if (len > max_len)
1044 len = max_len;
1047 return len;
1050 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1052 if (len > UINT_MAX) {
1053 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1054 (unsigned long long)len, UINT_MAX);
1055 ti->error = "Maximum size of target IO is too large";
1056 return -EINVAL;
1059 ti->max_io_len = (uint32_t) len;
1061 return 0;
1063 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1065 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1066 sector_t sector, int *srcu_idx)
1067 __acquires(md->io_barrier)
1069 struct dm_table *map;
1070 struct dm_target *ti;
1072 map = dm_get_live_table(md, srcu_idx);
1073 if (!map)
1074 return NULL;
1076 ti = dm_table_find_target(map, sector);
1077 if (!dm_target_is_valid(ti))
1078 return NULL;
1080 return ti;
1083 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1084 long nr_pages, void **kaddr, pfn_t *pfn)
1086 struct mapped_device *md = dax_get_private(dax_dev);
1087 sector_t sector = pgoff * PAGE_SECTORS;
1088 struct dm_target *ti;
1089 long len, ret = -EIO;
1090 int srcu_idx;
1092 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1094 if (!ti)
1095 goto out;
1096 if (!ti->type->direct_access)
1097 goto out;
1098 len = max_io_len(sector, ti) / PAGE_SECTORS;
1099 if (len < 1)
1100 goto out;
1101 nr_pages = min(len, nr_pages);
1102 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1104 out:
1105 dm_put_live_table(md, srcu_idx);
1107 return ret;
1110 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1111 int blocksize, sector_t start, sector_t len)
1113 struct mapped_device *md = dax_get_private(dax_dev);
1114 struct dm_table *map;
1115 int srcu_idx;
1116 bool ret;
1118 map = dm_get_live_table(md, &srcu_idx);
1119 if (!map)
1120 return false;
1122 ret = dm_table_supports_dax(map, blocksize);
1124 dm_put_live_table(md, srcu_idx);
1126 return ret;
1129 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1130 void *addr, size_t bytes, struct iov_iter *i)
1132 struct mapped_device *md = dax_get_private(dax_dev);
1133 sector_t sector = pgoff * PAGE_SECTORS;
1134 struct dm_target *ti;
1135 long ret = 0;
1136 int srcu_idx;
1138 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1140 if (!ti)
1141 goto out;
1142 if (!ti->type->dax_copy_from_iter) {
1143 ret = copy_from_iter(addr, bytes, i);
1144 goto out;
1146 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1147 out:
1148 dm_put_live_table(md, srcu_idx);
1150 return ret;
1153 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1154 void *addr, size_t bytes, struct iov_iter *i)
1156 struct mapped_device *md = dax_get_private(dax_dev);
1157 sector_t sector = pgoff * PAGE_SECTORS;
1158 struct dm_target *ti;
1159 long ret = 0;
1160 int srcu_idx;
1162 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1164 if (!ti)
1165 goto out;
1166 if (!ti->type->dax_copy_to_iter) {
1167 ret = copy_to_iter(addr, bytes, i);
1168 goto out;
1170 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1171 out:
1172 dm_put_live_table(md, srcu_idx);
1174 return ret;
1178 * A target may call dm_accept_partial_bio only from the map routine. It is
1179 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1181 * dm_accept_partial_bio informs the dm that the target only wants to process
1182 * additional n_sectors sectors of the bio and the rest of the data should be
1183 * sent in a next bio.
1185 * A diagram that explains the arithmetics:
1186 * +--------------------+---------------+-------+
1187 * | 1 | 2 | 3 |
1188 * +--------------------+---------------+-------+
1190 * <-------------- *tio->len_ptr --------------->
1191 * <------- bi_size ------->
1192 * <-- n_sectors -->
1194 * Region 1 was already iterated over with bio_advance or similar function.
1195 * (it may be empty if the target doesn't use bio_advance)
1196 * Region 2 is the remaining bio size that the target wants to process.
1197 * (it may be empty if region 1 is non-empty, although there is no reason
1198 * to make it empty)
1199 * The target requires that region 3 is to be sent in the next bio.
1201 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1202 * the partially processed part (the sum of regions 1+2) must be the same for all
1203 * copies of the bio.
1205 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1207 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1208 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1209 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1210 BUG_ON(bi_size > *tio->len_ptr);
1211 BUG_ON(n_sectors > bi_size);
1212 *tio->len_ptr -= bi_size - n_sectors;
1213 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1215 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1218 * The zone descriptors obtained with a zone report indicate
1219 * zone positions within the underlying device of the target. The zone
1220 * descriptors must be remapped to match their position within the dm device.
1221 * The caller target should obtain the zones information using
1222 * blkdev_report_zones() to ensure that remapping for partition offset is
1223 * already handled.
1225 void dm_remap_zone_report(struct dm_target *ti, sector_t start,
1226 struct blk_zone *zones, unsigned int *nr_zones)
1228 #ifdef CONFIG_BLK_DEV_ZONED
1229 struct blk_zone *zone;
1230 unsigned int nrz = *nr_zones;
1231 int i;
1234 * Remap the start sector and write pointer position of the zones in
1235 * the array. Since we may have obtained from the target underlying
1236 * device more zones that the target size, also adjust the number
1237 * of zones.
1239 for (i = 0; i < nrz; i++) {
1240 zone = zones + i;
1241 if (zone->start >= start + ti->len) {
1242 memset(zone, 0, sizeof(struct blk_zone) * (nrz - i));
1243 break;
1246 zone->start = zone->start + ti->begin - start;
1247 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
1248 continue;
1250 if (zone->cond == BLK_ZONE_COND_FULL)
1251 zone->wp = zone->start + zone->len;
1252 else if (zone->cond == BLK_ZONE_COND_EMPTY)
1253 zone->wp = zone->start;
1254 else
1255 zone->wp = zone->wp + ti->begin - start;
1258 *nr_zones = i;
1259 #else /* !CONFIG_BLK_DEV_ZONED */
1260 *nr_zones = 0;
1261 #endif
1263 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1265 static blk_qc_t __map_bio(struct dm_target_io *tio)
1267 int r;
1268 sector_t sector;
1269 struct bio *clone = &tio->clone;
1270 struct dm_io *io = tio->io;
1271 struct mapped_device *md = io->md;
1272 struct dm_target *ti = tio->ti;
1273 blk_qc_t ret = BLK_QC_T_NONE;
1275 clone->bi_end_io = clone_endio;
1278 * Map the clone. If r == 0 we don't need to do
1279 * anything, the target has assumed ownership of
1280 * this io.
