2 * Copyright (c) 2007-2014 Nicira, Inc.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 #include <linux/skbuff.h>
24 #include <linux/openvswitch.h>
25 #include <linux/netfilter_ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/in6.h>
30 #include <linux/if_arp.h>
31 #include <linux/if_vlan.h>
36 #include <net/ip6_fib.h>
37 #include <net/checksum.h>
38 #include <net/dsfield.h>
40 #include <net/sctp/checksum.h>
44 #include "conntrack.h"
47 static int do_execute_actions(struct datapath
*dp
, struct sk_buff
*skb
,
48 struct sw_flow_key
*key
,
49 const struct nlattr
*attr
, int len
);
51 struct deferred_action
{
53 const struct nlattr
*actions
;
55 /* Store pkt_key clone when creating deferred action. */
56 struct sw_flow_key pkt_key
;
59 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
60 struct ovs_frag_data
{
64 __be16 inner_protocol
;
68 u8 l2_data
[MAX_L2_LEN
];
71 static DEFINE_PER_CPU(struct ovs_frag_data
, ovs_frag_data_storage
);
73 #define DEFERRED_ACTION_FIFO_SIZE 10
77 /* Deferred action fifo queue storage. */
78 struct deferred_action fifo
[DEFERRED_ACTION_FIFO_SIZE
];
81 static struct action_fifo __percpu
*action_fifos
;
82 static DEFINE_PER_CPU(int, exec_actions_level
);
84 static void action_fifo_init(struct action_fifo
*fifo
)
90 static bool action_fifo_is_empty(const struct action_fifo
*fifo
)
92 return (fifo
->head
== fifo
->tail
);
95 static struct deferred_action
*action_fifo_get(struct action_fifo
*fifo
)
97 if (action_fifo_is_empty(fifo
))
100 return &fifo
->fifo
[fifo
->tail
++];
103 static struct deferred_action
*action_fifo_put(struct action_fifo
*fifo
)
105 if (fifo
->head
>= DEFERRED_ACTION_FIFO_SIZE
- 1)
108 return &fifo
->fifo
[fifo
->head
++];
111 /* Return true if fifo is not full */
112 static struct deferred_action
*add_deferred_actions(struct sk_buff
*skb
,
113 const struct sw_flow_key
*key
,
114 const struct nlattr
*attr
)
116 struct action_fifo
*fifo
;
117 struct deferred_action
*da
;
119 fifo
= this_cpu_ptr(action_fifos
);
120 da
= action_fifo_put(fifo
);
130 static void invalidate_flow_key(struct sw_flow_key
*key
)
132 key
->eth
.type
= htons(0);
135 static bool is_flow_key_valid(const struct sw_flow_key
*key
)
137 return !!key
->eth
.type
;
140 static int push_mpls(struct sk_buff
*skb
, struct sw_flow_key
*key
,
141 const struct ovs_action_push_mpls
*mpls
)
143 __be32
*new_mpls_lse
;
146 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
147 if (skb
->encapsulation
)
150 if (skb_cow_head(skb
, MPLS_HLEN
) < 0)
153 skb_push(skb
, MPLS_HLEN
);
154 memmove(skb_mac_header(skb
) - MPLS_HLEN
, skb_mac_header(skb
),
156 skb_reset_mac_header(skb
);
158 new_mpls_lse
= (__be32
*)skb_mpls_header(skb
);
159 *new_mpls_lse
= mpls
->mpls_lse
;
161 skb_postpush_rcsum(skb
, new_mpls_lse
, MPLS_HLEN
);
164 hdr
->h_proto
= mpls
->mpls_ethertype
;
166 if (!skb
->inner_protocol
)
167 skb_set_inner_protocol(skb
, skb
->protocol
);
168 skb
->protocol
= mpls
->mpls_ethertype
;
170 invalidate_flow_key(key
);
174 static int pop_mpls(struct sk_buff
*skb
, struct sw_flow_key
*key
,
175 const __be16 ethertype
)
180 err
= skb_ensure_writable(skb
, skb
->mac_len
+ MPLS_HLEN
);
184 skb_postpull_rcsum(skb
, skb_mpls_header(skb
), MPLS_HLEN
);
186 memmove(skb_mac_header(skb
) + MPLS_HLEN
, skb_mac_header(skb
),
189 __skb_pull(skb
, MPLS_HLEN
);
190 skb_reset_mac_header(skb
);
192 /* skb_mpls_header() is used to locate the ethertype
193 * field correctly in the presence of VLAN tags.
