1 /* RSA asymmetric public-key algorithm [RFC3447]
3 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public Licence
8 * as published by the Free Software Foundation; either version
9 * 2 of the Licence, or (at your option) any later version.
12 #define pr_fmt(fmt) "RSA: "fmt
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include "public_key.h"
18 MODULE_LICENSE("GPL");
19 MODULE_DESCRIPTION("RSA Public Key Algorithm");
21 #define kenter(FMT, ...) \
22 pr_devel("==> %s("FMT")\n", __func__, ##__VA_ARGS__)
23 #define kleave(FMT, ...) \
24 pr_devel("<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
27 * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2].
29 static const u8 RSA_digest_info_MD5
[] = {
30 0x30, 0x20, 0x30, 0x0C, 0x06, 0x08,
31 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x02, 0x05, /* OID */
32 0x05, 0x00, 0x04, 0x10
35 static const u8 RSA_digest_info_SHA1
[] = {
36 0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
37 0x2B, 0x0E, 0x03, 0x02, 0x1A,
38 0x05, 0x00, 0x04, 0x14
41 static const u8 RSA_digest_info_RIPE_MD_160
[] = {
42 0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
43 0x2B, 0x24, 0x03, 0x02, 0x01,
44 0x05, 0x00, 0x04, 0x14
47 static const u8 RSA_digest_info_SHA224
[] = {
48 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09,
49 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04,
50 0x05, 0x00, 0x04, 0x1C
53 static const u8 RSA_digest_info_SHA256
[] = {
54 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09,
55 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
56 0x05, 0x00, 0x04, 0x20
59 static const u8 RSA_digest_info_SHA384
[] = {
60 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09,
61 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
62 0x05, 0x00, 0x04, 0x30
65 static const u8 RSA_digest_info_SHA512
[] = {
66 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09,
67 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
68 0x05, 0x00, 0x04, 0x40
74 } RSA_ASN1_templates
[PKEY_HASH__LAST
] = {
75 #define _(X) { RSA_digest_info_##X, sizeof(RSA_digest_info_##X) }
76 [PKEY_HASH_MD5
] = _(MD5
),
77 [PKEY_HASH_SHA1
] = _(SHA1
),
78 [PKEY_HASH_RIPE_MD_160
] = _(RIPE_MD_160
),
79 [PKEY_HASH_SHA256
] = _(SHA256
),
80 [PKEY_HASH_SHA384
] = _(SHA384
),
81 [PKEY_HASH_SHA512
] = _(SHA512
),
82 [PKEY_HASH_SHA224
] = _(SHA224
),
87 * RSAVP1() function [RFC3447 sec 5.2.2]
89 static int RSAVP1(const struct public_key
*key
, MPI s
, MPI
*_m
)
94 /* (1) Validate 0 <= s < n */
95 if (mpi_cmp_ui(s
, 0) < 0) {
96 kleave(" = -EBADMSG [s < 0]");
99 if (mpi_cmp(s
, key
->rsa
.n
) >= 0) {
100 kleave(" = -EBADMSG [s >= n]");
108 /* (2) m = s^e mod n */
109 ret
= mpi_powm(m
, s
, key
->rsa
.e
, key
->rsa
.n
);
120 * Integer to Octet String conversion [RFC3447 sec 4.1]
122 static int RSA_I2OSP(MPI x
, size_t xLen
, u8
**_X
)
124 unsigned X_size
, x_size
;
128 /* Make sure the string is the right length. The number should begin
129 * with { 0x00, 0x01, ... } so we have to account for 15 leading zero
130 * bits not being reported by MPI.
132 x_size
= mpi_get_nbits(x
);
133 pr_devel("size(x)=%u xLen*8=%zu\n", x_size
, xLen
* 8);
134 if (x_size
!= xLen
* 8 - 15)
137 X
= mpi_get_buffer(x
, &X_size
, &X_sign
);
144 if (X_size
!= xLen
- 1) {
154 * Perform the RSA signature verification.
155 * @H: Value of hash of data and metadata
156 * @EM: The computed signature value
157 * @k: The size of EM (EM[0] is an invalid location but should hold 0x00)
158 * @hash_size: The size of H
159 * @asn1_template: The DigestInfo ASN.1 template
160 * @asn1_size: Size of asm1_template[]
162 static int RSA_verify(const u8
*H
, const u8
*EM
, size_t k
, size_t hash_size
,
163 const u8
*asn1_template
, size_t asn1_size
)
165 unsigned PS_end
, T_offset
, i
;
167 kenter(",,%zu,%zu,%zu", k
, hash_size
, asn1_size
);
169 if (k
< 2 + 1 + asn1_size
+ hash_size
)
172 /* Decode the EMSA-PKCS1-v1_5 */
174 kleave(" = -EBADMSG [EM[1] == %02u]", EM
[1]);
178 T_offset
= k
- (asn1_size
+ hash_size
);
179 PS_end
= T_offset
- 1;
180 if (EM
[PS_end
] != 0x00) {
181 kleave(" = -EBADMSG [EM[T-1] == %02u]", EM
[PS_end
]);
185 for (i
= 2; i
< PS_end
; i
++) {
187 kleave(" = -EBADMSG [EM[PS%x] == %02u]", i
- 2, EM
[i
]);
192 if (memcmp(asn1_template
, EM
+ T_offset
, asn1_size
) != 0) {
193 kleave(" = -EBADMSG [EM[T] ASN.1 mismatch]");
197 if (memcmp(H
, EM
+ T_offset
+ asn1_size
, hash_size
) != 0) {
198 kleave(" = -EKEYREJECTED [EM[T] hash mismatch]");
199 return -EKEYREJECTED
;
207 * Perform the verification step [RFC3447 sec 8.2.2].
209 static int RSA_verify_signature(const struct public_key
*key
,
210 const struct public_key_signature
*sig
)
215 /* Variables as per RFC3447 sec 8.2.2 */
216 const u8
*H
= sig
->digest
;
223 if (!RSA_ASN1_templates
[sig
->pkey_hash_algo
].data
)
226 /* (1) Check the signature size against the public key modulus size */
227 k
= mpi_get_nbits(key
->rsa
.n
);
228 tsize
= mpi_get_nbits(sig
->rsa
.s
);
230 /* According to RFC 4880 sec 3.2, length of MPI is computed starting
231 * from most significant bit. So the RFC 3447 sec 8.2.2 size check
232 * must be relaxed to conform with shorter signatures - so we fail here
233 * only if signature length is longer than modulus size.
235 pr_devel("step 1: k=%zu size(S)=%zu\n", k
, tsize
);
241 /* Round up and convert to octets */
244 /* (2b) Apply the RSAVP1 verification primitive to the public key */
245 ret
= RSAVP1(key
, sig
->rsa
.s
, &m
);
249 /* (2c) Convert the message representative (m) to an encoded message
250 * (EM) of length k octets.
252 * NOTE! The leading zero byte is suppressed by MPI, so we pass a
253 * pointer to the _preceding_ byte to RSA_verify()!
255 ret
= RSA_I2OSP(m
, k
, &EM
);
259 ret
= RSA_verify(H
, EM
- 1, k
, sig
->digest_size
,
260 RSA_ASN1_templates
[sig
->pkey_hash_algo
].data
,
261 RSA_ASN1_templates
[sig
->pkey_hash_algo
].size
);
266 kleave(" = %d", ret
);
270 const struct public_key_algorithm RSA_public_key_algorithm
= {
275 .verify_signature
= RSA_verify_signature
,
277 EXPORT_SYMBOL_GPL(RSA_public_key_algorithm
);