4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/memremap.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 #include <linux/uio.h>
35 #include <linux/hugetlb.h>
36 #include <linux/page_idle.h>
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/pagemap.h>
43 /* How many pages do we try to swap or page in/out together? */
46 static DEFINE_PER_CPU(struct pagevec
, lru_add_pvec
);
47 static DEFINE_PER_CPU(struct pagevec
, lru_rotate_pvecs
);
48 static DEFINE_PER_CPU(struct pagevec
, lru_deactivate_file_pvecs
);
49 static DEFINE_PER_CPU(struct pagevec
, lru_deactivate_pvecs
);
52 * This path almost never happens for VM activity - pages are normally
53 * freed via pagevecs. But it gets used by networking.
55 static void __page_cache_release(struct page
*page
)
58 struct zone
*zone
= page_zone(page
);
59 struct lruvec
*lruvec
;
62 spin_lock_irqsave(&zone
->lru_lock
, flags
);
63 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
64 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
66 del_page_from_lru_list(page
, lruvec
, page_off_lru(page
));
67 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
69 mem_cgroup_uncharge(page
);
72 static void __put_single_page(struct page
*page
)
74 __page_cache_release(page
);
75 free_hot_cold_page(page
, false);
78 static void __put_compound_page(struct page
*page
)
80 compound_page_dtor
*dtor
;
83 * __page_cache_release() is supposed to be called for thp, not for
84 * hugetlb. This is because hugetlb page does never have PageLRU set
85 * (it's never listed to any LRU lists) and no memcg routines should
86 * be called for hugetlb (it has a separate hugetlb_cgroup.)
89 __page_cache_release(page
);
90 dtor
= get_compound_page_dtor(page
);
94 void __put_page(struct page
*page
)
96 if (unlikely(PageCompound(page
)))
97 __put_compound_page(page
);
99 __put_single_page(page
);
101 EXPORT_SYMBOL(__put_page
);
104 * put_pages_list() - release a list of pages
105 * @pages: list of pages threaded on page->lru
107 * Release a list of pages which are strung together on page.lru. Currently
108 * used by read_cache_pages() and related error recovery code.
110 void put_pages_list(struct list_head
*pages
)
112 while (!list_empty(pages
)) {
115 victim
= list_entry(pages
->prev
, struct page
, lru
);
116 list_del(&victim
->lru
);
120 EXPORT_SYMBOL(put_pages_list
);
123 * get_kernel_pages() - pin kernel pages in memory
124 * @kiov: An array of struct kvec structures
125 * @nr_segs: number of segments to pin
126 * @write: pinning for read/write, currently ignored
127 * @pages: array that receives pointers to the pages pinned.
128 * Should be at least nr_segs long.
130 * Returns number of pages pinned. This may be fewer than the number
131 * requested. If nr_pages is 0 or negative, returns 0. If no pages
132 * were pinned, returns -errno. Each page returned must be released
133 * with a put_page() call when it is finished with.
135 int get_kernel_pages(const struct kvec
*kiov
, int nr_segs
, int write
,
140 for (seg
= 0; seg
< nr_segs
; seg
++) {
141 if (WARN_ON(kiov
[seg
].iov_len
!= PAGE_SIZE
))
144 pages
[seg
] = kmap_to_page(kiov
[seg
].iov_base
);
145 get_page(pages
[seg
]);
150 EXPORT_SYMBOL_GPL(get_kernel_pages
);
153 * get_kernel_page() - pin a kernel page in memory
154 * @start: starting kernel address
155 * @write: pinning for read/write, currently ignored
156 * @pages: array that receives pointer to the page pinned.
157 * Must be at least nr_segs long.
159 * Returns 1 if page is pinned. If the page was not pinned, returns
160 * -errno. The page returned must be released with a put_page() call
161 * when it is finished with.