195 hdr
= (struct ethhdr
*)(skb_mpls_header(skb
) - ETH_HLEN
);
196 hdr
->h_proto
= ethertype
;
197 if (eth_p_mpls(skb
->protocol
))
198 skb
->protocol
= ethertype
;
200 invalidate_flow_key(key
);
204 static int set_mpls(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
205 const __be32
*mpls_lse
, const __be32
*mask
)
211 err
= skb_ensure_writable(skb
, skb
->mac_len
+ MPLS_HLEN
);
215 stack
= (__be32
*)skb_mpls_header(skb
);
216 lse
= OVS_MASKED(*stack
, *mpls_lse
, *mask
);
217 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
218 __be32 diff
[] = { ~(*stack
), lse
};
220 skb
->csum
= ~csum_partial((char *)diff
, sizeof(diff
),
225 flow_key
->mpls
.top_lse
= lse
;
229 static int pop_vlan(struct sk_buff
*skb
, struct sw_flow_key
*key
)
233 err
= skb_vlan_pop(skb
);
234 if (skb_vlan_tag_present(skb
))
235 invalidate_flow_key(key
);
241 static int push_vlan(struct sk_buff
*skb
, struct sw_flow_key
*key
,
242 const struct ovs_action_push_vlan
*vlan
)
244 if (skb_vlan_tag_present(skb
))
245 invalidate_flow_key(key
);
247 key
->eth
.tci
= vlan
->vlan_tci
;
248 return skb_vlan_push(skb
, vlan
->vlan_tpid
,
249 ntohs(vlan
->vlan_tci
) & ~VLAN_TAG_PRESENT
);
252 /* 'src' is already properly masked. */
253 static void ether_addr_copy_masked(u8
*dst_
, const u8
*src_
, const u8
*mask_
)
255 u16
*dst
= (u16
*)dst_
;
256 const u16
*src
= (const u16
*)src_
;
257 const u16
*mask
= (const u16
*)mask_
;
259 OVS_SET_MASKED(dst
[0], src
[0], mask
[0]);
260 OVS_SET_MASKED(dst
[1], src
[1], mask
[1]);
261 OVS_SET_MASKED(dst
[2], src
[2], mask
[2]);
264 static int set_eth_addr(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
265 const struct ovs_key_ethernet
*key
,
266 const struct ovs_key_ethernet
*mask
)
270 err
= skb_ensure_writable(skb
, ETH_HLEN
);
274 skb_postpull_rcsum(skb
, eth_hdr(skb
), ETH_ALEN
* 2);
276 ether_addr_copy_masked(eth_hdr(skb
)->h_source
, key
->eth_src
,
278 ether_addr_copy_masked(eth_hdr(skb
)->h_dest
, key
->eth_dst
,
281 skb_postpush_rcsum(skb
, eth_hdr(skb
), ETH_ALEN
* 2);
283 ether_addr_copy(flow_key
->eth
.src
, eth_hdr(skb
)->h_source
);
284 ether_addr_copy(flow_key
->eth
.dst
, eth_hdr(skb
)->h_dest
);
288 static void update_ip_l4_checksum(struct sk_buff
*skb
, struct iphdr
*nh
,
289 __be32 addr
, __be32 new_addr
)
291 int transport_len
= skb
->len
- skb_transport_offset(skb
);
293 if (nh
->frag_off
& htons(IP_OFFSET
))
296 if (nh
->protocol
== IPPROTO_TCP
) {
297 if (likely(transport_len
>= sizeof(struct tcphdr
)))
298 inet_proto_csum_replace4(&tcp_hdr(skb
)->check
, skb
,
299 addr
, new_addr
, true);
300 } else if (nh
->protocol
== IPPROTO_UDP
) {
301 if (likely(transport_len
>= sizeof(struct udphdr
))) {
302 struct udphdr
*uh
= udp_hdr(skb
);
304 if (uh
->check
|| skb
->ip_summed
== CHECKSUM_PARTIAL
) {
305 inet_proto_csum_replace4(&uh
->check
, skb
,
306 addr
, new_addr
, true);
308 uh
->check
= CSUM_MANGLED_0
;
314 static void set_ip_addr(struct sk_buff
*skb
, struct iphdr
*nh
,
315 __be32
*addr
, __be32 new_addr
)
317 update_ip_l4_checksum(skb
, nh
, *addr
, new_addr
);
318 csum_replace4(&nh
->check
, *addr
, new_addr
);
323 static void update_ipv6_checksum(struct sk_buff
*skb
, u8 l4_proto
,
324 __be32 addr
[4], const __be32 new_addr
[4])
326 int transport_len
= skb
->len
- skb_transport_offset(skb
);
328 if (l4_proto
== NEXTHDR_TCP
) {
329 if (likely(transport_len
>= sizeof(struct tcphdr
)))
330 inet_proto_csum_replace16(&tcp_hdr(skb
)->check
, skb
,
331 addr
, new_addr
