2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
30 #include <linux/stacktrace.h>
32 #include <trace/events/kmem.h>
39 * The slab_lock protects operations on the object of a particular
40 * slab and its metadata in the page struct. If the slab lock
41 * has been taken then no allocations nor frees can be performed
42 * on the objects in the slab nor can the slab be added or removed
43 * from the partial or full lists since this would mean modifying
44 * the page_struct of the slab.
46 * The list_lock protects the partial and full list on each node and
47 * the partial slab counter. If taken then no new slabs may be added or
48 * removed from the lists nor make the number of partial slabs be modified.
49 * (Note that the total number of slabs is an atomic value that may be
50 * modified without taking the list lock).
52 * The list_lock is a centralized lock and thus we avoid taking it as
53 * much as possible. As long as SLUB does not have to handle partial
54 * slabs, operations can continue without any centralized lock. F.e.
55 * allocating a long series of objects that fill up slabs does not require
58 * The lock order is sometimes inverted when we are trying to get a slab
59 * off a list. We take the list_lock and then look for a page on the list
60 * to use. While we do that objects in the slabs may be freed. We can
61 * only operate on the slab if we have also taken the slab_lock. So we use
62 * a slab_trylock() on the slab. If trylock was successful then no frees
63 * can occur anymore and we can use the slab for allocations etc. If the
64 * slab_trylock() does not succeed then frees are in progress in the slab and
65 * we must stay away from it for a while since we may cause a bouncing
66 * cacheline if we try to acquire the lock. So go onto the next slab.
67 * If all pages are busy then we may allocate a new slab instead of reusing
68 * a partial slab. A new slab has no one operating on it and thus there is
69 * no danger of cacheline contention.
71 * Interrupts are disabled during allocation and deallocation in order to
72 * make the slab allocator safe to use in the context of an irq. In addition
73 * interrupts are disabled to ensure that the processor does not change
74 * while handling per_cpu slabs, due to kernel preemption.
76 * SLUB assigns one slab for allocation to each processor.
77 * Allocations only occur from these slabs called cpu slabs.
79 * Slabs with free elements are kept on a partial list and during regular
80 * operations no list for full slabs is used. If an object in a full slab is
81 * freed then the slab will show up again on the partial lists.
82 * We track full slabs for debugging purposes though because otherwise we
83 * cannot scan all objects.
85 * Slabs are freed when they become empty. Teardown and setup is
86 * minimal so we rely on the page allocators per cpu caches for
87 * fast frees and allocs.
89 * Overloading of page flags that are otherwise used for LRU management.
91 * PageActive The slab is frozen and exempt from list processing.
92 * This means that the slab is dedicated to a purpose
93 * such as satisfying allocations for a specific
94 * processor. Objects may be freed in the slab while
95 * it is frozen but slab_free will then skip the usual
96 * list operations. It is up to the processor holding
97 * the slab to integrate the slab into the slab lists
98 * when the slab is no longer needed.
100 * One use of this flag is to mark slabs that are
101 * used for allocations. Then such a slab becomes a cpu
102 * slab. The cpu slab may be equipped with an additional
103 * freelist that allows lockless access to
104 * free objects in addition to the regular freelist
105 * that requires the slab lock.
107 * PageError Slab requires special handling due to debug
108 * options set. This moves slab handling out of
109 * the fast path and disables lockless freelists.
112 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
113 SLAB_TRACE | SLAB_DEBUG_FREE)
115 static inline int kmem_cache_debug(struct kmem_cache
*s
)
117 #ifdef CONFIG_SLUB_DEBUG
118 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
125 * Issues still to be resolved:
127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
129 * - Variable sizing of the per node arrays
132 /* Enable to test recovery from slab corruption on boot */
133 #undef SLUB_RESILIENCY_TEST
136 * Mininum number of partial slabs. These will be left on the partial
137 * lists even if they are empty. kmem_cache_shrink may reclaim them.
139 #define MIN_PARTIAL 5
142 * Maximum number of desirable partial slabs.
143 * The existence of more partial slabs makes kmem_cache_shrink
144 * sort the partial list by the number of objects in the.
146 #define MAX_PARTIAL 10
148 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
149 SLAB_POISON | SLAB_STORE_USER)
152 * Debugging flags that require metadata to be stored in the slab. These get
153 * disabled when slub_debug=O is used and a cache's min order increases with
156 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
159 * Set of flags that will prevent slab merging
161 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
162 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
166 SLAB_CACHE_DMA | SLAB_NOTRACK)
169 #define OO_MASK ((1 << OO_SHIFT) - 1)
170 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
172 /* Internal SLUB flags */
173 #define __OBJECT_POISON 0x80000000UL /* Poison object */
175 static int kmem_size
= sizeof(struct kmem_cache
);
178 static struct notifier_block slab_notifier
;
182 DOWN
, /* No slab functionality available */
183 PARTIAL
, /* Kmem_cache_node works */
184 UP
, /* Everything works but does not show up in sysfs */
188 /* A list of all slab caches on the system */
189 static DECLARE_RWSEM(slub_lock
);
190 static LIST_HEAD(slab_caches
);
193 * Tracking user of a slab.
195 #define TRACK_ADDRS_COUNT 16
197 unsigned long addr
; /* Called from address */
198 #ifdef CONFIG_STACKTRACE
199 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
201 int cpu
; /* Was running on cpu */
202 int pid
; /* Pid context */
203 unsigned long when
; /* When did the operation occur */
206 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
209 static int sysfs_slab_add(struct kmem_cache
*);
210 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
211 static void sysfs_slab_remove(struct kmem_cache
*);
214 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
215 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
217 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
225 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
227 #ifdef CONFIG_SLUB_STATS
228 __this_cpu_inc(s
->cpu_slab
->stat
[si
]);
232 /********************************************************************
233 * Core slab cache functions
234 *******************************************************************/
236 int slab_is_available(void)
238 return slab_state
>= UP
;
241 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
243 return s
->node
[node
];
246 /* Verify that a pointer has an address that is valid within a slab page */
247 static inline int check_valid_pointer(struct kmem_cache
*s
,
248 struct page
*page
, const void *object
)
255 base
= page_address(page
);
256 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
257 (object
- base
) % s
->size
) {
264 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
266 return *(void **)(object
+ s
->offset
);
269 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
273 #ifdef CONFIG_DEBUG_PAGEALLOC
274 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
276 p
= get_freepointer(s
, object
);
281 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
283 *(void **)(object
+ s
->offset
) = fp
;
286 /* Loop over all objects in a slab */
287 #define for_each_object(__p, __s, __addr, __objects) \
288 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
291 /* Determine object index from a given position */
292 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
294 return (p
- addr
) / s
->size
;
297 static inline size_t slab_ksize(const struct kmem_cache
*s
)
299 #ifdef CONFIG_SLUB_DEBUG
301 * Debugging requires use of the padding between object
302 * and whatever may come after it.
304 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
309 * If we have the need to store the freelist pointer
310 * back there or track user information then we can
311 * only use the space before that information.
313 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
316 * Else we can use all the padding etc for the allocation
321 static inline int order_objects(int order
, unsigned long size
, int reserved
)
323 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
326 static inline struct kmem_cache_order_objects
oo_make(int order
,
327 unsigned long size
, int reserved
)
329 struct kmem_cache_order_objects x
= {
330 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
336 static inline int oo_order(struct kmem_cache_order_objects x
)
338 return x
.x
>> OO_SHIFT
;
341 static inline int oo_objects(struct kmem_cache_order_objects x
)
343 return x
.x
& OO_MASK
;
346 #ifdef CONFIG_SLUB_DEBUG
348 * Determine a map of object in use on a page.
350 * Slab lock or node listlock must be held to guarantee that the page does
351 * not vanish from under us.
353 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
356 void *addr
= page_address(page
);
358 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
359 set_bit(slab_index(p
, s
, addr
), map
);
365 #ifdef CONFIG_SLUB_DEBUG_ON
366 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
368 static int slub_debug
;
371 static char *slub_debug_slabs
;
372 static int disable_higher_order_debug
;
377 static void print_section(char *text
, u8
*addr
, unsigned int length
)
385 for (i
= 0; i
< length
; i
++) {
387 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
390 printk(KERN_CONT
" %02x", addr
[i
]);
392 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
394 printk(KERN_CONT
" %s\n", ascii
);
401 printk(KERN_CONT
" ");
405 printk(KERN_CONT
" %s\n", ascii
);
409 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
410 enum track_item alloc
)
415 p
= object
+ s
->offset
+ sizeof(void *);
417 p
= object
+ s
->inuse
;
422 static void set_track(struct kmem_cache
*s
, void *object
,
423 enum track_item alloc
, unsigned long addr
)
425 struct track
*p
= get_track(s
, object
, alloc
);
428 #ifdef CONFIG_STACKTRACE
429 struct stack_trace trace
;
432 trace
.nr_entries
= 0;
433 trace
.max_entries
= TRACK_ADDRS_COUNT
;
434 trace
.entries
= p
->addrs
;
436 save_stack_trace(&trace
);
438 /* See rant in lockdep.c */
439 if (trace
.nr_entries
!= 0 &&
440 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
443 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
447 p
->cpu
= smp_processor_id();
448 p
->pid
= current
->pid
;
451 memset(p
, 0, sizeof(struct track
));
454 static void init_tracking(struct kmem_cache
*s
, void *object
)
456 if (!(s
->flags
& SLAB_STORE_USER
))
459 set_track(s
, object
, TRACK_FREE
, 0UL);
460 set_track(s
, object
, TRACK_ALLOC
, 0UL);
463 static void print_track(const char *s
, struct track
*t
)
468 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
469 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
470 #ifdef CONFIG_STACKTRACE
473 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
475 printk(KERN_ERR
"\t%pS\n", (void *)t
->addrs
[i
]);
482 static void print_tracking(struct kmem_cache
*s
, void *object
)
484 if (!(s
->flags
& SLAB_STORE_USER
))
487 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
488 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
491 static void print_page_info(struct page
*page
)
493 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
494 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
498 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
504 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
506 printk(KERN_ERR
"========================================"
507 "=====================================\n");
508 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
509 printk(KERN_ERR
"----------------------------------------"
510 "-------------------------------------\n\n");
513 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
519 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
521 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
524 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
526 unsigned int off
; /* Offset of last byte */
527 u8
*addr
= page_address(page
);
529 print_tracking(s
, p
);
531 print_page_info(page
);
533 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
534 p
, p
- addr
, get_freepointer(s
, p
));
537 print_section("Bytes b4", p
- 16, 16);
539 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
541 if (s
->flags
& SLAB_RED_ZONE
)
542 print_section("Redzone", p
+ s
->objsize
,
543 s
->inuse
- s
->objsize
);
546 off
= s
->offset
+ sizeof(void *);
550 if (s
->flags
& SLAB_STORE_USER
)
551 off
+= 2 * sizeof(struct track
);
554 /* Beginning of the filler is the free pointer */
555 print_section("Padding", p
+ off
, s
->size
- off
);
560 static void object_err(struct kmem_cache
*s
, struct page
*page
,
561 u8
*object
, char *reason
)
563 slab_bug(s
, "%s", reason
);
564 print_trailer(s
, page
, object
);
567 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
573 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
575 slab_bug(s
, "%s", buf
);
576 print_page_info(page
);
580 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
584 if (s
->flags
& __OBJECT_POISON
) {
585 memset(p
, POISON_FREE
, s
->objsize
- 1);
586 p
[s
->objsize
- 1] = POISON_END
;
589 if (s
->flags
& SLAB_RED_ZONE
)
590 memset(p
+ s
->objsize
, val
, s
->inuse
- s
->objsize
);
593 static u8
*check_bytes8(u8
*start
, u8 value
, unsigned int bytes
)
604 static u8
*check_bytes(u8
*start
, u8 value
, unsigned int bytes
)
607 unsigned int words
, prefix
;
610 return check_bytes8(start
, value
, bytes
);
612 value64
= value
| value
<< 8 | value
<< 16 | value
<< 24;
613 value64
= value64
| value64
<< 32;
614 prefix
= 8 - ((unsigned long)start
) % 8;
617 u8
*r
= check_bytes8(start
, value
, prefix
);
627 if (*(u64
*)start
!= value64
)
628 return check_bytes8(start
, value
, 8);
633 return check_bytes8(start
, value
, bytes
% 8);
636 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
637 void *from
, void *to
)
639 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
640 memset(from
, data
, to
- from
);
643 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
644 u8
*object
, char *what
,
645 u8
*start
, unsigned int value
, unsigned int bytes
)
650 fault
= check_bytes(start
, value
, bytes
);
655 while (end
> fault
&& end
[-1] == value
)
658 slab_bug(s
, "%s overwritten", what
);
659 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
660 fault
, end
- 1, fault
[0], value
);
661 print_trailer(s
, page
, object
);
663 restore_bytes(s
, what
, value
, fault
, end
);
671 * Bytes of the object to be managed.