163 int get_kernel_page(unsigned long start
, int write
, struct page
**pages
)
165 const struct kvec kiov
= {
166 .iov_base
= (void *)start
,
170 return get_kernel_pages(&kiov
, 1, write
, pages
);
172 EXPORT_SYMBOL_GPL(get_kernel_page
);
174 static void pagevec_lru_move_fn(struct pagevec
*pvec
,
175 void (*move_fn
)(struct page
*page
, struct lruvec
*lruvec
, void *arg
),
179 struct zone
*zone
= NULL
;
180 struct lruvec
*lruvec
;
181 unsigned long flags
= 0;
183 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
184 struct page
*page
= pvec
->pages
[i
];
185 struct zone
*pagezone
= page_zone(page
);
187 if (pagezone
!= zone
) {
189 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
191 spin_lock_irqsave(&zone
->lru_lock
, flags
);
194 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
195 (*move_fn
)(page
, lruvec
, arg
);
198 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
199 release_pages(pvec
->pages
, pvec
->nr
, pvec
->cold
);
200 pagevec_reinit(pvec
);
203 static void pagevec_move_tail_fn(struct page
*page
, struct lruvec
*lruvec
,
208 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
209 enum lru_list lru
= page_lru_base_type(page
);
210 list_move_tail(&page
->lru
, &lruvec
->lists
[lru
]);
216 * pagevec_move_tail() must be called with IRQ disabled.
217 * Otherwise this may cause nasty races.
219 static void pagevec_move_tail(struct pagevec
*pvec
)
223 pagevec_lru_move_fn(pvec
, pagevec_move_tail_fn
, &pgmoved
);
224 __count_vm_events(PGROTATED
, pgmoved
);
228 * Writeback is about to end against a page which has been marked for immediate
229 * reclaim. If it still appears to be reclaimable, move it to the tail of the
232 void rotate_reclaimable_page(struct page
*page
)
234 if (!PageLocked(page
) && !PageDirty(page
) && !PageActive(page
) &&
235 !PageUnevictable(page
) && PageLRU(page
)) {
236 struct pagevec
*pvec
;
240 local_irq_save(flags
);
241 pvec
= this_cpu_ptr(&lru_rotate_pvecs
);
242 if (!pagevec_add(pvec
, page
))
243 pagevec_move_tail(pvec
);
244 local_irq_restore(flags
);
248 static void update_page_reclaim_stat(struct lruvec
*lruvec
,
249 int file
, int rotated
)
251 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
253 reclaim_stat
->recent_scanned
[file
]++;
255 reclaim_stat
->recent_rotated
[file
]++;
258 static void __activate_page(struct page
*page
, struct lruvec
*lruvec
,
261 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
262 int file
= page_is_file_cache(page
);
263 int lru
= page_lru_base_type(page
);
265 del_page_from_lru_list(page
, lruvec
, lru
);
268 add_page_to_lru_list(page
, lruvec
, lru
);
269 trace_mm_lru_activate(page
);
271 __count_vm_event(PGACTIVATE
);
272 update_page_reclaim_stat(lruvec
, file
, 1);
277 static DEFINE_PER_CPU(struct pagevec
, activate_page_pvecs
);
279 static void activate_page_drain(int cpu
)
281 struct pagevec
*pvec
= &per_cpu(activate_page_pvecs
, cpu
);
283 if (pagevec_count(pvec
))
284 pagevec_lru_move_fn(pvec
, __activate_page
, NULL
);
287 static bool need_activate_page_drain(int cpu
)
289 return pagevec_count(&per_cpu(activate_page_pvecs
, cpu
)) != 0;
292 void activate_page(struct page
*page
)
294 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
295 struct pagevec
*pvec
= &get_cpu_var(activate_page_pvecs
);
298 if (!pagevec_add(pvec
, page
))
299 pagevec_lru_move_fn(pvec
, __activate_page
, NULL
);
300 put_cpu_var(activate_page_pvecs
);
305 static inline void activate_page_drain(int cpu
)
309 static bool need_activate_page_drain(int cpu
)
314 void activate_page(struct page
*page
)
316 struct zone
*zone
= page_zone(page
);
318 spin_lock_irq(&zone
->lru_lock
);
319 __activate_page(page
, mem_cgroup_page_lruvec(page
, zone
), NULL
);
320 spin_unlock_irq(&zone
->lru_lock
);
324 static void __lru_cache_activate_page(struct page
*page
)
326 struct pagevec
*pvec
= &get_cpu_var(lru_add_pvec
);
330 * Search backwards on the optimistic assumption that the page being
331 * activated has just been added to this pagevec. Note that only
332 * the local pagevec is examined as a !PageLRU page could be in the
333 * process of being released, reclaimed, migrated or on a remote
334 * pagevec that is currently being drained. Furthermore, marking
335 * a remote pagevec's page PageActive potentially hits a race where
336 * a page is marked PageActive just after it is added to the inactive
337 * list causing accounting errors and BUG_ON checks to trigger.