, true);
332 } else if (l4_proto
== NEXTHDR_UDP
) {
333 if (likely(transport_len
>= sizeof(struct udphdr
))) {
334 struct udphdr
*uh
= udp_hdr(skb
);
336 if (uh
->check
|| skb
->ip_summed
== CHECKSUM_PARTIAL
) {
337 inet_proto_csum_replace16(&uh
->check
, skb
,
338 addr
, new_addr
, true);
340 uh
->check
= CSUM_MANGLED_0
;
343 } else if (l4_proto
== NEXTHDR_ICMP
) {
344 if (likely(transport_len
>= sizeof(struct icmp6hdr
)))
345 inet_proto_csum_replace16(&icmp6_hdr(skb
)->icmp6_cksum
,
346 skb
, addr
, new_addr
, true);
350 static void mask_ipv6_addr(const __be32 old
[4], const __be32 addr
[4],
351 const __be32 mask
[4], __be32 masked
[4])
353 masked
[0] = OVS_MASKED(old
[0], addr
[0], mask
[0]);
354 masked
[1] = OVS_MASKED(old
[1], addr
[1], mask
[1]);
355 masked
[2] = OVS_MASKED(old
[2], addr
[2], mask
[2]);
356 masked
[3] = OVS_MASKED(old
[3], addr
[3], mask
[3]);
359 static void set_ipv6_addr(struct sk_buff
*skb
, u8 l4_proto
,
360 __be32 addr
[4], const __be32 new_addr
[4],
361 bool recalculate_csum
)
363 if (recalculate_csum
)
364 update_ipv6_checksum(skb
, l4_proto
, addr
, new_addr
);
367 memcpy(addr
, new_addr
, sizeof(__be32
[4]));
370 static void set_ipv6_fl(struct ipv6hdr
*nh
, u32 fl
, u32 mask
)
372 /* Bits 21-24 are always unmasked, so this retains their values. */
373 OVS_SET_MASKED(nh
->flow_lbl
[0], (u8
)(fl
>> 16), (u8
)(mask
>> 16));
374 OVS_SET_MASKED(nh
->flow_lbl
[1], (u8
)(fl
>> 8), (u8
)(mask
>> 8));
375 OVS_SET_MASKED(nh
->flow_lbl
[2], (u8
)fl
, (u8
)mask
);
378 static void set_ip_ttl(struct sk_buff
*skb
, struct iphdr
*nh
, u8 new_ttl
,
381 new_ttl
= OVS_MASKED(nh
->ttl
, new_ttl
, mask
);
383 csum_replace2(&nh
->check
, htons(nh
->ttl
<< 8), htons(new_ttl
<< 8));
387 static int set_ipv4(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
388 const struct ovs_key_ipv4
*key
,
389 const struct ovs_key_ipv4
*mask
)
395 err
= skb_ensure_writable(skb
, skb_network_offset(skb
) +
396 sizeof(struct iphdr
));
402 /* Setting an IP addresses is typically only a side effect of
403 * matching on them in the current userspace implementation, so it
404 * makes sense to check if the value actually changed.
406 if (mask
->ipv4_src
) {
407 new_addr
= OVS_MASKED(nh
->saddr
, key
->ipv4_src
, mask
->ipv4_src
);
409 if (unlikely(new_addr
!= nh
->saddr
)) {
410 set_ip_addr(skb
, nh
, &nh
->saddr
, new_addr
);
411 flow_key
->ipv4
.addr
.src
= new_addr
;
414 if (mask
->ipv4_dst
) {
415 new_addr
= OVS_MASKED(nh
->daddr
, key
->ipv4_dst
, mask
->ipv4_dst
);
417 if (unlikely(new_addr
!= nh
->daddr
)) {
418 set_ip_addr(skb
, nh
, &nh
->daddr
, new_addr
);
419 flow_key
->ipv4
.addr
.dst
= new_addr
;
422 if (mask
->ipv4_tos
) {
423 ipv4_change_dsfield(nh
, ~mask
->ipv4_tos
, key
->ipv4_tos
);
424 flow_key
->ip
.tos
= nh
->tos
;
426 if (mask
->ipv4_ttl
) {
427 set_ip_ttl(skb
, nh
, key
->ipv4_ttl
, mask
->ipv4_ttl
);
428 flow_key
->ip
.ttl
= nh
->ttl
;
434 static bool is_ipv6_mask_nonzero(const __be32 addr
[4])
436 return !!(addr
[0] | addr
[1] | addr
[2] | addr
[3]);
439 static int set_ipv6(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
440 const struct ovs_key_ipv6
*key
,
441 const struct ovs_key_ipv6
*mask
)
446 err
= skb_ensure_writable(skb
, skb_network_offset(skb
) +
447 sizeof(struct ipv6hdr
));
453 /* Setting an IP addresses is typically only a side effect of
454 * matching on them in the current userspace implementation, so it
455 * makes sense to check if the value actually changed.
