1 #include <linux/kernel.h>
2 #include <linux/errno.h>
4 #include <linux/spinlock.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
23 struct follow_page_context
{
24 struct dev_pagemap
*pgmap
;
25 unsigned int page_mask
;
28 static struct page
*no_page_table(struct vm_area_struct
*vma
,
32 * When core dumping an enormous anonymous area that nobody
33 * has touched so far, we don't want to allocate unnecessary pages or
34 * page tables. Return error instead of NULL to skip handle_mm_fault,
35 * then get_dump_page() will return NULL to leave a hole in the dump.
36 * But we can only make this optimization where a hole would surely
37 * be zero-filled if handle_mm_fault() actually did handle it.
39 if ((flags
& FOLL_DUMP
) && (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
40 return ERR_PTR(-EFAULT
);
44 static int follow_pfn_pte(struct vm_area_struct
*vma
, unsigned long address
,
45 pte_t
*pte
, unsigned int flags
)
47 /* No page to get reference */
51 if (flags
& FOLL_TOUCH
) {
54 if (flags
& FOLL_WRITE
)
55 entry
= pte_mkdirty(entry
);
56 entry
= pte_mkyoung(entry
);
58 if (!pte_same(*pte
, entry
)) {
59 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
60 update_mmu_cache(vma
, address
, pte
);
64 /* Proper page table entry exists, but no corresponding struct page */
69 * FOLL_FORCE can write to even unwritable pte's, but only
70 * after we've gone through a COW cycle and they are dirty.
72 static inline bool can_follow_write_pte(pte_t pte
, unsigned int flags
)
74 return pte_write(pte
) ||
75 ((flags
& FOLL_FORCE
) && (flags
& FOLL_COW
) && pte_dirty(pte
));
78 static struct page
*follow_page_pte(struct vm_area_struct
*vma
,
79 unsigned long address
, pmd_t
*pmd
, unsigned int flags
,
80 struct dev_pagemap
**pgmap
)
82 struct mm_struct
*mm
= vma
->vm_mm
;
88 if (unlikely(pmd_bad(*pmd
)))
89 return no_page_table(vma
, flags
);
91 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
93 if (!pte_present(pte
)) {
96 * KSM's break_ksm() relies upon recognizing a ksm page
97 * even while it is being migrated, so for that case we
98 * need migration_entry_wait().
100 if (likely(!(flags
& FOLL_MIGRATION
)))
104 entry
= pte_to_swp_entry(pte
);
105 if (!is_migration_entry(entry
))
107 pte_unmap_unlock(ptep
, ptl
);
108 migration_entry_wait(mm
, pmd
, address
);
111 if ((flags
& FOLL_NUMA
) && pte_protnone(pte
))
113 if ((flags
& FOLL_WRITE
) && !can_follow_write_pte(pte
, flags
)) {
114 pte_unmap_unlock(ptep
, ptl
);
118 page
= vm_normal_page(vma
, address
, pte
);
119 if (!page
&& pte_devmap(pte
) && (flags
& FOLL_GET
)) {
121 * Only return device mapping pages in the FOLL_GET case since
122 * they are only valid while holding the pgmap reference.
124 *pgmap
= get_dev_pagemap(pte_pfn(pte
), *pgmap
);
126 page
= pte_page(pte
);
129 } else if (unlikely(!page
)) {
130 if (flags
& FOLL_DUMP
) {
131 /* Avoid special (like zero) pages in core dumps */
132 page
= ERR_PTR(-EFAULT
);
136 if (is_zero_pfn(pte_pfn(pte
))) {
137 page
= pte_page(pte
);
141 ret
= follow_pfn_pte(vma
, address
, ptep
, flags
);
147 if (flags
& FOLL_SPLIT
&& PageTransCompound(page
)) {
150 pte_unmap_unlock(ptep
, ptl
);
152 ret
= split_huge_page(page
);
160 if (flags
& FOLL_GET
)
162 if (flags
& FOLL_TOUCH
) {
163 if ((flags
& FOLL_WRITE
) &&
164 !pte_dirty(pte
) && !PageDirty(page
))
165 set_page_dirty(page
);
167 * pte_mkyoung() would be more correct here, but atomic care
168 * is needed to avoid losing the dirty bit: it is easier to use
169 * mark_page_accessed().
171 mark_page_accessed(page
);
173 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
174 /* Do not mlock pte-mapped THP */
175 if (PageTransCompound(page
))
179 * The preliminary mapping check is mainly to avoid the
180 * pointless overhead of lock_page on the ZERO_PAGE
181 * which might bounce very badly if there is contention.
183 * If the page is already locked, we don't need to
184 * handle it now - vmscan will handle it later if and
185 * when it attempts to reclaim the page.
187 if (page
->mapping
&& trylock_page(page
)) {
188 lru_add_drain(); /* push cached pages to LRU */
190 * Because we lock page here, and migration is
191 * blocked by the pte's page reference, and we
192 * know the page is still mapped, we don't even
193 * need to check for file-cache page truncation.
195 mlock_vma_page(page
);
200 pte_unmap_unlock(ptep
, ptl
);
203 pte_unmap_unlock(ptep
, ptl
);
206 return no_page_table(vma
, flags
);
209 static struct page
*follow_pmd_mask(struct vm_area_struct
*vma
,
210 unsigned long address
, pud_t
*pudp
,
212 struct follow_page_context
*ctx
)
217 struct mm_struct
*mm
= vma
->vm_mm
;
219 pmd
= pmd_offset(pudp
, address
);
221 * The READ_ONCE() will stabilize the pmdval in a register or
222 * on the stack so that it will stop changing under the code.