1282 atomic_inc(&io->io_count);
1283 sector = clone->bi_iter.bi_sector;
1285 r = ti->type->map(ti, clone);
1286 switch (r) {
1287 case DM_MAPIO_SUBMITTED:
1288 break;
1289 case DM_MAPIO_REMAPPED:
1290 /* the bio has been remapped so dispatch it */
1291 trace_block_bio_remap(clone->bi_disk->queue, clone,
1292 bio_dev(io->orig_bio), sector);
1293 if (md->type == DM_TYPE_NVME_BIO_BASED)
1294 ret = direct_make_request(clone);
1295 else
1296 ret = generic_make_request(clone);
1297 break;
1298 case DM_MAPIO_KILL:
1299 free_tio(tio);
1300 dec_pending(io, BLK_STS_IOERR);
1301 break;
1302 case DM_MAPIO_REQUEUE:
1303 free_tio(tio);
1304 dec_pending(io, BLK_STS_DM_REQUEUE);
1305 break;
1306 default:
1307 DMWARN("unimplemented target map return value: %d", r);
1308 BUG();
1311 return ret;
1314 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1316 bio->bi_iter.bi_sector = sector;
1317 bio->bi_iter.bi_size = to_bytes(len);
1321 * Creates a bio that consists of range of complete bvecs.
1323 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1324 sector_t sector, unsigned len)
1326 struct bio *clone = &tio->clone;
1328 __bio_clone_fast(clone, bio);
1330 if (bio_integrity(bio)) {
1331 int r;
1333 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1334 !dm_target_passes_integrity(tio->ti->type))) {
1335 DMWARN("%s: the target %s doesn't support integrity data.",
1336 dm_device_name(tio->io->md),
1337 tio->ti->type->name);
1338 return -EIO;
1341 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1342 if (r < 0)
1343 return r;
1346 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1347 clone->bi_iter.bi_size = to_bytes(len);
1349 if (bio_integrity(bio))
1350 bio_integrity_trim(clone);
1352 return 0;
1355 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1356 struct dm_target *ti, unsigned num_bios)
1358 struct dm_target_io *tio;
1359 int try;
1361 if (!num_bios)
1362 return;
1364 if (num_bios == 1) {
1365 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1366 bio_list_add(blist, &tio->clone);
1367 return;
1370 for (try = 0; try < 2; try++) {
1371 int bio_nr;
1372 struct bio *bio;
1374 if (try)
1375 mutex_lock(&ci->io->md->table_devices_lock);
1376 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1377 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1378 if (!tio)
1379 break;
1381 bio_list_add(blist, &tio->clone);
1383 if (try)
1384 mutex_unlock(&ci->io->md->table_devices_lock);
1385 if (bio_nr == num_bios)
1386 return;
1388 while ((bio = bio_list_pop(blist))) {
1389 tio = container_of(bio, struct dm_target_io, clone);
1390 free_tio(tio);
1395 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1396 struct dm_target_io *tio, unsigned *len)
1398 struct bio *clone = &tio->clone;
1400 tio->len_ptr = len;
1402 __bio_clone_fast(clone, ci->bio);
1403 if (len)
1404 bio_setup_sector(clone, ci->sector, *len);
1406 return __map_bio(tio);
1409 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1410 unsigned num_bios, unsigned *len)
1412 struct bio_list blist = BIO_EMPTY_LIST;
1413 struct bio *bio;
1414 struct dm_target_io *tio;
1416 alloc_multiple_bios(&blist, ci, ti, num_bios);
1418 while ((bio = bio_list_pop(&blist))) {
1419 tio = container_of(bio, struct dm_target_io, clone);
1420 (void) __clone_and_map_simple_bio(ci, tio, len);
1424 static int __send_empty_flush(struct clone_info *ci)
1426 unsigned target_nr = 0;
1427 struct dm_target *ti;
1430 * Empty flush uses a statically initialized bio, as the base for
1431 * cloning. However, blkg association requires that a bdev is
1432 * associated with a gendisk, which doesn't happen until the bdev is
1433 * opened. So, blkg association is done at issue time of the flush
1434 * rather than when the device is created in alloc_dev().
1436 bio_set_dev(ci->bio, ci->io->md->bdev);
1438 BUG_ON(bio_has_data(ci->bio));
1439 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1440 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1442 bio_disassociate_blkg(ci->bio);
1444 return 0;
1447 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1448 sector_t sector, unsigned *len)
1450 struct bio *bio = ci->bio;
1451 struct dm_target_io *tio;
1452 int r;
1454 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1455 tio->len_ptr = len;
1456 r = clone_bio(tio, bio, sector, *len);
1457 if (r < 0) {
1458 free_tio(tio);
1459 return r;
1461 (void) __map_bio(tio);
1463 return 0;
1466 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1468 static unsigned get_num_discard_bios(struct dm_target *ti)
1470 return ti->num_discard_bios;
1473 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1475 return ti->num_secure_erase_bios;
1478 static unsigned get_num_write_same_bios(struct dm_target *ti)
1480 return ti->num_write_same_bios;
1483 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1485 return ti->num_write_zeroes_bios;
1488 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1489 unsigned num_bios)
1491 unsigned len;
1494 * Even though the device advertised support for this type of
1495 * request, that does not mean every target supports it, and
1496 * reconfiguration might also have changed that since the
1497 * check was performed.
1499 if (!num_bios)
1500 return -EOPNOTSUPP;
1502 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1504 __send_duplicate_bios(ci, ti, num_bios, &len);
1506 ci->sector += len;
1507 ci->sector_count -= len;
1509 return 0;
1512 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1514 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1517 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1519 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1522 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1524 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1527 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1529 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1532 static bool is_abnormal_io(struct bio *bio)
1534 bool r = false;
1536 switch (bio_op(bio)) {
1537 case REQ_OP_DISCARD:
1538 case REQ_OP_SECURE_ERASE:
1539 case REQ_OP_WRITE_SAME:
1540 case REQ_OP_WRITE_ZEROES:
1541 r = true;
1542 break;
1545 return r;
1548 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1549 int *result)
1551 struct bio *bio = ci->bio;
1553 if (bio_op(bio) == REQ_OP_DISCARD)
1554 *result = __send_discard(ci, ti);
1555 else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1556 *result = __send_secure_erase(ci, ti);
1557 else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1558 *result = __send_write_same(ci, ti);
1559 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1560 *result = __send_write_zeroes(ci, ti);
1561 else
1562 return false;
1564 return true;
1568 * Select the correct strategy for processing a non-flush bio.
1570 static int __split_and_process_non_flush(struct clone_info *ci)
1572 struct dm_target *ti;
1573 unsigned len;
1574 int r;
1576 ti = dm_table_find_target(ci->map, ci->sector);
1577 if (!dm_target_is_valid(ti))
1578 return -EIO;
1580 if (__process_abnormal_io(ci, ti, &r))
1581 return r;
1583 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1585 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1586 if (r < 0)
1587 return r;
1589 ci->sector += len;
1590 ci->sector_count -= len;
1592 return 0;
1595 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1596 struct dm_table *map, struct bio *bio)
1598 ci->map = map;
1599 ci->io = alloc_io(md, bio);
1600 ci->sector = bio->bi_iter.bi_sector;
1603 #define __dm_part_stat_sub(part, field, subnd) \
1604 (part_stat_get(part, field) -= (subnd))
1607 * Entry point to split a bio into clones and submit them to the targets.
