libata-sff: introduce ata_sff_init/exit() and ata_sff_port_init()
[linux/fpc-iii.git] / drivers / ata / libata-sff.c
blob4a3d1f21445760f2de7563ec96bf9ae415dacaab
1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/libata.h>
39 #include <linux/highmem.h>
41 #include "libata.h"
43 const struct ata_port_operations ata_sff_port_ops = {
44 .inherits = &ata_base_port_ops,
46 .qc_prep = ata_sff_qc_prep,
47 .qc_issue = ata_sff_qc_issue,
48 .qc_fill_rtf = ata_sff_qc_fill_rtf,
50 .freeze = ata_sff_freeze,
51 .thaw = ata_sff_thaw,
52 .prereset = ata_sff_prereset,
53 .softreset = ata_sff_softreset,
54 .hardreset = sata_sff_hardreset,
55 .postreset = ata_sff_postreset,
56 .drain_fifo = ata_sff_drain_fifo,
57 .error_handler = ata_sff_error_handler,
58 .post_internal_cmd = ata_sff_post_internal_cmd,
60 .sff_dev_select = ata_sff_dev_select,
61 .sff_check_status = ata_sff_check_status,
62 .sff_tf_load = ata_sff_tf_load,
63 .sff_tf_read = ata_sff_tf_read,
64 .sff_exec_command = ata_sff_exec_command,
65 .sff_data_xfer = ata_sff_data_xfer,
66 .sff_irq_clear = ata_sff_irq_clear,
68 .lost_interrupt = ata_sff_lost_interrupt,
70 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
72 /**
73 * ata_fill_sg - Fill PCI IDE PRD table
74 * @qc: Metadata associated with taskfile to be transferred
76 * Fill PCI IDE PRD (scatter-gather) table with segments
77 * associated with the current disk command.
79 * LOCKING:
80 * spin_lock_irqsave(host lock)
83 static void ata_fill_sg(struct ata_queued_cmd *qc)
85 struct ata_port *ap = qc->ap;
86 struct scatterlist *sg;
87 unsigned int si, pi;
89 pi = 0;
90 for_each_sg(qc->sg, sg, qc->n_elem, si) {
91 u32 addr, offset;
92 u32 sg_len, len;
94 /* determine if physical DMA addr spans 64K boundary.
95 * Note h/w doesn't support 64-bit, so we unconditionally
96 * truncate dma_addr_t to u32.
98 addr = (u32) sg_dma_address(sg);
99 sg_len = sg_dma_len(sg);
101 while (sg_len) {
102 offset = addr & 0xffff;
103 len = sg_len;
104 if ((offset + sg_len) > 0x10000)
105 len = 0x10000 - offset;
107 ap->prd[pi].addr = cpu_to_le32(addr);
108 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
109 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
111 pi++;
112 sg_len -= len;
113 addr += len;
117 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
121 * ata_fill_sg_dumb - Fill PCI IDE PRD table
122 * @qc: Metadata associated with taskfile to be transferred
124 * Fill PCI IDE PRD (scatter-gather) table with segments
125 * associated with the current disk command. Perform the fill
126 * so that we avoid writing any length 64K records for
127 * controllers that don't follow the spec.
129 * LOCKING:
130 * spin_lock_irqsave(host lock)
133 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
135 struct ata_port *ap = qc->ap;
136 struct scatterlist *sg;
137 unsigned int si, pi;
139 pi = 0;
140 for_each_sg(qc->sg, sg, qc->n_elem, si) {
141 u32 addr, offset;
142 u32 sg_len, len, blen;
144 /* determine if physical DMA addr spans 64K boundary.
145 * Note h/w doesn't support 64-bit, so we unconditionally
146 * truncate dma_addr_t to u32.
148 addr = (u32) sg_dma_address(sg);
149 sg_len = sg_dma_len(sg);
151 while (sg_len) {
152 offset = addr & 0xffff;
153 len = sg_len;
154 if ((offset + sg_len) > 0x10000)
155 len = 0x10000 - offset;
157 blen = len & 0xffff;
158 ap->prd[pi].addr = cpu_to_le32(addr);
159 if (blen == 0) {
160 /* Some PATA chipsets like the CS5530 can't
161 cope with 0x0000 meaning 64K as the spec
162 says */
163 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
164 blen = 0x8000;
165 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
167 ap->prd[pi].flags_len = cpu_to_le32(blen);
168 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
170 pi++;
171 sg_len -= len;
172 addr += len;
176 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
180 * ata_sff_qc_prep - Prepare taskfile for submission
181 * @qc: Metadata associated with taskfile to be prepared
183 * Prepare ATA taskfile for submission.
185 * LOCKING:
186 * spin_lock_irqsave(host lock)
188 void ata_sff_qc_prep(struct ata_queued_cmd *qc)
190 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
191 return;
193 ata_fill_sg(qc);
195 EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
198 * ata_sff_dumb_qc_prep - Prepare taskfile for submission
199 * @qc: Metadata associated with taskfile to be prepared
201 * Prepare ATA taskfile for submission.
203 * LOCKING:
204 * spin_lock_irqsave(host lock)
206 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
208 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
209 return;
211 ata_fill_sg_dumb(qc);
213 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
216 * ata_sff_check_status - Read device status reg & clear interrupt
217 * @ap: port where the device is
219 * Reads ATA taskfile status register for currently-selected device
220 * and return its value. This also clears pending interrupts
221 * from this device
223 * LOCKING:
224 * Inherited from caller.
226 u8 ata_sff_check_status(struct ata_port *ap)
228 return ioread8(ap->ioaddr.status_addr);
230 EXPORT_SYMBOL_GPL(ata_sff_check_status);
233 * ata_sff_altstatus - Read device alternate status reg
234 * @ap: port where the device is
236 * Reads ATA taskfile alternate status register for
237 * currently-selected device and return its value.
239 * Note: may NOT be used as the check_altstatus() entry in
240 * ata_port_operations.
242 * LOCKING:
243 * Inherited from caller.
245 static u8 ata_sff_altstatus(struct ata_port *ap)
247 if (ap->ops->sff_check_altstatus)
248 return ap->ops->sff_check_altstatus(ap);
250 return ioread8(ap->ioaddr.altstatus_addr);
254 * ata_sff_irq_status - Check if the device is busy
255 * @ap: port where the device is
257 * Determine if the port is currently busy. Uses altstatus
258 * if available in order to avoid clearing shared IRQ status
259 * when finding an IRQ source. Non ctl capable devices don't
260 * share interrupt lines fortunately for us.
262 * LOCKING:
263 * Inherited from caller.
265 static u8 ata_sff_irq_status(struct ata_port *ap)
267 u8 status;
269 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
270 status = ata_sff_altstatus(ap);
271 /* Not us: We are busy */
272 if (status & ATA_BUSY)
273 return status;
275 /* Clear INTRQ latch */
276 status = ap->ops->sff_check_status(ap);
277 return status;
281 * ata_sff_sync - Flush writes
282 * @ap: Port to wait for.
284 * CAUTION:
285 * If we have an mmio device with no ctl and no altstatus
286 * method this will fail. No such devices are known to exist.
288 * LOCKING:
289 * Inherited from caller.
292 static void ata_sff_sync(struct ata_port *ap)
294 if (ap->ops->sff_check_altstatus)
295 ap->ops->sff_check_altstatus(ap);
296 else if (ap->ioaddr.altstatus_addr)
297 ioread8(ap->ioaddr.altstatus_addr);
301 * ata_sff_pause - Flush writes and wait 400nS
302 * @ap: Port to pause for.
304 * CAUTION:
305 * If we have an mmio device with no ctl and no altstatus
306 * method this will fail. No such devices are known to exist.
308 * LOCKING:
309 * Inherited from caller.
312 void ata_sff_pause(struct ata_port *ap)
314 ata_sff_sync(ap);
315 ndelay(400);
317 EXPORT_SYMBOL_GPL(ata_sff_pause);
320 * ata_sff_dma_pause - Pause before commencing DMA
321 * @ap: Port to pause for.
323 * Perform I/O fencing and ensure sufficient cycle delays occur
324 * for the HDMA1:0 transition
327 void ata_sff_dma_pause(struct ata_port *ap)
329 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
330 /* An altstatus read will cause the needed delay without
331 messing up the IRQ status */
332 ata_sff_altstatus(ap);
333 return;
335 /* There are no DMA controllers without ctl. BUG here to ensure
336 we never violate the HDMA1:0 transition timing and risk
337 corruption. */
338 BUG();
340 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
343 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
344 * @ap: port containing status register to be polled
345 * @tmout_pat: impatience timeout in msecs
346 * @tmout: overall timeout in msecs
348 * Sleep until ATA Status register bit BSY clears,
349 * or a timeout occurs.
351 * LOCKING:
352 * Kernel thread context (may sleep).
354 * RETURNS:
355 * 0 on success, -errno otherwise.
357 int ata_sff_busy_sleep(struct ata_port *ap,
358 unsigned long tmout_pat, unsigned long tmout)
360 unsigned long timer_start, timeout;
361 u8 status;
363 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
364 timer_start = jiffies;
365 timeout = ata_deadline(timer_start, tmout_pat);
366 while (status != 0xff && (status & ATA_BUSY) &&
367 time_before(jiffies, timeout)) {
368 msleep(50);
369 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
372 if (status != 0xff && (status & ATA_BUSY))
373 ata_port_printk(ap, KERN_WARNING,
374 "port is slow to respond, please be patient "
375 "(Status 0x%x)\n", status);
377 timeout = ata_deadline(timer_start, tmout);
378 while (status != 0xff && (status & ATA_BUSY) &&
379 time_before(jiffies, timeout)) {
380 msleep(50);
381 status = ap->ops->sff_check_status(ap);
384 if (status == 0xff)
385 return -ENODEV;
387 if (status & ATA_BUSY) {
388 ata_port_printk(ap, KERN_ERR, "port failed to respond "
389 "(%lu secs, Status 0x%x)\n",
390 DIV_ROUND_UP(tmout, 1000), status);
391 return -EBUSY;
394 return 0;
396 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
398 static int ata_sff_check_ready(struct ata_link *link)
400 u8 status = link->ap->ops->sff_check_status(link->ap);
402 return ata_check_ready(status);
406 * ata_sff_wait_ready - sleep until BSY clears, or timeout
407 * @link: SFF link to wait ready status for
408 * @deadline: deadline jiffies for the operation
410 * Sleep until ATA Status register bit BSY clears, or timeout
411 * occurs.
413 * LOCKING:
414 * Kernel thread context (may sleep).
416 * RETURNS:
417 * 0 on success, -errno otherwise.