672 * If the freepointer may overlay the object then the free
673 * pointer is the first word of the object.
675 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
678 * object + s->objsize
679 * Padding to reach word boundary. This is also used for Redzoning.
680 * Padding is extended by another word if Redzoning is enabled and
683 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
684 * 0xcc (RED_ACTIVE) for objects in use.
687 * Meta data starts here.
689 * A. Free pointer (if we cannot overwrite object on free)
690 * B. Tracking data for SLAB_STORE_USER
691 * C. Padding to reach required alignment boundary or at mininum
692 * one word if debugging is on to be able to detect writes
693 * before the word boundary.
695 * Padding is done using 0x5a (POISON_INUSE)
698 * Nothing is used beyond s->size.
700 * If slabcaches are merged then the objsize and inuse boundaries are mostly
701 * ignored. And therefore no slab options that rely on these boundaries
702 * may be used with merged slabcaches.
705 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
707 unsigned long off
= s
->inuse
; /* The end of info */
710 /* Freepointer is placed after the object. */
711 off
+= sizeof(void *);
713 if (s
->flags
& SLAB_STORE_USER
)
714 /* We also have user information there */
715 off
+= 2 * sizeof(struct track
);
720 return check_bytes_and_report(s
, page
, p
, "Object padding",
721 p
+ off
, POISON_INUSE
, s
->size
- off
);
724 /* Check the pad bytes at the end of a slab page */
725 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
733 if (!(s
->flags
& SLAB_POISON
))
736 start
= page_address(page
);
737 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
738 end
= start
+ length
;
739 remainder
= length
% s
->size
;
743 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
746 while (end
> fault
&& end
[-1] == POISON_INUSE
)
749 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
750 print_section("Padding", end
- remainder
, remainder
);
752 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
756 static int check_object(struct kmem_cache
*s
, struct page
*page
,
757 void *object
, u8 val
)
760 u8
*endobject
= object
+ s
->objsize
;
762 if (s
->flags
& SLAB_RED_ZONE
) {
763 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
764 endobject
, val
, s
->inuse
- s
->objsize
))
767 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
768 check_bytes_and_report(s
, page
, p
, "Alignment padding",
769 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
773 if (s
->flags
& SLAB_POISON
) {
774 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
775 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
776 POISON_FREE
, s
->objsize
- 1) ||
777 !check_bytes_and_report(s
, page
, p
, "Poison",
778 p
+ s
->objsize
- 1, POISON_END
, 1)))
781 * check_pad_bytes cleans up on its own.
783 check_pad_bytes(s
, page
, p
);
786 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
788 * Object and freepointer overlap. Cannot check
789 * freepointer while object is allocated.
793 /* Check free pointer validity */
794 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
795 object_err(s
, page
, p
, "Freepointer corrupt");
797 * No choice but to zap it and thus lose the remainder
798 * of the free objects in this slab. May cause
799 * another error because the object count is now wrong.
801 set_freepointer(s
, p
, NULL
);
807 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
811 VM_BUG_ON(!irqs_disabled());
813 if (!PageSlab(page
)) {
814 slab_err(s
, page
, "Not a valid slab page");
818 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
819 if (page
->objects
> maxobj
) {
820 slab_err(s
, page
, "objects %u > max %u",
821 s
->name
, page
->objects
, maxobj
);
824 if (page
->inuse
> page
->objects
) {
825 slab_err(s
, page
, "inuse %u > max %u",
826 s
->name
, page
->inuse
, page
->objects
);
829 /* Slab_pad_check fixes things up after itself */
830 slab_pad_check(s
, page
);
835 * Determine if a certain object on a page is on the freelist. Must hold the
836 * slab lock to guarantee that the chains are in a consistent state.
838 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
841 void *fp
= page
->freelist
;
843 unsigned long max_objects
;
845 while (fp
&& nr
<= page
->objects
) {
848 if (!check_valid_pointer(s
, page
, fp
)) {
850 object_err(s
, page
, object
,
851 "Freechain corrupt");
852 set_freepointer(s
, object
, NULL
);
855 slab_err(s
, page
, "Freepointer corrupt");
856 page
->freelist
= NULL
;
857 page
->inuse
= page
->objects
;
858 slab_fix(s
, "Freelist cleared");
864 fp
= get_freepointer(s
, object
);
868 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
869 if (max_objects
> MAX_OBJS_PER_PAGE
)
870 max_objects
= MAX_OBJS_PER_PAGE
;
872 if (page
->objects
!= max_objects
) {
873 slab_err(s
, page
, "Wrong number of objects. Found %d but "
874 "should be %d", page
->objects
, max_objects
);
875 page
->objects
= max_objects
;
876 slab_fix(s
, "Number of objects adjusted.");
878 if (page
->inuse
!= page
->objects
- nr
) {
879 slab_err(s
, page
, "Wrong object count. Counter is %d but "
880 "counted were %d", page
->inuse
, page
->objects
- nr
);
881 page
->inuse
= page
->objects
- nr
;
882 slab_fix(s
, "Object count adjusted.");
884 return search
== NULL
;
887 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
890 if (s
->flags
& SLAB_TRACE
) {
891 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
893 alloc
? "alloc" : "free",
898 print_section("Object", (void *)object
, s
->objsize
);
905 * Hooks for other subsystems that check memory allocations. In a typical
906 * production configuration these hooks all should produce no code at all.
908 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
910 flags
&= gfp_allowed_mask
;
911 lockdep_trace_alloc(flags
);
912 might_sleep_if(flags
& __GFP_WAIT
);
914 return should_failslab(s
->objsize
, flags
, s
->flags
);
917 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
, void *object
)
919 flags
&= gfp_allowed_mask
;
920 kmemcheck_slab_alloc(s
, flags
, object
, slab_ksize(s
));
921 kmemleak_alloc_recursive(object
, s
->objsize
, 1, s
->flags
, flags
);
924 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
926 kmemleak_free_recursive(x
, s
->flags
);
929 * Trouble is that we may no longer disable interupts in the fast path
930 * So in order to make the debug calls that expect irqs to be
931 * disabled we need to disable interrupts temporarily.
933 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
937 local_irq_save(flags
);
938 kmemcheck_slab_free(s
, x
, s
->objsize
);
939 debug_check_no_locks_freed(x
, s
->objsize
);
940 local_irq_restore(flags
);
943 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
944 debug_check_no_obj_freed(x
, s
->objsize
);
948 * Tracking of fully allocated slabs for debugging purposes.
950 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
952 spin_lock(&n
->list_lock
);
953 list_add(&page
->lru
, &n
->full
);
954 spin_unlock(&n
->list_lock
);
957 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
959 struct kmem_cache_node
*n
;
961 if (!(s
->flags
& SLAB_STORE_USER
))
964 n
= get_node(s
, page_to_nid(page
));
966 spin_lock(&n
->list_lock
);
967 list_del(&page
->lru
);
968 spin_unlock(&n
->list_lock
);
971 /* Tracking of the number of slabs for debugging purposes */
972 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
974 struct kmem_cache_node
*n
= get_node(s
, node
);
976 return atomic_long_read(&n
->nr_slabs
);
979 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
981 return atomic_long_read(&n
->nr_slabs
);
984 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
986 struct kmem_cache_node
*n
= get_node(s
, node
);
989 * May be called early in order to allocate a slab for the
990 * kmem_cache_node structure. Solve the chicken-egg
991 * dilemma by deferring the increment of the count during
992 * bootstrap (see early_kmem_cache_node_alloc).
995 atomic_long_inc(&n
->nr_slabs
);
996 atomic_long_add(objects
, &n
->total_objects
);
999 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1001 struct kmem_cache_node
*n
= get_node(s
, node
);
1003 atomic_long_dec(&n
->nr_slabs
);
1004 atomic_long_sub(objects
, &n
->total_objects
);
1007 /* Object debug checks for alloc/free paths */
1008 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1011 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1014 init_object(s
, object
, SLUB_RED_INACTIVE
);
1015 init_tracking(s
, object
);
1018 static noinline
int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
1019 void *object
, unsigned long addr
)
1021 if (!check_slab(s
, page
))
1024 if (!on_freelist(s
, page
, object
)) {
1025 object_err(s
, page
, object
, "Object already allocated");
1029 if (!check_valid_pointer(s
, page
, object
)) {
1030 object_err(s
, page
, object
, "Freelist Pointer check fails");
1034 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1037 /* Success perform special debug activities for allocs */
1038 if (s
->flags
& SLAB_STORE_USER
)
1039 set_track(s
, object
, TRACK_ALLOC
, addr
);
1040 trace(s
, page
, object
, 1);
1041 init_object(s
, object
, SLUB_RED_ACTIVE
);
1045 if (PageSlab(page
)) {
1047 * If this is a slab page then lets do the best we can
1048 * to avoid issues in the future. Marking all objects
1049 * as used avoids touching the remaining objects.
1051 slab_fix(s
, "Marking all objects used");
1052 page
->inuse
= page
->objects
;
1053 page
->freelist
= NULL
;
1058 static noinline
int free_debug_processing(struct kmem_cache
*s
,
1059 struct page
*page
, void *object
, unsigned long addr
)
1061 if (!check_slab(s
, page
))
1064 if (!check_valid_pointer(s
, page
, object
)) {
1065 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1069 if (on_freelist(s
, page
, object
)) {
1070 object_err(s
, page
, object
, "Object already free");
1074 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1077 if (unlikely(s
!= page
->slab
)) {
1078 if (!PageSlab(page
)) {
1079 slab_err(s
, page
, "Attempt to free object(0x%p) "
1080 "outside of slab", object
);
1081 } else if (!page
->slab
) {
1083 "SLUB <none>: no slab for object 0x%p.\n",
1087 object_err(s
, page
, object
,
1088 "page slab pointer corrupt.");
1092 /* Special debug activities for freeing objects */
1093 if (!PageSlubFrozen(page
) && !page
->freelist
)
1094 remove_full(s
, page
);
1095 if (s
->flags
& SLAB_STORE_USER
)
1096 set_track(s
, object
, TRACK_FREE
, addr
);
1097 trace(s
, page
, object
, 0);
1098 init_object(s
, object
, SLUB_RED_INACTIVE
);
1102 slab_fix(s
, "Object at 0x%p not freed", object
);
1106 static int __init
setup_slub_debug(char *str
)
1108 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1109 if (*str
++ != '=' || !*str
)
1111 * No options specified. Switch on full debugging.
1117 * No options but restriction on slabs. This means full
1118 * debugging for slabs matching a pattern.
1122 if (tolower(*str
) == 'o') {
1124 * Avoid enabling debugging on caches if its minimum order
1125 * would increase as a result.
1127 disable_higher_order_debug
= 1;
1134 * Switch off all debugging measures.
1139 * Determine which debug features should be switched on
1141 for (; *str
&& *str
!= ','; str
++) {
1142 switch (tolower(*str
)) {
1144 slub_debug
|= SLAB_DEBUG_FREE
;
1147 slub_debug
|= SLAB_RED_ZONE
;
1150 slub_debug
|= SLAB_POISON
;
1153 slub_debug
|= SLAB_STORE_USER
;
1156 slub_debug
|= SLAB_TRACE
;
1159 slub_debug
|= SLAB_FAILSLAB
;
1162 printk(KERN_ERR
"slub_debug option '%c' "
1163 "unknown. skipped\n", *str
);
1169 slub_debug_slabs
= str
+ 1;
1174 __setup("slub_debug", setup_slub_debug
);
1176 static unsigned long kmem_cache_flags(unsigned long objsize
,
1177 unsigned long flags
, const char *name
,
1178 void (*ctor
)(void *))
1181 * Enable debugging if selected on the kernel commandline.