457 if (is_ipv6_mask_nonzero(mask
->ipv6_src
)) {
458 __be32
*saddr
= (__be32
*)&nh
->saddr
;
461 mask_ipv6_addr(saddr
, key
->ipv6_src
, mask
->ipv6_src
, masked
);
463 if (unlikely(memcmp(saddr
, masked
, sizeof(masked
)))) {
464 set_ipv6_addr(skb
, key
->ipv6_proto
, saddr
, masked
,
466 memcpy(&flow_key
->ipv6
.addr
.src
, masked
,
467 sizeof(flow_key
->ipv6
.addr
.src
));
470 if (is_ipv6_mask_nonzero(mask
->ipv6_dst
)) {
471 unsigned int offset
= 0;
472 int flags
= IP6_FH_F_SKIP_RH
;
473 bool recalc_csum
= true;
474 __be32
*daddr
= (__be32
*)&nh
->daddr
;
477 mask_ipv6_addr(daddr
, key
->ipv6_dst
, mask
->ipv6_dst
, masked
);
479 if (unlikely(memcmp(daddr
, masked
, sizeof(masked
)))) {
480 if (ipv6_ext_hdr(nh
->nexthdr
))
481 recalc_csum
= (ipv6_find_hdr(skb
, &offset
,
486 set_ipv6_addr(skb
, key
->ipv6_proto
, daddr
, masked
,
488 memcpy(&flow_key
->ipv6
.addr
.dst
, masked
,
489 sizeof(flow_key
->ipv6
.addr
.dst
));
492 if (mask
->ipv6_tclass
) {
493 ipv6_change_dsfield(nh
, ~mask
->ipv6_tclass
, key
->ipv6_tclass
);
494 flow_key
->ip
.tos
= ipv6_get_dsfield(nh
);
496 if (mask
->ipv6_label
) {
497 set_ipv6_fl(nh
, ntohl(key
->ipv6_label
),
498 ntohl(mask
->ipv6_label
));
499 flow_key
->ipv6
.label
=
500 *(__be32
*)nh
& htonl(IPV6_FLOWINFO_FLOWLABEL
);
502 if (mask
->ipv6_hlimit
) {
503 OVS_SET_MASKED(nh
->hop_limit
, key
->ipv6_hlimit
,
505 flow_key
->ip
.ttl
= nh
->hop_limit
;
510 /* Must follow skb_ensure_writable() since that can move the skb data. */
511 static void set_tp_port(struct sk_buff
*skb
, __be16
*port
,
512 __be16 new_port
, __sum16
*check
)
514 inet_proto_csum_replace2(check
, skb
, *port
, new_port
, false);
518 static int set_udp(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
519 const struct ovs_key_udp
*key
,
520 const struct ovs_key_udp
*mask
)
526 err
= skb_ensure_writable(skb
, skb_transport_offset(skb
) +
527 sizeof(struct udphdr
));
532 /* Either of the masks is non-zero, so do not bother checking them. */
533 src
= OVS_MASKED(uh
->source
, key
->udp_src
, mask
->udp_src
);
534 dst
= OVS_MASKED(uh
->dest
, key
->udp_dst
, mask
->udp_dst
);
536 if (uh
->check
&& skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
537 if (likely(src
!= uh
->source
)) {
538 set_tp_port(skb
, &uh
->source
, src
, &uh
->check
);
539 flow_key
->tp
.src
= src
;
541 if (likely(dst
!= uh
->dest
)) {
542 set_tp_port(skb
, &uh
->dest
, dst
, &uh
->check
);
543 flow_key
->tp
.dst
= dst
;
546 if (unlikely(!uh
->check
))
547 uh
->check
= CSUM_MANGLED_0
;
551 flow_key
->tp
.src
= src
;
552 flow_key
->tp
.dst
= dst
;
560 static int set_tcp(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
561 const struct ovs_key_tcp
*key
,
562 const struct ovs_key_tcp
*mask
)
568 err
= skb_ensure_writable(skb
, skb_transport_offset(skb
) +
569 sizeof(struct tcphdr
));
574 src
= OVS_MASKED(th
->source
, key
->tcp_src
, mask
->tcp_src
);
575 if (likely(src
!= th
->source
)) {
576 set_tp_port(skb
, &th
->source
, src
, &th
->check
);
577 flow_key
->tp
.src
= src
;
579 dst
= OVS_MASKED(th
->dest
, key
->tcp_dst
, mask
->tcp_dst
);
580 if (likely(dst
!= th
->dest
)) {
581 set_tp_port(skb
, &th
->dest
, dst
, &th