224 pmdval
= READ_ONCE(*pmd
);
225 if (pmd_none(pmdval
))
226 return no_page_table(vma
, flags
);
227 if (pmd_huge(pmdval
) && vma
->vm_flags
& VM_HUGETLB
) {
228 page
= follow_huge_pmd(mm
, address
, pmd
, flags
);
231 return no_page_table(vma
, flags
);
233 if (is_hugepd(__hugepd(pmd_val(pmdval
)))) {
234 page
= follow_huge_pd(vma
, address
,
235 __hugepd(pmd_val(pmdval
)), flags
,
239 return no_page_table(vma
, flags
);
242 if (!pmd_present(pmdval
)) {
243 if (likely(!(flags
& FOLL_MIGRATION
)))
244 return no_page_table(vma
, flags
);
245 VM_BUG_ON(thp_migration_supported() &&
246 !is_pmd_migration_entry(pmdval
));
247 if (is_pmd_migration_entry(pmdval
))
248 pmd_migration_entry_wait(mm
, pmd
);
249 pmdval
= READ_ONCE(*pmd
);
251 * MADV_DONTNEED may convert the pmd to null because
252 * mmap_sem is held in read mode
254 if (pmd_none(pmdval
))
255 return no_page_table(vma
, flags
);
258 if (pmd_devmap(pmdval
)) {
259 ptl
= pmd_lock(mm
, pmd
);
260 page
= follow_devmap_pmd(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
265 if (likely(!pmd_trans_huge(pmdval
)))
266 return follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
268 if ((flags
& FOLL_NUMA
) && pmd_protnone(pmdval
))
269 return no_page_table(vma
, flags
);
272 ptl
= pmd_lock(mm
, pmd
);
273 if (unlikely(pmd_none(*pmd
))) {
275 return no_page_table(vma
, flags
);
277 if (unlikely(!pmd_present(*pmd
))) {
279 if (likely(!(flags
& FOLL_MIGRATION
)))
280 return no_page_table(vma
, flags
);
281 pmd_migration_entry_wait(mm
, pmd
);
284 if (unlikely(!pmd_trans_huge(*pmd
))) {
286 return follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
288 if (flags
& FOLL_SPLIT
) {
290 page
= pmd_page(*pmd
);
291 if (is_huge_zero_page(page
)) {
294 split_huge_pmd(vma
, pmd
, address
);
295 if (pmd_trans_unstable(pmd
))
301 ret
= split_huge_page(page
);
305 return no_page_table(vma
, flags
);
308 return ret
? ERR_PTR(ret
) :
309 follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
311 page
= follow_trans_huge_pmd(vma
, address
, pmd
, flags
);
313 ctx
->page_mask
= HPAGE_PMD_NR
- 1;
317 static struct page
*follow_pud_mask(struct vm_area_struct
*vma
,
318 unsigned long address
, p4d_t
*p4dp
,
320 struct follow_page_context
*ctx
)
325 struct mm_struct
*mm
= vma
->vm_mm
;
327 pud
= pud_offset(p4dp
, address
);
329 return no_page_table(vma
, flags
);
330 if (pud_huge(*pud
) && vma
->vm_flags
& VM_HUGETLB
) {
331 page
= follow_huge_pud(mm
, address
, pud
, flags
);
334 return no_page_table(vma
, flags
);
336 if (is_hugepd(__hugepd(pud_val(*pud
)))) {
337 page
= follow_huge_pd(vma
, address
,
338 __hugepd(pud_val(*pud
)), flags
,
342 return no_page_table(vma
, flags
);
344 if (pud_devmap(*pud
)) {
345 ptl
= pud_lock(mm
, pud
);
346 page
= follow_devmap_pud(vma
, address
, pud
, flags
, &ctx
->pgmap
);
351 if (unlikely(pud_bad(*pud
)))
352 return no_page_table(vma
, flags
);
354 return follow_pmd_mask(vma
, address
, pud
, flags
, ctx
);
357 static struct page
*follow_p4d_mask(struct vm_area_struct
*vma
,
358 unsigned long address
, pgd_t
*pgdp
,
360 struct follow_page_context
*ctx
)
365 p4d
= p4d_offset(pgdp
, address
);
367 return no_page_table(vma
, flags
);
368 BUILD_BUG_ON(p4d_huge(*p4d
));
369 if (unlikely(p4d_bad(*p4d
)))
370 return no_page_table(vma
, flags
);
372 if (is_hugepd(__hugepd(p4d_val(*p4d
)))) {
373 page
= follow_huge_pd(vma
, address
,
374 __hugepd(p4d_val(*p4d
)), flags
,
378 return no_page_table(vma
, flags
);
380 return follow_pud_mask(vma
, address
, p4d
, flags
, ctx
);
384 * follow_page_mask - look up a page descriptor from a user-virtual address
385 * @vma: vm_area_struct mapping @address
386 * @address: virtual address to look up
387 * @flags: flags modifying lookup behaviour
388 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
389 * pointer to output page_mask
391 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
393 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
394 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
396 * On output, the @ctx->page_mask is set according to the size of the page.
398 * Return: the mapped (struct page *), %NULL if no mapping exists, or
399 * an error pointer if there is a mapping to something not represented
400 * by a page descriptor (see also vm_normal_page()).