1609 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1610 struct dm_table *map, struct bio *bio)
1612 struct clone_info ci;
1613 blk_qc_t ret = BLK_QC_T_NONE;
1614 int error = 0;
1616 init_clone_info(&ci, md, map, bio);
1618 if (bio->bi_opf & REQ_PREFLUSH) {
1619 struct bio flush_bio;
1622 * Use an on-stack bio for this, it's safe since we don't
1623 * need to reference it after submit. It's just used as
1624 * the basis for the clone(s).
1626 bio_init(&flush_bio, NULL, 0);
1627 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1628 ci.bio = &flush_bio;
1629 ci.sector_count = 0;
1630 error = __send_empty_flush(&ci);
1631 /* dec_pending submits any data associated with flush */
1632 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1633 ci.bio = bio;
1634 ci.sector_count = 0;
1635 error = __split_and_process_non_flush(&ci);
1636 } else {
1637 ci.bio = bio;
1638 ci.sector_count = bio_sectors(bio);
1639 while (ci.sector_count && !error) {
1640 error = __split_and_process_non_flush(&ci);
1641 if (current->bio_list && ci.sector_count && !error) {
1643 * Remainder must be passed to generic_make_request()
1644 * so that it gets handled *after* bios already submitted
1645 * have been completely processed.
1646 * We take a clone of the original to store in
1647 * ci.io->orig_bio to be used by end_io_acct() and
1648 * for dec_pending to use for completion handling.
1650 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1651 GFP_NOIO, &md->queue->bio_split);
1652 ci.io->orig_bio = b;
1655 * Adjust IO stats for each split, otherwise upon queue
1656 * reentry there will be redundant IO accounting.
1657 * NOTE: this is a stop-gap fix, a proper fix involves
1658 * significant refactoring of DM core's bio splitting
1659 * (by eliminating DM's splitting and just using bio_split)
1661 part_stat_lock();
1662 __dm_part_stat_sub(&dm_disk(md)->part0,
1663 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1664 part_stat_unlock();
1666 bio_chain(b, bio);
1667 trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1668 ret = generic_make_request(bio);
1669 break;
1674 /* drop the extra reference count */
1675 dec_pending(ci.io, errno_to_blk_status(error));
1676 return ret;
1680 * Optimized variant of __split_and_process_bio that leverages the
1681 * fact that targets that use it do _not_ have a need to split bios.
1683 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1684 struct bio *bio, struct dm_target *ti)
1686 struct clone_info ci;
1687 blk_qc_t ret = BLK_QC_T_NONE;
1688 int error = 0;
1690 init_clone_info(&ci, md, map, bio);
1692 if (bio->bi_opf & REQ_PREFLUSH) {
1693 struct bio flush_bio;
1696 * Use an on-stack bio for this, it's safe since we don't
1697 * need to reference it after submit. It's just used as
1698 * the basis for the clone(s).
1700 bio_init(&flush_bio, NULL, 0);
1701 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1702 ci.bio = &flush_bio;
1703 ci.sector_count = 0;
1704 error = __send_empty_flush(&ci);
1705 /* dec_pending submits any data associated with flush */
1706 } else {
1707 struct dm_target_io *tio;
1709 ci.bio = bio;
1710 ci.sector_count = bio_sectors(bio);
1711 if (__process_abnormal_io(&ci, ti, &error))
1712 goto out;
1714 tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1715 ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1717 out:
1718 /* drop the extra reference count */
1719 dec_pending(ci.io, errno_to_blk_status(error));
1720 return ret;
1723 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1725 unsigned len, sector_count;
1727 sector_count = bio_sectors(*bio);
1728 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1730 if (sector_count > len) {
1731 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1733 bio_chain(split, *bio);
1734 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1735 generic_make_request(*bio);
1736 *bio = split;
1740 static blk_qc_t dm_process_bio(struct mapped_device *md,
1741 struct dm_table *map, struct bio *bio)
1743 blk_qc_t ret = BLK_QC_T_NONE;
1744 struct dm_target *ti = md->immutable_target;
1746 if (unlikely(!map)) {
1747 bio_io_error(bio);
1748 return ret;
1751 if (!ti) {
1752 ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1753 if (unlikely(!ti || !dm_target_is_valid(ti))) {
1754 bio_io_error(bio);
1755 return ret;
1760 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1761 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1762 * won't be imposed.
1764 if (current->bio_list) {
1765 blk_queue_split(md->queue, &bio);
1766 if (!is_abnormal_io(bio))
1767 dm_queue_split(md, ti, &bio);
1770 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1771 return __process_bio(md, map, bio, ti);
1772 else
1773 return __split_and_process_bio(md, map, bio);
1776 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1778 struct mapped_device *md = q->queuedata;
1779 blk_qc_t ret = BLK_QC_T_NONE;
1780 int srcu_idx;
1781 struct dm_table *map;
1783 map = dm_get_live_table(md, &srcu_idx);
1785 /* if we're suspended, we have to queue this io for later */
1786 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1787 dm_put_live_table(md, srcu_idx);
1789 if (!(bio->bi_opf & REQ_RAHEAD))
1790 queue_io(md, bio);
1791 else
1792 bio_io_error(bio);
1793 return ret;
1796 ret = dm_process_bio(md, map, bio);
1798 dm_put_live_table(md, srcu_idx);
1799 return ret;
1802 static int dm_any_congested(void *congested_data, int bdi_bits)
1804 int r = bdi_bits;
1805 struct mapped_device *md = congested_data;
1806 struct dm_table *map;
1808 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1809 if (dm_request_based(md)) {
1811 * With request-based DM we only need to check the
1812 * top-level queue for congestion.
1814 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1815 } else {
1816 map = dm_get_live_table_fast(md);
1817 if (map)
1818 r = dm_table_any_congested(map, bdi_bits);
1819 dm_put_live_table_fast(md);
1823 return r;
1826 /*-----------------------------------------------------------------
1827 * An IDR is used to keep track of allocated minor numbers.
1828 *---------------------------------------------------------------*/
1829 static void free_minor(int minor)
1831 spin_lock(&_minor_lock);
1832 idr_remove(&_minor_idr, minor);
1833 spin_unlock(&_minor_lock);
1837 * See if the device with a specific minor # is free.