419 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
421 return ata_wait_ready(link, deadline, ata_sff_check_ready);
423 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
426 * ata_sff_set_devctl - Write device control reg
427 * @ap: port where the device is
428 * @ctl: value to write
430 * Writes ATA taskfile device control register.
432 * Note: may NOT be used as the sff_set_devctl() entry in
433 * ata_port_operations.
435 * LOCKING:
436 * Inherited from caller.
438 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
440 if (ap->ops->sff_set_devctl)
441 ap->ops->sff_set_devctl(ap, ctl);
442 else
443 iowrite8(ctl, ap->ioaddr.ctl_addr);
447 * ata_sff_dev_select - Select device 0/1 on ATA bus
448 * @ap: ATA channel to manipulate
449 * @device: ATA device (numbered from zero) to select
451 * Use the method defined in the ATA specification to
452 * make either device 0, or device 1, active on the
453 * ATA channel. Works with both PIO and MMIO.
455 * May be used as the dev_select() entry in ata_port_operations.
457 * LOCKING:
458 * caller.
460 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
462 u8 tmp;
464 if (device == 0)
465 tmp = ATA_DEVICE_OBS;
466 else
467 tmp = ATA_DEVICE_OBS | ATA_DEV1;
469 iowrite8(tmp, ap->ioaddr.device_addr);
470 ata_sff_pause(ap); /* needed; also flushes, for mmio */
472 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
475 * ata_dev_select - Select device 0/1 on ATA bus
476 * @ap: ATA channel to manipulate
477 * @device: ATA device (numbered from zero) to select
478 * @wait: non-zero to wait for Status register BSY bit to clear
479 * @can_sleep: non-zero if context allows sleeping
481 * Use the method defined in the ATA specification to
482 * make either device 0, or device 1, active on the
483 * ATA channel.
485 * This is a high-level version of ata_sff_dev_select(), which
486 * additionally provides the services of inserting the proper
487 * pauses and status polling, where needed.
489 * LOCKING:
490 * caller.
492 static void ata_dev_select(struct ata_port *ap, unsigned int device,
493 unsigned int wait, unsigned int can_sleep)
495 if (ata_msg_probe(ap))
496 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
497 "device %u, wait %u\n", device, wait);
499 if (wait)
500 ata_wait_idle(ap);
502 ap->ops->sff_dev_select(ap, device);
504 if (wait) {
505 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
506 msleep(150);
507 ata_wait_idle(ap);
512 * ata_sff_irq_on - Enable interrupts on a port.
513 * @ap: Port on which interrupts are enabled.
515 * Enable interrupts on a legacy IDE device using MMIO or PIO,
516 * wait for idle, clear any pending interrupts.
518 * Note: may NOT be used as the sff_irq_on() entry in
519 * ata_port_operations.
521 * LOCKING:
522 * Inherited from caller.
524 void ata_sff_irq_on(struct ata_port *ap)
526 struct ata_ioports *ioaddr = &ap->ioaddr;
528 if (ap->ops->sff_irq_on) {
529 ap->ops->sff_irq_on(ap);
530 return;
533 ap->ctl &= ~ATA_NIEN;
534 ap->last_ctl = ap->ctl;
536 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
537 ata_sff_set_devctl(ap, ap->ctl);
538 ata_wait_idle(ap);
540 ap->ops->sff_irq_clear(ap);
542 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
545 * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
546 * @ap: Port associated with this ATA transaction.
548 * Clear interrupt and error flags in DMA status register.
550 * May be used as the irq_clear() entry in ata_port_operations.
552 * LOCKING:
553 * spin_lock_irqsave(host lock)
555 void ata_sff_irq_clear(struct ata_port *ap)
557 void __iomem *mmio = ap->ioaddr.bmdma_addr;
559 if (!mmio)
560 return;
562 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
564 EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
567 * ata_sff_tf_load - send taskfile registers to host controller
568 * @ap: Port to which output is sent
569 * @tf: ATA taskfile register set
571 * Outputs ATA taskfile to standard ATA host controller.
573 * LOCKING:
574 * Inherited from caller.
576 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
578 struct ata_ioports *ioaddr = &ap->ioaddr;
579 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
581 if (tf->ctl != ap->last_ctl) {
582 if (ioaddr->ctl_addr)
583 iowrite8(tf->ctl, ioaddr->ctl_addr);
584 ap->last_ctl = tf->ctl;
587 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
588 WARN_ON_ONCE(!ioaddr->ctl_addr);
589 iowrite8(tf->hob_feature, ioaddr->feature_addr);
590 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
591 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
592 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
593 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
594 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
595 tf->hob_feature,
596 tf->hob_nsect,
597 tf->hob_lbal,
598 tf->hob_lbam,
599 tf->hob_lbah);
602 if (is_addr) {
603 iowrite8(tf->feature, ioaddr->feature_addr);
604 iowrite8(tf->nsect, ioaddr->nsect_addr);
605 iowrite8(tf->lbal, ioaddr->lbal_addr);
606 iowrite8(tf->lbam, ioaddr->lbam_addr);
607 iowrite8(tf->lbah, ioaddr->lbah_addr);
608 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
609 tf->feature,
610 tf->nsect,
611 tf->lbal,
612 tf->lbam,
613 tf->lbah);
616 if (tf->flags & ATA_TFLAG_DEVICE) {
617 iowrite8(tf->device, ioaddr->device_addr);
618 VPRINTK("device 0x%X\n", tf->device);
621 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
624 * ata_sff_tf_read - input device's ATA taskfile shadow registers
625 * @ap: Port from which input is read
626 * @tf: ATA taskfile register set for storing input
628 * Reads ATA taskfile registers for currently-selected device
629 * into @tf. Assumes the device has a fully SFF compliant task file
630 * layout and behaviour. If you device does not (eg has a different
631 * status method) then you will need to provide a replacement tf_read
633 * LOCKING:
634 * Inherited from caller.
636 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
638 struct ata_ioports *ioaddr = &ap->ioaddr;
640 tf->command = ata_sff_check_status(ap);
641 tf->feature = ioread8(ioaddr->error_addr);
642 tf->nsect = ioread8(ioaddr->nsect_addr);
643 tf->lbal = ioread8(ioaddr->lbal_addr);
644 tf->lbam = ioread8(ioaddr->lbam_addr);
645 tf->lbah = ioread8(ioaddr->lbah_addr);
646 tf->device = ioread8(ioaddr->device_addr);
648 if (tf->flags & ATA_TFLAG_LBA48) {
649 if (likely(ioaddr->ctl_addr)) {
650 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
651 tf->hob_feature = ioread8(ioaddr->error_addr);
652 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
653 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
654 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
655 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
656 iowrite8(tf->ctl, ioaddr->ctl_addr);
657 ap->last_ctl = tf->ctl;
658 } else
659 WARN_ON_ONCE(1);
662 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
665 * ata_sff_exec_command - issue ATA command to host controller
666 * @ap: port to which command is being issued
667 * @tf: ATA taskfile register set
669 * Issues ATA command, with proper synchronization with interrupt
670 * handler / other threads.
672 * LOCKING:
673 * spin_lock_irqsave(host lock)
675 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
677 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
679 iowrite8(tf->command, ap->ioaddr.command_addr);
680 ata_sff_pause(ap);
682 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
685 * ata_tf_to_host - issue ATA taskfile to host controller
686 * @ap: port to which command is being issued
687 * @tf: ATA taskfile register set
689 * Issues ATA taskfile register set to ATA host controller,
690 * with proper synchronization with interrupt handler and
691 * other threads.
693 * LOCKING:
694 * spin_lock_irqsave(host lock)
696 static inline void ata_tf_to_host(struct ata_port *ap,
697 const struct ata_taskfile *tf)
699 ap->ops->sff_tf_load(ap, tf);
700 ap->ops->sff_exec_command(ap, tf);
704 * ata_sff_data_xfer - Transfer data by PIO
705 * @dev: device to target
706 * @buf: data buffer
707 * @buflen: buffer length
708 * @rw: read/write
710 * Transfer data from/to the device data register by PIO.
712 * LOCKING:
713 * Inherited from caller.
715 * RETURNS:
716 * Bytes consumed.
718 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
719 unsigned int buflen, int rw)
721 struct ata_port *ap = dev->link->ap;
722 void __iomem *data_addr = ap->ioaddr.data_addr;
723 unsigned int words = buflen >> 1;
725 /* Transfer multiple of 2 bytes */
726 if (rw == READ)
727 ioread16_rep(data_addr, buf, words);
728 else
729 iowrite16_rep(data_addr, buf, words);
731 /* Transfer trailing byte, if any. */
732 if (unlikely(buflen & 0x01)) {
733 unsigned char pad[2];
735 /* Point buf to the tail of buffer */
736 buf += buflen - 1;
739 * Use io*16_rep() accessors here as well to avoid pointlessly
740 * swapping bytes to and from on the big endian machines...
742 if (rw == READ) {
743 ioread16_rep(data_addr, pad, 1);
744 *buf = pad[0];
745 } else {
746 pad[0] = *buf;
747 iowrite16_rep(data_addr, pad, 1);
749 words++;
752 return words << 1;
754 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
757 * ata_sff_data_xfer32 - Transfer data by PIO
758 * @dev: device to target
759 * @buf: data buffer
760 * @buflen: buffer length
761 * @rw: read/write
763 * Transfer data from/to the device data register by PIO using 32bit
764 * I/O operations.
766 * LOCKING:
767 * Inherited from caller.
769 * RETURNS:
770 * Bytes consumed.
773 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
774 unsigned int buflen, int rw)
776 struct ata_port *ap = dev->link->ap;
777 void __iomem *data_addr = ap->ioaddr.data_addr;
778 unsigned int words = buflen >> 2;
779 int slop = buflen & 3;
781 if (!(ap->pflags & ATA_PFLAG_PIO32))
782 return ata_sff_data_xfer(dev, buf, buflen, rw);
784 /* Transfer multiple of 4 bytes */
785 if (rw == READ)
786 ioread32_rep(data_addr, buf, words);
787 else
788 iowrite32_rep(data_addr, buf, words);
790 /* Transfer trailing bytes, if any */
791 if (unlikely(slop)) {
792 unsigned char pad[4];
794 /* Point buf to the tail of buffer */
795 buf += buflen - slop;
798 * Use io*_rep() accessors here as well to avoid pointlessly
799 * swapping bytes to and from on the big endian machines...