402 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
403 unsigned long address
, unsigned int flags
,
404 struct follow_page_context
*ctx
)
408 struct mm_struct
*mm
= vma
->vm_mm
;
412 /* make this handle hugepd */
413 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
415 BUG_ON(flags
& FOLL_GET
);
419 pgd
= pgd_offset(mm
, address
);
421 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
422 return no_page_table(vma
, flags
);
424 if (pgd_huge(*pgd
)) {
425 page
= follow_huge_pgd(mm
, address
, pgd
, flags
);
428 return no_page_table(vma
, flags
);
430 if (is_hugepd(__hugepd(pgd_val(*pgd
)))) {
431 page
= follow_huge_pd(vma
, address
,
432 __hugepd(pgd_val(*pgd
)), flags
,
436 return no_page_table(vma
, flags
);
439 return follow_p4d_mask(vma
, address
, pgd
, flags
, ctx
);
442 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
443 unsigned int foll_flags
)
445 struct follow_page_context ctx
= { NULL
};
448 page
= follow_page_mask(vma
, address
, foll_flags
, &ctx
);
450 put_dev_pagemap(ctx
.pgmap
);
454 static int get_gate_page(struct mm_struct
*mm
, unsigned long address
,
455 unsigned int gup_flags
, struct vm_area_struct
**vma
,
465 /* user gate pages are read-only */
466 if (gup_flags
& FOLL_WRITE
)
468 if (address
> TASK_SIZE
)
469 pgd
= pgd_offset_k(address
);
471 pgd
= pgd_offset_gate(mm
, address
);
472 BUG_ON(pgd_none(*pgd
));
473 p4d
= p4d_offset(pgd
, address
);
474 BUG_ON(p4d_none(*p4d
));
475 pud
= pud_offset(p4d
, address
);
476 BUG_ON(pud_none(*pud
));
477 pmd
= pmd_offset(pud
, address
);
478 if (!pmd_present(*pmd
))
480 VM_BUG_ON(pmd_trans_huge(*pmd
));
481 pte
= pte_offset_map(pmd
, address
);
484 *vma
= get_gate_vma(mm
);
487 *page
= vm_normal_page(*vma
, address
, *pte
);
489 if ((gup_flags
& FOLL_DUMP
) || !is_zero_pfn(pte_pfn(*pte
)))
491 *page
= pte_page(*pte
);
494 * This should never happen (a device public page in the gate
497 if (is_device_public_page(*page
))
509 * mmap_sem must be held on entry. If @nonblocking != NULL and
510 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
511 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
513 static int faultin_page(struct task_struct
*tsk
, struct vm_area_struct
*vma
,
514 unsigned long address
, unsigned int *flags
, int *nonblocking
)
516 unsigned int fault_flags
= 0;
519 /* mlock all present pages, but do not fault in new pages */
520 if ((*flags
& (FOLL_POPULATE
| FOLL_MLOCK
)) == FOLL_MLOCK
)
522 if (*flags
& FOLL_WRITE
)
523 fault_flags
|= FAULT_FLAG_WRITE
;
524 if (*flags
& FOLL_REMOTE
)
525 fault_flags
|= FAULT_FLAG_REMOTE
;
527 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
528 if (*flags
& FOLL_NOWAIT
)
529 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
;
530 if (*flags
& FOLL_TRIED
) {
531 VM_WARN_ON_ONCE(fault_flags
& FAULT_FLAG_ALLOW_RETRY
);
532 fault_flags
|= FAULT_FLAG_TRIED
;
535 ret
= handle_mm_fault(vma
, address
, fault_flags
);
536 if (ret
& VM_FAULT_ERROR
) {
537 int err
= vm_fault_to_errno(ret
, *flags
);
545 if (ret
& VM_FAULT_MAJOR
)
551 if (ret
& VM_FAULT_RETRY
) {
552 if (nonblocking
&& !(fault_flags
& FAULT_FLAG_RETRY_NOWAIT
))
558 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
559 * necessary, even if maybe_mkwrite decided not to set pte_write. We
560 * can thus safely do subsequent page lookups as if they were reads.
561 * But only do so when looping for pte_write is futile: in some cases
562 * userspace may also be wanting to write to the gotten user page,
563 * which a read fault here might prevent (a readonly page might get
564 * reCOWed by userspace write).
566 if ((ret
& VM_FAULT_WRITE
) && !(vma
->vm_flags
& VM_WRITE
))
571 static int check_vma_flags(struct vm_area_struct
*vma
, unsigned long gup_flags
)
573 vm_flags_t vm_flags
= vma
->vm_flags
;
574 int write
= (gup_flags
& FOLL_WRITE
);
575 int foreign
= (gup_flags
& FOLL_REMOTE
);
577 if (vm_flags
& (VM_IO
| VM_PFNMAP
))
580 if (gup_flags
& FOLL_ANON
&& !vma_is_anonymous(vma
))
584 if (!(vm_flags
& VM_WRITE
)) {
585 if (!(gup_flags
& FOLL_FORCE
))
588 * We used to let the write,force case do COW in a
589 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
590 * set a breakpoint in a read-only mapping of an
591 * executable, without corrupting the file (yet only
592 * when that file had been opened for writing!).
593 * Anon pages in shared mappings are surprising: now
596 if (!is_cow_mapping(vm_flags
))
599 } else if (!(vm_flags
& VM_READ
)) {
600 if (!(gup_flags
& FOLL_FORCE
))
603 * Is there actually any vma we can reach here which does not
604 * have VM_MAYREAD set?
606 if (!(vm_flags
& VM_MAYREAD
))
610 * gups are always data accesses, not instruction
611 * fetches, so execute=false here
613 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
619 * __get_user_pages() - pin user pages in memory
620 * @tsk: task_struct of target task
621 * @mm: mm_struct of target mm
622 * @start: starting user address
623 * @nr_pages: number of pages from start to pin
624 * @gup_flags: flags modifying pin behaviour
625 * @pages: array that receives pointers to the pages pinned.
626 * Should be at least nr_pages long. Or NULL, if caller
627 * only intends to ensure the pages are faulted in.
628 * @vmas: array of pointers to vmas corresponding to each page.
629 * Or NULL if the caller does not require them.
630 * @nonblocking: whether waiting for disk IO or mmap_sem contention
632 * Returns number of pages pinned. This may be fewer than the number
633 * requested. If nr_pages is 0 or negative, returns 0. If no pages
634 * were pinned, returns -errno. Each page returned must be released
635 * with a put_page() call when it is finished with. vmas will only
636 * remain valid while mmap_sem is held.
638 * Must be called with mmap_sem held. It may be released. See below.
640 * __get_user_pages walks a process's page tables and takes a reference to
641 * each struct page that each user address corresponds to at a given
642 * instant. That is, it takes the page that would be accessed if a user
643 * thread accesses the given user virtual address at that instant.
645 * This does not guarantee that the page exists in the user mappings when
646 * __get_user_pages returns, and there may even be a completely different
647 * page there in some cases (eg. if mmapped pagecache has been invalidated
648 * and subsequently re faulted). However it does guarantee that the page
649 * won't be freed completely. And mostly callers simply care that the page
650 * contains data that was valid *at some point in time*. Typically, an IO
651 * or similar operation cannot guarantee anything stronger anyway because
652 * locks can't be held over the syscall boundary.
654 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
655 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
656 * appropriate) must be called after the page is finished with, and
657 * before put_page is called.
659 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
660 * or mmap_sem contention, and if waiting is needed to pin all pages,
661 * *@nonblocking will be set to 0. Further, if @gup_flags does not
662 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
665 * A caller using such a combination of @nonblocking and @gup_flags
666 * must therefore hold the mmap_sem for reading only, and recognize
667 * when it's been released. Otherwise, it must be held for either
668 * reading or writing and will not be released.
670 * In most cases, get_user_pages or get_user_pages_fast should be used
671 * instead of __get_user_pages. __get_user_pages should be used only if
672 * you need some special @gup_flags.