1183 if (slub_debug
&& (!slub_debug_slabs
||
1184 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
))))
1185 flags
|= slub_debug
;
1190 static inline void setup_object_debug(struct kmem_cache
*s
,
1191 struct page
*page
, void *object
) {}
1193 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1194 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1196 static inline int free_debug_processing(struct kmem_cache
*s
,
1197 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1199 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1201 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1202 void *object
, u8 val
) { return 1; }
1203 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1204 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1205 unsigned long flags
, const char *name
,
1206 void (*ctor
)(void *))
1210 #define slub_debug 0
1212 #define disable_higher_order_debug 0
1214 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1216 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1218 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1220 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1223 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
1226 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
1229 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
) {}
1231 #endif /* CONFIG_SLUB_DEBUG */
1234 * Slab allocation and freeing
1236 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1237 struct kmem_cache_order_objects oo
)
1239 int order
= oo_order(oo
);
1241 flags
|= __GFP_NOTRACK
;
1243 if (node
== NUMA_NO_NODE
)
1244 return alloc_pages(flags
, order
);
1246 return alloc_pages_exact_node(node
, flags
, order
);
1249 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1252 struct kmem_cache_order_objects oo
= s
->oo
;
1255 flags
|= s
->allocflags
;
1258 * Let the initial higher-order allocation fail under memory pressure
1259 * so we fall-back to the minimum order allocation.
1261 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1263 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1264 if (unlikely(!page
)) {
1267 * Allocation may have failed due to fragmentation.
1268 * Try a lower order alloc if possible
1270 page
= alloc_slab_page(flags
, node
, oo
);
1274 stat(s
, ORDER_FALLBACK
);
1277 if (kmemcheck_enabled
1278 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1279 int pages
= 1 << oo_order(oo
);
1281 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1284 * Objects from caches that have a constructor don't get
1285 * cleared when they're allocated, so we need to do it here.
1288 kmemcheck_mark_uninitialized_pages(page
, pages
);
1290 kmemcheck_mark_unallocated_pages(page
, pages
);
1293 page
->objects
= oo_objects(oo
);
1294 mod_zone_page_state(page_zone(page
),
1295 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1296 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1302 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1305 setup_object_debug(s
, page
, object
);
1306 if (unlikely(s
->ctor
))
1310 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1317 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1319 page
= allocate_slab(s
,
1320 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1324 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1326 page
->flags
|= 1 << PG_slab
;
1328 start
= page_address(page
);
1330 if (unlikely(s
->flags
& SLAB_POISON
))
1331 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1334 for_each_object(p
, s
, start
, page
->objects
) {
1335 setup_object(s
, page
, last
);
1336 set_freepointer(s
, last
, p
);
1339 setup_object(s
, page
, last
);
1340 set_freepointer(s
, last
, NULL
);
1342 page
->freelist
= start
;
1348 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1350 int order
= compound_order(page
);
1351 int pages
= 1 << order
;
1353 if (kmem_cache_debug(s
)) {
1356 slab_pad_check(s
, page
);
1357 for_each_object(p
, s
, page_address(page
),
1359 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1362 kmemcheck_free_shadow(page
, compound_order(page
));
1364 mod_zone_page_state(page_zone(page
),
1365 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1366 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1369 __ClearPageSlab(page
);
1370 reset_page_mapcount(page
);
1371 if (current
->reclaim_state
)
1372 current
->reclaim_state
->reclaimed_slab
+= pages
;
1373 __free_pages(page
, order
);
1376 #define need_reserve_slab_rcu \
1377 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1379 static void rcu_free_slab(struct rcu_head
*h
)
1383 if (need_reserve_slab_rcu
)
1384 page
= virt_to_head_page(h
);
1386 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1388 __free_slab(page
->slab
, page
);
1391 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1393 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1394 struct rcu_head
*head
;
1396 if (need_reserve_slab_rcu
) {
1397 int order
= compound_order(page
);
1398 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1400 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1401 head
= page_address(page
) + offset
;
1404 * RCU free overloads the RCU head over the LRU
1406 head
= (void *)&page
->lru
;
1409 call_rcu(head
, rcu_free_slab
);
1411 __free_slab(s
, page
);
1414 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1416 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1421 * Per slab locking using the pagelock
1423 static __always_inline
void slab_lock(struct page
*page
)
1425 bit_spin_lock(PG_locked
, &page
->flags
);
1428 static __always_inline
void slab_unlock(struct page
*page
)
1430 __bit_spin_unlock(PG_locked
, &page
->flags
);
1433 static __always_inline
int slab_trylock(struct page
*page
)
1437 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1442 * Management of partially allocated slabs
1444 static void add_partial(struct kmem_cache_node
*n
,
1445 struct page
*page
, int tail
)
1447 spin_lock(&n
->list_lock
);
1450 list_add_tail(&page
->lru
, &n
->partial
);
1452 list_add(&page
->lru
, &n
->partial
);
1453 spin_unlock(&n
->list_lock
);
1456 static inline void __remove_partial(struct kmem_cache_node
*n
,
1459 list_del(&page
->lru
);
1463 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1465 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1467 spin_lock(&n
->list_lock
);
1468 __remove_partial(n
, page
);
1469 spin_unlock(&n
->list_lock
);
1473 * Lock slab and remove from the partial list.
1475 * Must hold list_lock.
1477 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1480 if (slab_trylock(page
)) {
1481 __remove_partial(n
, page
);
1482 __SetPageSlubFrozen(page
);
1489 * Try to allocate a partial slab from a specific node.
1491 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1496 * Racy check. If we mistakenly see no partial slabs then we
1497 * just allocate an empty slab. If we mistakenly try to get a
1498 * partial slab and there is none available then get_partials()
1501 if (!n
|| !n
->nr_partial
)
1504 spin_lock(&n
->list_lock
);
1505 list_for_each_entry(page
, &n
->partial
, lru
)
1506 if (lock_and_freeze_slab(n
, page
))
1510 spin_unlock(&n
->list_lock
);
1515 * Get a page from somewhere. Search in increasing NUMA distances.
1517 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1520 struct zonelist
*zonelist
;
1523 enum zone_type high_zoneidx
= gfp_zone(flags
);
1527 * The defrag ratio allows a configuration of the tradeoffs between
1528 * inter node defragmentation and node local allocations. A lower
1529 * defrag_ratio increases the tendency to do local allocations
1530 * instead of attempting to obtain partial slabs from other nodes.
1532 * If the defrag_ratio is set to 0 then kmalloc() always
1533 * returns node local objects. If the ratio is higher then kmalloc()
1534 * may return off node objects because partial slabs are obtained
1535 * from other nodes and filled up.
1537 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1538 * defrag_ratio = 1000) then every (well almost) allocation will
1539 * first attempt to defrag slab caches on other nodes. This means
1540 * scanning over all nodes to look for partial slabs which may be
1541 * expensive if we do it every time we are trying to find a slab
1542 * with available objects.
1544 if (!s
->remote_node_defrag_ratio
||
1545 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1549 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1550 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1551 struct kmem_cache_node
*n
;
1553 n
= get_node(s
, zone_to_nid(zone
));
1555 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1556 n
->nr_partial
> s
->min_partial
) {
1557 page
= get_partial_node(n
);
1570 * Get a partial page, lock it and return it.
1572 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1575 int searchnode
= (node
== NUMA_NO_NODE
) ? numa_node_id() : node
;
1577 page
= get_partial_node(get_node(s
, searchnode
));
1578 if (page
|| node
!= NUMA_NO_NODE
)
1581 return get_any_partial(s
, flags
);
1585 * Move a page back to the lists.
1587 * Must be called with the slab lock held.
1589 * On exit the slab lock will have been dropped.
1591 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1594 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1596 __ClearPageSlubFrozen(page
);
1599 if (page
->freelist
) {
1600 add_partial(n
, page
, tail
);
1601 stat(s
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1603 stat(s
, DEACTIVATE_FULL
);
1604 if (kmem_cache_debug(s
) && (s
->flags
& SLAB_STORE_USER
))
1609 stat(s
, DEACTIVATE_EMPTY
);
1610 if (n
->nr_partial
< s
->min_partial
) {
1612 * Adding an empty slab to the partial slabs in order
1613 * to avoid page allocator overhead. This slab needs
1614 * to come after the other slabs with objects in
1615 * so that the others get filled first. That way the
1616 * size of the partial list stays small.
1618 * kmem_cache_shrink can reclaim any empty slabs from
1621 add_partial(n
, page
, 1);
1626 discard_slab(s
, page
);
1631 #ifdef CONFIG_PREEMPT
1633 * Calculate the next globally unique transaction for disambiguiation
1634 * during cmpxchg. The transactions start with the cpu number and are then
1635 * incremented by CONFIG_NR_CPUS.
1637 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1640 * No preemption supported therefore also no need to check for
1646 static inline unsigned long next_tid(unsigned long tid
)
1648 return tid
+ TID_STEP
;
1651 static inline unsigned int tid_to_cpu(unsigned long tid
)
1653 return tid
% TID_STEP
;
1656 static inline unsigned long tid_to_event(unsigned long tid
)
1658 return tid
/ TID_STEP
;
1661 static inline unsigned int init_tid(int cpu
)
1666 static inline void note_cmpxchg_failure(const char *n
,
1667 const struct kmem_cache
*s
, unsigned long tid
)
1669 #ifdef SLUB_DEBUG_CMPXCHG
1670 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1672 printk(KERN_INFO
"%s %s: cmpxchg redo ", n
, s
->name
);
1674 #ifdef CONFIG_PREEMPT
1675 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1676 printk("due to cpu change %d -> %d\n",
1677 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1680 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1681 printk("due to cpu running other code. Event %ld->%ld\n",
1682 tid_to_event(tid
), tid_to_event(actual_tid
));
1684 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1685 actual_tid
, tid
, next_tid(tid
));
1687 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1690 void init_kmem_cache_cpus(struct kmem_cache
*s
)
1694 for_each_possible_cpu(cpu
)
1695 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1698 * Remove the cpu slab
1700 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1703 struct page
*page
= c
->page
;
1707 stat(s
, DEACTIVATE_REMOTE_FREES
);
1709 * Merge cpu freelist into slab freelist. Typically we get here
1710 * because both freelists are empty. So this is unlikely
1713 while (unlikely(c
->freelist
)) {
1716 tail
= 0; /* Hot objects. Put the slab first */
1718 /* Retrieve object from cpu_freelist */
1719 object
= c
->freelist
;
1720 c
->freelist
= get_freepointer(s
, c
->freelist
);
1722 /* And put onto the regular freelist */
1723 set_freepointer(s
, object
, page
->freelist
);
1724 page
->freelist
= object
;
1728 c
->tid
= next_tid(c
->tid
);
1729 unfreeze_slab(s
, page
, tail
);
1732 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1734 stat(s
, CPUSLAB_FLUSH
);
1736 deactivate_slab(s
, c
);
1742 * Called from IPI handler with interrupts disabled.
1744 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1746 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
1748 if (likely(c
&& c
->page
))
1752 static void flush_cpu_slab(void *d
)
1754 struct kmem_cache
*s
= d
;
1756 __flush_cpu_slab(s
, smp_processor_id());
1759 static void flush_all(struct kmem_cache
*s
)
1761 on_each_cpu(flush_cpu_slab
, s
, 1);
1765 * Check if the objects in a per cpu structure fit numa
1766 * locality expectations.