1839 static int specific_minor(int minor)
1841 int r;
1843 if (minor >= (1 << MINORBITS))
1844 return -EINVAL;
1846 idr_preload(GFP_KERNEL);
1847 spin_lock(&_minor_lock);
1849 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1851 spin_unlock(&_minor_lock);
1852 idr_preload_end();
1853 if (r < 0)
1854 return r == -ENOSPC ? -EBUSY : r;
1855 return 0;
1858 static int next_free_minor(int *minor)
1860 int r;
1862 idr_preload(GFP_KERNEL);
1863 spin_lock(&_minor_lock);
1865 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1867 spin_unlock(&_minor_lock);
1868 idr_preload_end();
1869 if (r < 0)
1870 return r;
1871 *minor = r;
1872 return 0;
1875 static const struct block_device_operations dm_blk_dops;
1876 static const struct dax_operations dm_dax_ops;
1878 static void dm_wq_work(struct work_struct *work);
1880 static void dm_init_normal_md_queue(struct mapped_device *md)
1883 * Initialize aspects of queue that aren't relevant for blk-mq
1885 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1888 static void cleanup_mapped_device(struct mapped_device *md)
1890 if (md->wq)
1891 destroy_workqueue(md->wq);
1892 bioset_exit(&md->bs);
1893 bioset_exit(&md->io_bs);
1895 if (md->dax_dev) {
1896 kill_dax(md->dax_dev);
1897 put_dax(md->dax_dev);
1898 md->dax_dev = NULL;
1901 if (md->disk) {
1902 spin_lock(&_minor_lock);
1903 md->disk->private_data = NULL;
1904 spin_unlock(&_minor_lock);
1905 del_gendisk(md->disk);
1906 put_disk(md->disk);
1909 if (md->queue)
1910 blk_cleanup_queue(md->queue);
1912 cleanup_srcu_struct(&md->io_barrier);
1914 if (md->bdev) {
1915 bdput(md->bdev);
1916 md->bdev = NULL;
1919 mutex_destroy(&md->suspend_lock);
1920 mutex_destroy(&md->type_lock);
1921 mutex_destroy(&md->table_devices_lock);
1923 dm_mq_cleanup_mapped_device(md);
1927 * Allocate and initialise a blank device with a given minor.
1929 static struct mapped_device *alloc_dev(int minor)
1931 int r, numa_node_id = dm_get_numa_node();
1932 struct mapped_device *md;
1933 void *old_md;
1935 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1936 if (!md) {
1937 DMWARN("unable to allocate device, out of memory.");
1938 return NULL;
1941 if (!try_module_get(THIS_MODULE))
1942 goto bad_module_get;
1944 /* get a minor number for the dev */
1945 if (minor == DM_ANY_MINOR)
1946 r = next_free_minor(&minor);
1947 else
1948 r = specific_minor(minor);
1949 if (r < 0)
1950 goto bad_minor;
1952 r = init_srcu_struct(&md->io_barrier);
1953 if (r < 0)
1954 goto bad_io_barrier;
1956 md->numa_node_id = numa_node_id;
1957 md->init_tio_pdu = false;
1958 md->type = DM_TYPE_NONE;
1959 mutex_init(&md->suspend_lock);
1960 mutex_init(&md->type_lock);
1961 mutex_init(&md->table_devices_lock);
1962 spin_lock_init(&md->deferred_lock);
1963 atomic_set(&md->holders, 1);
1964 atomic_set(&md->open_count, 0);
1965 atomic_set(&md->event_nr, 0);
1966 atomic_set(&md->uevent_seq, 0);
1967 INIT_LIST_HEAD(&md->uevent_list);
1968 INIT_LIST_HEAD(&md->table_devices);
1969 spin_lock_init(&md->uevent_lock);
1971 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1972 if (!md->queue)
1973 goto bad;
1974 md->queue->queuedata = md;
1975 md->queue->backing_dev_info->congested_data = md;
1977 md->disk = alloc_disk_node(1, md->numa_node_id);
1978 if (!md->disk)
1979 goto bad;
1981 init_waitqueue_head(&md->wait);
1982 INIT_WORK(&md->work, dm_wq_work);
1983 init_waitqueue_head(&md->eventq);
1984 init_completion(&md->kobj_holder.completion);
1986 md->disk->major = _major;
1987 md->disk->first_minor = minor;
1988 md->disk->fops = &dm_blk_dops;
1989 md->disk->queue = md->queue;
1990 md->disk->private_data = md;
1991 sprintf(md->disk->disk_name, "dm-%d", minor);
1993 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1994 md->dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1995 if (!md->dax_dev)
1996 goto bad;
1999 add_disk_no_queue_reg(md->disk);
2000 format_dev_t(md->name, MKDEV(_major, minor));
2002 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2003 if (!md->wq)
2004 goto bad;
2006 md->bdev = bdget_disk(md->disk, 0);
2007 if (!md->bdev)
2008 goto bad;
2010 dm_stats_init(&md->stats);
2012 /* Populate the mapping, nobody knows we exist yet */
2013 spin_lock(&_minor_lock);
2014 old_md = idr_replace(&_minor_idr, md, minor);
2015 spin_unlock(&_minor_lock);
2017 BUG_ON(old_md != MINOR_ALLOCED);
2019 return md;
2021 bad:
2022 cleanup_mapped_device(md);
2023 bad_io_barrier:
2024 free_minor(minor);
2025 bad_minor:
2026 module_put(THIS_MODULE);
2027 bad_module_get:
2028 kvfree(md);
2029 return NULL;
2032 static void unlock_fs(struct mapped_device *md);
2034 static void free_dev(struct mapped_device *md)
2036 int minor = MINOR(disk_devt(md->disk));
2038 unlock_fs(md);
2040 cleanup_mapped_device(md);
2042 free_table_devices(&md->table_devices);
2043 dm_stats_cleanup(&md->stats);
2044 free_minor(minor);
2046 module_put(THIS_MODULE);
2047 kvfree(md);
2050 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2052 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2053 int ret = 0;
2055 if (dm_table_bio_based(t)) {
2057 * The md may already have mempools that need changing.
2058 * If so, reload bioset because front_pad may have changed
2059 * because a different table was loaded.
2061 bioset_exit(&md->bs);
2062 bioset_exit(&md->io_bs);
2064 } else if (bioset_initialized(&md->bs)) {
2066 * There's no need to reload with request-based dm
2067 * because the size of front_pad doesn't change.
2068 * Note for future: If you are to reload bioset,
2069 * prep-ed requests in the queue may refer
2070 * to bio from the old bioset, so you must walk
2071 * through the queue to unprep.
2073 goto out;
2076 BUG_ON(!p ||
2077 bioset_initialized(&md->bs) ||
2078 bioset_initialized(&md->io_bs));
2080 ret = bioset_init_from_src(&md->bs, &p->bs);
2081 if (ret)
2082 goto out;
2083 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2084 if (ret)
2085 bioset_exit(&md->bs);
2086 out:
2087 /* mempool bind completed, no longer need any mempools in the table */
2088 dm_table_free_md_mempools(t);
2089 return ret;
2093 * Bind a table to the device.