801 if (rw == READ) {
802 if (slop < 3)
803 ioread16_rep(data_addr, pad, 1);
804 else
805 ioread32_rep(data_addr, pad, 1);
806 memcpy(buf, pad, slop);
807 } else {
808 memcpy(pad, buf, slop);
809 if (slop < 3)
810 iowrite16_rep(data_addr, pad, 1);
811 else
812 iowrite32_rep(data_addr, pad, 1);
815 return (buflen + 1) & ~1;
817 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
820 * ata_sff_data_xfer_noirq - Transfer data by PIO
821 * @dev: device to target
822 * @buf: data buffer
823 * @buflen: buffer length
824 * @rw: read/write
826 * Transfer data from/to the device data register by PIO. Do the
827 * transfer with interrupts disabled.
829 * LOCKING:
830 * Inherited from caller.
832 * RETURNS:
833 * Bytes consumed.
835 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
836 unsigned int buflen, int rw)
838 unsigned long flags;
839 unsigned int consumed;
841 local_irq_save(flags);
842 consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
843 local_irq_restore(flags);
845 return consumed;
847 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
850 * ata_pio_sector - Transfer a sector of data.
851 * @qc: Command on going
853 * Transfer qc->sect_size bytes of data from/to the ATA device.
855 * LOCKING:
856 * Inherited from caller.
858 static void ata_pio_sector(struct ata_queued_cmd *qc)
860 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
861 struct ata_port *ap = qc->ap;
862 struct page *page;
863 unsigned int offset;
864 unsigned char *buf;
866 if (qc->curbytes == qc->nbytes - qc->sect_size)
867 ap->hsm_task_state = HSM_ST_LAST;
869 page = sg_page(qc->cursg);
870 offset = qc->cursg->offset + qc->cursg_ofs;
872 /* get the current page and offset */
873 page = nth_page(page, (offset >> PAGE_SHIFT));
874 offset %= PAGE_SIZE;
876 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
878 if (PageHighMem(page)) {
879 unsigned long flags;
881 /* FIXME: use a bounce buffer */
882 local_irq_save(flags);
883 buf = kmap_atomic(page, KM_IRQ0);
885 /* do the actual data transfer */
886 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
887 do_write);
889 kunmap_atomic(buf, KM_IRQ0);
890 local_irq_restore(flags);
891 } else {
892 buf = page_address(page);
893 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
894 do_write);
897 if (!do_write && !PageSlab(page))
898 flush_dcache_page(page);
900 qc->curbytes += qc->sect_size;
901 qc->cursg_ofs += qc->sect_size;
903 if (qc->cursg_ofs == qc->cursg->length) {
904 qc->cursg = sg_next(qc->cursg);
905 qc->cursg_ofs = 0;
910 * ata_pio_sectors - Transfer one or many sectors.
911 * @qc: Command on going
913 * Transfer one or many sectors of data from/to the
914 * ATA device for the DRQ request.
916 * LOCKING:
917 * Inherited from caller.
919 static void ata_pio_sectors(struct ata_queued_cmd *qc)
921 if (is_multi_taskfile(&qc->tf)) {
922 /* READ/WRITE MULTIPLE */
923 unsigned int nsect;
925 WARN_ON_ONCE(qc->dev->multi_count == 0);
927 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
928 qc->dev->multi_count);
929 while (nsect--)
930 ata_pio_sector(qc);
931 } else
932 ata_pio_sector(qc);
934 ata_sff_sync(qc->ap); /* flush */
938 * atapi_send_cdb - Write CDB bytes to hardware
939 * @ap: Port to which ATAPI device is attached.
940 * @qc: Taskfile currently active
942 * When device has indicated its readiness to accept
943 * a CDB, this function is called. Send the CDB.
945 * LOCKING:
946 * caller.
948 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
950 /* send SCSI cdb */
951 DPRINTK("send cdb\n");
952 WARN_ON_ONCE(qc->dev->cdb_len < 12);
954 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
955 ata_sff_sync(ap);
956 /* FIXME: If the CDB is for DMA do we need to do the transition delay
957 or is bmdma_start guaranteed to do it ? */
958 switch (qc->tf.protocol) {
959 case ATAPI_PROT_PIO:
960 ap->hsm_task_state = HSM_ST;
961 break;
962 case ATAPI_PROT_NODATA:
963 ap->hsm_task_state = HSM_ST_LAST;
964 break;
965 case ATAPI_PROT_DMA:
966 ap->hsm_task_state = HSM_ST_LAST;
967 /* initiate bmdma */
968 ap->ops->bmdma_start(qc);
969 break;
974 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
975 * @qc: Command on going
976 * @bytes: number of bytes
978 * Transfer Transfer data from/to the ATAPI device.
980 * LOCKING:
981 * Inherited from caller.
984 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
986 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
987 struct ata_port *ap = qc->ap;
988 struct ata_device *dev = qc->dev;
989 struct ata_eh_info *ehi = &dev->link->eh_info;
990 struct scatterlist *sg;
991 struct page *page;
992 unsigned char *buf;
993 unsigned int offset, count, consumed;
995 next_sg:
996 sg = qc->cursg;
997 if (unlikely(!sg)) {
998 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
999 "buf=%u cur=%u bytes=%u",
1000 qc->nbytes, qc->curbytes, bytes);
1001 return -1;
1004 page = sg_page(sg);
1005 offset = sg->offset + qc->cursg_ofs;
1007 /* get the current page and offset */
1008 page = nth_page(page, (offset >> PAGE_SHIFT));
1009 offset %= PAGE_SIZE;
1011 /* don't overrun current sg */
1012 count = min(sg->length - qc->cursg_ofs, bytes);
1014 /* don't cross page boundaries */
1015 count = min(count, (unsigned int)PAGE_SIZE - offset);
1017 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
1019 if (PageHighMem(page)) {
1020 unsigned long flags;
1022 /* FIXME: use bounce buffer */
1023 local_irq_save(flags);
1024 buf = kmap_atomic(page, KM_IRQ0);
1026 /* do the actual data transfer */
1027 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
1028 count, rw);
1030 kunmap_atomic(buf, KM_IRQ0);
1031 local_irq_restore(flags);
1032 } else {
1033 buf = page_address(page);
1034 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
1035 count, rw);
1038 bytes -= min(bytes, consumed);
1039 qc->curbytes += count;
1040 qc->cursg_ofs += count;
1042 if (qc->cursg_ofs == sg->length) {
1043 qc->cursg = sg_next(qc->cursg);
1044 qc->cursg_ofs = 0;
1048 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
1049 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
1050 * check correctly as it doesn't know if it is the last request being
1051 * made. Somebody should implement a proper sanity check.
1053 if (bytes)
1054 goto next_sg;
1055 return 0;
1059 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
1060 * @qc: Command on going
1062 * Transfer Transfer data from/to the ATAPI device.
1064 * LOCKING:
1065 * Inherited from caller.
1067 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
1069 struct ata_port *ap = qc->ap;
1070 struct ata_device *dev = qc->dev;
1071 struct ata_eh_info *ehi = &dev->link->eh_info;
1072 unsigned int ireason, bc_lo, bc_hi, bytes;
1073 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
1075 /* Abuse qc->result_tf for temp storage of intermediate TF
1076 * here to save some kernel stack usage.
1077 * For normal completion, qc->result_tf is not relevant. For
1078 * error, qc->result_tf is later overwritten by ata_qc_complete().
1079 * So, the correctness of qc->result_tf is not affected.
1081 ap->ops->sff_tf_read(ap, &qc->result_tf);
1082 ireason = qc->result_tf.nsect;
1083 bc_lo = qc->result_tf.lbam;
1084 bc_hi = qc->result_tf.lbah;
1085 bytes = (bc_hi << 8) | bc_lo;
1087 /* shall be cleared to zero, indicating xfer of data */
1088 if (unlikely(ireason & (1 << 0)))
1089 goto atapi_check;
1091 /* make sure transfer direction matches expected */
1092 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
1093 if (unlikely(do_write != i_write))
1094 goto atapi_check;
1096 if (unlikely(!bytes))
1097 goto atapi_check;
1099 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
1101 if (unlikely(__atapi_pio_bytes(qc, bytes)))
1102 goto err_out;
1103 ata_sff_sync(ap); /* flush */
1105 return;
1107 atapi_check:
1108 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
1109 ireason, bytes);
1110 err_out:
1111 qc->err_mask |= AC_ERR_HSM;
1112 ap->hsm_task_state = HSM_ST_ERR;
1116 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
1117 * @ap: the target ata_port
1118 * @qc: qc on going
1120 * RETURNS:
1121 * 1 if ok in workqueue, 0 otherwise.
1123 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
1124 struct ata_queued_cmd *qc)
1126 if (qc->tf.flags & ATA_TFLAG_POLLING)
1127 return 1;
1129 if (ap->hsm_task_state == HSM_ST_FIRST) {
1130 if (qc->tf.protocol == ATA_PROT_PIO &&
1131 (qc->tf.flags & ATA_TFLAG_WRITE))
1132 return 1;
1134 if (ata_is_atapi(qc->tf.protocol) &&
1135 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1136 return 1;
1139 return 0;
1143 * ata_hsm_qc_complete - finish a qc running on standard HSM
1144 * @qc: Command to complete
1145 * @in_wq: 1 if called from workqueue, 0 otherwise
1147 * Finish @qc which is running on standard HSM.
1149 * LOCKING:
1150 * If @in_wq is zero, spin_lock_irqsave(host lock).
1151 * Otherwise, none on entry and grabs host lock.
1153 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1155 struct ata_port *ap = qc->ap;
1156 unsigned long flags;
1158 if (ap->ops->error_handler) {
1159 if (in_wq) {
1160 spin_lock_irqsave(ap->lock, flags);
1162 /* EH might have kicked in while host lock is
1163 * released.
1165 qc = ata_qc_from_tag(ap, qc->tag);
1166 if (qc) {
1167 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1168 ata_sff_irq_on(ap);
1169 ata_qc_complete(qc);
1170 } else
1171 ata_port_freeze(ap);
1174 spin_unlock_irqrestore(ap->lock, flags);
1175 } else {
1176 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1177 ata_qc_complete(qc);
1178 else
1179 ata_port_freeze(ap);
1181 } else {
1182 if (in_wq) {
1183 spin_lock_irqsave(ap->lock, flags);
1184 ata_sff_irq_on(ap);
1185 ata_qc_complete(qc);
1186 spin_unlock_irqrestore(ap->lock, flags);
1187 } else
1188 ata_qc_complete(qc);
1193 * ata_sff_hsm_move - move the HSM to the next state.
1194 * @ap: the target ata_port
1195 * @qc: qc on going
1196 * @status: current device status
1197 * @in_wq: 1 if called from workqueue, 0 otherwise
1199 * RETURNS:
1200 * 1 when poll next status needed, 0 otherwise.