1768 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1771 if (node
!= NUMA_NO_NODE
&& c
->node
!= node
)
1777 static int count_free(struct page
*page
)
1779 return page
->objects
- page
->inuse
;
1782 static unsigned long count_partial(struct kmem_cache_node
*n
,
1783 int (*get_count
)(struct page
*))
1785 unsigned long flags
;
1786 unsigned long x
= 0;
1789 spin_lock_irqsave(&n
->list_lock
, flags
);
1790 list_for_each_entry(page
, &n
->partial
, lru
)
1791 x
+= get_count(page
);
1792 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1796 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
1798 #ifdef CONFIG_SLUB_DEBUG
1799 return atomic_long_read(&n
->total_objects
);
1805 static noinline
void
1806 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
1811 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1813 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
1814 "default order: %d, min order: %d\n", s
->name
, s
->objsize
,
1815 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
1817 if (oo_order(s
->min
) > get_order(s
->objsize
))
1818 printk(KERN_WARNING
" %s debugging increased min order, use "
1819 "slub_debug=O to disable.\n", s
->name
);
1821 for_each_online_node(node
) {
1822 struct kmem_cache_node
*n
= get_node(s
, node
);
1823 unsigned long nr_slabs
;
1824 unsigned long nr_objs
;
1825 unsigned long nr_free
;
1830 nr_free
= count_partial(n
, count_free
);
1831 nr_slabs
= node_nr_slabs(n
);
1832 nr_objs
= node_nr_objs(n
);
1835 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1836 node
, nr_slabs
, nr_objs
, nr_free
);
1841 * Slow path. The lockless freelist is empty or we need to perform
1844 * Interrupts are disabled.
1846 * Processing is still very fast if new objects have been freed to the
1847 * regular freelist. In that case we simply take over the regular freelist
1848 * as the lockless freelist and zap the regular freelist.
1850 * If that is not working then we fall back to the partial lists. We take the
1851 * first element of the freelist as the object to allocate now and move the
1852 * rest of the freelist to the lockless freelist.
1854 * And if we were unable to get a new slab from the partial slab lists then
1855 * we need to allocate a new slab. This is the slowest path since it involves
1856 * a call to the page allocator and the setup of a new slab.
1858 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
1859 unsigned long addr
, struct kmem_cache_cpu
*c
)
1863 unsigned long flags
;
1865 local_irq_save(flags
);
1866 #ifdef CONFIG_PREEMPT
1868 * We may have been preempted and rescheduled on a different
1869 * cpu before disabling interrupts. Need to reload cpu area
1872 c
= this_cpu_ptr(s
->cpu_slab
);
1875 /* We handle __GFP_ZERO in the caller */
1876 gfpflags
&= ~__GFP_ZERO
;
1883 if (unlikely(!node_match(c
, node
)))
1886 stat(s
, ALLOC_REFILL
);
1889 object
= page
->freelist
;
1890 if (unlikely(!object
))
1892 if (kmem_cache_debug(s
))
1895 c
->freelist
= get_freepointer(s
, object
);
1896 page
->inuse
= page
->objects
;
1897 page
->freelist
= NULL
;
1900 c
->tid
= next_tid(c
->tid
);
1901 local_irq_restore(flags
);
1902 stat(s
, ALLOC_SLOWPATH
);
1906 deactivate_slab(s
, c
);
1909 page
= get_partial(s
, gfpflags
, node
);
1911 stat(s
, ALLOC_FROM_PARTIAL
);
1912 c
->node
= page_to_nid(page
);
1917 gfpflags
&= gfp_allowed_mask
;
1918 if (gfpflags
& __GFP_WAIT
)
1921 page
= new_slab(s
, gfpflags
, node
);
1923 if (gfpflags
& __GFP_WAIT
)
1924 local_irq_disable();
1927 c
= __this_cpu_ptr(s
->cpu_slab
);
1928 stat(s
, ALLOC_SLAB
);
1933 __SetPageSlubFrozen(page
);
1934 c
->node
= page_to_nid(page
);
1938 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
1939 slab_out_of_memory(s
, gfpflags
, node
);
1940 local_irq_restore(flags
);
1943 if (!alloc_debug_processing(s
, page
, object
, addr
))
1947 page
->freelist
= get_freepointer(s
, object
);
1948 deactivate_slab(s
, c
);
1950 c
->node
= NUMA_NO_NODE
;
1951 local_irq_restore(flags
);
1956 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1957 * have the fastpath folded into their functions. So no function call
1958 * overhead for requests that can be satisfied on the fastpath.
1960 * The fastpath works by first checking if the lockless freelist can be used.
1961 * If not then __slab_alloc is called for slow processing.
1963 * Otherwise we can simply pick the next object from the lockless free list.
1965 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1966 gfp_t gfpflags
, int node
, unsigned long addr
)
1969 struct kmem_cache_cpu
*c
;
1972 if (slab_pre_alloc_hook(s
, gfpflags
))
1978 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1979 * enabled. We may switch back and forth between cpus while
1980 * reading from one cpu area. That does not matter as long
1981 * as we end up on the original cpu again when doing the cmpxchg.
1983 c
= __this_cpu_ptr(s
->cpu_slab
);
1986 * The transaction ids are globally unique per cpu and per operation on
1987 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1988 * occurs on the right processor and that there was no operation on the
1989 * linked list in between.
1994 object
= c
->freelist
;
1995 if (unlikely(!object
|| !node_match(c
, node
)))
1997 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2001 * The cmpxchg will only match if there was no additional
2002 * operation and if we are on the right processor.
2004 * The cmpxchg does the following atomically (without lock semantics!)
2005 * 1. Relocate first pointer to the current per cpu area.
2006 * 2. Verify that tid and freelist have not been changed
2007 * 3. If they were not changed replace tid and freelist
2009 * Since this is without lock semantics the protection is only against
2010 * code executing on this cpu *not* from access by other cpus.
2012 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2013 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2015 get_freepointer_safe(s
, object
), next_tid(tid
)))) {
2017 note_cmpxchg_failure("slab_alloc", s
, tid
);
2020 stat(s
, ALLOC_FASTPATH
);
2023 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2024 memset(object
, 0, s
->objsize
);
2026 slab_post_alloc_hook(s
, gfpflags
, object
);
2031 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2033 void *ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, _RET_IP_
);
2035 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->objsize
, s
->size
, gfpflags
);
2039 EXPORT_SYMBOL(kmem_cache_alloc
);
2041 #ifdef CONFIG_TRACING
2042 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2044 void *ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, _RET_IP_
);
2045 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2048 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2050 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
2052 void *ret
= kmalloc_order(size
, flags
, order
);
2053 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
2056 EXPORT_SYMBOL(kmalloc_order_trace
);
2060 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2062 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
2064 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2065 s
->objsize
, s
->size
, gfpflags
, node
);
2069 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2071 #ifdef CONFIG_TRACING
2072 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2074 int node
, size_t size
)
2076 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
2078 trace_kmalloc_node(_RET_IP_
, ret
,
2079 size
, s
->size
, gfpflags
, node
);
2082 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2087 * Slow patch handling. This may still be called frequently since objects
2088 * have a longer lifetime than the cpu slabs in most processing loads.
2090 * So we still attempt to reduce cache line usage. Just take the slab
2091 * lock and free the item. If there is no additional partial page
2092 * handling required then we can return immediately.
2094 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2095 void *x
, unsigned long addr
)
2098 void **object
= (void *)x
;
2099 unsigned long flags
;
2101 local_irq_save(flags
);
2103 stat(s
, FREE_SLOWPATH
);
2105 if (kmem_cache_debug(s
) && !free_debug_processing(s
, page
, x
, addr
))
2108 prior
= page
->freelist
;
2109 set_freepointer(s
, object
, prior
);
2110 page
->freelist
= object
;
2113 if (unlikely(PageSlubFrozen(page
))) {
2114 stat(s
, FREE_FROZEN
);
2118 if (unlikely(!page
->inuse
))
2122 * Objects left in the slab. If it was not on the partial list before
2125 if (unlikely(!prior
)) {
2126 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
2127 stat(s
, FREE_ADD_PARTIAL
);
2132 local_irq_restore(flags
);
2138 * Slab still on the partial list.
2140 remove_partial(s
, page
);
2141 stat(s
, FREE_REMOVE_PARTIAL
);
2144 local_irq_restore(flags
);
2146 discard_slab(s
, page
);
2150 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2151 * can perform fastpath freeing without additional function calls.
2153 * The fastpath is only possible if we are freeing to the current cpu slab
2154 * of this processor. This typically the case if we have just allocated
2157 * If fastpath is not possible then fall back to __slab_free where we deal
2158 * with all sorts of special processing.
2160 static __always_inline
void slab_free(struct kmem_cache
*s
,
2161 struct page
*page
, void *x
, unsigned long addr
)
2163 void **object
= (void *)x
;
2164 struct kmem_cache_cpu
*c
;
2167 slab_free_hook(s
, x
);
2172 * Determine the currently cpus per cpu slab.
2173 * The cpu may change afterward. However that does not matter since
2174 * data is retrieved via this pointer. If we are on the same cpu
2175 * during the cmpxchg then the free will succedd.
2177 c
= __this_cpu_ptr(s
->cpu_slab
);
2182 if (likely(page
== c
->page
)) {
2183 set_freepointer(s
, object
, c
->freelist
);
2185 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2186 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2188 object
, next_tid(tid
)))) {
2190 note_cmpxchg_failure("slab_free", s
, tid
);
2193 stat(s
, FREE_FASTPATH
);
2195 __slab_free(s
, page
, x
, addr
);
2199 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2203 page
= virt_to_head_page(x
);
2205 slab_free(s
, page
, x
, _RET_IP_
);
2207 trace_kmem_cache_free(_RET_IP_
, x
);
2209 EXPORT_SYMBOL(kmem_cache_free
);
2212 * Object placement in a slab is made very easy because we always start at
2213 * offset 0. If we tune the size of the object to the alignment then we can
2214 * get the required alignment by putting one properly sized object after
2217 * Notice that the allocation order determines the sizes of the per cpu
2218 * caches. Each processor has always one slab available for allocations.
2219 * Increasing the allocation order reduces the number of times that slabs
2220 * must be moved on and off the partial lists and is therefore a factor in
2225 * Mininum / Maximum order of slab pages. This influences locking overhead
2226 * and slab fragmentation. A higher order reduces the number of partial slabs
2227 * and increases the number of allocations possible without having to
2228 * take the list_lock.
2230 static int slub_min_order
;
2231 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
2232 static int slub_min_objects
;
2235 * Merge control. If this is set then no merging of slab caches will occur.
2236 * (Could be removed. This was introduced to pacify the merge skeptics.)
2238 static int slub_nomerge
;
2241 * Calculate the order of allocation given an slab object size.
2243 * The order of allocation has significant impact on performance and other
2244 * system components. Generally order 0 allocations should be preferred since
2245 * order 0 does not cause fragmentation in the page allocator. Larger objects
2246 * be problematic to put into order 0 slabs because there may be too much
2247 * unused space left. We go to a higher order if more than 1/16th of the slab
2250 * In order to reach satisfactory performance we must ensure that a minimum
2251 * number of objects is in one slab. Otherwise we may generate too much
2252 * activity on the partial lists which requires taking the list_lock. This is
2253 * less a concern for large slabs though which are rarely used.
2255 * slub_max_order specifies the order where we begin to stop considering the
2256 * number of objects in a slab as critical. If we reach slub_max_order then
2257 * we try to keep the page order as low as possible. So we accept more waste
2258 * of space in favor of a small page order.
2260 * Higher order allocations also allow the placement of more objects in a
2261 * slab and thereby reduce object handling overhead. If the user has
2262 * requested a higher mininum order then we start with that one instead of
2263 * the smallest order which will fit the object.
2265 static inline int slab_order(int size
, int min_objects
,
2266 int max_order
, int fract_leftover
, int reserved
)
2270 int min_order
= slub_min_order
;
2272 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
2273 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
2275 for (order
= max(min_order
,
2276 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
2277 order
<= max_order
; order
++) {
2279 unsigned long slab_size
= PAGE_SIZE
<< order
;
2281 if (slab_size
< min_objects
* size
+ reserved
)
2284 rem
= (slab_size
- reserved
) % size
;
2286 if (rem
<= slab_size
/ fract_leftover
)
2294 static inline int calculate_order(int size
, int reserved
)
2302 * Attempt to find best configuration for a slab. This
2303 * works by first attempting to generate a layout with
2304 * the best configuration and backing off gradually.
2306 * First we reduce the acceptable waste in a slab. Then
2307 * we reduce the minimum objects required in a slab.