2095 static void event_callback(void *context)
2097 unsigned long flags;
2098 LIST_HEAD(uevents);
2099 struct mapped_device *md = (struct mapped_device *) context;
2101 spin_lock_irqsave(&md->uevent_lock, flags);
2102 list_splice_init(&md->uevent_list, &uevents);
2103 spin_unlock_irqrestore(&md->uevent_lock, flags);
2105 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2107 atomic_inc(&md->event_nr);
2108 wake_up(&md->eventq);
2109 dm_issue_global_event();
2113 * Protected by md->suspend_lock obtained by dm_swap_table().
2115 static void __set_size(struct mapped_device *md, sector_t size)
2117 lockdep_assert_held(&md->suspend_lock);
2119 set_capacity(md->disk, size);
2121 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2125 * Returns old map, which caller must destroy.
2127 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2128 struct queue_limits *limits)
2130 struct dm_table *old_map;
2131 struct request_queue *q = md->queue;
2132 bool request_based = dm_table_request_based(t);
2133 sector_t size;
2134 int ret;
2136 lockdep_assert_held(&md->suspend_lock);
2138 size = dm_table_get_size(t);
2141 * Wipe any geometry if the size of the table changed.
2143 if (size != dm_get_size(md))
2144 memset(&md->geometry, 0, sizeof(md->geometry));
2146 __set_size(md, size);
2148 dm_table_event_callback(t, event_callback, md);
2151 * The queue hasn't been stopped yet, if the old table type wasn't
2152 * for request-based during suspension. So stop it to prevent
2153 * I/O mapping before resume.
2154 * This must be done before setting the queue restrictions,
2155 * because request-based dm may be run just after the setting.
2157 if (request_based)
2158 dm_stop_queue(q);
2160 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2162 * Leverage the fact that request-based DM targets and
2163 * NVMe bio based targets are immutable singletons
2164 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2165 * and __process_bio.
2167 md->immutable_target = dm_table_get_immutable_target(t);
2170 ret = __bind_mempools(md, t);
2171 if (ret) {
2172 old_map = ERR_PTR(ret);
2173 goto out;
2176 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2177 rcu_assign_pointer(md->map, (void *)t);
2178 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2180 dm_table_set_restrictions(t, q, limits);
2181 if (old_map)
2182 dm_sync_table(md);
2184 out:
2185 return old_map;
2189 * Returns unbound table for the caller to free.
2191 static struct dm_table *__unbind(struct mapped_device *md)
2193 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2195 if (!map)
2196 return NULL;
2198 dm_table_event_callback(map, NULL, NULL);
2199 RCU_INIT_POINTER(md->map, NULL);
2200 dm_sync_table(md);
2202 return map;
2206 * Constructor for a new device.
2208 int dm_create(int minor, struct mapped_device **result)
2210 int r;
2211 struct mapped_device *md;
2213 md = alloc_dev(minor);
2214 if (!md)
2215 return -ENXIO;
2217 r = dm_sysfs_init(md);
2218 if (r) {
2219 free_dev(md);
2220 return r;
2223 *result = md;
2224 return 0;
2228 * Functions to manage md->type.
2229 * All are required to hold md->type_lock.
2231 void dm_lock_md_type(struct mapped_device *md)
2233 mutex_lock(&md->type_lock);
2236 void dm_unlock_md_type(struct mapped_device *md)
2238 mutex_unlock(&md->type_lock);
2241 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2243 BUG_ON(!mutex_is_locked(&md->type_lock));
2244 md->type = type;
2247 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2249 return md->type;
2252 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2254 return md->immutable_target_type;
2258 * The queue_limits are only valid as long as you have a reference
2259 * count on 'md'.
2261 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2263 BUG_ON(!atomic_read(&md->holders));
2264 return &md->queue->limits;
2266 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2269 * Setup the DM device's queue based on md's type
2271 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2273 int r;
2274 struct queue_limits limits;
2275 enum dm_queue_mode type = dm_get_md_type(md);
2277 switch (type) {
2278 case DM_TYPE_REQUEST_BASED:
2279 r = dm_mq_init_request_queue(md, t);
2280 if (r) {
2281 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2282 return r;
2284 break;
2285 case DM_TYPE_BIO_BASED:
2286 case DM_TYPE_DAX_BIO_BASED:
2287 case DM_TYPE_NVME_BIO_BASED:
2288 dm_init_normal_md_queue(md);
2289 blk_queue_make_request(md->queue, dm_make_request);
2290 break;
2291 case DM_TYPE_NONE:
2292 WARN_ON_ONCE(true);
2293 break;
2296 r = dm_calculate_queue_limits(t, &limits);
2297 if (r) {
2298 DMERR("Cannot calculate initial queue limits");
2299 return r;
2301 dm_table_set_restrictions(t, md->queue, &limits);
2302 blk_register_queue(md->disk);
2304 return 0;
2307 struct mapped_device *dm_get_md(dev_t dev)
2309 struct mapped_device *md;
2310 unsigned minor = MINOR(dev);
2312 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2313 return NULL;
2315 spin_lock(&_minor_lock);
2317 md = idr_find(&_minor_idr, minor);
2318 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2319 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2320 md = NULL;
2321 goto out;
2323 dm_get(md);
2324 out:
2325 spin_unlock(&_minor_lock);
2327 return md;
2329 EXPORT_SYMBOL_GPL(dm_get_md);
2331 void *dm_get_mdptr(struct mapped_device *md)
2333 return md->interface_ptr;
2336 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2338 md->interface_ptr = ptr;
2341 void dm_get(struct mapped_device *md)
2343 atomic_inc(&md->holders);
2344 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2347 int dm_hold(struct mapped_device *md)
2349 spin_lock(&_minor_lock);
2350 if (test_bit(DMF_FREEING, &md->flags)) {
2351 spin_unlock(&_minor_lock);
2352 return -EBUSY;
2354 dm_get(md);
2355 spin_unlock(&_minor_lock);
2356 return 0;
2358 EXPORT_SYMBOL_GPL(dm_hold);
2360 const char *dm_device_name(struct mapped_device *md)
2362 return md->name;
2364 EXPORT_SYMBOL_GPL(dm_device_name);
2366 static void __dm_destroy(struct mapped_device *md, bool wait)
2368 struct dm_table *map;
2369 int srcu_idx;
2371 might_sleep();
2373 spin_lock(&_minor_lock);
2374 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2375 set_bit(DMF_FREEING, &md->flags);
2376 spin_unlock(&_minor_lock);
2378 blk_set_queue_dying(md->queue);
2381 * Take suspend_lock so that presuspend and postsuspend methods
2382 * do not race with internal suspend.
2384 mutex_lock(&md->suspend_lock);
2385 map = dm_get_live_table(md, &srcu_idx);
2386 if (!dm_suspended_md(md)) {
2387 dm_table_presuspend_targets(map);
2388 dm_table_postsuspend_targets(map);
2390 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2391 dm_put_live_table(md, srcu_idx);
2392 mutex_unlock(&md->suspend_lock);
2395 * Rare, but there may be I/O requests still going to complete,
2396 * for example. Wait for all references to disappear.