339 for (i
= pagevec_count(pvec
) - 1; i
>= 0; i
--) {
340 struct page
*pagevec_page
= pvec
->pages
[i
];
342 if (pagevec_page
== page
) {
348 put_cpu_var(lru_add_pvec
);
352 * Mark a page as having seen activity.
354 * inactive,unreferenced -> inactive,referenced
355 * inactive,referenced -> active,unreferenced
356 * active,unreferenced -> active,referenced
358 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
359 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
361 void mark_page_accessed(struct page
*page
)
363 page
= compound_head(page
);
364 if (!PageActive(page
) && !PageUnevictable(page
) &&
365 PageReferenced(page
)) {
368 * If the page is on the LRU, queue it for activation via
369 * activate_page_pvecs. Otherwise, assume the page is on a
370 * pagevec, mark it active and it'll be moved to the active
371 * LRU on the next drain.
376 __lru_cache_activate_page(page
);
377 ClearPageReferenced(page
);
378 if (page_is_file_cache(page
))
379 workingset_activation(page
);
380 } else if (!PageReferenced(page
)) {
381 SetPageReferenced(page
);
383 if (page_is_idle(page
))
384 clear_page_idle(page
);
386 EXPORT_SYMBOL(mark_page_accessed
);
388 static void __lru_cache_add(struct page
*page
)
390 struct pagevec
*pvec
= &get_cpu_var(lru_add_pvec
);
393 if (!pagevec_space(pvec
))
394 __pagevec_lru_add(pvec
);
395 pagevec_add(pvec
, page
);
396 put_cpu_var(lru_add_pvec
);
400 * lru_cache_add: add a page to the page lists
401 * @page: the page to add
403 void lru_cache_add_anon(struct page
*page
)
405 if (PageActive(page
))
406 ClearPageActive(page
);
407 __lru_cache_add(page
);
410 void lru_cache_add_file(struct page
*page
)
412 if (PageActive(page
))
413 ClearPageActive(page
);
414 __lru_cache_add(page
);
416 EXPORT_SYMBOL(lru_cache_add_file
);
419 * lru_cache_add - add a page to a page list
420 * @page: the page to be added to the LRU.
422 * Queue the page for addition to the LRU via pagevec. The decision on whether
423 * to add the page to the [in]active [file|anon] list is deferred until the
424 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
425 * have the page added to the active list using mark_page_accessed().
427 void lru_cache_add(struct page
*page
)
429 VM_BUG_ON_PAGE(PageActive(page
) && PageUnevictable(page
), page
);
430 VM_BUG_ON_PAGE(PageLRU(page
), page
);
431 __lru_cache_add(page
);
435 * add_page_to_unevictable_list - add a page to the unevictable list
436 * @page: the page to be added to the unevictable list
438 * Add page directly to its zone's unevictable list. To avoid races with
439 * tasks that might be making the page evictable, through eg. munlock,
440 * munmap or exit, while it's not on the lru, we want to add the page
441 * while it's locked or otherwise "invisible" to other tasks. This is
442 * difficult to do when using the pagevec cache, so bypass that.