674 static long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
675 unsigned long start
, unsigned long nr_pages
,
676 unsigned int gup_flags
, struct page
**pages
,
677 struct vm_area_struct
**vmas
, int *nonblocking
)
680 struct vm_area_struct
*vma
= NULL
;
681 struct follow_page_context ctx
= { NULL
};
686 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
689 * If FOLL_FORCE is set then do not force a full fault as the hinting
690 * fault information is unrelated to the reference behaviour of a task
691 * using the address space
693 if (!(gup_flags
& FOLL_FORCE
))
694 gup_flags
|= FOLL_NUMA
;
698 unsigned int foll_flags
= gup_flags
;
699 unsigned int page_increm
;
701 /* first iteration or cross vma bound */
702 if (!vma
|| start
>= vma
->vm_end
) {
703 vma
= find_extend_vma(mm
, start
);
704 if (!vma
&& in_gate_area(mm
, start
)) {
705 ret
= get_gate_page(mm
, start
& PAGE_MASK
,
707 pages
? &pages
[i
] : NULL
);
714 if (!vma
|| check_vma_flags(vma
, gup_flags
)) {
718 if (is_vm_hugetlb_page(vma
)) {
719 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
720 &start
, &nr_pages
, i
,
721 gup_flags
, nonblocking
);
727 * If we have a pending SIGKILL, don't keep faulting pages and
728 * potentially allocating memory.
730 if (fatal_signal_pending(current
)) {
736 page
= follow_page_mask(vma
, start
, foll_flags
, &ctx
);
738 ret
= faultin_page(tsk
, vma
, start
, &foll_flags
,
754 } else if (PTR_ERR(page
) == -EEXIST
) {
756 * Proper page table entry exists, but no corresponding
760 } else if (IS_ERR(page
)) {
766 flush_anon_page(vma
, page
, start
);
767 flush_dcache_page(page
);
775 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & ctx
.page_mask
);
776 if (page_increm
> nr_pages
)
777 page_increm
= nr_pages
;
779 start
+= page_increm
* PAGE_SIZE
;
780 nr_pages
-= page_increm
;
784 put_dev_pagemap(ctx
.pgmap
);
788 static bool vma_permits_fault(struct vm_area_struct
*vma
,
789 unsigned int fault_flags
)
791 bool write
= !!(fault_flags
& FAULT_FLAG_WRITE
);
792 bool foreign
= !!(fault_flags
& FAULT_FLAG_REMOTE
);
793 vm_flags_t vm_flags
= write
? VM_WRITE
: VM_READ
;
795 if (!(vm_flags
& vma
->vm_flags
))
799 * The architecture might have a hardware protection
800 * mechanism other than read/write that can deny access.
802 * gup always represents data access, not instruction
803 * fetches, so execute=false here:
805 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
812 * fixup_user_fault() - manually resolve a user page fault
813 * @tsk: the task_struct to use for page fault accounting, or
814 * NULL if faults are not to be recorded.
815 * @mm: mm_struct of target mm
816 * @address: user address
817 * @fault_flags:flags to pass down to handle_mm_fault()
818 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
819 * does not allow retry
821 * This is meant to be called in the specific scenario where for locking reasons
822 * we try to access user memory in atomic context (within a pagefault_disable()
823 * section), this returns -EFAULT, and we want to resolve the user fault before
826 * Typically this is meant to be used by the futex code.
828 * The main difference with get_user_pages() is that this function will
829 * unconditionally call handle_mm_fault() which will in turn perform all the
830 * necessary SW fixup of the dirty and young bits in the PTE, while
831 * get_user_pages() only guarantees to update these in the struct page.
833 * This is important for some architectures where those bits also gate the
834 * access permission to the page because they are maintained in software. On
835 * such architectures, gup() will not be enough to make a subsequent access
838 * This function will not return with an unlocked mmap_sem. So it has not the
839 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
841 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
842 unsigned long address
, unsigned int fault_flags
,
845 struct vm_area_struct
*vma
;
846 vm_fault_t ret
, major
= 0;
849 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
852 vma
= find_extend_vma(mm
, address
);
853 if (!vma
|| address
< vma
->vm_start
)
856 if (!vma_permits_fault(vma
, fault_flags
))
859 ret
= handle_mm_fault(vma
, address
, fault_flags
);
860 major
|= ret
& VM_FAULT_MAJOR
;
861 if (ret
& VM_FAULT_ERROR
) {
862 int err
= vm_fault_to_errno(ret
, 0);
869 if (ret
& VM_FAULT_RETRY
) {
870 down_read(&mm
->mmap_sem
);
871 if (!(fault_flags
& FAULT_FLAG_TRIED
)) {
873 fault_flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
874 fault_flags
|= FAULT_FLAG_TRIED
;
887 EXPORT_SYMBOL_GPL(fixup_user_fault
);
889 static __always_inline
long __get_user_pages_locked(struct task_struct
*tsk
,
890 struct mm_struct
*mm
,
892 unsigned long nr_pages
,
894 struct vm_area_struct
**vmas
,
898 long ret
, pages_done
;
902 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
904 /* check caller initialized locked */
905 BUG_ON(*locked
!= 1);
912 lock_dropped
= false;
914 ret
= __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
,
917 /* VM_FAULT_RETRY couldn't trigger, bypass */
920 /* VM_FAULT_RETRY cannot return errors */
923 BUG_ON(ret
>= nr_pages
);
927 /* If it's a prefault don't insist harder */
938 * VM_FAULT_RETRY didn't trigger or it was a
945 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
947 start
+= ret
<< PAGE_SHIFT
;
950 * Repeat on the address that fired VM_FAULT_RETRY
951 * without FAULT_FLAG_ALLOW_RETRY but with
956 down_read(&mm
->mmap_sem
);
957 ret
= __get_user_pages(tsk
, mm
, start
, 1, flags
| FOLL_TRIED
,
972 if (lock_dropped
&& *locked
) {
974 * We must let the caller know we temporarily dropped the lock
975 * and so the critical section protected by it was lost.
977 up_read(&mm
->mmap_sem
);
984 * We can leverage the VM_FAULT_RETRY functionality in the page fault
985 * paths better by using either get_user_pages_locked() or
986 * get_user_pages_unlocked().