1202 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1203 u8 status, int in_wq)
1205 struct ata_eh_info *ehi = &ap->link.eh_info;
1206 unsigned long flags = 0;
1207 int poll_next;
1209 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1211 /* Make sure ata_sff_qc_issue() does not throw things
1212 * like DMA polling into the workqueue. Notice that
1213 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1215 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1217 fsm_start:
1218 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1219 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1221 switch (ap->hsm_task_state) {
1222 case HSM_ST_FIRST:
1223 /* Send first data block or PACKET CDB */
1225 /* If polling, we will stay in the work queue after
1226 * sending the data. Otherwise, interrupt handler
1227 * takes over after sending the data.
1229 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1231 /* check device status */
1232 if (unlikely((status & ATA_DRQ) == 0)) {
1233 /* handle BSY=0, DRQ=0 as error */
1234 if (likely(status & (ATA_ERR | ATA_DF)))
1235 /* device stops HSM for abort/error */
1236 qc->err_mask |= AC_ERR_DEV;
1237 else {
1238 /* HSM violation. Let EH handle this */
1239 ata_ehi_push_desc(ehi,
1240 "ST_FIRST: !(DRQ|ERR|DF)");
1241 qc->err_mask |= AC_ERR_HSM;
1244 ap->hsm_task_state = HSM_ST_ERR;
1245 goto fsm_start;
1248 /* Device should not ask for data transfer (DRQ=1)
1249 * when it finds something wrong.
1250 * We ignore DRQ here and stop the HSM by
1251 * changing hsm_task_state to HSM_ST_ERR and
1252 * let the EH abort the command or reset the device.
1254 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1255 /* Some ATAPI tape drives forget to clear the ERR bit
1256 * when doing the next command (mostly request sense).
1257 * We ignore ERR here to workaround and proceed sending
1258 * the CDB.
1260 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1261 ata_ehi_push_desc(ehi, "ST_FIRST: "
1262 "DRQ=1 with device error, "
1263 "dev_stat 0x%X", status);
1264 qc->err_mask |= AC_ERR_HSM;
1265 ap->hsm_task_state = HSM_ST_ERR;
1266 goto fsm_start;
1270 /* Send the CDB (atapi) or the first data block (ata pio out).
1271 * During the state transition, interrupt handler shouldn't
1272 * be invoked before the data transfer is complete and
1273 * hsm_task_state is changed. Hence, the following locking.
1275 if (in_wq)
1276 spin_lock_irqsave(ap->lock, flags);
1278 if (qc->tf.protocol == ATA_PROT_PIO) {
1279 /* PIO data out protocol.
1280 * send first data block.
1283 /* ata_pio_sectors() might change the state
1284 * to HSM_ST_LAST. so, the state is changed here
1285 * before ata_pio_sectors().
1287 ap->hsm_task_state = HSM_ST;
1288 ata_pio_sectors(qc);
1289 } else
1290 /* send CDB */
1291 atapi_send_cdb(ap, qc);
1293 if (in_wq)
1294 spin_unlock_irqrestore(ap->lock, flags);
1296 /* if polling, ata_pio_task() handles the rest.
1297 * otherwise, interrupt handler takes over from here.
1299 break;
1301 case HSM_ST:
1302 /* complete command or read/write the data register */
1303 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1304 /* ATAPI PIO protocol */
1305 if ((status & ATA_DRQ) == 0) {
1306 /* No more data to transfer or device error.
1307 * Device error will be tagged in HSM_ST_LAST.
1309 ap->hsm_task_state = HSM_ST_LAST;
1310 goto fsm_start;
1313 /* Device should not ask for data transfer (DRQ=1)
1314 * when it finds something wrong.
1315 * We ignore DRQ here and stop the HSM by
1316 * changing hsm_task_state to HSM_ST_ERR and
1317 * let the EH abort the command or reset the device.
1319 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1320 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1321 "DRQ=1 with device error, "
1322 "dev_stat 0x%X", status);
1323 qc->err_mask |= AC_ERR_HSM;
1324 ap->hsm_task_state = HSM_ST_ERR;
1325 goto fsm_start;
1328 atapi_pio_bytes(qc);
1330 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1331 /* bad ireason reported by device */
1332 goto fsm_start;
1334 } else {
1335 /* ATA PIO protocol */
1336 if (unlikely((status & ATA_DRQ) == 0)) {
1337 /* handle BSY=0, DRQ=0 as error */
1338 if (likely(status & (ATA_ERR | ATA_DF))) {
1339 /* device stops HSM for abort/error */
1340 qc->err_mask |= AC_ERR_DEV;
1342 /* If diagnostic failed and this is
1343 * IDENTIFY, it's likely a phantom
1344 * device. Mark hint.
1346 if (qc->dev->horkage &
1347 ATA_HORKAGE_DIAGNOSTIC)
1348 qc->err_mask |=
1349 AC_ERR_NODEV_HINT;
1350 } else {
1351 /* HSM violation. Let EH handle this.
1352 * Phantom devices also trigger this
1353 * condition. Mark hint.
1355 ata_ehi_push_desc(ehi, "ST-ATA: "
1356 "DRQ=0 without device error, "
1357 "dev_stat 0x%X", status);
1358 qc->err_mask |= AC_ERR_HSM |
1359 AC_ERR_NODEV_HINT;
1362 ap->hsm_task_state = HSM_ST_ERR;
1363 goto fsm_start;
1366 /* For PIO reads, some devices may ask for
1367 * data transfer (DRQ=1) alone with ERR=1.
1368 * We respect DRQ here and transfer one
1369 * block of junk data before changing the
1370 * hsm_task_state to HSM_ST_ERR.
1372 * For PIO writes, ERR=1 DRQ=1 doesn't make
1373 * sense since the data block has been
1374 * transferred to the device.
1376 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1377 /* data might be corrputed */
1378 qc->err_mask |= AC_ERR_DEV;
1380 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1381 ata_pio_sectors(qc);
1382 status = ata_wait_idle(ap);
1385 if (status & (ATA_BUSY | ATA_DRQ)) {
1386 ata_ehi_push_desc(ehi, "ST-ATA: "
1387 "BUSY|DRQ persists on ERR|DF, "
1388 "dev_stat 0x%X", status);
1389 qc->err_mask |= AC_ERR_HSM;
1392 /* There are oddball controllers with
1393 * status register stuck at 0x7f and
1394 * lbal/m/h at zero which makes it
1395 * pass all other presence detection
1396 * mechanisms we have. Set NODEV_HINT
1397 * for it. Kernel bz#7241.
1399 if (status == 0x7f)
1400 qc->err_mask |= AC_ERR_NODEV_HINT;
1402 /* ata_pio_sectors() might change the
1403 * state to HSM_ST_LAST. so, the state
1404 * is changed after ata_pio_sectors().
1406 ap->hsm_task_state = HSM_ST_ERR;
1407 goto fsm_start;
1410 ata_pio_sectors(qc);
1412 if (ap->hsm_task_state == HSM_ST_LAST &&
1413 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1414 /* all data read */
1415 status = ata_wait_idle(ap);
1416 goto fsm_start;
1420 poll_next = 1;
1421 break;
1423 case HSM_ST_LAST:
1424 if (unlikely(!ata_ok(status))) {
1425 qc->err_mask |= __ac_err_mask(status);
1426 ap->hsm_task_state = HSM_ST_ERR;
1427 goto fsm_start;
1430 /* no more data to transfer */
1431 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1432 ap->print_id, qc->dev->devno, status);
1434 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1436 ap->hsm_task_state = HSM_ST_IDLE;
1438 /* complete taskfile transaction */
1439 ata_hsm_qc_complete(qc, in_wq);
1441 poll_next = 0;
1442 break;
1444 case HSM_ST_ERR:
1445 ap->hsm_task_state = HSM_ST_IDLE;
1447 /* complete taskfile transaction */
1448 ata_hsm_qc_complete(qc, in_wq);
1450 poll_next = 0;
1451 break;
1452 default:
1453 poll_next = 0;
1454 BUG();
1457 return poll_next;
1459 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1461 void ata_pio_task(struct work_struct *work)
1463 struct ata_port *ap =
1464 container_of(work, struct ata_port, port_task.work);
1465 struct ata_queued_cmd *qc = ap->port_task_data;
1466 u8 status;
1467 int poll_next;
1469 fsm_start:
1470 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1473 * This is purely heuristic. This is a fast path.
1474 * Sometimes when we enter, BSY will be cleared in
1475 * a chk-status or two. If not, the drive is probably seeking
1476 * or something. Snooze for a couple msecs, then
1477 * chk-status again. If still busy, queue delayed work.
1479 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1480 if (status & ATA_BUSY) {
1481 msleep(2);
1482 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1483 if (status & ATA_BUSY) {
1484 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1485 return;
1489 /* move the HSM */
1490 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1492 /* another command or interrupt handler
1493 * may be running at this point.
1495 if (poll_next)
1496 goto fsm_start;
1500 * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
1501 * @qc: command to issue to device
1503 * Using various libata functions and hooks, this function
1504 * starts an ATA command. ATA commands are grouped into
1505 * classes called "protocols", and issuing each type of protocol
1506 * is slightly different.
1508 * May be used as the qc_issue() entry in ata_port_operations.
1510 * LOCKING:
1511 * spin_lock_irqsave(host lock)
1513 * RETURNS:
1514 * Zero on success, AC_ERR_* mask on failure
1516 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1518 struct ata_port *ap = qc->ap;
1520 /* Use polling pio if the LLD doesn't handle
1521 * interrupt driven pio and atapi CDB interrupt.
1523 if (ap->flags & ATA_FLAG_PIO_POLLING) {
1524 switch (qc->tf.protocol) {
1525 case ATA_PROT_PIO:
1526 case ATA_PROT_NODATA:
1527 case ATAPI_PROT_PIO:
1528 case ATAPI_PROT_NODATA:
1529 qc->tf.flags |= ATA_TFLAG_POLLING;
1530 break;
1531 case ATAPI_PROT_DMA:
1532 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1533 /* see ata_dma_blacklisted() */
1534 BUG();
1535 break;
1536 default:
1537 break;
1541 /* select the device */
1542 ata_dev_select(ap, qc->dev->devno, 1, 0);
1544 /* start the command */
1545 switch (qc->tf.protocol) {
1546 case ATA_PROT_NODATA:
1547 if (qc->tf.flags & ATA_TFLAG_POLLING)
1548 ata_qc_set_polling(qc);
1550 ata_tf_to_host(ap, &qc->tf);
1551 ap->hsm_task_state = HSM_ST_LAST;
1553 if (qc->tf.flags & ATA_TFLAG_POLLING)
1554 ata_pio_queue_task(ap, qc, 0);
1556 break;
1558 case ATA_PROT_DMA:
1559 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1561 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
1562 ap->ops->bmdma_setup(qc); /* set up bmdma */
1563 ap->ops->bmdma_start(qc); /* initiate bmdma */
1564 ap->hsm_task_state = HSM_ST_LAST;
1565 break;
1567 case ATA_PROT_PIO:
1568 if (qc->tf.flags & ATA_TFLAG_POLLING)
1569 ata_qc_set_polling(qc);
1571 ata_tf_to_host(ap, &qc->tf);
1573 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1574 /* PIO data out protocol */
1575 ap->hsm_task_state = HSM_ST_FIRST;
1576 ata_pio_queue_task(ap, qc, 0);
1578 /* always send first data block using
1579 * the ata_pio_task() codepath.