2397 * No one should increment the reference count of the mapped_device,
2398 * after the mapped_device state becomes DMF_FREEING.
2400 if (wait)
2401 while (atomic_read(&md->holders))
2402 msleep(1);
2403 else if (atomic_read(&md->holders))
2404 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2405 dm_device_name(md), atomic_read(&md->holders));
2407 dm_sysfs_exit(md);
2408 dm_table_destroy(__unbind(md));
2409 free_dev(md);
2412 void dm_destroy(struct mapped_device *md)
2414 __dm_destroy(md, true);
2417 void dm_destroy_immediate(struct mapped_device *md)
2419 __dm_destroy(md, false);
2422 void dm_put(struct mapped_device *md)
2424 atomic_dec(&md->holders);
2426 EXPORT_SYMBOL_GPL(dm_put);
2428 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2430 int r = 0;
2431 DEFINE_WAIT(wait);
2433 while (1) {
2434 prepare_to_wait(&md->wait, &wait, task_state);
2436 if (!md_in_flight(md))
2437 break;
2439 if (signal_pending_state(task_state, current)) {
2440 r = -EINTR;
2441 break;
2444 io_schedule();
2446 finish_wait(&md->wait, &wait);
2448 return r;
2452 * Process the deferred bios
2454 static void dm_wq_work(struct work_struct *work)
2456 struct mapped_device *md = container_of(work, struct mapped_device,
2457 work);
2458 struct bio *c;
2459 int srcu_idx;
2460 struct dm_table *map;
2462 map = dm_get_live_table(md, &srcu_idx);
2464 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2465 spin_lock_irq(&md->deferred_lock);
2466 c = bio_list_pop(&md->deferred);
2467 spin_unlock_irq(&md->deferred_lock);
2469 if (!c)
2470 break;
2472 if (dm_request_based(md))
2473 (void) generic_make_request(c);
2474 else
2475 (void) dm_process_bio(md, map, c);
2478 dm_put_live_table(md, srcu_idx);
2481 static void dm_queue_flush(struct mapped_device *md)
2483 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2484 smp_mb__after_atomic();
2485 queue_work(md->wq, &md->work);
2489 * Swap in a new table, returning the old one for the caller to destroy.
2491 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2493 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2494 struct queue_limits limits;
2495 int r;
2497 mutex_lock(&md->suspend_lock);
2499 /* device must be suspended */
2500 if (!dm_suspended_md(md))
2501 goto out;
2504 * If the new table has no data devices, retain the existing limits.
2505 * This helps multipath with queue_if_no_path if all paths disappear,
2506 * then new I/O is queued based on these limits, and then some paths
2507 * reappear.
2509 if (dm_table_has_no_data_devices(table)) {
2510 live_map = dm_get_live_table_fast(md);
2511 if (live_map)
2512 limits = md->queue->limits;
2513 dm_put_live_table_fast(md);
2516 if (!live_map) {
2517 r = dm_calculate_queue_limits(table, &limits);
2518 if (r) {
2519 map = ERR_PTR(r);
2520 goto out;
2524 map = __bind(md, table, &limits);
2525 dm_issue_global_event();
2527 out:
2528 mutex_unlock(&md->suspend_lock);
2529 return map;
2533 * Functions to lock and unlock any filesystem running on the
2534 * device.
2536 static int lock_fs(struct mapped_device *md)
2538 int r;
2540 WARN_ON(md->frozen_sb);
2542 md->frozen_sb = freeze_bdev(md->bdev);
2543 if (IS_ERR(md->frozen_sb)) {
2544 r = PTR_ERR(md->frozen_sb);
2545 md->frozen_sb = NULL;
2546 return r;
2549 set_bit(DMF_FROZEN, &md->flags);
2551 return 0;
2554 static void unlock_fs(struct mapped_device *md)
2556 if (!test_bit(DMF_FROZEN, &md->flags))
2557 return;
2559 thaw_bdev(md->bdev, md->frozen_sb);
2560 md->frozen_sb = NULL;
2561 clear_bit(DMF_FROZEN, &md->flags);
2565 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2566 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2567 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2569 * If __dm_suspend returns 0, the device is completely quiescent
2570 * now. There is no request-processing activity. All new requests
2571 * are being added to md->deferred list.
2573 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2574 unsigned suspend_flags, long task_state,
2575 int dmf_suspended_flag)
2577 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2578 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2579 int r;
2581 lockdep_assert_held(&md->suspend_lock);
2584 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2585 * This flag is cleared before dm_suspend returns.
2587 if (noflush)
2588 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2589 else
2590 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2593 * This gets reverted if there's an error later and the targets
2594 * provide the .presuspend_undo hook.
2596 dm_table_presuspend_targets(map);
2599 * Flush I/O to the device.
2600 * Any I/O submitted after lock_fs() may not be flushed.
2601 * noflush takes precedence over do_lockfs.
2602 * (lock_fs() flushes I/Os and waits for them to complete.)
2604 if (!noflush && do_lockfs) {
2605 r = lock_fs(md);
2606 if (r) {
2607 dm_table_presuspend_undo_targets(map);
2608 return r;
2613 * Here we must make sure that no processes are submitting requests
2614 * to target drivers i.e. no one may be executing
2615 * __split_and_process_bio. This is called from dm_request and
2616 * dm_wq_work.
2618 * To get all processes out of __split_and_process_bio in dm_request,
2619 * we take the write lock. To prevent any process from reentering
2620 * __split_and_process_bio from dm_request and quiesce the thread
2621 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2622 * flush_workqueue(md->wq).
2624 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2625 if (map)
2626 synchronize_srcu(&md->io_barrier);
2629 * Stop md->queue before flushing md->wq in case request-based
2630 * dm defers requests to md->wq from md->queue.
2632 if (dm_request_based(md))
2633 dm_stop_queue(md->queue);
2635 flush_workqueue(md->wq);
2638 * At this point no more requests are entering target request routines.
2639 * We call dm_wait_for_completion to wait for all existing requests
2640 * to finish.
2642 r = dm_wait_for_completion(md, task_state);
2643 if (!r)
2644 set_bit(dmf_suspended_flag, &md->flags);
2646 if (noflush)
2647 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2648 if (map)
2649 synchronize_srcu(&md->io_barrier);
2651 /* were we interrupted ? */
2652 if (r < 0) {
2653 dm_queue_flush(md);
2655 if (dm_request_based(md))
2656 dm_start_queue(md->queue);
2658 unlock_fs(md);
2659 dm_table_presuspend_undo_targets(map);
2660 /* pushback list is already flushed, so skip flush */
2663 return r;
2667 * We need to be able to change a mapping table under a mounted
2668 * filesystem. For example we might want to move some data in
2669 * the background. Before the table can be swapped with
2670 * dm_bind_table, dm_suspend must be called to flush any in
2671 * flight bios and ensure that any further io gets deferred.