988 * get_user_pages_locked() is suitable to replace the form:
990 * down_read(&mm->mmap_sem);
992 * get_user_pages(tsk, mm, ..., pages, NULL);
993 * up_read(&mm->mmap_sem);
998 * down_read(&mm->mmap_sem);
1000 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
1002 * up_read(&mm->mmap_sem);
1004 long get_user_pages_locked(unsigned long start
, unsigned long nr_pages
,
1005 unsigned int gup_flags
, struct page
**pages
,
1008 return __get_user_pages_locked(current
, current
->mm
, start
, nr_pages
,
1009 pages
, NULL
, locked
,
1010 gup_flags
| FOLL_TOUCH
);
1012 EXPORT_SYMBOL(get_user_pages_locked
);
1015 * get_user_pages_unlocked() is suitable to replace the form:
1017 * down_read(&mm->mmap_sem);
1018 * get_user_pages(tsk, mm, ..., pages, NULL);
1019 * up_read(&mm->mmap_sem);
1023 * get_user_pages_unlocked(tsk, mm, ..., pages);
1025 * It is functionally equivalent to get_user_pages_fast so
1026 * get_user_pages_fast should be used instead if specific gup_flags
1027 * (e.g. FOLL_FORCE) are not required.
1029 long get_user_pages_unlocked(unsigned long start
, unsigned long nr_pages
,
1030 struct page
**pages
, unsigned int gup_flags
)
1032 struct mm_struct
*mm
= current
->mm
;
1036 down_read(&mm
->mmap_sem
);
1037 ret
= __get_user_pages_locked(current
, mm
, start
, nr_pages
, pages
, NULL
,
1038 &locked
, gup_flags
| FOLL_TOUCH
);
1040 up_read(&mm
->mmap_sem
);
1043 EXPORT_SYMBOL(get_user_pages_unlocked
);
1046 * get_user_pages_remote() - pin user pages in memory
1047 * @tsk: the task_struct to use for page fault accounting, or
1048 * NULL if faults are not to be recorded.
1049 * @mm: mm_struct of target mm
1050 * @start: starting user address
1051 * @nr_pages: number of pages from start to pin
1052 * @gup_flags: flags modifying lookup behaviour
1053 * @pages: array that receives pointers to the pages pinned.
1054 * Should be at least nr_pages long. Or NULL, if caller
1055 * only intends to ensure the pages are faulted in.
1056 * @vmas: array of pointers to vmas corresponding to each page.
1057 * Or NULL if the caller does not require them.
1058 * @locked: pointer to lock flag indicating whether lock is held and
1059 * subsequently whether VM_FAULT_RETRY functionality can be
1060 * utilised. Lock must initially be held.
1062 * Returns number of pages pinned. This may be fewer than the number
1063 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1064 * were pinned, returns -errno. Each page returned must be released
1065 * with a put_page() call when it is finished with. vmas will only
1066 * remain valid while mmap_sem is held.
1068 * Must be called with mmap_sem held for read or write.
1070 * get_user_pages walks a process's page tables and takes a reference to
1071 * each struct page that each user address corresponds to at a given
1072 * instant. That is, it takes the page that would be accessed if a user
1073 * thread accesses the given user virtual address at that instant.
1075 * This does not guarantee that the page exists in the user mappings when
1076 * get_user_pages returns, and there may even be a completely different
1077 * page there in some cases (eg. if mmapped pagecache has been invalidated
1078 * and subsequently re faulted). However it does guarantee that the page
1079 * won't be freed completely. And mostly callers simply care that the page
1080 * contains data that was valid *at some point in time*. Typically, an IO
1081 * or similar operation cannot guarantee anything stronger anyway because
1082 * locks can't be held over the syscall boundary.
1084 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1085 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1086 * be called after the page is finished with, and before put_page is called.
1088 * get_user_pages is typically used for fewer-copy IO operations, to get a
1089 * handle on the memory by some means other than accesses via the user virtual
1090 * addresses. The pages may be submitted for DMA to devices or accessed via
1091 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1092 * use the correct cache flushing APIs.
1094 * See also get_user_pages_fast, for performance critical applications.
1096 * get_user_pages should be phased out in favor of
1097 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1098 * should use get_user_pages because it cannot pass
1099 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1101 long get_user_pages_remote(struct task_struct
*tsk
, struct mm_struct
*mm
,
1102 unsigned long start
, unsigned long nr_pages
,
1103 unsigned int gup_flags
, struct page
**pages
,
1104 struct vm_area_struct
**vmas
, int *locked
)
1106 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, pages
, vmas
,
1108 gup_flags
| FOLL_TOUCH
| FOLL_REMOTE
);
1110 EXPORT_SYMBOL(get_user_pages_remote
);
1113 * This is the same as get_user_pages_remote(), just with a
1114 * less-flexible calling convention where we assume that the task
1115 * and mm being operated on are the current task's and don't allow
1116 * passing of a locked parameter. We also obviously don't pass
1117 * FOLL_REMOTE in here.
1119 long get_user_pages(unsigned long start
, unsigned long nr_pages
,
1120 unsigned int gup_flags
, struct page
**pages
,
1121 struct vm_area_struct
**vmas
)
1123 return __get_user_pages_locked(current
, current
->mm
, start
, nr_pages
,
1125 gup_flags
| FOLL_TOUCH
);
1127 EXPORT_SYMBOL(get_user_pages
);
1129 #ifdef CONFIG_FS_DAX
1131 * This is the same as get_user_pages() in that it assumes we are
1132 * operating on the current task's mm, but it goes further to validate
1133 * that the vmas associated with the address range are suitable for
1134 * longterm elevated page reference counts. For example, filesystem-dax
1135 * mappings are subject to the lifetime enforced by the filesystem and
1136 * we need guarantees that longterm users like RDMA and V4L2 only
1137 * establish mappings that have a kernel enforced revocation mechanism.
1139 * "longterm" == userspace controlled elevated page count lifetime.
1140 * Contrast this to iov_iter_get_pages() usages which are transient.