1581 } else {
1582 /* PIO data in protocol */
1583 ap->hsm_task_state = HSM_ST;
1585 if (qc->tf.flags & ATA_TFLAG_POLLING)
1586 ata_pio_queue_task(ap, qc, 0);
1588 /* if polling, ata_pio_task() handles the rest.
1589 * otherwise, interrupt handler takes over from here.
1593 break;
1595 case ATAPI_PROT_PIO:
1596 case ATAPI_PROT_NODATA:
1597 if (qc->tf.flags & ATA_TFLAG_POLLING)
1598 ata_qc_set_polling(qc);
1600 ata_tf_to_host(ap, &qc->tf);
1602 ap->hsm_task_state = HSM_ST_FIRST;
1604 /* send cdb by polling if no cdb interrupt */
1605 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1606 (qc->tf.flags & ATA_TFLAG_POLLING))
1607 ata_pio_queue_task(ap, qc, 0);
1608 break;
1610 case ATAPI_PROT_DMA:
1611 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1613 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
1614 ap->ops->bmdma_setup(qc); /* set up bmdma */
1615 ap->hsm_task_state = HSM_ST_FIRST;
1617 /* send cdb by polling if no cdb interrupt */
1618 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1619 ata_pio_queue_task(ap, qc, 0);
1620 break;
1622 default:
1623 WARN_ON_ONCE(1);
1624 return AC_ERR_SYSTEM;
1627 return 0;
1629 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1632 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1633 * @qc: qc to fill result TF for
1635 * @qc is finished and result TF needs to be filled. Fill it
1636 * using ->sff_tf_read.
1638 * LOCKING:
1639 * spin_lock_irqsave(host lock)
1641 * RETURNS:
1642 * true indicating that result TF is successfully filled.
1644 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1646 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1647 return true;
1649 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1652 * ata_sff_host_intr - Handle host interrupt for given (port, task)
1653 * @ap: Port on which interrupt arrived (possibly...)
1654 * @qc: Taskfile currently active in engine
1656 * Handle host interrupt for given queued command. Currently,
1657 * only DMA interrupts are handled. All other commands are
1658 * handled via polling with interrupts disabled (nIEN bit).
1660 * LOCKING:
1661 * spin_lock_irqsave(host lock)
1663 * RETURNS:
1664 * One if interrupt was handled, zero if not (shared irq).
1666 unsigned int ata_sff_host_intr(struct ata_port *ap,
1667 struct ata_queued_cmd *qc)
1669 struct ata_eh_info *ehi = &ap->link.eh_info;
1670 u8 status, host_stat = 0;
1671 bool bmdma_stopped = false;
1673 VPRINTK("ata%u: protocol %d task_state %d\n",
1674 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1676 /* Check whether we are expecting interrupt in this state */
1677 switch (ap->hsm_task_state) {
1678 case HSM_ST_FIRST:
1679 /* Some pre-ATAPI-4 devices assert INTRQ
1680 * at this state when ready to receive CDB.
1683 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1684 * The flag was turned on only for atapi devices. No
1685 * need to check ata_is_atapi(qc->tf.protocol) again.
1687 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1688 goto idle_irq;
1689 break;
1690 case HSM_ST_LAST:
1691 if (qc->tf.protocol == ATA_PROT_DMA ||
1692 qc->tf.protocol == ATAPI_PROT_DMA) {
1693 /* check status of DMA engine */
1694 host_stat = ap->ops->bmdma_status(ap);
1695 VPRINTK("ata%u: host_stat 0x%X\n",
1696 ap->print_id, host_stat);
1698 /* if it's not our irq... */
1699 if (!(host_stat & ATA_DMA_INTR))
1700 goto idle_irq;
1702 /* before we do anything else, clear DMA-Start bit */
1703 ap->ops->bmdma_stop(qc);
1704 bmdma_stopped = true;
1706 if (unlikely(host_stat & ATA_DMA_ERR)) {
1707 /* error when transfering data to/from memory */
1708 qc->err_mask |= AC_ERR_HOST_BUS;
1709 ap->hsm_task_state = HSM_ST_ERR;
1712 break;
1713 case HSM_ST:
1714 break;
1715 default:
1716 goto idle_irq;
1720 /* check main status, clearing INTRQ if needed */
1721 status = ata_sff_irq_status(ap);
1722 if (status & ATA_BUSY) {
1723 if (bmdma_stopped) {
1724 /* BMDMA engine is already stopped, we're screwed */
1725 qc->err_mask |= AC_ERR_HSM;
1726 ap->hsm_task_state = HSM_ST_ERR;
1727 } else
1728 goto idle_irq;
1731 /* clear irq events */
1732 ap->ops->sff_irq_clear(ap);
1734 ata_sff_hsm_move(ap, qc, status, 0);
1736 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1737 qc->tf.protocol == ATAPI_PROT_DMA))
1738 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1740 return 1; /* irq handled */
1742 idle_irq:
1743 ap->stats.idle_irq++;
1745 #ifdef ATA_IRQ_TRAP
1746 if ((ap->stats.idle_irq % 1000) == 0) {
1747 ap->ops->sff_check_status(ap);
1748 ap->ops->sff_irq_clear(ap);
1749 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1750 return 1;
1752 #endif
1753 return 0; /* irq not handled */
1755 EXPORT_SYMBOL_GPL(ata_sff_host_intr);
1758 * ata_sff_interrupt - Default ATA host interrupt handler
1759 * @irq: irq line (unused)
1760 * @dev_instance: pointer to our ata_host information structure
1762 * Default interrupt handler for PCI IDE devices. Calls
1763 * ata_sff_host_intr() for each port that is not disabled.
1765 * LOCKING:
1766 * Obtains host lock during operation.
1768 * RETURNS:
1769 * IRQ_NONE or IRQ_HANDLED.
1771 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1773 struct ata_host *host = dev_instance;
1774 bool retried = false;
1775 unsigned int i;
1776 unsigned int handled, idle, polling;
1777 unsigned long flags;
1779 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1780 spin_lock_irqsave(&host->lock, flags);
1782 retry:
1783 handled = idle = polling = 0;
1784 for (i = 0; i < host->n_ports; i++) {
1785 struct ata_port *ap = host->ports[i];
1786 struct ata_queued_cmd *qc;
1788 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1789 if (qc) {
1790 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1791 handled |= ata_sff_host_intr(ap, qc);
1792 else
1793 polling |= 1 << i;
1794 } else
1795 idle |= 1 << i;
1799 * If no port was expecting IRQ but the controller is actually
1800 * asserting IRQ line, nobody cared will ensue. Check IRQ
1801 * pending status if available and clear spurious IRQ.
1803 if (!handled && !retried) {
1804 bool retry = false;
1806 for (i = 0; i < host->n_ports; i++) {
1807 struct ata_port *ap = host->ports[i];
1809 if (polling & (1 << i))
1810 continue;
1812 if (!ap->ops->sff_irq_check ||
1813 !ap->ops->sff_irq_check(ap))
1814 continue;
1816 if (idle & (1 << i)) {
1817 ap->ops->sff_check_status(ap);
1818 ap->ops->sff_irq_clear(ap);
1819 } else {
1820 /* clear INTRQ and check if BUSY cleared */
1821 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1822 retry |= true;
1824 * With command in flight, we can't do
1825 * sff_irq_clear() w/o racing with completion.
1830 if (retry) {
1831 retried = true;
1832 goto retry;
1836 spin_unlock_irqrestore(&host->lock, flags);
1838 return IRQ_RETVAL(handled);
1840 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1843 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1844 * @ap: port that appears to have timed out
1846 * Called from the libata error handlers when the core code suspects
1847 * an interrupt has been lost. If it has complete anything we can and
1848 * then return. Interface must support altstatus for this faster
1849 * recovery to occur.
1851 * Locking:
1852 * Caller holds host lock
1855 void ata_sff_lost_interrupt(struct ata_port *ap)
1857 u8 status;
1858 struct ata_queued_cmd *qc;
1860 /* Only one outstanding command per SFF channel */
1861 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1862 /* We cannot lose an interrupt on a non-existent or polled command */
1863 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1864 return;
1865 /* See if the controller thinks it is still busy - if so the command
1866 isn't a lost IRQ but is still in progress */
1867 status = ata_sff_altstatus(ap);
1868 if (status & ATA_BUSY)
1869 return;
1871 /* There was a command running, we are no longer busy and we have
1872 no interrupt. */
1873 ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n",
1874 status);
1875 /* Run the host interrupt logic as if the interrupt had not been
1876 lost */
1877 ata_sff_host_intr(ap, qc);
1879 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1882 * ata_sff_freeze - Freeze SFF controller port
1883 * @ap: port to freeze
1885 * Freeze SFF controller port.
1887 * LOCKING:
1888 * Inherited from caller.
1890 void ata_sff_freeze(struct ata_port *ap)
1892 ap->ctl |= ATA_NIEN;
1893 ap->last_ctl = ap->ctl;
1895 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1896 ata_sff_set_devctl(ap, ap->ctl);
1898 /* Under certain circumstances, some controllers raise IRQ on
1899 * ATA_NIEN manipulation. Also, many controllers fail to mask
1900 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1902 ap->ops->sff_check_status(ap);
1904 ap->ops->sff_irq_clear(ap);
1906 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1909 * ata_sff_thaw - Thaw SFF controller port
1910 * @ap: port to thaw
1912 * Thaw SFF controller port.
1914 * LOCKING:
1915 * Inherited from caller.
1917 void ata_sff_thaw(struct ata_port *ap)
1919 /* clear & re-enable interrupts */
1920 ap->ops->sff_check_status(ap);
1921 ap->ops->sff_irq_clear(ap);
1922 ata_sff_irq_on(ap);
1924 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1927 * ata_sff_prereset - prepare SFF link for reset
1928 * @link: SFF link to be reset
1929 * @deadline: deadline jiffies for the operation
1931 * SFF link @link is about to be reset. Initialize it. It first
1932 * calls ata_std_prereset() and wait for !BSY if the port is
1933 * being softreset.