2674 * Suspend mechanism in request-based dm.
2676 * 1. Flush all I/Os by lock_fs() if needed.
2677 * 2. Stop dispatching any I/O by stopping the request_queue.
2678 * 3. Wait for all in-flight I/Os to be completed or requeued.
2680 * To abort suspend, start the request_queue.
2682 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2684 struct dm_table *map = NULL;
2685 int r = 0;
2687 retry:
2688 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2690 if (dm_suspended_md(md)) {
2691 r = -EINVAL;
2692 goto out_unlock;
2695 if (dm_suspended_internally_md(md)) {
2696 /* already internally suspended, wait for internal resume */
2697 mutex_unlock(&md->suspend_lock);
2698 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2699 if (r)
2700 return r;
2701 goto retry;
2704 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2706 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2707 if (r)
2708 goto out_unlock;
2710 dm_table_postsuspend_targets(map);
2712 out_unlock:
2713 mutex_unlock(&md->suspend_lock);
2714 return r;
2717 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2719 if (map) {
2720 int r = dm_table_resume_targets(map);
2721 if (r)
2722 return r;
2725 dm_queue_flush(md);
2728 * Flushing deferred I/Os must be done after targets are resumed
2729 * so that mapping of targets can work correctly.
2730 * Request-based dm is queueing the deferred I/Os in its request_queue.
2732 if (dm_request_based(md))
2733 dm_start_queue(md->queue);
2735 unlock_fs(md);
2737 return 0;
2740 int dm_resume(struct mapped_device *md)
2742 int r;
2743 struct dm_table *map = NULL;
2745 retry:
2746 r = -EINVAL;
2747 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2749 if (!dm_suspended_md(md))
2750 goto out;
2752 if (dm_suspended_internally_md(md)) {
2753 /* already internally suspended, wait for internal resume */
2754 mutex_unlock(&md->suspend_lock);
2755 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2756 if (r)
2757 return r;
2758 goto retry;
2761 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2762 if (!map || !dm_table_get_size(map))
2763 goto out;
2765 r = __dm_resume(md, map);
2766 if (r)
2767 goto out;
2769 clear_bit(DMF_SUSPENDED, &md->flags);
2770 out:
2771 mutex_unlock(&md->suspend_lock);
2773 return r;
2777 * Internal suspend/resume works like userspace-driven suspend. It waits
2778 * until all bios finish and prevents issuing new bios to the target drivers.
2779 * It may be used only from the kernel.
2782 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2784 struct dm_table *map = NULL;
2786 lockdep_assert_held(&md->suspend_lock);
2788 if (md->internal_suspend_count++)
2789 return; /* nested internal suspend */
2791 if (dm_suspended_md(md)) {
2792 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2793 return; /* nest suspend */
2796 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2799 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2800 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2801 * would require changing .presuspend to return an error -- avoid this
2802 * until there is a need for more elaborate variants of internal suspend.
2804 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2805 DMF_SUSPENDED_INTERNALLY);
2807 dm_table_postsuspend_targets(map);
2810 static void __dm_internal_resume(struct mapped_device *md)
2812 BUG_ON(!md->internal_suspend_count);
2814 if (--md->internal_suspend_count)
2815 return; /* resume from nested internal suspend */
2817 if (dm_suspended_md(md))
2818 goto done; /* resume from nested suspend */
2821 * NOTE: existing callers don't need to call dm_table_resume_targets
2822 * (which may fail -- so best to avoid it for now by passing NULL map)
2824 (void) __dm_resume(md, NULL);
2826 done:
2827 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2828 smp_mb__after_atomic();
2829 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2832 void dm_internal_suspend_noflush(struct mapped_device *md)
2834 mutex_lock(&md->suspend_lock);
2835 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2836 mutex_unlock(&md->suspend_lock);
2838 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2840 void dm_internal_resume(struct mapped_device *md)
2842 mutex_lock(&md->suspend_lock);
2843 __dm_internal_resume(md);
2844 mutex_unlock(&md->suspend_lock);
2846 EXPORT_SYMBOL_GPL(dm_internal_resume);
2849 * Fast variants of internal suspend/resume hold md->suspend_lock,
2850 * which prevents interaction with userspace-driven suspend.
2853 void dm_internal_suspend_fast(struct mapped_device *md)
2855 mutex_lock(&md->suspend_lock);
2856 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2857 return;
2859 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2860 synchronize_srcu(&md->io_barrier);
2861 flush_workqueue(md->wq);
2862 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2864 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2866 void dm_internal_resume_fast(struct mapped_device *md)
2868 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2869 goto done;
2871 dm_queue_flush(md);
2873 done:
2874 mutex_unlock(&md->suspend_lock);
2876 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2878 /*-----------------------------------------------------------------
2879 * Event notification.
2880 *---------------------------------------------------------------*/
2881 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2882 unsigned cookie)
2884 char udev_cookie[DM_COOKIE_LENGTH];
2885 char *envp[] = { udev_cookie, NULL };
2887 if (!cookie)
2888 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2889 else {
2890 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2891 DM_COOKIE_ENV_VAR_NAME, cookie);
2892 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2893 action, envp);
2897 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2899 return atomic_add_return(1, &md->uevent_seq);
2902 uint32_t dm_get_event_nr(struct mapped_device *md)
2904 return atomic_read(&md->event_nr);
2907 int dm_wait_event(struct mapped_device *md, int event_nr)
2909 return wait_event_interruptible(md->eventq,
2910 (event_nr != atomic_read(&md->event_nr)));
2913 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2915 unsigned long flags;
2917 spin_lock_irqsave(&md->uevent_lock, flags);
2918 list_add(elist, &md->uevent_list);
2919 spin_unlock_irqrestore(&md->uevent_lock, flags);
2923 * The gendisk is only valid as long as you have a reference
2924 * count on 'md'.