444 void add_page_to_unevictable_list(struct page
*page
)
446 struct zone
*zone
= page_zone(page
);
447 struct lruvec
*lruvec
;
449 spin_lock_irq(&zone
->lru_lock
);
450 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
451 ClearPageActive(page
);
452 SetPageUnevictable(page
);
454 add_page_to_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
455 spin_unlock_irq(&zone
->lru_lock
);
459 * lru_cache_add_active_or_unevictable
460 * @page: the page to be added to LRU
461 * @vma: vma in which page is mapped for determining reclaimability
463 * Place @page on the active or unevictable LRU list, depending on its
464 * evictability. Note that if the page is not evictable, it goes
465 * directly back onto it's zone's unevictable list, it does NOT use a
468 void lru_cache_add_active_or_unevictable(struct page
*page
,
469 struct vm_area_struct
*vma
)
471 VM_BUG_ON_PAGE(PageLRU(page
), page
);
473 if (likely((vma
->vm_flags
& (VM_LOCKED
| VM_SPECIAL
)) != VM_LOCKED
)) {
479 if (!TestSetPageMlocked(page
)) {
481 * We use the irq-unsafe __mod_zone_page_stat because this
482 * counter is not modified from interrupt context, and the pte
483 * lock is held(spinlock), which implies preemption disabled.
485 __mod_zone_page_state(page_zone(page
), NR_MLOCK
,
486 hpage_nr_pages(page
));
487 count_vm_event(UNEVICTABLE_PGMLOCKED
);
489 add_page_to_unevictable_list(page
);
493 * If the page can not be invalidated, it is moved to the
494 * inactive list to speed up its reclaim. It is moved to the
495 * head of the list, rather than the tail, to give the flusher
496 * threads some time to write it out, as this is much more
497 * effective than the single-page writeout from reclaim.
499 * If the page isn't page_mapped and dirty/writeback, the page
500 * could reclaim asap using PG_reclaim.
502 * 1. active, mapped page -> none
503 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
504 * 3. inactive, mapped page -> none
505 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
506 * 5. inactive, clean -> inactive, tail
509 * In 4, why it moves inactive's head, the VM expects the page would
510 * be write it out by flusher threads as this is much more effective
511 * than the single-page writeout from reclaim.
513 static void lru_deactivate_file_fn(struct page
*page
, struct lruvec
*lruvec
,
522 if (PageUnevictable(page
))
525 /* Some processes are using the page */
526 if (page_mapped(page
))
529 active
= PageActive(page
);
530 file
= page_is_file_cache(page
);
531 lru
= page_lru_base_type(page
);
533 del_page_from_lru_list(page
, lruvec
, lru
+ active
);
534 ClearPageActive(page
);
535 ClearPageReferenced(page
);
536 add_page_to_lru_list(page
, lruvec
, lru
);
538 if (PageWriteback(page
) || PageDirty(page
)) {
540 * PG_reclaim could be raced with end_page_writeback
541 * It can make readahead confusing. But race window
542 * is _really_ small and it's non-critical problem.
544 SetPageReclaim(page
);
547 * The page's writeback ends up during pagevec
548 * We moves tha page into tail of inactive.
550 list_move_tail(&page
->lru
, &lruvec
->lists
[lru
]);
551 __count_vm_event(PGROTATED
);
555 __count_vm_event(PGDEACTIVATE
);
556 update_page_reclaim_stat(lruvec
, file
, 0);
560 static void lru_deactivate_fn(struct page
*page
, struct lruvec
*lruvec
,
563 if (PageLRU(page
) && PageActive(page
) && !PageUnevictable(page
)) {
564 int file
= page_is_file_cache(page
);
565 int lru
= page_lru_base_type(page
);
567 del_page_from_lru_list(page
, lruvec
, lru
+ LRU_ACTIVE
);
568 ClearPageActive(page
);
569 ClearPageReferenced(page
);
570 add_page_to_lru_list(page
, lruvec
, lru
);
572 __count_vm_event(PGDEACTIVATE
);
573 update_page_reclaim_stat(lruvec
, file
, 0);
578 * Drain pages out of the cpu's pagevecs.
579 * Either "cpu" is the current CPU, and preemption has already been
580 * disabled; or "cpu" is being hot-unplugged, and is already dead.