1935 * LOCKING:
1936 * Kernel thread context (may sleep)
1938 * RETURNS:
1939 * 0 on success, -errno otherwise.
1941 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1943 struct ata_eh_context *ehc = &link->eh_context;
1944 int rc;
1946 rc = ata_std_prereset(link, deadline);
1947 if (rc)
1948 return rc;
1950 /* if we're about to do hardreset, nothing more to do */
1951 if (ehc->i.action & ATA_EH_HARDRESET)
1952 return 0;
1954 /* wait for !BSY if we don't know that no device is attached */
1955 if (!ata_link_offline(link)) {
1956 rc = ata_sff_wait_ready(link, deadline);
1957 if (rc && rc != -ENODEV) {
1958 ata_link_printk(link, KERN_WARNING, "device not ready "
1959 "(errno=%d), forcing hardreset\n", rc);
1960 ehc->i.action |= ATA_EH_HARDRESET;
1964 return 0;
1966 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1969 * ata_devchk - PATA device presence detection
1970 * @ap: ATA channel to examine
1971 * @device: Device to examine (starting at zero)
1973 * This technique was originally described in
1974 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1975 * later found its way into the ATA/ATAPI spec.
1977 * Write a pattern to the ATA shadow registers,
1978 * and if a device is present, it will respond by
1979 * correctly storing and echoing back the
1980 * ATA shadow register contents.
1982 * LOCKING:
1983 * caller.
1985 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1987 struct ata_ioports *ioaddr = &ap->ioaddr;
1988 u8 nsect, lbal;
1990 ap->ops->sff_dev_select(ap, device);
1992 iowrite8(0x55, ioaddr->nsect_addr);
1993 iowrite8(0xaa, ioaddr->lbal_addr);
1995 iowrite8(0xaa, ioaddr->nsect_addr);
1996 iowrite8(0x55, ioaddr->lbal_addr);
1998 iowrite8(0x55, ioaddr->nsect_addr);
1999 iowrite8(0xaa, ioaddr->lbal_addr);
2001 nsect = ioread8(ioaddr->nsect_addr);
2002 lbal = ioread8(ioaddr->lbal_addr);
2004 if ((nsect == 0x55) && (lbal == 0xaa))
2005 return 1; /* we found a device */
2007 return 0; /* nothing found */
2011 * ata_sff_dev_classify - Parse returned ATA device signature
2012 * @dev: ATA device to classify (starting at zero)
2013 * @present: device seems present
2014 * @r_err: Value of error register on completion
2016 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
2017 * an ATA/ATAPI-defined set of values is placed in the ATA
2018 * shadow registers, indicating the results of device detection
2019 * and diagnostics.
2021 * Select the ATA device, and read the values from the ATA shadow
2022 * registers. Then parse according to the Error register value,
2023 * and the spec-defined values examined by ata_dev_classify().
2025 * LOCKING:
2026 * caller.
2028 * RETURNS:
2029 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
2031 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
2032 u8 *r_err)
2034 struct ata_port *ap = dev->link->ap;
2035 struct ata_taskfile tf;
2036 unsigned int class;
2037 u8 err;
2039 ap->ops->sff_dev_select(ap, dev->devno);
2041 memset(&tf, 0, sizeof(tf));
2043 ap->ops->sff_tf_read(ap, &tf);
2044 err = tf.feature;
2045 if (r_err)
2046 *r_err = err;
2048 /* see if device passed diags: continue and warn later */
2049 if (err == 0)
2050 /* diagnostic fail : do nothing _YET_ */
2051 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
2052 else if (err == 1)
2053 /* do nothing */ ;
2054 else if ((dev->devno == 0) && (err == 0x81))
2055 /* do nothing */ ;
2056 else
2057 return ATA_DEV_NONE;
2059 /* determine if device is ATA or ATAPI */
2060 class = ata_dev_classify(&tf);
2062 if (class == ATA_DEV_UNKNOWN) {
2063 /* If the device failed diagnostic, it's likely to
2064 * have reported incorrect device signature too.
2065 * Assume ATA device if the device seems present but
2066 * device signature is invalid with diagnostic
2067 * failure.
2069 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
2070 class = ATA_DEV_ATA;
2071 else
2072 class = ATA_DEV_NONE;
2073 } else if ((class == ATA_DEV_ATA) &&
2074 (ap->ops->sff_check_status(ap) == 0))
2075 class = ATA_DEV_NONE;
2077 return class;
2079 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
2082 * ata_sff_wait_after_reset - wait for devices to become ready after reset
2083 * @link: SFF link which is just reset
2084 * @devmask: mask of present devices
2085 * @deadline: deadline jiffies for the operation
2087 * Wait devices attached to SFF @link to become ready after
2088 * reset. It contains preceding 150ms wait to avoid accessing TF
2089 * status register too early.
2091 * LOCKING:
2092 * Kernel thread context (may sleep).
2094 * RETURNS:
2095 * 0 on success, -ENODEV if some or all of devices in @devmask
2096 * don't seem to exist. -errno on other errors.
2098 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
2099 unsigned long deadline)
2101 struct ata_port *ap = link->ap;
2102 struct ata_ioports *ioaddr = &ap->ioaddr;
2103 unsigned int dev0 = devmask & (1 << 0);
2104 unsigned int dev1 = devmask & (1 << 1);
2105 int rc, ret = 0;
2107 msleep(ATA_WAIT_AFTER_RESET);
2109 /* always check readiness of the master device */
2110 rc = ata_sff_wait_ready(link, deadline);
2111 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
2112 * and TF status is 0xff, bail out on it too.
2114 if (rc)
2115 return rc;
2117 /* if device 1 was found in ata_devchk, wait for register
2118 * access briefly, then wait for BSY to clear.
2120 if (dev1) {
2121 int i;
2123 ap->ops->sff_dev_select(ap, 1);
2125 /* Wait for register access. Some ATAPI devices fail
2126 * to set nsect/lbal after reset, so don't waste too
2127 * much time on it. We're gonna wait for !BSY anyway.
2129 for (i = 0; i < 2; i++) {
2130 u8 nsect, lbal;
2132 nsect = ioread8(ioaddr->nsect_addr);
2133 lbal = ioread8(ioaddr->lbal_addr);
2134 if ((nsect == 1) && (lbal == 1))
2135 break;
2136 msleep(50); /* give drive a breather */
2139 rc = ata_sff_wait_ready(link, deadline);
2140 if (rc) {
2141 if (rc != -ENODEV)
2142 return rc;
2143 ret = rc;
2147 /* is all this really necessary? */
2148 ap->ops->sff_dev_select(ap, 0);
2149 if (dev1)
2150 ap->ops->sff_dev_select(ap, 1);
2151 if (dev0)
2152 ap->ops->sff_dev_select(ap, 0);
2154 return ret;
2156 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2158 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2159 unsigned long deadline)
2161 struct ata_ioports *ioaddr = &ap->ioaddr;
2163 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2165 /* software reset. causes dev0 to be selected */
2166 iowrite8(ap->ctl, ioaddr->ctl_addr);
2167 udelay(20); /* FIXME: flush */
2168 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2169 udelay(20); /* FIXME: flush */
2170 iowrite8(ap->ctl, ioaddr->ctl_addr);
2171 ap->last_ctl = ap->ctl;
2173 /* wait the port to become ready */
2174 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2178 * ata_sff_softreset - reset host port via ATA SRST
2179 * @link: ATA link to reset
2180 * @classes: resulting classes of attached devices
2181 * @deadline: deadline jiffies for the operation
2183 * Reset host port using ATA SRST.
2185 * LOCKING:
2186 * Kernel thread context (may sleep)
2188 * RETURNS:
2189 * 0 on success, -errno otherwise.
2191 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2192 unsigned long deadline)
2194 struct ata_port *ap = link->ap;
2195 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2196 unsigned int devmask = 0;
2197 int rc;
2198 u8 err;
2200 DPRINTK("ENTER\n");
2202 /* determine if device 0/1 are present */
2203 if (ata_devchk(ap, 0))
2204 devmask |= (1 << 0);
2205 if (slave_possible && ata_devchk(ap, 1))
2206 devmask |= (1 << 1);
2208 /* select device 0 again */
2209 ap->ops->sff_dev_select(ap, 0);
2211 /* issue bus reset */
2212 DPRINTK("about to softreset, devmask=%x\n", devmask);
2213 rc = ata_bus_softreset(ap, devmask, deadline);
2214 /* if link is occupied, -ENODEV too is an error */
2215 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2216 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2217 return rc;
2220 /* determine by signature whether we have ATA or ATAPI devices */
2221 classes[0] = ata_sff_dev_classify(&link->device[0],
2222 devmask & (1 << 0), &err);
2223 if (slave_possible && err != 0x81)
2224 classes[1] = ata_sff_dev_classify(&link->device[1],
2225 devmask & (1 << 1), &err);
2227 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2228 return 0;
2230 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2233 * sata_sff_hardreset - reset host port via SATA phy reset
2234 * @link: link to reset
2235 * @class: resulting class of attached device
2236 * @deadline: deadline jiffies for the operation
2238 * SATA phy-reset host port using DET bits of SControl register,
2239 * wait for !BSY and classify the attached device.
2241 * LOCKING:
2242 * Kernel thread context (may sleep)
2244 * RETURNS:
2245 * 0 on success, -errno otherwise.
2247 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2248 unsigned long deadline)
2250 struct ata_eh_context *ehc = &link->eh_context;
2251 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2252 bool online;
2253 int rc;
2255 rc = sata_link_hardreset(link, timing, deadline, &online,
2256 ata_sff_check_ready);
2257 if (online)
2258 *class = ata_sff_dev_classify(link->device, 1, NULL);
2260 DPRINTK("EXIT, class=%u\n", *class);
2261 return rc;
2263 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2266 * ata_sff_postreset - SFF postreset callback
2267 * @link: the target SFF ata_link
2268 * @classes: classes of attached devices
2270 * This function is invoked after a successful reset. It first
2271 * calls ata_std_postreset() and performs SFF specific postreset
2272 * processing.
2274 * LOCKING:
2275 * Kernel thread context (may sleep)
2277 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2279 struct ata_port *ap = link->ap;
2281 ata_std_postreset(link, classes);
2283 /* is double-select really necessary? */
2284 if (classes[0] != ATA_DEV_NONE)
2285 ap->ops->sff_dev_select(ap, 1);
2286 if (classes[1] != ATA_DEV_NONE)
2287 ap->ops->sff_dev_select(ap, 0);
2289 /* bail out if no device is present */
2290 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2291 DPRINTK("EXIT, no device\n");
2292 return;
2295 /* set up device control */
2296 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2297 ata_sff_set_devctl(ap, ap->ctl);
2298 ap->last_ctl = ap->ctl;
2301 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2304 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2305 * @qc: command
2307 * Drain the FIFO and device of any stuck data following a command
2308 * failing to complete. In some cases this is necessary before a
2309 * reset will recover the device.