->check
);
582 flow_key
->tp
.dst
= dst
;
589 static int set_sctp(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
590 const struct ovs_key_sctp
*key
,
591 const struct ovs_key_sctp
*mask
)
593 unsigned int sctphoff
= skb_transport_offset(skb
);
595 __le32 old_correct_csum
, new_csum
, old_csum
;
598 err
= skb_ensure_writable(skb
, sctphoff
+ sizeof(struct sctphdr
));
603 old_csum
= sh
->checksum
;
604 old_correct_csum
= sctp_compute_cksum(skb
, sctphoff
);
606 sh
->source
= OVS_MASKED(sh
->source
, key
->sctp_src
, mask
->sctp_src
);
607 sh
->dest
= OVS_MASKED(sh
->dest
, key
->sctp_dst
, mask
->sctp_dst
);
609 new_csum
= sctp_compute_cksum(skb
, sctphoff
);
611 /* Carry any checksum errors through. */
612 sh
->checksum
= old_csum
^ old_correct_csum
^ new_csum
;
615 flow_key
->tp
.src
= sh
->source
;
616 flow_key
->tp
.dst
= sh
->dest
;
621 static int ovs_vport_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
623 struct ovs_frag_data
*data
= this_cpu_ptr(&ovs_frag_data_storage
);
624 struct vport
*vport
= data
->vport
;
626 if (skb_cow_head(skb
, data
->l2_len
) < 0) {
631 __skb_dst_copy(skb
, data
->dst
);
632 *OVS_CB(skb
) = data
->cb
;
633 skb
->inner_protocol
= data
->inner_protocol
;
634 skb
->vlan_tci
= data
->vlan_tci
;
635 skb
->vlan_proto
= data
->vlan_proto
;
637 /* Reconstruct the MAC header. */
638 skb_push(skb
, data
->l2_len
);
639 memcpy(skb
->data
, &data
->l2_data
, data
->l2_len
);
640 skb_postpush_rcsum(skb
, skb
->data
, data
->l2_len
);
641 skb_reset_mac_header(skb
);
643 ovs_vport_send(vport
, skb
);
648 ovs_dst_get_mtu(const struct dst_entry
*dst
)
650 return dst
->dev
->mtu
;
653 static struct dst_ops ovs_dst_ops
= {
655 .mtu
= ovs_dst_get_mtu
,
658 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
659 * ovs_vport_output(), which is called once per fragmented packet.
661 static void prepare_frag(struct vport
*vport
, struct sk_buff
*skb
)
663 unsigned int hlen
= skb_network_offset(skb
);
664 struct ovs_frag_data
*data
;
666 data
= this_cpu_ptr(&ovs_frag_data_storage
);
667 data
->dst
= skb
->_skb_refdst
;
669 data
->cb
= *OVS_CB(skb
);
670 data
->inner_protocol
= skb
->inner_protocol
;
671 data
->vlan_tci
= skb
->vlan_tci
;
672 data
->vlan_proto
= skb
->vlan_proto
;
674 memcpy(&data
->l2_data
, skb
->data
, hlen
);
676 memset(IPCB(skb
), 0, sizeof(struct inet_skb_parm
));
680 static void ovs_fragment(struct net
*net
, struct vport
*vport
,
681 struct sk_buff
*skb
, u16 mru
, __be16 ethertype
)
683 if (skb_network_offset(skb
) > MAX_L2_LEN
) {
684 OVS_NLERR(1, "L2 header too long to fragment");
688 if (ethertype
== htons(ETH_P_IP
)) {
689 struct dst_entry ovs_dst
;
690 unsigned long orig_dst
;
692 prepare_frag(vport
, skb
);
693 dst_init(&ovs_dst
, &ovs_dst_ops
, NULL
, 1,
694 DST_OBSOLETE_NONE
, DST_NOCOUNT
);
695 ovs_dst
.dev
= vport
->dev
;
697 orig_dst
= skb
->_skb_refdst
;
698 skb_dst_set_noref(skb
, &ovs_dst
);
699 IPCB(skb
)->frag_max_size
= mru
;
701 ip_do_fragment(net
, skb
->sk
, skb
, ovs_vport_output
);
702 refdst_drop(orig_dst
);
703 } else if (ethertype
== htons(ETH_P_IPV6
)) {
704 const struct nf_ipv6_ops
*v6ops
= nf_get_ipv6_ops();
705 unsigned long orig_dst