2926 struct gendisk *dm_disk(struct mapped_device *md)
2928 return md->disk;
2930 EXPORT_SYMBOL_GPL(dm_disk);
2932 struct kobject *dm_kobject(struct mapped_device *md)
2934 return &md->kobj_holder.kobj;
2937 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2939 struct mapped_device *md;
2941 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2943 spin_lock(&_minor_lock);
2944 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2945 md = NULL;
2946 goto out;
2948 dm_get(md);
2949 out:
2950 spin_unlock(&_minor_lock);
2952 return md;
2955 int dm_suspended_md(struct mapped_device *md)
2957 return test_bit(DMF_SUSPENDED, &md->flags);
2960 int dm_suspended_internally_md(struct mapped_device *md)
2962 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2965 int dm_test_deferred_remove_flag(struct mapped_device *md)
2967 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2970 int dm_suspended(struct dm_target *ti)
2972 return dm_suspended_md(dm_table_get_md(ti->table));
2974 EXPORT_SYMBOL_GPL(dm_suspended);
2976 int dm_noflush_suspending(struct dm_target *ti)
2978 return __noflush_suspending(dm_table_get_md(ti->table));
2980 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2982 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2983 unsigned integrity, unsigned per_io_data_size,
2984 unsigned min_pool_size)
2986 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2987 unsigned int pool_size = 0;
2988 unsigned int front_pad, io_front_pad;
2989 int ret;
2991 if (!pools)
2992 return NULL;
2994 switch (type) {
2995 case DM_TYPE_BIO_BASED:
2996 case DM_TYPE_DAX_BIO_BASED:
2997 case DM_TYPE_NVME_BIO_BASED:
2998 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2999 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3000 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3001 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3002 if (ret)
3003 goto out;
3004 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3005 goto out;
3006 break;
3007 case DM_TYPE_REQUEST_BASED:
3008 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3009 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3010 /* per_io_data_size is used for blk-mq pdu at queue allocation */
3011 break;
3012 default:
3013 BUG();
3016 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3017 if (ret)
3018 goto out;
3020 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3021 goto out;
3023 return pools;
3025 out:
3026 dm_free_md_mempools(pools);
3028 return NULL;
3031 void dm_free_md_mempools(struct dm_md_mempools *pools)
3033 if (!pools)
3034 return;
3036 bioset_exit(&pools->bs);
3037 bioset_exit(&pools->io_bs);
3039 kfree(pools);
3042 struct dm_pr {
3043 u64 old_key;
3044 u64 new_key;
3045 u32 flags;
3046 bool fail_early;
3049 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3050 void *data)
3052 struct mapped_device *md = bdev->bd_disk->private_data;
3053 struct dm_table *table;
3054 struct dm_target *ti;
3055 int ret = -ENOTTY, srcu_idx;
3057 table = dm_get_live_table(md, &srcu_idx);
3058 if (!table || !dm_table_get_size(table))
3059 goto out;
3061 /* We only support devices that have a single target */
3062 if (dm_table_get_num_targets(table) != 1)
3063 goto out;
3064 ti = dm_table_get_target(table, 0);
3066 ret = -EINVAL;
3067 if (!ti->type->iterate_devices)
3068 goto out;
3070 ret = ti->type->iterate_devices(ti, fn, data);
3071 out:
3072 dm_put_live_table(md, srcu_idx);
3073 return ret;
3077 * For register / unregister we need to manually call out to every path.
3079 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3080 sector_t start, sector_t len, void *data)
3082 struct dm_pr *pr = data;
3083 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3085 if (!ops || !ops->pr_register)
3086 return -EOPNOTSUPP;
3087 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3090 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3091 u32 flags)
3093 struct dm_pr pr = {
3094 .old_key = old_key,
3095 .new_key = new_key,
3096 .flags = flags,
3097 .fail_early = true,
3099 int ret;
3101 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3102 if (ret && new_key) {
3103 /* unregister all paths if we failed to register any path */
3104 pr.old_key = new_key;
3105 pr.new_key = 0;
3106 pr.flags = 0;
3107 pr.fail_early = false;
3108 dm_call_pr(bdev, __dm_pr_register, &pr);
3111 return ret;
3114 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3115 u32 flags)
3117 struct mapped_device *md = bdev->bd_disk->private_data;
3118 const struct pr_ops *ops;
3119 int r, srcu_idx;
3121 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3122 if (r < 0)
3123 goto out;
3125 ops = bdev->bd_disk->fops->pr_ops;
3126 if (ops && ops->pr_reserve)
3127 r = ops->pr_reserve(bdev, key, type, flags);
3128 else
3129 r = -EOPNOTSUPP;
3130 out:
3131 dm_unprepare_ioctl(md, srcu_idx);
3132 return r;
3135 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3137 struct mapped_device *md = bdev->bd_disk->private_data;
3138 const struct pr_ops *ops;
3139 int r, srcu_idx;
3141 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3142 if (r < 0)
3143 goto out;
3145 ops = bdev->bd_disk->fops->pr_ops;
3146 if (ops && ops->pr_release)
3147 r = ops->pr_release(bdev, key, type);
3148 else
3149 r = -EOPNOTSUPP;
3150 out:
3151 dm_unprepare_ioctl(md, srcu_idx);
3152 return r;
3155 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3156 enum pr_type type, bool abort)
3158 struct mapped_device *md = bdev->bd_disk->private_data;
3159 const struct pr_ops *ops;
3160 int r, srcu_idx;
3162 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3163 if (r < 0)
3164 goto out;
3166 ops = bdev->bd_disk->fops->pr_ops;
3167 if (ops && ops->pr_preempt)
3168 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3169 else
3170 r = -EOPNOTSUPP;
3171 out:
3172 dm_unprepare_ioctl(md, srcu_idx);
3173 return r;
3176 static int dm_pr_clear(struct block_device *bdev, u64 key)
3178 struct mapped_device *md = bdev->bd_disk->private_data;
3179 const struct pr_ops *ops;
3180 int r, srcu_idx;
3182 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3183 if (r < 0)
3184 goto out;
3186 ops = bdev->bd_disk->fops->pr_ops;
3187 if (ops && ops->pr_clear)
3188 r = ops->pr_clear(bdev, key);
3189 else
3190 r = -EOPNOTSUPP;
3191 out:
3192 dm_unprepare_ioctl(md, srcu_idx);
3193 return r;
3196 static const struct pr_ops dm_pr_ops = {
3197 .pr_register = dm_pr_register,
3198 .pr_reserve = dm_pr_reserve,
3199 .pr_release = dm_pr_release,
3200 .pr_preempt = dm_pr_preempt,
3201 .pr_clear = dm_pr_clear,
3204 static const struct block_device_operations dm_blk_dops = {
3205 .open = dm_blk_open,
3206 .release = dm_blk_close,
3207 .ioctl = dm_blk_ioctl,
3208 .getgeo = dm_blk_getgeo,
3209 .report_zones = dm_blk_report_zones,
3210 .pr_ops = &dm_pr_ops,
3211 .owner = THIS_MODULE
3214 static const struct dax_operations dm_dax_ops = {
3215 .direct_access = dm_dax_direct_access,
3216 .dax_supported = dm_dax_supported,
3217 .copy_from_iter = dm_dax_copy_from_iter,
3218 .copy_to_iter = dm_dax_copy_to_iter,
3222 * module hooks
3224 module_init(dm_init);
3225 module_exit(dm_exit);
3227 module_param(major, uint, 0);
3228 MODULE_PARM_DESC(major, "The major number of the device mapper");
3230 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3231 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3233 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3234 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3236 MODULE_DESCRIPTION(DM_NAME " driver");
3237 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3238 MODULE_LICENSE("GPL");