2309 min_objects
= slub_min_objects
;
2311 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
2312 max_objects
= order_objects(slub_max_order
, size
, reserved
);
2313 min_objects
= min(min_objects
, max_objects
);
2315 while (min_objects
> 1) {
2317 while (fraction
>= 4) {
2318 order
= slab_order(size
, min_objects
,
2319 slub_max_order
, fraction
, reserved
);
2320 if (order
<= slub_max_order
)
2328 * We were unable to place multiple objects in a slab. Now
2329 * lets see if we can place a single object there.
2331 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
2332 if (order
<= slub_max_order
)
2336 * Doh this slab cannot be placed using slub_max_order.
2338 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
2339 if (order
< MAX_ORDER
)
2345 * Figure out what the alignment of the objects will be.
2347 static unsigned long calculate_alignment(unsigned long flags
,
2348 unsigned long align
, unsigned long size
)
2351 * If the user wants hardware cache aligned objects then follow that
2352 * suggestion if the object is sufficiently large.
2354 * The hardware cache alignment cannot override the specified
2355 * alignment though. If that is greater then use it.
2357 if (flags
& SLAB_HWCACHE_ALIGN
) {
2358 unsigned long ralign
= cache_line_size();
2359 while (size
<= ralign
/ 2)
2361 align
= max(align
, ralign
);
2364 if (align
< ARCH_SLAB_MINALIGN
)
2365 align
= ARCH_SLAB_MINALIGN
;
2367 return ALIGN(align
, sizeof(void *));
2371 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
2374 spin_lock_init(&n
->list_lock
);
2375 INIT_LIST_HEAD(&n
->partial
);
2376 #ifdef CONFIG_SLUB_DEBUG
2377 atomic_long_set(&n
->nr_slabs
, 0);
2378 atomic_long_set(&n
->total_objects
, 0);
2379 INIT_LIST_HEAD(&n
->full
);
2383 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
2385 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
2386 SLUB_PAGE_SHIFT
* sizeof(struct kmem_cache_cpu
));
2389 * Must align to double word boundary for the double cmpxchg
2390 * instructions to work; see __pcpu_double_call_return_bool().
2392 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
2393 2 * sizeof(void *));
2398 init_kmem_cache_cpus(s
);
2403 static struct kmem_cache
*kmem_cache_node
;
2406 * No kmalloc_node yet so do it by hand. We know that this is the first
2407 * slab on the node for this slabcache. There are no concurrent accesses
2410 * Note that this function only works on the kmalloc_node_cache
2411 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2412 * memory on a fresh node that has no slab structures yet.
2414 static void early_kmem_cache_node_alloc(int node
)
2417 struct kmem_cache_node
*n
;
2418 unsigned long flags
;
2420 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
2422 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
2425 if (page_to_nid(page
) != node
) {
2426 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2428 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2429 "in order to be able to continue\n");
2434 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
2436 kmem_cache_node
->node
[node
] = n
;
2437 #ifdef CONFIG_SLUB_DEBUG
2438 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
2439 init_tracking(kmem_cache_node
, n
);
2441 init_kmem_cache_node(n
, kmem_cache_node
);
2442 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
2445 * lockdep requires consistent irq usage for each lock
2446 * so even though there cannot be a race this early in
2447 * the boot sequence, we still disable irqs.
2449 local_irq_save(flags
);
2450 add_partial(n
, page
, 0);
2451 local_irq_restore(flags
);
2454 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2458 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2459 struct kmem_cache_node
*n
= s
->node
[node
];
2462 kmem_cache_free(kmem_cache_node
, n
);
2464 s
->node
[node
] = NULL
;
2468 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
2472 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2473 struct kmem_cache_node
*n
;
2475 if (slab_state
== DOWN
) {
2476 early_kmem_cache_node_alloc(node
);
2479 n
= kmem_cache_alloc_node(kmem_cache_node
,
2483 free_kmem_cache_nodes(s
);
2488 init_kmem_cache_node(n
, s
);
2493 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2495 if (min
< MIN_PARTIAL
)
2497 else if (min
> MAX_PARTIAL
)
2499 s
->min_partial
= min
;
2503 * calculate_sizes() determines the order and the distribution of data within
2506 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2508 unsigned long flags
= s
->flags
;
2509 unsigned long size
= s
->objsize
;
2510 unsigned long align
= s
->align
;
2514 * Round up object size to the next word boundary. We can only
2515 * place the free pointer at word boundaries and this determines
2516 * the possible location of the free pointer.
2518 size
= ALIGN(size
, sizeof(void *));
2520 #ifdef CONFIG_SLUB_DEBUG
2522 * Determine if we can poison the object itself. If the user of
2523 * the slab may touch the object after free or before allocation
2524 * then we should never poison the object itself.
2526 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2528 s
->flags
|= __OBJECT_POISON
;
2530 s
->flags
&= ~__OBJECT_POISON
;
2534 * If we are Redzoning then check if there is some space between the
2535 * end of the object and the free pointer. If not then add an
2536 * additional word to have some bytes to store Redzone information.
2538 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2539 size
+= sizeof(void *);
2543 * With that we have determined the number of bytes in actual use
2544 * by the object. This is the potential offset to the free pointer.
2548 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2551 * Relocate free pointer after the object if it is not
2552 * permitted to overwrite the first word of the object on
2555 * This is the case if we do RCU, have a constructor or
2556 * destructor or are poisoning the objects.
2559 size
+= sizeof(void *);
2562 #ifdef CONFIG_SLUB_DEBUG
2563 if (flags
& SLAB_STORE_USER
)
2565 * Need to store information about allocs and frees after
2568 size
+= 2 * sizeof(struct track
);
2570 if (flags
& SLAB_RED_ZONE
)
2572 * Add some empty padding so that we can catch
2573 * overwrites from earlier objects rather than let
2574 * tracking information or the free pointer be
2575 * corrupted if a user writes before the start
2578 size
+= sizeof(void *);
2582 * Determine the alignment based on various parameters that the
2583 * user specified and the dynamic determination of cache line size
2586 align
= calculate_alignment(flags
, align
, s
->objsize
);
2590 * SLUB stores one object immediately after another beginning from
2591 * offset 0. In order to align the objects we have to simply size
2592 * each object to conform to the alignment.
2594 size
= ALIGN(size
, align
);
2596 if (forced_order
>= 0)
2597 order
= forced_order
;
2599 order
= calculate_order(size
, s
->reserved
);
2606 s
->allocflags
|= __GFP_COMP
;
2608 if (s
->flags
& SLAB_CACHE_DMA
)
2609 s
->allocflags
|= SLUB_DMA
;
2611 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2612 s
->allocflags
|= __GFP_RECLAIMABLE
;
2615 * Determine the number of objects per slab
2617 s
->oo
= oo_make(order
, size
, s
->reserved
);
2618 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
2619 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2622 return !!oo_objects(s
->oo
);
2626 static int kmem_cache_open(struct kmem_cache
*s
,
2627 const char *name
, size_t size
,
2628 size_t align
, unsigned long flags
,
2629 void (*ctor
)(void *))
2631 memset(s
, 0, kmem_size
);
2636 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2639 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
2640 s
->reserved
= sizeof(struct rcu_head
);
2642 if (!calculate_sizes(s
, -1))
2644 if (disable_higher_order_debug
) {
2646 * Disable debugging flags that store metadata if the min slab
2649 if (get_order(s
->size
) > get_order(s
->objsize
)) {
2650 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
2652 if (!calculate_sizes(s
, -1))
2658 * The larger the object size is, the more pages we want on the partial
2659 * list to avoid pounding the page allocator excessively.
2661 set_min_partial(s
, ilog2(s
->size
));
2664 s
->remote_node_defrag_ratio
= 1000;
2666 if (!init_kmem_cache_nodes(s
))
2669 if (alloc_kmem_cache_cpus(s
))
2672 free_kmem_cache_nodes(s
);
2674 if (flags
& SLAB_PANIC
)
2675 panic("Cannot create slab %s size=%lu realsize=%u "
2676 "order=%u offset=%u flags=%lx\n",
2677 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2683 * Determine the size of a slab object
2685 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2689 EXPORT_SYMBOL(kmem_cache_size
);
2691 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2694 #ifdef CONFIG_SLUB_DEBUG
2695 void *addr
= page_address(page
);
2697 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
2698 sizeof(long), GFP_ATOMIC
);
2701 slab_err(s
, page
, "%s", text
);
2704 get_map(s
, page
, map
);
2705 for_each_object(p
, s
, addr
, page
->objects
) {
2707 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2708 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2710 print_tracking(s
, p
);
2719 * Attempt to free all partial slabs on a node.
2721 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2723 unsigned long flags
;
2724 struct page
*page
, *h
;
2726 spin_lock_irqsave(&n
->list_lock
, flags
);
2727 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2729 __remove_partial(n
, page
);
2730 discard_slab(s
, page
);
2732 list_slab_objects(s
, page
,
2733 "Objects remaining on kmem_cache_close()");
2736 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2740 * Release all resources used by a slab cache.
2742 static inline int kmem_cache_close(struct kmem_cache
*s
)
2747 free_percpu(s
->cpu_slab
);
2748 /* Attempt to free all objects */
2749 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2750 struct kmem_cache_node
*n
= get_node(s
, node
);
2753 if (n
->nr_partial
|| slabs_node(s
, node
))
2756 free_kmem_cache_nodes(s
);
2761 * Close a cache and release the kmem_cache structure
2762 * (must be used for caches created using kmem_cache_create)
2764 void kmem_cache_destroy(struct kmem_cache
*s
)
2766 down_write(&slub_lock
);
2770 if (kmem_cache_close(s
)) {
2771 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2772 "still has objects.\n", s
->name
, __func__
);
2775 if (s
->flags
& SLAB_DESTROY_BY_RCU
)
2777 sysfs_slab_remove(s
);
2779 up_write(&slub_lock
);
2781 EXPORT_SYMBOL(kmem_cache_destroy
);
2783 /********************************************************************
2785 *******************************************************************/
2787 struct kmem_cache
*kmalloc_caches
[SLUB_PAGE_SHIFT
];
2788 EXPORT_SYMBOL(kmalloc_caches
);
2790 static struct kmem_cache
*kmem_cache
;
2792 #ifdef CONFIG_ZONE_DMA
2793 static struct kmem_cache
*kmalloc_dma_caches
[SLUB_PAGE_SHIFT
];
2796 static int __init
setup_slub_min_order(char *str
)
2798 get_option(&str
, &slub_min_order
);
2803 __setup("slub_min_order=", setup_slub_min_order
);
2805 static int __init
setup_slub_max_order(char *str
)
2807 get_option(&str
, &slub_max_order
);
2808 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
2813 __setup("slub_max_order=", setup_slub_max_order
);
2815 static int __init
setup_slub_min_objects(char *str
)
2817 get_option(&str
, &slub_min_objects
);
2822 __setup("slub_min_objects=", setup_slub_min_objects
);
2824 static int __init
setup_slub_nomerge(char *str
)
2830 __setup("slub_nomerge", setup_slub_nomerge
);
2832 static struct kmem_cache
*__init
create_kmalloc_cache(const char *name
,
2833 int size
, unsigned int flags
)
2835 struct kmem_cache
*s
;
2837 s
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
2840 * This function is called with IRQs disabled during early-boot on
2841 * single CPU so there's no need to take slub_lock here.