;
706 struct rt6_info ovs_rt
;
712 prepare_frag(vport
, skb
);
713 memset(&ovs_rt
, 0, sizeof(ovs_rt
));
714 dst_init(&ovs_rt
.dst
, &ovs_dst_ops
, NULL
, 1,
715 DST_OBSOLETE_NONE
, DST_NOCOUNT
);
716 ovs_rt
.dst
.dev
= vport
->dev
;
718 orig_dst
= skb
->_skb_refdst
;
719 skb_dst_set_noref(skb
, &ovs_rt
.dst
);
720 IP6CB(skb
)->frag_max_size
= mru
;
722 v6ops
->fragment(net
, skb
->sk
, skb
, ovs_vport_output
);
723 refdst_drop(orig_dst
);
725 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
726 ovs_vport_name(vport
), ntohs(ethertype
), mru
,
736 static void do_output(struct datapath
*dp
, struct sk_buff
*skb
, int out_port
,
737 struct sw_flow_key
*key
)
739 struct vport
*vport
= ovs_vport_rcu(dp
, out_port
);
742 u16 mru
= OVS_CB(skb
)->mru
;
744 if (likely(!mru
|| (skb
->len
<= mru
+ ETH_HLEN
))) {
745 ovs_vport_send(vport
, skb
);
746 } else if (mru
<= vport
->dev
->mtu
) {
747 struct net
*net
= read_pnet(&dp
->net
);
748 __be16 ethertype
= key
->eth
.type
;
750 if (!is_flow_key_valid(key
)) {
751 if (eth_p_mpls(skb
->protocol
))
752 ethertype
= skb
->inner_protocol
;
754 ethertype
= vlan_get_protocol(skb
);
757 ovs_fragment(net
, vport
, skb
, mru
, ethertype
);
766 static int output_userspace(struct datapath
*dp
, struct sk_buff
*skb
,
767 struct sw_flow_key
*key
, const struct nlattr
*attr
,
768 const struct nlattr
*actions
, int actions_len
)
770 struct dp_upcall_info upcall
;
771 const struct nlattr
*a
;
774 memset(&upcall
, 0, sizeof(upcall
));
775 upcall
.cmd
= OVS_PACKET_CMD_ACTION
;
776 upcall
.mru
= OVS_CB(skb
)->mru
;
778 for (a
= nla_data(attr
), rem
= nla_len(attr
); rem
> 0;
779 a
= nla_next(a
, &rem
)) {
780 switch (nla_type(a
)) {
781 case OVS_USERSPACE_ATTR_USERDATA
:
785 case OVS_USERSPACE_ATTR_PID
:
786 upcall
.portid
= nla_get_u32(a
);
789 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT
: {
790 /* Get out tunnel info. */
793 vport
= ovs_vport_rcu(dp
, nla_get_u32(a
));
797 err
= dev_fill_metadata_dst(vport
->dev
, skb
);
799 upcall
.egress_tun_info
= skb_tunnel_info(skb
);
805 case OVS_USERSPACE_ATTR_ACTIONS
: {
806 /* Include actions. */
807 upcall
.actions
= actions
;
808 upcall
.actions_len
= actions_len
;
812 } /* End of switch. */
815 return ovs_dp_upcall(dp
, skb
, key
, &upcall
);
818 static int sample(struct datapath
*dp
, struct sk_buff
*skb
,
819 struct sw_flow_key
*key
, const struct nlattr
*attr
,
820 const struct nlattr
*actions
, int actions_len
)
822 const struct nlattr
*acts_list
= NULL
;
823 const struct nlattr
*a
;
826 for (a
= nla_data(attr
), rem
= nla_len(attr
); rem
> 0;
827 a
= nla_next(a
, &rem
)) {
830 switch (nla_type(a
)) {
831 case OVS_SAMPLE_ATTR_PROBABILITY
:
832 probability
= nla_get_u32(a
);
833 if (!probability
|| prandom_u32() > probability
)
837 case OVS_SAMPLE_ATTR_ACTIONS
:
843 rem
= nla_len(acts_list
);
844 a
= nla_data(acts_list
);
846 /* Actions list is empty, do nothing */
850 /* The only known usage of sample action is having a single user-space
851 * action. Treat this usage as a special case.
852 * The output_userspace() should clone the skb to be sent to the
853 * user space. This skb will be consumed by its caller.