2313 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2315 int count;
2316 struct ata_port *ap;
2318 /* We only need to flush incoming data when a command was running */
2319 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2320 return;
2322 ap = qc->ap;
2323 /* Drain up to 64K of data before we give up this recovery method */
2324 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2325 && count < 65536; count += 2)
2326 ioread16(ap->ioaddr.data_addr);
2328 /* Can become DEBUG later */
2329 if (count)
2330 ata_port_printk(ap, KERN_DEBUG,
2331 "drained %d bytes to clear DRQ.\n", count);
2334 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2337 * ata_sff_error_handler - Stock error handler for BMDMA controller
2338 * @ap: port to handle error for
2340 * Stock error handler for SFF controller. It can handle both
2341 * PATA and SATA controllers. Many controllers should be able to
2342 * use this EH as-is or with some added handling before and
2343 * after.
2345 * LOCKING:
2346 * Kernel thread context (may sleep)
2348 void ata_sff_error_handler(struct ata_port *ap)
2350 ata_reset_fn_t softreset = ap->ops->softreset;
2351 ata_reset_fn_t hardreset = ap->ops->hardreset;
2352 struct ata_queued_cmd *qc;
2353 unsigned long flags;
2354 bool thaw = false;
2356 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2357 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2358 qc = NULL;
2360 /* reset PIO HSM and stop DMA engine */
2361 spin_lock_irqsave(ap->lock, flags);
2363 ap->hsm_task_state = HSM_ST_IDLE;
2365 if (ap->ioaddr.bmdma_addr &&
2366 qc && (qc->tf.protocol == ATA_PROT_DMA ||
2367 qc->tf.protocol == ATAPI_PROT_DMA)) {
2368 u8 host_stat;
2370 host_stat = ap->ops->bmdma_status(ap);
2372 /* BMDMA controllers indicate host bus error by
2373 * setting DMA_ERR bit and timing out. As it wasn't
2374 * really a timeout event, adjust error mask and
2375 * cancel frozen state.
2377 if (qc->err_mask == AC_ERR_TIMEOUT
2378 && (host_stat & ATA_DMA_ERR)) {
2379 qc->err_mask = AC_ERR_HOST_BUS;
2380 thaw = true;
2383 ap->ops->bmdma_stop(qc);
2385 /* if we're gonna thaw, make sure IRQ is clear */
2386 if (thaw) {
2387 ap->ops->sff_check_status(ap);
2388 ap->ops->sff_irq_clear(ap);
2390 spin_unlock_irqrestore(ap->lock, flags);
2391 ata_eh_thaw_port(ap);
2392 spin_lock_irqsave(ap->lock, flags);
2396 /* We *MUST* do FIFO draining before we issue a reset as several
2397 * devices helpfully clear their internal state and will lock solid
2398 * if we touch the data port post reset. Pass qc in case anyone wants
2399 * to do different PIO/DMA recovery or has per command fixups
2401 if (ap->ops->drain_fifo)
2402 ap->ops->drain_fifo(qc);
2404 spin_unlock_irqrestore(ap->lock, flags);
2406 /* PIO and DMA engines have been stopped, perform recovery */
2408 /* Ignore ata_sff_softreset if ctl isn't accessible and
2409 * built-in hardresets if SCR access isn't available.
2411 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2412 softreset = NULL;
2413 if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link))
2414 hardreset = NULL;
2416 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2417 ap->ops->postreset);
2419 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2422 * ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
2423 * @qc: internal command to clean up
2425 * LOCKING:
2426 * Kernel thread context (may sleep)
2428 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
2430 struct ata_port *ap = qc->ap;
2431 unsigned long flags;
2433 spin_lock_irqsave(ap->lock, flags);
2435 ap->hsm_task_state = HSM_ST_IDLE;
2437 if (ap->ioaddr.bmdma_addr)
2438 ap->ops->bmdma_stop(qc);
2440 spin_unlock_irqrestore(ap->lock, flags);
2442 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
2445 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2446 * @ioaddr: IO address structure to be initialized
2448 * Utility function which initializes data_addr, error_addr,
2449 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2450 * device_addr, status_addr, and command_addr to standard offsets
2451 * relative to cmd_addr.
2453 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2455 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2457 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2458 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2459 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2460 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2461 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2462 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2463 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2464 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2465 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2466 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2468 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2470 #ifdef CONFIG_PCI
2472 static int ata_resources_present(struct pci_dev *pdev, int port)
2474 int i;
2476 /* Check the PCI resources for this channel are enabled */
2477 port = port * 2;
2478 for (i = 0; i < 2; i++) {
2479 if (pci_resource_start(pdev, port + i) == 0 ||
2480 pci_resource_len(pdev, port + i) == 0)
2481 return 0;
2483 return 1;
2487 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2488 * @host: target ATA host
2490 * Acquire native PCI ATA resources for @host and initialize the
2491 * first two ports of @host accordingly. Ports marked dummy are
2492 * skipped and allocation failure makes the port dummy.
2494 * Note that native PCI resources are valid even for legacy hosts
2495 * as we fix up pdev resources array early in boot, so this
2496 * function can be used for both native and legacy SFF hosts.
2498 * LOCKING:
2499 * Inherited from calling layer (may sleep).
2501 * RETURNS:
2502 * 0 if at least one port is initialized, -ENODEV if no port is
2503 * available.
2505 int ata_pci_sff_init_host(struct ata_host *host)
2507 struct device *gdev = host->dev;
2508 struct pci_dev *pdev = to_pci_dev(gdev);
2509 unsigned int mask = 0;
2510 int i, rc;
2512 /* request, iomap BARs and init port addresses accordingly */
2513 for (i = 0; i < 2; i++) {
2514 struct ata_port *ap = host->ports[i];
2515 int base = i * 2;
2516 void __iomem * const *iomap;
2518 if (ata_port_is_dummy(ap))
2519 continue;
2521 /* Discard disabled ports. Some controllers show
2522 * their unused channels this way. Disabled ports are
2523 * made dummy.
2525 if (!ata_resources_present(pdev, i)) {
2526 ap->ops = &ata_dummy_port_ops;
2527 continue;
2530 rc = pcim_iomap_regions(pdev, 0x3 << base,
2531 dev_driver_string(gdev));
2532 if (rc) {
2533 dev_printk(KERN_WARNING, gdev,
2534 "failed to request/iomap BARs for port %d "
2535 "(errno=%d)\n", i, rc);
2536 if (rc == -EBUSY)
2537 pcim_pin_device(pdev);
2538 ap->ops = &ata_dummy_port_ops;
2539 continue;
2541 host->iomap = iomap = pcim_iomap_table(pdev);
2543 ap->ioaddr.cmd_addr = iomap[base];
2544 ap->ioaddr.altstatus_addr =
2545 ap->ioaddr.ctl_addr = (void __iomem *)
2546 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2547 ata_sff_std_ports(&ap->ioaddr);
2549 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2550 (unsigned long long)pci_resource_start(pdev, base),
2551 (unsigned long long)pci_resource_start(pdev, base + 1));
2553 mask |= 1 << i;
2556 if (!mask) {
2557 dev_printk(KERN_ERR, gdev, "no available native port\n");
2558 return -ENODEV;
2561 return 0;
2563 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2566 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
2567 * @pdev: target PCI device
2568 * @ppi: array of port_info, must be enough for two ports
2569 * @r_host: out argument for the initialized ATA host
2571 * Helper to allocate ATA host for @pdev, acquire all native PCI
2572 * resources and initialize it accordingly in one go.
2574 * LOCKING:
2575 * Inherited from calling layer (may sleep).
2577 * RETURNS:
2578 * 0 on success, -errno otherwise.
2580 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2581 const struct ata_port_info * const *ppi,
2582 struct ata_host **r_host)
2584 struct ata_host *host;
2585 int rc;
2587 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2588 return -ENOMEM;
2590 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2591 if (!host) {
2592 dev_printk(KERN_ERR, &pdev->dev,
2593 "failed to allocate ATA host\n");
2594 rc = -ENOMEM;
2595 goto err_out;
2598 rc = ata_pci_sff_init_host(host);
2599 if (rc)
2600 goto err_out;
2602 /* init DMA related stuff */
2603 ata_pci_bmdma_init(host);
2605 devres_remove_group(&pdev->dev, NULL);
2606 *r_host = host;
2607 return 0;
2609 err_out:
2610 devres_release_group(&pdev->dev, NULL);
2611 return rc;
2613 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2616 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2617 * @host: target SFF ATA host
2618 * @irq_handler: irq_handler used when requesting IRQ(s)
2619 * @sht: scsi_host_template to use when registering the host
2621 * This is the counterpart of ata_host_activate() for SFF ATA
2622 * hosts. This separate helper is necessary because SFF hosts
2623 * use two separate interrupts in legacy mode.
2625 * LOCKING:
2626 * Inherited from calling layer (may sleep).
2628 * RETURNS:
2629 * 0 on success, -errno otherwise.
2631 int ata_pci_sff_activate_host(struct ata_host *host,
2632 irq_handler_t irq_handler,
2633 struct scsi_host_template *sht)
2635 struct device *dev = host->dev;
2636 struct pci_dev *pdev = to_pci_dev(dev);
2637 const char *drv_name = dev_driver_string(host->dev);
2638 int legacy_mode = 0, rc;
2640 rc = ata_host_start(host);
2641 if (rc)
2642 return rc;
2644 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2645 u8 tmp8, mask;
2647 /* TODO: What if one channel is in native mode ... */
2648 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2649 mask = (1 << 2) | (1 << 0);
2650 if ((tmp8 & mask) != mask)
2651 legacy_mode = 1;
2652 #if defined(CONFIG_NO_ATA_LEGACY)
2653 /* Some platforms with PCI limits cannot address compat
2654 port space. In that case we punt if their firmware has
2655 left a device in compatibility mode */
2656 if (legacy_mode) {
2657 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2658 return -EOPNOTSUPP;
2660 #endif
2663 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2664 return -ENOMEM;
2666 if (!legacy_mode && pdev->irq) {
2667 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2668 IRQF_SHARED, drv_name, host);
2669 if (rc)
2670 goto out;
2672 ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2673 ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2674 } else if (legacy_mode) {
2675 if (!ata_port_is_dummy(host->ports[0])) {
2676 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2677 irq_handler, IRQF_SHARED,
2678 drv_name, host);
2679 if (rc)
2680 goto out;
2682 ata_port_desc(host->ports[0], "irq %d",
2683 ATA_PRIMARY_IRQ(pdev));
2686 if (!ata_port_is_dummy(host->ports[1])) {
2687 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2688 irq_handler, IRQF_SHARED,
2689 drv_name, host);
2690 if (rc)
2691 goto out;
2693 ata_port_desc(host->ports[1], "irq %d",
2694 ATA_SECONDARY_IRQ(pdev));
2698 rc = ata_host_register(host, sht);
2699 out:
2700 if (rc == 0)
2701 devres_remove_group(dev, NULL);
2702 else
2703 devres_release_group(dev, NULL);
2705 return rc;
2707 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2710 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller
2711 * @pdev: Controller to be initialized
2712 * @ppi: array of port_info, must be enough for two ports
2713 * @sht: scsi_host_template to use when registering the host
2714 * @host_priv: host private_data
2715 * @hflag: host flags
2717 * This is a helper function which can be called from a driver's
2718 * xxx_init_one() probe function if the hardware uses traditional
2719 * IDE taskfile registers.