2843 if (!kmem_cache_open(s
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2847 list_add(&s
->list
, &slab_caches
);
2851 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2856 * Conversion table for small slabs sizes / 8 to the index in the
2857 * kmalloc array. This is necessary for slabs < 192 since we have non power
2858 * of two cache sizes there. The size of larger slabs can be determined using
2861 static s8 size_index
[24] = {
2888 static inline int size_index_elem(size_t bytes
)
2890 return (bytes
- 1) / 8;
2893 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2899 return ZERO_SIZE_PTR
;
2901 index
= size_index
[size_index_elem(size
)];
2903 index
= fls(size
- 1);
2905 #ifdef CONFIG_ZONE_DMA
2906 if (unlikely((flags
& SLUB_DMA
)))
2907 return kmalloc_dma_caches
[index
];
2910 return kmalloc_caches
[index
];
2913 void *__kmalloc(size_t size
, gfp_t flags
)
2915 struct kmem_cache
*s
;
2918 if (unlikely(size
> SLUB_MAX_SIZE
))
2919 return kmalloc_large(size
, flags
);
2921 s
= get_slab(size
, flags
);
2923 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2926 ret
= slab_alloc(s
, flags
, NUMA_NO_NODE
, _RET_IP_
);
2928 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
2932 EXPORT_SYMBOL(__kmalloc
);
2935 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2940 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
2941 page
= alloc_pages_node(node
, flags
, get_order(size
));
2943 ptr
= page_address(page
);
2945 kmemleak_alloc(ptr
, size
, 1, flags
);
2949 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2951 struct kmem_cache
*s
;
2954 if (unlikely(size
> SLUB_MAX_SIZE
)) {
2955 ret
= kmalloc_large_node(size
, flags
, node
);
2957 trace_kmalloc_node(_RET_IP_
, ret
,
2958 size
, PAGE_SIZE
<< get_order(size
),
2964 s
= get_slab(size
, flags
);
2966 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2969 ret
= slab_alloc(s
, flags
, node
, _RET_IP_
);
2971 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
2975 EXPORT_SYMBOL(__kmalloc_node
);
2978 size_t ksize(const void *object
)
2982 if (unlikely(object
== ZERO_SIZE_PTR
))
2985 page
= virt_to_head_page(object
);
2987 if (unlikely(!PageSlab(page
))) {
2988 WARN_ON(!PageCompound(page
));
2989 return PAGE_SIZE
<< compound_order(page
);
2992 return slab_ksize(page
->slab
);
2994 EXPORT_SYMBOL(ksize
);
2996 #ifdef CONFIG_SLUB_DEBUG
2997 bool verify_mem_not_deleted(const void *x
)
3000 void *object
= (void *)x
;
3001 unsigned long flags
;
3004 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3007 local_irq_save(flags
);
3009 page
= virt_to_head_page(x
);
3010 if (unlikely(!PageSlab(page
))) {
3011 /* maybe it was from stack? */
3017 if (on_freelist(page
->slab
, page
, object
)) {
3018 object_err(page
->slab
, page
, object
, "Object is on free-list");
3026 local_irq_restore(flags
);
3029 EXPORT_SYMBOL(verify_mem_not_deleted
);
3032 void kfree(const void *x
)
3035 void *object
= (void *)x
;
3037 trace_kfree(_RET_IP_
, x
);
3039 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3042 page
= virt_to_head_page(x
);
3043 if (unlikely(!PageSlab(page
))) {
3044 BUG_ON(!PageCompound(page
));
3049 slab_free(page
->slab
, page
, object
, _RET_IP_
);
3051 EXPORT_SYMBOL(kfree
);
3054 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3055 * the remaining slabs by the number of items in use. The slabs with the
3056 * most items in use come first. New allocations will then fill those up
3057 * and thus they can be removed from the partial lists.
3059 * The slabs with the least items are placed last. This results in them
3060 * being allocated from last increasing the chance that the last objects
3061 * are freed in them.
3063 int kmem_cache_shrink(struct kmem_cache
*s
)
3067 struct kmem_cache_node
*n
;
3070 int objects
= oo_objects(s
->max
);
3071 struct list_head
*slabs_by_inuse
=
3072 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
3073 unsigned long flags
;
3075 if (!slabs_by_inuse
)
3079 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3080 n
= get_node(s
, node
);
3085 for (i
= 0; i
< objects
; i
++)
3086 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
3088 spin_lock_irqsave(&n
->list_lock
, flags
);
3091 * Build lists indexed by the items in use in each slab.
3093 * Note that concurrent frees may occur while we hold the
3094 * list_lock. page->inuse here is the upper limit.
3096 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3097 if (!page
->inuse
&& slab_trylock(page
)) {
3099 * Must hold slab lock here because slab_free
3100 * may have freed the last object and be
3101 * waiting to release the slab.
3103 __remove_partial(n
, page
);
3105 discard_slab(s
, page
);
3107 list_move(&page
->lru
,
3108 slabs_by_inuse
+ page
->inuse
);
3113 * Rebuild the partial list with the slabs filled up most
3114 * first and the least used slabs at the end.
3116 for (i
= objects
- 1; i
>= 0; i
--)
3117 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
3119 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3122 kfree(slabs_by_inuse
);
3125 EXPORT_SYMBOL(kmem_cache_shrink
);
3127 #if defined(CONFIG_MEMORY_HOTPLUG)
3128 static int slab_mem_going_offline_callback(void *arg
)
3130 struct kmem_cache
*s
;
3132 down_read(&slub_lock
);
3133 list_for_each_entry(s
, &slab_caches
, list
)
3134 kmem_cache_shrink(s
);
3135 up_read(&slub_lock
);
3140 static void slab_mem_offline_callback(void *arg
)
3142 struct kmem_cache_node
*n
;
3143 struct kmem_cache
*s
;
3144 struct memory_notify
*marg
= arg
;
3147 offline_node
= marg
->status_change_nid
;
3150 * If the node still has available memory. we need kmem_cache_node
3153 if (offline_node
< 0)
3156 down_read(&slub_lock
);
3157 list_for_each_entry(s
, &slab_caches
, list
) {
3158 n
= get_node(s
, offline_node
);
3161 * if n->nr_slabs > 0, slabs still exist on the node
3162 * that is going down. We were unable to free them,
3163 * and offline_pages() function shouldn't call this
3164 * callback. So, we must fail.
3166 BUG_ON(slabs_node(s
, offline_node
));
3168 s
->node
[offline_node
] = NULL
;
3169 kmem_cache_free(kmem_cache_node
, n
);
3172 up_read(&slub_lock
);
3175 static int slab_mem_going_online_callback(void *arg
)
3177 struct kmem_cache_node
*n
;
3178 struct kmem_cache
*s
;
3179 struct memory_notify
*marg
= arg
;
3180 int nid
= marg
->status_change_nid
;
3184 * If the node's memory is already available, then kmem_cache_node is
3185 * already created. Nothing to do.
3191 * We are bringing a node online. No memory is available yet. We must
3192 * allocate a kmem_cache_node structure in order to bring the node
3195 down_read(&slub_lock
);
3196 list_for_each_entry(s
, &slab_caches
, list
) {
3198 * XXX: kmem_cache_alloc_node will fallback to other nodes
3199 * since memory is not yet available from the node that
3202 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
3207 init_kmem_cache_node(n
, s
);
3211 up_read(&slub_lock
);
3215 static int slab_memory_callback(struct notifier_block
*self
,
3216 unsigned long action
, void *arg
)
3221 case MEM_GOING_ONLINE
:
3222 ret
= slab_mem_going_online_callback(arg
);
3224 case MEM_GOING_OFFLINE
:
3225 ret
= slab_mem_going_offline_callback(arg
);
3228 case MEM_CANCEL_ONLINE
:
3229 slab_mem_offline_callback(arg
);
3232 case MEM_CANCEL_OFFLINE
:
3236 ret
= notifier_from_errno(ret
);
3242 #endif /* CONFIG_MEMORY_HOTPLUG */
3244 /********************************************************************
3245 * Basic setup of slabs
3246 *******************************************************************/
3249 * Used for early kmem_cache structures that were allocated using
3250 * the page allocator
3253 static void __init
kmem_cache_bootstrap_fixup(struct kmem_cache
*s
)
3257 list_add(&s
->list
, &slab_caches
);
3260 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3261 struct kmem_cache_node
*n
= get_node(s
, node
);
3265 list_for_each_entry(p
, &n
->partial
, lru
)
3268 #ifdef CONFIG_SLUB_DEBUG
3269 list_for_each_entry(p
, &n
->full
, lru
)
3276 void __init
kmem_cache_init(void)
3280 struct kmem_cache
*temp_kmem_cache
;
3282 struct kmem_cache
*temp_kmem_cache_node
;
3283 unsigned long kmalloc_size
;
3285 kmem_size
= offsetof(struct kmem_cache
, node
) +
3286 nr_node_ids
* sizeof(struct kmem_cache_node
*);
3288 /* Allocate two kmem_caches from the page allocator */
3289 kmalloc_size
= ALIGN(kmem_size
, cache_line_size());
3290 order
= get_order(2 * kmalloc_size
);
3291 kmem_cache
= (void *)__get_free_pages(GFP_NOWAIT
, order
);
3294 * Must first have the slab cache available for the allocations of the
3295 * struct kmem_cache_node's. There is special bootstrap code in
3296 * kmem_cache_open for slab_state == DOWN.
3298 kmem_cache_node
= (void *)kmem_cache
+ kmalloc_size
;
3300 kmem_cache_open(kmem_cache_node
, "kmem_cache_node",
3301 sizeof(struct kmem_cache_node
),
3302 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3304 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3306 /* Able to allocate the per node structures */
3307 slab_state
= PARTIAL
;
3309 temp_kmem_cache
= kmem_cache
;
3310 kmem_cache_open(kmem_cache
, "kmem_cache", kmem_size
,
3311 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3312 kmem_cache
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3313 memcpy(kmem_cache
, temp_kmem_cache
, kmem_size
);
3316 * Allocate kmem_cache_node properly from the kmem_cache slab.
3317 * kmem_cache_node is separately allocated so no need to
3318 * update any list pointers.
3320 temp_kmem_cache_node
= kmem_cache_node
;
3322 kmem_cache_node
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3323 memcpy(kmem_cache_node
, temp_kmem_cache_node
, kmem_size
);
3325 kmem_cache_bootstrap_fixup(kmem_cache_node
);
3328 kmem_cache_bootstrap_fixup(kmem_cache
);
3330 /* Free temporary boot structure */
3331 free_pages((unsigned long)temp_kmem_cache
, order
);
3333 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3336 * Patch up the size_index table if we have strange large alignment
3337 * requirements for the kmalloc array. This is only the case for
3338 * MIPS it seems. The standard arches will not generate any code here.
3340 * Largest permitted alignment is 256 bytes due to the way we
3341 * handle the index determination for the smaller caches.
3343 * Make sure that nothing crazy happens if someone starts tinkering
3344 * around with ARCH_KMALLOC_MINALIGN
3346 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3347 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3349 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
3350 int elem
= size_index_elem(i
);
3351 if (elem
>= ARRAY_SIZE(size_index
))
3353 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
3356 if (KMALLOC_MIN_SIZE
== 64) {
3358 * The 96 byte size cache is not used if the alignment
3361 for (i
= 64 + 8; i
<= 96; i
+= 8)
3362 size_index
[size_index_elem(i
)] = 7;
3363 } else if (KMALLOC_MIN_SIZE
== 128) {
3365 * The 192 byte sized cache is not used if the alignment
3366 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3369 for (i
= 128 + 8; i
<= 192; i
+= 8)
3370 size_index
[size_index_elem(i
)] = 8;
3373 /* Caches that are not of the two-to-the-power-of size */
3374 if (KMALLOC_MIN_SIZE
<= 32) {
3375 kmalloc_caches
[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3379 if (KMALLOC_MIN_SIZE
<= 64) {
3380 kmalloc_caches
[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3384 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3385 kmalloc_caches
[i
] = create_kmalloc_cache("kmalloc", 1 << i
, 0);
3391 /* Provide the correct kmalloc names now that the caches are up */
3392 if (KMALLOC_MIN_SIZE
<= 32) {
3393 kmalloc_caches
[1]->name
= kstrdup(kmalloc_caches
[1]->name
, GFP_NOWAIT
);
3394 BUG_ON(!kmalloc_caches
[1]->name
);
3397 if (KMALLOC_MIN_SIZE
<= 64) {
3398 kmalloc_caches
[2]->name
= kstrdup(kmalloc_caches
[2]->name
, GFP_NOWAIT
);
3399 BUG_ON(!kmalloc_caches
[2]->name
);
3402 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3403 char *s
= kasprintf(GFP_NOWAIT
, "kmalloc-%d", 1 << i
);
3406 kmalloc_caches
[i
]->name
= s
;
3410 register_cpu_notifier(&slab_notifier
);
3413 #ifdef CONFIG_ZONE_DMA
3414 for (i
= 0; i
< SLUB_PAGE_SHIFT
; i
++) {
3415 struct kmem_cache
*s
= kmalloc_caches
[i
];
3418 char *name
= kasprintf(GFP_NOWAIT
,
3419 "dma-kmalloc-%d", s
->objsize
);
3422 kmalloc_dma_caches
[i
] = create_kmalloc_cache(name
,
3423 s
->objsize
, SLAB_CACHE_DMA
);
3428 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3429 " CPUs=%d, Nodes=%d\n",
3430 caches
, cache_line_size(),
3431 slub_min_order
, slub_max_order
, slub_min_objects
,
3432 nr_cpu_ids
, nr_node_ids
);
3435 void __init
kmem_cache_init_late(void)
3440 * Find a mergeable slab cache
3442 static int slab_unmergeable(struct kmem_cache
*s
)
3444 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3451 * We may have set a slab to be unmergeable during bootstrap.