855 if (likely(nla_type(a
) == OVS_ACTION_ATTR_USERSPACE
&&
856 nla_is_last(a
, rem
)))
857 return output_userspace(dp
, skb
, key
, a
, actions
, actions_len
);
859 skb
= skb_clone(skb
, GFP_ATOMIC
);
861 /* Skip the sample action when out of memory. */
864 if (!add_deferred_actions(skb
, key
, a
)) {
866 pr_warn("%s: deferred actions limit reached, dropping sample action\n",
874 static void execute_hash(struct sk_buff
*skb
, struct sw_flow_key
*key
,
875 const struct nlattr
*attr
)
877 struct ovs_action_hash
*hash_act
= nla_data(attr
);
880 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
881 hash
= skb_get_hash(skb
);
882 hash
= jhash_1word(hash
, hash_act
->hash_basis
);
886 key
->ovs_flow_hash
= hash
;
889 static int execute_set_action(struct sk_buff
*skb
,
890 struct sw_flow_key
*flow_key
,
891 const struct nlattr
*a
)
893 /* Only tunnel set execution is supported without a mask. */
894 if (nla_type(a
) == OVS_KEY_ATTR_TUNNEL_INFO
) {
895 struct ovs_tunnel_info
*tun
= nla_data(a
);
898 dst_hold((struct dst_entry
*)tun
->tun_dst
);
899 skb_dst_set(skb
, (struct dst_entry
*)tun
->tun_dst
);
906 /* Mask is at the midpoint of the data. */
907 #define get_mask(a, type) ((const type)nla_data(a) + 1)
909 static int execute_masked_set_action(struct sk_buff
*skb
,
910 struct sw_flow_key
*flow_key
,
911 const struct nlattr
*a
)
915 switch (nla_type(a
)) {
916 case OVS_KEY_ATTR_PRIORITY
:
917 OVS_SET_MASKED(skb
->priority
, nla_get_u32(a
),
918 *get_mask(a
, u32
*));
919 flow_key
->phy
.priority
= skb
->priority
;
922 case OVS_KEY_ATTR_SKB_MARK
:
923 OVS_SET_MASKED(skb
->mark
, nla_get_u32(a
), *get_mask(a
, u32
*));
924 flow_key
->phy
.skb_mark
= skb
->mark
;
927 case OVS_KEY_ATTR_TUNNEL_INFO
:
928 /* Masked data not supported for tunnel. */
932 case OVS_KEY_ATTR_ETHERNET
:
933 err
= set_eth_addr(skb
, flow_key
, nla_data(a
),
934 get_mask(a
, struct ovs_key_ethernet
*));
937 case OVS_KEY_ATTR_IPV4
:
938 err
= set_ipv4(skb
, flow_key
, nla_data(a
),
939 get_mask(a
, struct ovs_key_ipv4
*));
942 case OVS_KEY_ATTR_IPV6
:
943 err
= set_ipv6(skb
, flow_key
, nla_data(a
),
944 get_mask(a
, struct ovs_key_ipv6
*));
947 case OVS_KEY_ATTR_TCP
:
948 err
= set_tcp(skb
, flow_key
, nla_data(a
),
949 get_mask(a
, struct ovs_key_tcp
*));
952 case OVS_KEY_ATTR_UDP
:
953 err
= set_udp(skb
, flow_key
, nla_data(a
),
954 get_mask(a
, struct ovs_key_udp
*));
957 case OVS_KEY_ATTR_SCTP
:
958 err
= set_sctp(skb
, flow_key
, nla_data(a
),
959 get_mask(a
, struct ovs_key_sctp
*));
962 case OVS_KEY_ATTR_MPLS
:
963 err
= set_mpls(skb
, flow_key
, nla_data(a
), get_mask(a
,
967 case OVS_KEY_ATTR_CT_STATE
:
968 case OVS_KEY_ATTR_CT_ZONE
:
969 case OVS_KEY_ATTR_CT_MARK
:
970 case OVS_KEY_ATTR_CT_LABELS
:
978 static int execute_recirc(struct datapath
*dp
, struct sk_buff
*skb
,
979 struct sw_flow_key
*key
,
980 const struct nlattr
*a
, int rem
)
982 struct deferred_action
*da
;
984 if (!is_flow_key_valid(key
)) {
987 err
= ovs_flow_key_update(skb
, key
);
991 BUG_ON(!is_flow_key_valid(key
));
993 if (!nla_is_last(a
, rem
)) {
994 /* Recirc action is the not the last action
995 * of the action list, need to clone the skb.
997 skb
= skb_clone(skb
, GFP_ATOMIC
);
999 /* Skip the recirc action when out of memory, but
1000 * continue on with the rest of the action list.
1006 da
= add_deferred_actions(skb
, key
, NULL
);
1008 da
->pkt_key
.recirc_id
= nla_get_u32(a
);
1012 if (net_ratelimit())
1013 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1020 /* Execute a list of actions against 'skb'. */
1021 static int do_execute_actions(struct datapath
*dp
, struct sk_buff
*skb
,
1022 struct sw_flow_key
*key
,
1023 const struct nlattr
*attr
, int len
)
1025 /* Every output action needs a separate clone of 'skb', but the common
1026 * case is just a single output action, so that doing a clone and
1027 * then freeing the original skbuff is wasteful. So the following code
1028 * is slightly obscure just to avoid that.