582 void lru_add_drain_cpu(int cpu
)
584 struct pagevec
*pvec
= &per_cpu(lru_add_pvec
, cpu
);
586 if (pagevec_count(pvec
))
587 __pagevec_lru_add(pvec
);
589 pvec
= &per_cpu(lru_rotate_pvecs
, cpu
);
590 if (pagevec_count(pvec
)) {
593 /* No harm done if a racing interrupt already did this */
594 local_irq_save(flags
);
595 pagevec_move_tail(pvec
);
596 local_irq_restore(flags
);
599 pvec
= &per_cpu(lru_deactivate_file_pvecs
, cpu
);
600 if (pagevec_count(pvec
))
601 pagevec_lru_move_fn(pvec
, lru_deactivate_file_fn
, NULL
);
603 pvec
= &per_cpu(lru_deactivate_pvecs
, cpu
);
604 if (pagevec_count(pvec
))
605 pagevec_lru_move_fn(pvec
, lru_deactivate_fn
, NULL
);
607 activate_page_drain(cpu
);
611 * deactivate_file_page - forcefully deactivate a file page
612 * @page: page to deactivate
614 * This function hints the VM that @page is a good reclaim candidate,
615 * for example if its invalidation fails due to the page being dirty
616 * or under writeback.
618 void deactivate_file_page(struct page
*page
)
621 * In a workload with many unevictable page such as mprotect,
622 * unevictable page deactivation for accelerating reclaim is pointless.
624 if (PageUnevictable(page
))
627 if (likely(get_page_unless_zero(page
))) {
628 struct pagevec
*pvec
= &get_cpu_var(lru_deactivate_file_pvecs
);
630 if (!pagevec_add(pvec
, page
))
631 pagevec_lru_move_fn(pvec
, lru_deactivate_file_fn
, NULL
);
632 put_cpu_var(lru_deactivate_file_pvecs
);
637 * deactivate_page - deactivate a page
638 * @page: page to deactivate
640 * deactivate_page() moves @page to the inactive list if @page was on the active
641 * list and was not an unevictable page. This is done to accelerate the reclaim
644 void deactivate_page(struct page
*page
)
646 if (PageLRU(page
) && PageActive(page
) && !PageUnevictable(page
)) {
647 struct pagevec
*pvec
= &get_cpu_var(lru_deactivate_pvecs
);
650 if (!pagevec_add(pvec
, page
))
651 pagevec_lru_move_fn(pvec
, lru_deactivate_fn
, NULL
);
652 put_cpu_var(lru_deactivate_pvecs
);
656 void lru_add_drain(void)
658 lru_add_drain_cpu(get_cpu());
662 static void lru_add_drain_per_cpu(struct work_struct
*dummy
)
667 static DEFINE_PER_CPU(struct work_struct
, lru_add_drain_work
);
669 void lru_add_drain_all(void)
671 static DEFINE_MUTEX(lock
);
672 static struct cpumask has_work
;
677 cpumask_clear(&has_work
);
679 for_each_online_cpu(cpu
) {
680 struct work_struct
*work
= &per_cpu(lru_add_drain_work
, cpu
);
682 if (pagevec_count(&per_cpu(lru_add_pvec
, cpu
)) ||
683 pagevec_count(&per_cpu(lru_rotate_pvecs
, cpu
)) ||
684 pagevec_count(&per_cpu(lru_deactivate_file_pvecs
, cpu
)) ||
685 pagevec_count(&per_cpu(lru_deactivate_pvecs
, cpu
)) ||
686 need_activate_page_drain(cpu
)) {
687 INIT_WORK(work
, lru_add_drain_per_cpu
);
688 schedule_work_on(cpu
, work
);
689 cpumask_set_cpu(cpu
, &has_work
);
693 for_each_cpu(cpu
, &has_work
)
694 flush_work(&per_cpu(lru_add_drain_work
, cpu
));
701 * release_pages - batched put_page()
702 * @pages: array of pages to release
703 * @nr: number of pages
704 * @cold: whether the pages are cache cold
706 * Decrement the reference count on all the pages in @pages. If it
707 * fell to zero, remove the page from the LRU and free it.