3453 if (s
->refcount
< 0)
3459 static struct kmem_cache
*find_mergeable(size_t size
,
3460 size_t align
, unsigned long flags
, const char *name
,
3461 void (*ctor
)(void *))
3463 struct kmem_cache
*s
;
3465 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3471 size
= ALIGN(size
, sizeof(void *));
3472 align
= calculate_alignment(flags
, align
, size
);
3473 size
= ALIGN(size
, align
);
3474 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3476 list_for_each_entry(s
, &slab_caches
, list
) {
3477 if (slab_unmergeable(s
))
3483 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3486 * Check if alignment is compatible.
3487 * Courtesy of Adrian Drzewiecki
3489 if ((s
->size
& ~(align
- 1)) != s
->size
)
3492 if (s
->size
- size
>= sizeof(void *))
3500 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3501 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3503 struct kmem_cache
*s
;
3509 down_write(&slub_lock
);
3510 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3514 * Adjust the object sizes so that we clear
3515 * the complete object on kzalloc.
3517 s
->objsize
= max(s
->objsize
, (int)size
);
3518 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3520 if (sysfs_slab_alias(s
, name
)) {
3524 up_write(&slub_lock
);
3528 n
= kstrdup(name
, GFP_KERNEL
);
3532 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3534 if (kmem_cache_open(s
, n
,
3535 size
, align
, flags
, ctor
)) {
3536 list_add(&s
->list
, &slab_caches
);
3537 if (sysfs_slab_add(s
)) {
3543 up_write(&slub_lock
);
3550 up_write(&slub_lock
);
3552 if (flags
& SLAB_PANIC
)
3553 panic("Cannot create slabcache %s\n", name
);
3558 EXPORT_SYMBOL(kmem_cache_create
);
3562 * Use the cpu notifier to insure that the cpu slabs are flushed when
3565 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3566 unsigned long action
, void *hcpu
)
3568 long cpu
= (long)hcpu
;
3569 struct kmem_cache
*s
;
3570 unsigned long flags
;
3573 case CPU_UP_CANCELED
:
3574 case CPU_UP_CANCELED_FROZEN
:
3576 case CPU_DEAD_FROZEN
:
3577 down_read(&slub_lock
);
3578 list_for_each_entry(s
, &slab_caches
, list
) {
3579 local_irq_save(flags
);
3580 __flush_cpu_slab(s
, cpu
);
3581 local_irq_restore(flags
);
3583 up_read(&slub_lock
);
3591 static struct notifier_block __cpuinitdata slab_notifier
= {
3592 .notifier_call
= slab_cpuup_callback
3597 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3599 struct kmem_cache
*s
;
3602 if (unlikely(size
> SLUB_MAX_SIZE
))
3603 return kmalloc_large(size
, gfpflags
);
3605 s
= get_slab(size
, gfpflags
);
3607 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3610 ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, caller
);
3612 /* Honor the call site pointer we received. */
3613 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3619 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3620 int node
, unsigned long caller
)
3622 struct kmem_cache
*s
;
3625 if (unlikely(size
> SLUB_MAX_SIZE
)) {
3626 ret
= kmalloc_large_node(size
, gfpflags
, node
);
3628 trace_kmalloc_node(caller
, ret
,
3629 size
, PAGE_SIZE
<< get_order(size
),
3635 s
= get_slab(size
, gfpflags
);
3637 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3640 ret
= slab_alloc(s
, gfpflags
, node
, caller
);
3642 /* Honor the call site pointer we received. */
3643 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3650 static int count_inuse(struct page
*page
)
3655 static int count_total(struct page
*page
)
3657 return page
->objects
;
3661 #ifdef CONFIG_SLUB_DEBUG
3662 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3666 void *addr
= page_address(page
);
3668 if (!check_slab(s
, page
) ||
3669 !on_freelist(s
, page
, NULL
))
3672 /* Now we know that a valid freelist exists */
3673 bitmap_zero(map
, page
->objects
);
3675 get_map(s
, page
, map
);
3676 for_each_object(p
, s
, addr
, page
->objects
) {
3677 if (test_bit(slab_index(p
, s
, addr
), map
))
3678 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
3682 for_each_object(p
, s
, addr
, page
->objects
)
3683 if (!test_bit(slab_index(p
, s
, addr
), map
))
3684 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
3689 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3692 if (slab_trylock(page
)) {
3693 validate_slab(s
, page
, map
);
3696 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3700 static int validate_slab_node(struct kmem_cache
*s
,
3701 struct kmem_cache_node
*n
, unsigned long *map
)
3703 unsigned long count
= 0;
3705 unsigned long flags
;
3707 spin_lock_irqsave(&n
->list_lock
, flags
);
3709 list_for_each_entry(page
, &n
->partial
, lru
) {
3710 validate_slab_slab(s
, page
, map
);
3713 if (count
!= n
->nr_partial
)
3714 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3715 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3717 if (!(s
->flags
& SLAB_STORE_USER
))
3720 list_for_each_entry(page
, &n
->full
, lru
) {
3721 validate_slab_slab(s
, page
, map
);
3724 if (count
!= atomic_long_read(&n
->nr_slabs
))
3725 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3726 "counter=%ld\n", s
->name
, count
,
3727 atomic_long_read(&n
->nr_slabs
));
3730 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3734 static long validate_slab_cache(struct kmem_cache
*s
)
3737 unsigned long count
= 0;
3738 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3739 sizeof(unsigned long), GFP_KERNEL
);
3745 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3746 struct kmem_cache_node
*n
= get_node(s
, node
);
3748 count
+= validate_slab_node(s
, n
, map
);
3754 * Generate lists of code addresses where slabcache objects are allocated
3759 unsigned long count
;
3766 DECLARE_BITMAP(cpus
, NR_CPUS
);
3772 unsigned long count
;
3773 struct location
*loc
;
3776 static void free_loc_track(struct loc_track
*t
)
3779 free_pages((unsigned long)t
->loc
,
3780 get_order(sizeof(struct location
) * t
->max
));
3783 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3788 order
= get_order(sizeof(struct location
) * max
);
3790 l
= (void *)__get_free_pages(flags
, order
);
3795 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3803 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3804 const struct track
*track
)
3806 long start
, end
, pos
;
3808 unsigned long caddr
;
3809 unsigned long age
= jiffies
- track
->when
;
3815 pos
= start
+ (end
- start
+ 1) / 2;
3818 * There is nothing at "end". If we end up there
3819 * we need to add something to before end.
3824 caddr
= t
->loc
[pos
].addr
;
3825 if (track
->addr
== caddr
) {
3831 if (age
< l
->min_time
)
3833 if (age
> l
->max_time
)
3836 if (track
->pid
< l
->min_pid
)
3837 l
->min_pid
= track
->pid
;
3838 if (track
->pid
> l
->max_pid
)
3839 l
->max_pid
= track
->pid
;
3841 cpumask_set_cpu(track
->cpu
,
3842 to_cpumask(l
->cpus
));
3844 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3848 if (track
->addr
< caddr
)
3855 * Not found. Insert new tracking element.
3857 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3863 (t
->count
- pos
) * sizeof(struct location
));
3866 l
->addr
= track
->addr
;
3870 l
->min_pid
= track
->pid
;
3871 l
->max_pid
= track
->pid
;
3872 cpumask_clear(to_cpumask(l
->cpus
));
3873 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
3874 nodes_clear(l
->nodes
);
3875 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3879 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3880 struct page
*page
, enum track_item alloc
,
3883 void *addr
= page_address(page
);
3886 bitmap_zero(map
, page
->objects
);
3887 get_map(s
, page
, map
);
3889 for_each_object(p
, s
, addr
, page
->objects
)
3890 if (!test_bit(slab_index(p
, s
, addr
), map
))
3891 add_location(t
, s
, get_track(s
, p
, alloc
));
3894 static int list_locations(struct kmem_cache
*s
, char *buf
,
3895 enum track_item alloc
)
3899 struct loc_track t
= { 0, 0, NULL
};
3901 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3902 sizeof(unsigned long), GFP_KERNEL
);
3904 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3907 return sprintf(buf
, "Out of memory\n");
3909 /* Push back cpu slabs */
3912 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3913 struct kmem_cache_node
*n
= get_node(s
, node
);
3914 unsigned long flags
;
3917 if (!atomic_long_read(&n
->nr_slabs
))
3920 spin_lock_irqsave(&n
->list_lock
, flags
);
3921 list_for_each_entry(page
, &n
->partial
, lru
)
3922 process_slab(&t
, s
, page
, alloc
, map
);
3923 list_for_each_entry(page
, &n
->full
, lru
)
3924 process_slab(&t
, s
, page
, alloc
, map
);
3925 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3928 for (i
= 0; i
< t
.count
; i
++) {
3929 struct location
*l
= &t
.loc
[i
];
3931 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
3933 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3936 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
3938 len
+= sprintf(buf
+ len
, "<not-available>");
3940 if (l
->sum_time
!= l
->min_time
) {
3941 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3943 (long)div_u64(l
->sum_time
, l
->count
),
3946 len
+= sprintf(buf
+ len
, " age=%ld",
3949 if (l
->min_pid
!= l
->max_pid
)
3950 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3951 l
->min_pid
, l
->max_pid
);
3953 len
+= sprintf(buf
+ len
, " pid=%ld",
3956 if (num_online_cpus() > 1 &&
3957 !cpumask_empty(to_cpumask(l
->cpus
)) &&
3958 len
< PAGE_SIZE
- 60) {
3959 len
+= sprintf(buf
+ len
, " cpus=");
3960 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3961 to_cpumask(l
->cpus
));
3964 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
3965 len
< PAGE_SIZE
- 60) {
3966 len
+= sprintf(buf
+ len
, " nodes=");
3967 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3971 len
+= sprintf(buf
+ len
, "\n");
3977 len
+= sprintf(buf
, "No data\n");
3982 #ifdef SLUB_RESILIENCY_TEST
3983 static void resiliency_test(void)
3987 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || SLUB_PAGE_SHIFT
< 10);
3989 printk(KERN_ERR
"SLUB resiliency testing\n");
3990 printk(KERN_ERR
"-----------------------\n");
3991 printk(KERN_ERR
"A. Corruption after allocation\n");
3993 p
= kzalloc(16, GFP_KERNEL
);
3995 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3996 " 0x12->0x%p\n\n", p
+ 16);
3998 validate_slab_cache(kmalloc_caches
[4]);
4000 /* Hmmm... The next two are dangerous */
4001 p
= kzalloc(32, GFP_KERNEL
);
4002 p
[32 + sizeof(void *)] = 0x34;
4003 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
4004 " 0x34 -> -0x%p\n", p
);
4006 "If allocated object is overwritten then not detectable\n\n");
4008 validate_slab_cache(kmalloc_caches
[5]);
4009 p
= kzalloc(64, GFP_KERNEL
);
4010 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4012 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4015 "If allocated object is overwritten then not detectable\n\n");
4016 validate_slab_cache(kmalloc_caches
[6]);
4018 printk(KERN_ERR
"\nB. Corruption after free\n");
4019 p
= kzalloc(128, GFP_KERNEL
);
4022 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4023 validate_slab_cache(kmalloc_caches
[7]);
4025 p
= kzalloc(256, GFP_KERNEL
);
4028 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4030 validate_slab_cache(kmalloc_caches
[8]);
4032 p
= kzalloc(512, GFP_KERNEL
);
4035 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4036 validate_slab_cache(kmalloc_caches
[9]);
4040 static void resiliency_test(void) {};
4045 enum slab_stat_type
{
4046 SL_ALL
, /* All slabs */
4047 SL_PARTIAL
, /* Only partially allocated slabs */
4048 SL_CPU
, /* Only slabs used for cpu caches */
4049 SL_OBJECTS
, /* Determine allocated objects not slabs */
4050 SL_TOTAL
/* Determine object capacity not slabs */
4053 #define SO_ALL (1 << SL_ALL)
4054 #define SO_PARTIAL (1 << SL_PARTIAL)
4055 #define SO_CPU (1 << SL_CPU)
4056 #define SO_OBJECTS (1 << SL_OBJECTS)
4057 #define SO_TOTAL (1 << SL_TOTAL)
4059 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4060 char *buf
, unsigned long flags
)
4062 unsigned long total
= 0;
4065 unsigned long *nodes
;
4066 unsigned long *per_cpu
;
4068 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4071 per_cpu
= nodes
+ nr_node_ids
;
4073 if (flags
& SO_CPU
) {
4076 for_each_possible_cpu(cpu
) {
4077 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
4079 if (!c
|| c
->node
< 0)
4083 if (flags