1142 long get_user_pages_longterm(unsigned long start
, unsigned long nr_pages
,
1143 unsigned int gup_flags
, struct page
**pages
,
1144 struct vm_area_struct
**vmas_arg
)
1146 struct vm_area_struct
**vmas
= vmas_arg
;
1147 struct vm_area_struct
*vma_prev
= NULL
;
1154 vmas
= kcalloc(nr_pages
, sizeof(struct vm_area_struct
*),
1160 rc
= get_user_pages(start
, nr_pages
, gup_flags
, pages
, vmas
);
1162 for (i
= 0; i
< rc
; i
++) {
1163 struct vm_area_struct
*vma
= vmas
[i
];
1165 if (vma
== vma_prev
)
1170 if (vma_is_fsdax(vma
))
1175 * Either get_user_pages() failed, or the vma validation
1176 * succeeded, in either case we don't need to put_page() before
1182 for (i
= 0; i
< rc
; i
++)
1186 if (vmas
!= vmas_arg
)
1190 EXPORT_SYMBOL(get_user_pages_longterm
);
1191 #endif /* CONFIG_FS_DAX */
1194 * populate_vma_page_range() - populate a range of pages in the vma.
1196 * @start: start address
1200 * This takes care of mlocking the pages too if VM_LOCKED is set.
1202 * return 0 on success, negative error code on error.
1204 * vma->vm_mm->mmap_sem must be held.
1206 * If @nonblocking is NULL, it may be held for read or write and will
1209 * If @nonblocking is non-NULL, it must held for read only and may be
1210 * released. If it's released, *@nonblocking will be set to 0.
1212 long populate_vma_page_range(struct vm_area_struct
*vma
,
1213 unsigned long start
, unsigned long end
, int *nonblocking
)
1215 struct mm_struct
*mm
= vma
->vm_mm
;
1216 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
1219 VM_BUG_ON(start
& ~PAGE_MASK
);
1220 VM_BUG_ON(end
& ~PAGE_MASK
);
1221 VM_BUG_ON_VMA(start
< vma
->vm_start
, vma
);
1222 VM_BUG_ON_VMA(end
> vma
->vm_end
, vma
);
1223 VM_BUG_ON_MM(!rwsem_is_locked(&mm
->mmap_sem
), mm
);
1225 gup_flags
= FOLL_TOUCH
| FOLL_POPULATE
| FOLL_MLOCK
;
1226 if (vma
->vm_flags
& VM_LOCKONFAULT
)
1227 gup_flags
&= ~FOLL_POPULATE
;
1229 * We want to touch writable mappings with a write fault in order
1230 * to break COW, except for shared mappings because these don't COW
1231 * and we would not want to dirty them for nothing.
1233 if ((vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
)
1234 gup_flags
|= FOLL_WRITE
;
1237 * We want mlock to succeed for regions that have any permissions
1238 * other than PROT_NONE.
1240 if (vma
->vm_flags
& (VM_READ
| VM_WRITE
| VM_EXEC
))
1241 gup_flags
|= FOLL_FORCE
;
1244 * We made sure addr is within a VMA, so the following will
1245 * not result in a stack expansion that recurses back here.
1247 return __get_user_pages(current
, mm
, start
, nr_pages
, gup_flags
,
1248 NULL
, NULL
, nonblocking
);
1252 * __mm_populate - populate and/or mlock pages within a range of address space.
1254 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1255 * flags. VMAs must be already marked with the desired vm_flags, and
1256 * mmap_sem must not be held.
1258 int __mm_populate(unsigned long start
, unsigned long len
, int ignore_errors
)
1260 struct mm_struct
*mm
= current
->mm
;
1261 unsigned long end
, nstart
, nend
;
1262 struct vm_area_struct
*vma
= NULL
;
1268 for (nstart
= start
; nstart
< end
; nstart
= nend
) {
1270 * We want to fault in pages for [nstart; end) address range.
1271 * Find first corresponding VMA.
1275 down_read(&mm
->mmap_sem
);
1276 vma
= find_vma(mm
, nstart
);
1277 } else if (nstart
>= vma
->vm_end
)
1279 if (!vma
|| vma
->vm_start
>= end
)
1282 * Set [nstart; nend) to intersection of desired address
1283 * range with the first VMA. Also, skip undesirable VMA types.
1285 nend
= min(end
, vma
->vm_end
);
1286 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
1288 if (nstart
< vma
->vm_start
)
1289 nstart
= vma
->vm_start
;
1291 * Now fault in a range of pages. populate_vma_page_range()
1292 * double checks the vma flags, so that it won't mlock pages
1293 * if the vma was already munlocked.
1295 ret
= populate_vma_page_range(vma
, nstart
, nend
, &locked
);
1297 if (ignore_errors
) {
1299 continue; /* continue at next VMA */
1303 nend
= nstart
+ ret
* PAGE_SIZE
;
1307 up_read(&mm
->mmap_sem
);
1308 return ret
; /* 0 or negative error code */
1312 * get_dump_page() - pin user page in memory while writing it to core dump
1313 * @addr: user address
1315 * Returns struct page pointer of user page pinned for dump,
1316 * to be freed afterwards by put_page().
1318 * Returns NULL on any kind of failure - a hole must then be inserted into
1319 * the corefile, to preserve alignment with its headers; and also returns
1320 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1321 * allowing a hole to be left in the corefile to save diskspace.
1323 * Called without mmap_sem, but after all other threads have been killed.
1325 #ifdef CONFIG_ELF_CORE
1326 struct page
*get_dump_page(unsigned long addr
)
1328 struct vm_area_struct
*vma
;
1331 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1332 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
1335 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1338 #endif /* CONFIG_ELF_CORE */
1343 * get_user_pages_fast attempts to pin user pages by walking the page
1344 * tables directly and avoids taking locks. Thus the walker needs to be
1345 * protected from page table pages being freed from under it, and should
1346 * block any THP splits.
1348 * One way to achieve this is to have the walker disable interrupts, and
1349 * rely on IPIs from the TLB flushing code blocking before the page table
1350 * pages are freed. This is unsuitable for architectures that do not need
1351 * to broadcast an IPI when invalidating TLBs.
1353 * Another way to achieve this is to batch up page table containing pages
1354 * belonging to more than one mm_user, then rcu_sched a callback to free those
1355 * pages. Disabling interrupts will allow the fast_gup walker to both block
1356 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1357 * (which is a relatively rare event). The code below adopts this strategy.