2721 * This function calls pci_enable_device(), reserves its register
2722 * regions, sets the dma mask, enables bus master mode, and calls
2723 * ata_device_add()
2725 * ASSUMPTION:
2726 * Nobody makes a single channel controller that appears solely as
2727 * the secondary legacy port on PCI.
2729 * LOCKING:
2730 * Inherited from PCI layer (may sleep).
2732 * RETURNS:
2733 * Zero on success, negative on errno-based value on error.
2735 int ata_pci_sff_init_one(struct pci_dev *pdev,
2736 const struct ata_port_info * const *ppi,
2737 struct scsi_host_template *sht, void *host_priv, int hflag)
2739 struct device *dev = &pdev->dev;
2740 const struct ata_port_info *pi = NULL;
2741 struct ata_host *host = NULL;
2742 int i, rc;
2744 DPRINTK("ENTER\n");
2746 /* look up the first valid port_info */
2747 for (i = 0; i < 2 && ppi[i]; i++) {
2748 if (ppi[i]->port_ops != &ata_dummy_port_ops) {
2749 pi = ppi[i];
2750 break;
2754 if (!pi) {
2755 dev_printk(KERN_ERR, &pdev->dev,
2756 "no valid port_info specified\n");
2757 return -EINVAL;
2760 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2761 return -ENOMEM;
2763 rc = pcim_enable_device(pdev);
2764 if (rc)
2765 goto out;
2767 /* prepare and activate SFF host */
2768 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2769 if (rc)
2770 goto out;
2771 host->private_data = host_priv;
2772 host->flags |= hflag;
2774 pci_set_master(pdev);
2775 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2776 out:
2777 if (rc == 0)
2778 devres_remove_group(&pdev->dev, NULL);
2779 else
2780 devres_release_group(&pdev->dev, NULL);
2782 return rc;
2784 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2786 #endif /* CONFIG_PCI */
2788 const struct ata_port_operations ata_bmdma_port_ops = {
2789 .inherits = &ata_sff_port_ops,
2791 .bmdma_setup = ata_bmdma_setup,
2792 .bmdma_start = ata_bmdma_start,
2793 .bmdma_stop = ata_bmdma_stop,
2794 .bmdma_status = ata_bmdma_status,
2796 .port_start = ata_bmdma_port_start,
2798 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2800 const struct ata_port_operations ata_bmdma32_port_ops = {
2801 .inherits = &ata_bmdma_port_ops,
2803 .sff_data_xfer = ata_sff_data_xfer32,
2804 .port_start = ata_bmdma_port_start32,
2806 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2809 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2810 * @qc: Info associated with this ATA transaction.
2812 * LOCKING:
2813 * spin_lock_irqsave(host lock)
2815 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2817 struct ata_port *ap = qc->ap;
2818 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2819 u8 dmactl;
2821 /* load PRD table addr. */
2822 mb(); /* make sure PRD table writes are visible to controller */
2823 iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2825 /* specify data direction, triple-check start bit is clear */
2826 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2827 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2828 if (!rw)
2829 dmactl |= ATA_DMA_WR;
2830 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2832 /* issue r/w command */
2833 ap->ops->sff_exec_command(ap, &qc->tf);
2835 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2838 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2839 * @qc: Info associated with this ATA transaction.
2841 * LOCKING:
2842 * spin_lock_irqsave(host lock)
2844 void ata_bmdma_start(struct ata_queued_cmd *qc)
2846 struct ata_port *ap = qc->ap;
2847 u8 dmactl;
2849 /* start host DMA transaction */
2850 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2851 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2853 /* Strictly, one may wish to issue an ioread8() here, to
2854 * flush the mmio write. However, control also passes
2855 * to the hardware at this point, and it will interrupt
2856 * us when we are to resume control. So, in effect,
2857 * we don't care when the mmio write flushes.
2858 * Further, a read of the DMA status register _immediately_
2859 * following the write may not be what certain flaky hardware
2860 * is expected, so I think it is best to not add a readb()
2861 * without first all the MMIO ATA cards/mobos.
2862 * Or maybe I'm just being paranoid.
2864 * FIXME: The posting of this write means I/O starts are
2865 * unneccessarily delayed for MMIO
2868 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2871 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2872 * @qc: Command we are ending DMA for
2874 * Clears the ATA_DMA_START flag in the dma control register
2876 * May be used as the bmdma_stop() entry in ata_port_operations.
2878 * LOCKING:
2879 * spin_lock_irqsave(host lock)
2881 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2883 struct ata_port *ap = qc->ap;
2884 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2886 /* clear start/stop bit */
2887 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2888 mmio + ATA_DMA_CMD);
2890 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2891 ata_sff_dma_pause(ap);
2893 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2896 * ata_bmdma_status - Read PCI IDE BMDMA status
2897 * @ap: Port associated with this ATA transaction.
2899 * Read and return BMDMA status register.
2901 * May be used as the bmdma_status() entry in ata_port_operations.
2903 * LOCKING:
2904 * spin_lock_irqsave(host lock)
2906 u8 ata_bmdma_status(struct ata_port *ap)
2908 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2910 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2914 * ata_bmdma_port_start - Set port up for bmdma.
2915 * @ap: Port to initialize
2917 * Called just after data structures for each port are
2918 * initialized. Allocates space for PRD table.
2920 * May be used as the port_start() entry in ata_port_operations.
2922 * LOCKING:
2923 * Inherited from caller.
2925 int ata_bmdma_port_start(struct ata_port *ap)
2927 if (ap->mwdma_mask || ap->udma_mask) {
2928 ap->prd = dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
2929 &ap->prd_dma, GFP_KERNEL);
2930 if (!ap->prd)
2931 return -ENOMEM;
2934 return 0;
2936 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
2939 * ata_bmdma_port_start32 - Set port up for dma.
2940 * @ap: Port to initialize
2942 * Called just after data structures for each port are
2943 * initialized. Enables 32bit PIO and allocates space for PRD
2944 * table.
2946 * May be used as the port_start() entry in ata_port_operations for
2947 * devices that are capable of 32bit PIO.
2949 * LOCKING:
2950 * Inherited from caller.
2952 int ata_bmdma_port_start32(struct ata_port *ap)
2954 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
2955 return ata_bmdma_port_start(ap);
2957 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
2959 #ifdef CONFIG_PCI
2962 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
2963 * @pdev: PCI device
2965 * Some PCI ATA devices report simplex mode but in fact can be told to
2966 * enter non simplex mode. This implements the necessary logic to
2967 * perform the task on such devices. Calling it on other devices will
2968 * have -undefined- behaviour.
2970 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
2972 unsigned long bmdma = pci_resource_start(pdev, 4);
2973 u8 simplex;
2975 if (bmdma == 0)
2976 return -ENOENT;
2978 simplex = inb(bmdma + 0x02);
2979 outb(simplex & 0x60, bmdma + 0x02);
2980 simplex = inb(bmdma + 0x02);
2981 if (simplex & 0x80)
2982 return -EOPNOTSUPP;
2983 return 0;
2985 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
2987 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
2989 int i;
2991 dev_printk(KERN_ERR, host->dev, "BMDMA: %s, falling back to PIO\n",
2992 reason);
2994 for (i = 0; i < 2; i++) {
2995 host->ports[i]->mwdma_mask = 0;
2996 host->ports[i]->udma_mask = 0;
3001 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3002 * @host: target ATA host
3004 * Acquire PCI BMDMA resources and initialize @host accordingly.
3006 * LOCKING:
3007 * Inherited from calling layer (may sleep).
3009 void ata_pci_bmdma_init(struct ata_host *host)
3011 struct device *gdev = host->dev;
3012 struct pci_dev *pdev = to_pci_dev(gdev);
3013 int i, rc;
3015 /* No BAR4 allocation: No DMA */
3016 if (pci_resource_start(pdev, 4) == 0) {
3017 ata_bmdma_nodma(host, "BAR4 is zero");
3018 return;
3022 * Some controllers require BMDMA region to be initialized
3023 * even if DMA is not in use to clear IRQ status via
3024 * ->sff_irq_clear method. Try to initialize bmdma_addr
3025 * regardless of dma masks.
3027 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
3028 if (rc)
3029 ata_bmdma_nodma(host, "failed to set dma mask");
3030 if (!rc) {
3031 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
3032 if (rc)
3033 ata_bmdma_nodma(host,
3034 "failed to set consistent dma mask");
3037 /* request and iomap DMA region */
3038 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3039 if (rc) {
3040 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3041 return;
3043 host->iomap = pcim_iomap_table(pdev);
3045 for (i = 0; i < 2; i++) {
3046 struct ata_port *ap = host->ports[i];
3047 void __iomem *bmdma = host->iomap[4] + 8 * i;
3049 if (ata_port_is_dummy(ap))
3050 continue;
3052 ap->ioaddr.bmdma_addr = bmdma;
3053 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3054 (ioread8(bmdma + 2) & 0x80))
3055 host->flags |= ATA_HOST_SIMPLEX;
3057 ata_port_desc(ap, "bmdma 0x%llx",
3058 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3061 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3063 #endif /* CONFIG_PCI */
3066 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3067 * @ap: Port to initialize
3069 * Called on port allocation to initialize SFF/BMDMA specific
3070 * fields.
3072 * LOCKING:
3073 * None.
3075 void ata_sff_port_init(struct ata_port *ap)
3079 int __init ata_sff_init(void)
3081 return 0;
3084 void __exit ata_sff_exit(void)