709 void release_pages(struct page
**pages
, int nr
, bool cold
)
712 LIST_HEAD(pages_to_free
);
713 struct zone
*zone
= NULL
;
714 struct lruvec
*lruvec
;
715 unsigned long uninitialized_var(flags
);
716 unsigned int uninitialized_var(lock_batch
);
718 for (i
= 0; i
< nr
; i
++) {
719 struct page
*page
= pages
[i
];
722 * Make sure the IRQ-safe lock-holding time does not get
723 * excessive with a continuous string of pages from the
724 * same zone. The lock is held only if zone != NULL.
726 if (zone
&& ++lock_batch
== SWAP_CLUSTER_MAX
) {
727 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
731 page
= compound_head(page
);
732 if (!put_page_testzero(page
))
735 if (PageCompound(page
)) {
737 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
740 __put_compound_page(page
);
745 struct zone
*pagezone
= page_zone(page
);
747 if (pagezone
!= zone
) {
749 spin_unlock_irqrestore(&zone
->lru_lock
,
753 spin_lock_irqsave(&zone
->lru_lock
, flags
);
756 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
757 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
758 __ClearPageLRU(page
);
759 del_page_from_lru_list(page
, lruvec
, page_off_lru(page
));
762 /* Clear Active bit in case of parallel mark_page_accessed */
763 __ClearPageActive(page
);
765 list_add(&page
->lru
, &pages_to_free
);
768 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
770 mem_cgroup_uncharge_list(&pages_to_free
);
771 free_hot_cold_page_list(&pages_to_free
, cold
);
773 EXPORT_SYMBOL(release_pages
);
776 * The pages which we're about to release may be in the deferred lru-addition
777 * queues. That would prevent them from really being freed right now. That's
778 * OK from a correctness point of view but is inefficient - those pages may be
779 * cache-warm and we want to give them back to the page allocator ASAP.
781 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
782 * and __pagevec_lru_add_active() call release_pages() directly to avoid
785 void __pagevec_release(struct pagevec
*pvec
)
788 release_pages(pvec
->pages
, pagevec_count(pvec
), pvec
->cold
);
789 pagevec_reinit(pvec
);
791 EXPORT_SYMBOL(__pagevec_release
);
793 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
794 /* used by __split_huge_page_refcount() */
795 void lru_add_page_tail(struct page
*page
, struct page
*page_tail
,
796 struct lruvec
*lruvec
, struct list_head
*list
)
800 VM_BUG_ON_PAGE(!PageHead(page
), page
);
801 VM_BUG_ON_PAGE(PageCompound(page_tail
), page
);
802 VM_BUG_ON_PAGE(PageLRU(page_tail
), page
);
803 VM_BUG_ON(NR_CPUS
!= 1 &&
804 !spin_is_locked(&lruvec_zone(lruvec
)->lru_lock
));
807 SetPageLRU(page_tail
);
809 if (likely(PageLRU(page
)))
810 list_add_tail(&page_tail
->lru
, &page
->lru
);
812 /* page reclaim is reclaiming a huge page */
814 list_add_tail(&page_tail
->lru
, list
);
816 struct list_head
*list_head
;
818 * Head page has not yet been counted, as an hpage,
819 * so we must account for each subpage individually.
821 * Use the standard add function to put page_tail on the list,
822 * but then correct its position so they all end up in order.
824 add_page_to_lru_list(page_tail
, lruvec
, page_lru(page_tail
));
825 list_head
= page_tail
->lru
.prev
;
826 list_move_tail(&page_tail
->lru
, list_head
);
829 if (!PageUnevictable(page
))
830 update_page_reclaim_stat(lruvec
, file
, PageActive(page_tail
));
832 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
834 static void __pagevec_lru_add_fn(struct page
*page
, struct lruvec
*lruvec
,
837 int file
= page_is_file_cache(page
);
838 int active
= PageActive(page
);
839 enum lru_list lru
= page_lru(page
);
841 VM_BUG_ON_PAGE(PageLRU(page
), page
);
844 add_page_to_lru_list(page
, lruvec
, lru
);
845 update_page_reclaim_stat(lruvec
, file
, active
);
846 trace_mm_lru_insertion(page
, lru
);
850 * Add the passed pages to the LRU, then drop the caller's refcount
851 * on them. Reinitialises the caller's pagevec.