1031 const struct nlattr
*a
;
1034 for (a
= attr
, rem
= len
; rem
> 0;
1035 a
= nla_next(a
, &rem
)) {
1038 if (unlikely(prev_port
!= -1)) {
1039 struct sk_buff
*out_skb
= skb_clone(skb
, GFP_ATOMIC
);
1042 do_output(dp
, out_skb
, prev_port
, key
);
1047 switch (nla_type(a
)) {
1048 case OVS_ACTION_ATTR_OUTPUT
:
1049 prev_port
= nla_get_u32(a
);
1052 case OVS_ACTION_ATTR_USERSPACE
:
1053 output_userspace(dp
, skb
, key
, a
, attr
, len
);
1056 case OVS_ACTION_ATTR_HASH
:
1057 execute_hash(skb
, key
, a
);
1060 case OVS_ACTION_ATTR_PUSH_MPLS
:
1061 err
= push_mpls(skb
, key
, nla_data(a
));
1064 case OVS_ACTION_ATTR_POP_MPLS
:
1065 err
= pop_mpls(skb
, key
, nla_get_be16(a
));
1068 case OVS_ACTION_ATTR_PUSH_VLAN
:
1069 err
= push_vlan(skb
, key
, nla_data(a
));
1072 case OVS_ACTION_ATTR_POP_VLAN
:
1073 err
= pop_vlan(skb
, key
);
1076 case OVS_ACTION_ATTR_RECIRC
:
1077 err
= execute_recirc(dp
, skb
, key
, a
, rem
);
1078 if (nla_is_last(a
, rem
)) {
1079 /* If this is the last action, the skb has
1080 * been consumed or freed.
1081 * Return immediately.
1087 case OVS_ACTION_ATTR_SET
:
1088 err
= execute_set_action(skb
, key
, nla_data(a
));
1091 case OVS_ACTION_ATTR_SET_MASKED
:
1092 case OVS_ACTION_ATTR_SET_TO_MASKED
:
1093 err
= execute_masked_set_action(skb
, key
, nla_data(a
));
1096 case OVS_ACTION_ATTR_SAMPLE
:
1097 err
= sample(dp
, skb
, key
, a
, attr
, len
);
1100 case OVS_ACTION_ATTR_CT
:
1101 if (!is_flow_key_valid(key
)) {
1102 err
= ovs_flow_key_update(skb
, key
);
1107 err
= ovs_ct_execute(ovs_dp_get_net(dp
), skb
, key
,
1110 /* Hide stolen IP fragments from user space. */
1112 return err
== -EINPROGRESS
? 0 : err
;
1116 if (unlikely(err
)) {
1122 if (prev_port
!= -1)
1123 do_output(dp
, skb
, prev_port
, key
);
1130 static void process_deferred_actions(struct datapath
*dp
)
1132 struct action_fifo
*fifo
= this_cpu_ptr(action_fifos
);
1134 /* Do not touch the FIFO in case there is no deferred actions. */
1135 if (action_fifo_is_empty(fifo
))
1138 /* Finishing executing all deferred actions. */
1140 struct deferred_action
*da
= action_fifo_get(fifo
);
1141 struct sk_buff
*skb
= da
->skb
;
1142 struct sw_flow_key
*key
= &da
->pkt_key
;
1143 const struct nlattr
*actions
= da
->actions
;
1146 do_execute_actions(dp
, skb
, key
, actions
,
1149 ovs_dp_process_packet(skb
, key
);
1150 } while (!action_fifo_is_empty(fifo
));
1152 /* Reset FIFO for the next packet. */
1153 action_fifo_init(fifo
);
1156 /* Execute a list of actions against 'skb'. */
1157 int ovs_execute_actions(struct datapath
*dp
, struct sk_buff
*skb
,
1158 const struct sw_flow_actions
*acts
,
1159 struct sw_flow_key
*key
)
1161 static const int ovs_recursion_limit
= 5;
1164 level
= __this_cpu_inc_return(exec_actions_level
);
1165 if (unlikely(level
> ovs_recursion_limit
)) {
1166 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1173 err
= do_execute_actions(dp
, skb
, key
,
1174 acts
->actions
, acts
->actions_len
);
1177 process_deferred_actions(dp
);
1180 __this_cpu_dec(exec_actions_level
);
1184 int action_fifos_init(void)
1186 action_fifos
= alloc_percpu(struct action_fifo
);
1193 void action_fifos_exit(void)
1195 free_percpu(action_fifos
);