1359 * Before activating this code, please be aware that the following assumptions
1360 * are currently made:
1362 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1363 * free pages containing page tables or TLB flushing requires IPI broadcast.
1365 * *) ptes can be read atomically by the architecture.
1367 * *) access_ok is sufficient to validate userspace address ranges.
1369 * The last two assumptions can be relaxed by the addition of helper functions.
1371 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1373 #ifdef CONFIG_HAVE_GENERIC_GUP
1377 * We assume that the PTE can be read atomically. If this is not the case for
1378 * your architecture, please provide the helper.
1380 static inline pte_t
gup_get_pte(pte_t
*ptep
)
1382 return READ_ONCE(*ptep
);
1386 static void undo_dev_pagemap(int *nr
, int nr_start
, struct page
**pages
)
1388 while ((*nr
) - nr_start
) {
1389 struct page
*page
= pages
[--(*nr
)];
1391 ClearPageReferenced(page
);
1396 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1397 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1398 int write
, struct page
**pages
, int *nr
)
1400 struct dev_pagemap
*pgmap
= NULL
;
1401 int nr_start
= *nr
, ret
= 0;
1404 ptem
= ptep
= pte_offset_map(&pmd
, addr
);
1406 pte_t pte
= gup_get_pte(ptep
);
1407 struct page
*head
, *page
;
1410 * Similar to the PMD case below, NUMA hinting must take slow
1411 * path using the pte_protnone check.
1413 if (pte_protnone(pte
))
1416 if (!pte_access_permitted(pte
, write
))
1419 if (pte_devmap(pte
)) {
1420 pgmap
= get_dev_pagemap(pte_pfn(pte
), pgmap
);
1421 if (unlikely(!pgmap
)) {
1422 undo_dev_pagemap(nr
, nr_start
, pages
);
1425 } else if (pte_special(pte
))
1428 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
1429 page
= pte_page(pte
);
1430 head
= compound_head(page
);
1432 if (!page_cache_get_speculative(head
))
1435 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
1440 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1442 SetPageReferenced(page
);
1446 } while (ptep
++, addr
+= PAGE_SIZE
, addr
!= end
);
1452 put_dev_pagemap(pgmap
);
1459 * If we can't determine whether or not a pte is special, then fail immediately
1460 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1463 * For a futex to be placed on a THP tail page, get_futex_key requires a
1464 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1465 * useful to have gup_huge_pmd even if we can't operate on ptes.
1467 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1468 int write
, struct page
**pages
, int *nr
)
1472 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1474 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1475 static int __gup_device_huge(unsigned long pfn
, unsigned long addr
,
1476 unsigned long end
, struct page
**pages
, int *nr
)
1479 struct dev_pagemap
*pgmap
= NULL
;
1482 struct page
*page
= pfn_to_page(pfn
);
1484 pgmap
= get_dev_pagemap(pfn
, pgmap
);
1485 if (unlikely(!pgmap
)) {
1486 undo_dev_pagemap(nr
, nr_start
, pages
);
1489 SetPageReferenced(page
);
1494 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1497 put_dev_pagemap(pgmap
);
1501 static int __gup_device_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
1502 unsigned long end
, struct page
**pages
, int *nr
)
1504 unsigned long fault_pfn
;
1507 fault_pfn
= pmd_pfn(orig
) + ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1508 if (!__gup_device_huge(fault_pfn
, addr
, end
, pages
, nr
))
1511 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
1512 undo_dev_pagemap(nr
, nr_start
, pages
);
1518 static int __gup_device_huge_pud(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
1519 unsigned long end
, struct page
**pages
, int *nr
)
1521 unsigned long fault_pfn
;
1524 fault_pfn
= pud_pfn(orig
) + ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
1525 if (!__gup_device_huge(fault_pfn
, addr
, end
, pages
, nr
))
1528 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
1529 undo_dev_pagemap(nr
, nr_start
, pages
);
1535 static int __gup_device_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
1536 unsigned long end
, struct page
**pages
, int *nr
)
1542 static int __gup_device_huge_pud(pud_t pud
, pud_t
*pudp
, unsigned long addr
,
1543 unsigned long end
, struct page
**pages
, int *nr
)
1550 static int gup_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
1551 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1553 struct page
*head
, *page
;
1556 if (!pmd_access_permitted(orig
, write
))
1559 if (pmd_devmap(orig
))
1560 return __gup_device_huge_pmd(orig
, pmdp
, addr
, end
, pages
, nr
);
1563 page
= pmd_page(orig
) + ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1569 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1571 head
= compound_head(pmd_page(orig
));
1572 if (!page_cache_add_speculative(head
, refs
)) {
1577 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
1584 SetPageReferenced(head
);
1588 static int gup_huge_pud(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
1589 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1591 struct page
*head
, *page
;
1594 if (!pud_access_permitted(orig
, write
))
1597 if (pud_devmap(orig
))
1598 return __gup_device_huge_pud(orig
, pudp
, addr
, end
, pages
, nr
);
1601 page
= pud_page(orig
) + ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
1607 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1609 head
= compound_head(pud_page(orig
));
1610 if (!page_cache_add_speculative(head
, refs
)) {
1615 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
1622 SetPageReferenced(head
);
1626 static int gup_huge_pgd(pgd_t orig
, pgd_t
*pgdp
, unsigned long addr
,
1627 unsigned long end
, int write
,
1628 struct page
**pages
, int *nr
)
1631 struct page
*head
, *page
;
1633 if (!pgd_access_permitted(orig
, write
))
1636 BUILD_BUG_ON(pgd_devmap(orig
));
1638 page
= pgd_page(orig
) + ((addr
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
1644 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1646 head
= compound_head(pgd_page(orig
));
1647 if (!page_cache_add_speculative(head
, refs
)) {
1652 if (unlikely(pgd_val(orig
) != pgd_val(*pgdp
))) {
1659 SetPageReferenced(head
);
1663 static int gup_pmd_range(pud_t pud
, unsigned long addr
, unsigned long end
,
1664 int write
, struct page
**pages
, int *nr
)
1669 pmdp
= pmd_offset(&pud
, addr
);
1671 pmd_t pmd
= READ_ONCE(*pmdp
);
1673 next
= pmd_addr_end(addr
, end
);
1674 if (!pmd_present(pmd
))
1677 if (unlikely(pmd_trans_huge(pmd
) || pmd_huge(pmd
))) {
1679 * NUMA hinting faults need to be handled in the GUP
1680 * slowpath for accounting purposes and so that they
1681 * can be serialised against THP migration.