853 void __pagevec_lru_add(struct pagevec
*pvec
)
855 pagevec_lru_move_fn(pvec
, __pagevec_lru_add_fn
, NULL
);
857 EXPORT_SYMBOL(__pagevec_lru_add
);
860 * pagevec_lookup_entries - gang pagecache lookup
861 * @pvec: Where the resulting entries are placed
862 * @mapping: The address_space to search
863 * @start: The starting entry index
864 * @nr_entries: The maximum number of entries
865 * @indices: The cache indices corresponding to the entries in @pvec
867 * pagevec_lookup_entries() will search for and return a group of up
868 * to @nr_entries pages and shadow entries in the mapping. All
869 * entries are placed in @pvec. pagevec_lookup_entries() takes a
870 * reference against actual pages in @pvec.
872 * The search returns a group of mapping-contiguous entries with
873 * ascending indexes. There may be holes in the indices due to
874 * not-present entries.
876 * pagevec_lookup_entries() returns the number of entries which were
879 unsigned pagevec_lookup_entries(struct pagevec
*pvec
,
880 struct address_space
*mapping
,
881 pgoff_t start
, unsigned nr_pages
,
884 pvec
->nr
= find_get_entries(mapping
, start
, nr_pages
,
885 pvec
->pages
, indices
);
886 return pagevec_count(pvec
);
890 * pagevec_remove_exceptionals - pagevec exceptionals pruning
891 * @pvec: The pagevec to prune
893 * pagevec_lookup_entries() fills both pages and exceptional radix
894 * tree entries into the pagevec. This function prunes all
895 * exceptionals from @pvec without leaving holes, so that it can be
896 * passed on to page-only pagevec operations.
898 void pagevec_remove_exceptionals(struct pagevec
*pvec
)
902 for (i
= 0, j
= 0; i
< pagevec_count(pvec
); i
++) {
903 struct page
*page
= pvec
->pages
[i
];
904 if (!radix_tree_exceptional_entry(page
))
905 pvec
->pages
[j
++] = page
;
911 * pagevec_lookup - gang pagecache lookup
912 * @pvec: Where the resulting pages are placed
913 * @mapping: The address_space to search
914 * @start: The starting page index
915 * @nr_pages: The maximum number of pages
917 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
918 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
919 * reference against the pages in @pvec.
921 * The search returns a group of mapping-contiguous pages with ascending
922 * indexes. There may be holes in the indices due to not-present pages.
924 * pagevec_lookup() returns the number of pages which were found.
926 unsigned pagevec_lookup(struct pagevec
*pvec
, struct address_space
*mapping
,
927 pgoff_t start
, unsigned nr_pages
)
929 pvec
->nr
= find_get_pages(mapping
, start
, nr_pages
, pvec
->pages
);
930 return pagevec_count(pvec
);
932 EXPORT_SYMBOL(pagevec_lookup
);
934 unsigned pagevec_lookup_tag(struct pagevec
*pvec
, struct address_space
*mapping
,
935 pgoff_t
*index
, int tag
, unsigned nr_pages
)
937 pvec
->nr
= find_get_pages_tag(mapping
, index
, tag
,
938 nr_pages
, pvec
->pages
);
939 return pagevec_count(pvec
);
941 EXPORT_SYMBOL(pagevec_lookup_tag
);
944 * Perform any setup for the swap system
946 void __init
swap_setup(void)
948 unsigned long megs
= totalram_pages
>> (20 - PAGE_SHIFT
);
952 for (i
= 0; i
< MAX_SWAPFILES
; i
++)
953 spin_lock_init(&swapper_spaces
[i
].tree_lock
);
956 /* Use a smaller cluster for small-memory machines */
962 * Right now other parts of the system means that we
963 * _really_ don't want to cluster much more