1683 if (pmd_protnone(pmd
))
1686 if (!gup_huge_pmd(pmd
, pmdp
, addr
, next
, write
,
1690 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd
))))) {
1692 * architecture have different format for hugetlbfs
1693 * pmd format and THP pmd format
1695 if (!gup_huge_pd(__hugepd(pmd_val(pmd
)), addr
,
1696 PMD_SHIFT
, next
, write
, pages
, nr
))
1698 } else if (!gup_pte_range(pmd
, addr
, next
, write
, pages
, nr
))
1700 } while (pmdp
++, addr
= next
, addr
!= end
);
1705 static int gup_pud_range(p4d_t p4d
, unsigned long addr
, unsigned long end
,
1706 int write
, struct page
**pages
, int *nr
)
1711 pudp
= pud_offset(&p4d
, addr
);
1713 pud_t pud
= READ_ONCE(*pudp
);
1715 next
= pud_addr_end(addr
, end
);
1718 if (unlikely(pud_huge(pud
))) {
1719 if (!gup_huge_pud(pud
, pudp
, addr
, next
, write
,
1722 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud
))))) {
1723 if (!gup_huge_pd(__hugepd(pud_val(pud
)), addr
,
1724 PUD_SHIFT
, next
, write
, pages
, nr
))
1726 } else if (!gup_pmd_range(pud
, addr
, next
, write
, pages
, nr
))
1728 } while (pudp
++, addr
= next
, addr
!= end
);
1733 static int gup_p4d_range(pgd_t pgd
, unsigned long addr
, unsigned long end
,
1734 int write
, struct page
**pages
, int *nr
)
1739 p4dp
= p4d_offset(&pgd
, addr
);
1741 p4d_t p4d
= READ_ONCE(*p4dp
);
1743 next
= p4d_addr_end(addr
, end
);
1746 BUILD_BUG_ON(p4d_huge(p4d
));
1747 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d
))))) {
1748 if (!gup_huge_pd(__hugepd(p4d_val(p4d
)), addr
,
1749 P4D_SHIFT
, next
, write
, pages
, nr
))
1751 } else if (!gup_pud_range(p4d
, addr
, next
, write
, pages
, nr
))
1753 } while (p4dp
++, addr
= next
, addr
!= end
);
1758 static void gup_pgd_range(unsigned long addr
, unsigned long end
,
1759 int write
, struct page
**pages
, int *nr
)
1764 pgdp
= pgd_offset(current
->mm
, addr
);
1766 pgd_t pgd
= READ_ONCE(*pgdp
);
1768 next
= pgd_addr_end(addr
, end
);
1771 if (unlikely(pgd_huge(pgd
))) {
1772 if (!gup_huge_pgd(pgd
, pgdp
, addr
, next
, write
,
1775 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd
))))) {
1776 if (!gup_huge_pd(__hugepd(pgd_val(pgd
)), addr
,
1777 PGDIR_SHIFT
, next
, write
, pages
, nr
))
1779 } else if (!gup_p4d_range(pgd
, addr
, next
, write
, pages
, nr
))
1781 } while (pgdp
++, addr
= next
, addr
!= end
);
1784 #ifndef gup_fast_permitted
1786 * Check if it's allowed to use __get_user_pages_fast() for the range, or
1787 * we need to fall back to the slow version:
1789 bool gup_fast_permitted(unsigned long start
, int nr_pages
, int write
)
1791 unsigned long len
, end
;
1793 len
= (unsigned long) nr_pages
<< PAGE_SHIFT
;
1795 return end
>= start
;
1800 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1802 * Note a difference with get_user_pages_fast: this always returns the
1803 * number of pages pinned, 0 if no pages were pinned.
1805 int __get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1806 struct page
**pages
)
1808 unsigned long len
, end
;
1809 unsigned long flags
;
1813 len
= (unsigned long) nr_pages
<< PAGE_SHIFT
;
1816 if (unlikely(!access_ok((void __user
*)start
, len
)))
1820 * Disable interrupts. We use the nested form as we can already have
1821 * interrupts disabled by get_futex_key.
1823 * With interrupts disabled, we block page table pages from being
1824 * freed from under us. See struct mmu_table_batch comments in
1825 * include/asm-generic/tlb.h for more details.
1827 * We do not adopt an rcu_read_lock(.) here as we also want to
1828 * block IPIs that come from THPs splitting.
1831 if (gup_fast_permitted(start
, nr_pages
, write
)) {
1832 local_irq_save(flags
);
1833 gup_pgd_range(start
, end
, write
, pages
, &nr
);
1834 local_irq_restore(flags
);
1841 * get_user_pages_fast() - pin user pages in memory
1842 * @start: starting user address
1843 * @nr_pages: number of pages from start to pin
1844 * @write: whether pages will be written to
1845 * @pages: array that receives pointers to the pages pinned.
1846 * Should be at least nr_pages long.
1848 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1849 * If not successful, it will fall back to taking the lock and
1850 * calling get_user_pages().
1852 * Returns number of pages pinned. This may be fewer than the number
1853 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1854 * were pinned, returns -errno.
1856 int get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1857 struct page
**pages
)
1859 unsigned long addr
, len
, end
;
1860 int nr
= 0, ret
= 0;
1864 len
= (unsigned long) nr_pages
<< PAGE_SHIFT
;
1870 if (unlikely(!access_ok((void __user
*)start
, len
)))
1873 if (gup_fast_permitted(start
, nr_pages
, write
)) {
1874 local_irq_disable();
1875 gup_pgd_range(addr
, end
, write
, pages
, &nr
);
1880 if (nr
< nr_pages
) {
1881 /* Try to get the remaining pages with get_user_pages */
1882 start
+= nr
<< PAGE_SHIFT
;
1885 ret
= get_user_pages_unlocked(start
, nr_pages
- nr
, pages
,
1886 write
? FOLL_WRITE
: 0);
1888 /* Have to be a bit careful with return values */
1900 #endif /* CONFIG_HAVE_GENERIC_GUP */