& SO_TOTAL
)
4084 x
= c
->page
->objects
;
4085 else if (flags
& SO_OBJECTS
)
4091 nodes
[c
->node
] += x
;
4097 lock_memory_hotplug();
4098 #ifdef CONFIG_SLUB_DEBUG
4099 if (flags
& SO_ALL
) {
4100 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4101 struct kmem_cache_node
*n
= get_node(s
, node
);
4103 if (flags
& SO_TOTAL
)
4104 x
= atomic_long_read(&n
->total_objects
);
4105 else if (flags
& SO_OBJECTS
)
4106 x
= atomic_long_read(&n
->total_objects
) -
4107 count_partial(n
, count_free
);
4110 x
= atomic_long_read(&n
->nr_slabs
);
4117 if (flags
& SO_PARTIAL
) {
4118 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4119 struct kmem_cache_node
*n
= get_node(s
, node
);
4121 if (flags
& SO_TOTAL
)
4122 x
= count_partial(n
, count_total
);
4123 else if (flags
& SO_OBJECTS
)
4124 x
= count_partial(n
, count_inuse
);
4131 x
= sprintf(buf
, "%lu", total
);
4133 for_each_node_state(node
, N_NORMAL_MEMORY
)
4135 x
+= sprintf(buf
+ x
, " N%d=%lu",
4138 unlock_memory_hotplug();
4140 return x
+ sprintf(buf
+ x
, "\n");
4143 #ifdef CONFIG_SLUB_DEBUG
4144 static int any_slab_objects(struct kmem_cache
*s
)
4148 for_each_online_node(node
) {
4149 struct kmem_cache_node
*n
= get_node(s
, node
);
4154 if (atomic_long_read(&n
->total_objects
))
4161 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4162 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
4164 struct slab_attribute
{
4165 struct attribute attr
;
4166 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4167 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4170 #define SLAB_ATTR_RO(_name) \
4171 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4173 #define SLAB_ATTR(_name) \
4174 static struct slab_attribute _name##_attr = \
4175 __ATTR(_name, 0644, _name##_show, _name##_store)
4177 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4179 return sprintf(buf
, "%d\n", s
->size
);
4181 SLAB_ATTR_RO(slab_size
);
4183 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4185 return sprintf(buf
, "%d\n", s
->align
);
4187 SLAB_ATTR_RO(align
);
4189 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4191 return sprintf(buf
, "%d\n", s
->objsize
);
4193 SLAB_ATTR_RO(object_size
);
4195 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4197 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4199 SLAB_ATTR_RO(objs_per_slab
);
4201 static ssize_t
order_store(struct kmem_cache
*s
,
4202 const char *buf
, size_t length
)
4204 unsigned long order
;
4207 err
= strict_strtoul(buf
, 10, &order
);
4211 if (order
> slub_max_order
|| order
< slub_min_order
)
4214 calculate_sizes(s
, order
);
4218 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4220 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4224 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4226 return sprintf(buf
, "%lu\n", s
->min_partial
);
4229 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4235 err
= strict_strtoul(buf
, 10, &min
);
4239 set_min_partial(s
, min
);
4242 SLAB_ATTR(min_partial
);
4244 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4248 return sprintf(buf
, "%pS\n", s
->ctor
);
4252 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4254 return sprintf(buf
, "%d\n", s
->refcount
- 1);
4256 SLAB_ATTR_RO(aliases
);
4258 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4260 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4262 SLAB_ATTR_RO(partial
);
4264 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4266 return show_slab_objects(s
, buf
, SO_CPU
);
4268 SLAB_ATTR_RO(cpu_slabs
);
4270 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4272 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4274 SLAB_ATTR_RO(objects
);
4276 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4278 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4280 SLAB_ATTR_RO(objects_partial
);
4282 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4284 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4287 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4288 const char *buf
, size_t length
)
4290 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4292 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4295 SLAB_ATTR(reclaim_account
);
4297 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4299 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4301 SLAB_ATTR_RO(hwcache_align
);
4303 #ifdef CONFIG_ZONE_DMA
4304 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4306 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4308 SLAB_ATTR_RO(cache_dma
);
4311 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4313 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4315 SLAB_ATTR_RO(destroy_by_rcu
);
4317 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4319 return sprintf(buf
, "%d\n", s
->reserved
);
4321 SLAB_ATTR_RO(reserved
);
4323 #ifdef CONFIG_SLUB_DEBUG
4324 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4326 return show_slab_objects(s
, buf
, SO_ALL
);
4328 SLAB_ATTR_RO(slabs
);
4330 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4332 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4334 SLAB_ATTR_RO(total_objects
);
4336 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4338 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4341 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4342 const char *buf
, size_t length
)
4344 s
->flags
&= ~SLAB_DEBUG_FREE
;
4346 s
->flags
|= SLAB_DEBUG_FREE
;
4349 SLAB_ATTR(sanity_checks
);
4351 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4353 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4356 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4359 s
->flags
&= ~SLAB_TRACE
;
4361 s
->flags
|= SLAB_TRACE
;
4366 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4368 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4371 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4372 const char *buf
, size_t length
)
4374 if (any_slab_objects(s
))
4377 s
->flags
&= ~SLAB_RED_ZONE
;
4379 s
->flags
|= SLAB_RED_ZONE
;
4380 calculate_sizes(s
, -1);
4383 SLAB_ATTR(red_zone
);
4385 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4387 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4390 static ssize_t
poison_store(struct kmem_cache
*s
,
4391 const char *buf
, size_t length
)
4393 if (any_slab_objects(s
))
4396 s
->flags
&= ~SLAB_POISON
;
4398 s
->flags
|= SLAB_POISON
;
4399 calculate_sizes(s
, -1);
4404 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4406 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4409 static ssize_t
store_user_store(struct kmem_cache
*s
,
4410 const char *buf
, size_t length
)
4412 if (any_slab_objects(s
))
4415 s
->flags
&= ~SLAB_STORE_USER
;
4417 s
->flags
|= SLAB_STORE_USER
;
4418 calculate_sizes(s
, -1);
4421 SLAB_ATTR(store_user
);
4423 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4428 static ssize_t
validate_store(struct kmem_cache
*s
,
4429 const char *buf
, size_t length
)
4433 if (buf
[0] == '1') {
4434 ret
= validate_slab_cache(s
);
4440 SLAB_ATTR(validate
);
4442 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4444 if (!(s
->flags
& SLAB_STORE_USER
))
4446 return list_locations(s
, buf
, TRACK_ALLOC
);
4448 SLAB_ATTR_RO(alloc_calls
);
4450 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4452 if (!(s
->flags
& SLAB_STORE_USER
))
4454 return list_locations(s
, buf
, TRACK_FREE
);
4456 SLAB_ATTR_RO(free_calls
);
4457 #endif /* CONFIG_SLUB_DEBUG */
4459 #ifdef CONFIG_FAILSLAB
4460 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4462 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4465 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4468 s
->flags
&= ~SLAB_FAILSLAB
;
4470 s
->flags
|= SLAB_FAILSLAB
;
4473 SLAB_ATTR(failslab
);
4476 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4481 static ssize_t
shrink_store(struct kmem_cache
*s
,
4482 const char *buf
, size_t length
)
4484 if (buf
[0] == '1') {
4485 int rc
= kmem_cache_shrink(s
);
4496 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4498 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4501 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4502 const char *buf
, size_t length
)
4504 unsigned long ratio
;
4507 err
= strict_strtoul(buf
, 10, &ratio
);
4512 s
->remote_node_defrag_ratio
= ratio
* 10;
4516 SLAB_ATTR(remote_node_defrag_ratio
);
4519 #ifdef CONFIG_SLUB_STATS
4520 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4522 unsigned long sum
= 0;
4525 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4530 for_each_online_cpu(cpu
) {
4531 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
4537 len
= sprintf(buf
, "%lu", sum
);
4540 for_each_online_cpu(cpu
) {
4541 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4542 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4546 return len
+ sprintf(buf
+ len
, "\n");
4549 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
4553 for_each_online_cpu(cpu
)
4554 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
4557 #define STAT_ATTR(si, text) \
4558 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4560 return show_stat(s, buf, si); \
4562 static ssize_t text##_store(struct kmem_cache *s, \
4563 const char *buf, size_t length) \
4565 if (buf[0] != '0') \
4567 clear_stat(s, si); \
4572 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4573 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4574 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4575 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4576 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4577 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4578 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4579 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4580 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4581 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4582 STAT_ATTR(FREE_SLAB
, free_slab
);
4583 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4584 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4585 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4586 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4587 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4588 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4589 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4592 static struct attribute
*slab_attrs
[] = {
4593 &slab_size_attr
.attr
,
4594 &object_size_attr
.attr
,
4595 &objs_per_slab_attr
.attr
,
4597 &min_partial_attr
.attr
,
4599 &objects_partial_attr
.attr
,
4601 &cpu_slabs_attr
.attr
,
4605 &hwcache_align_attr
.attr
,
4606 &reclaim_account_attr
.attr
,
4607 &destroy_by_rcu_attr
.attr
,
4609 &reserved_attr
.attr
,
4610 #ifdef CONFIG_SLUB_DEBUG
4611 &total_objects_attr
.attr
,
4613 &sanity_checks_attr
.attr
,
4615 &red_zone_attr
.attr
,
4617 &store_user_attr
.attr
,
4618 &validate_attr
.attr
,
4619 &alloc_calls_attr
.attr
,
4620 &free_calls_attr
.attr
,
4622 #ifdef CONFIG_ZONE_DMA
4623 &cache_dma_attr
.attr
,
4626 &remote_node_defrag_ratio_attr
.attr
,
4628 #ifdef CONFIG_SLUB_STATS
4629 &alloc_fastpath_attr
.attr
,
4630 &alloc_slowpath_attr
.attr
,
4631 &free_fastpath_attr
.attr
,
4632 &free_slowpath_attr
.attr
,
4633 &free_frozen_attr
.attr
,
4634 &free_add_partial_attr
.attr
,
4635 &free_remove_partial_attr
.attr
,
4636 &alloc_from_partial_attr
.attr
,
4637 &alloc_slab_attr
.attr
,
4638 &alloc_refill_attr
.attr
,
4639 &free_slab_attr
.attr
,
4640 &cpuslab_flush_attr
.attr
,
4641 &deactivate_full_attr
.attr
,
4642 &deactivate_empty_attr
.attr
,
4643 &deactivate_to_head_attr
.attr
,
4644 &deactivate_to_tail_attr
.attr
,
4645 &deactivate_remote_frees_attr
.attr
,
4646 &order_fallback_attr
.attr
,
4648 #ifdef CONFIG_FAILSLAB
4649 &failslab_attr
.attr
,
4655 static struct attribute_group slab_attr_group
= {
4656 .attrs
= slab_attrs
,
4659 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4660 struct attribute
*attr
,
4663 struct slab_attribute
*attribute
;
4664 struct kmem_cache
*s
;
4667 attribute
= to_slab_attr(attr
);
4670 if (!attribute
->show
)
4673 err
= attribute
->show(s
, buf
);
4678 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4679 struct attribute
*attr
,
4680 const char *buf
, size_t len
)
4682 struct slab_attribute
*attribute
;
4683 struct kmem_cache
*s
;
4686 attribute
= to_slab_attr(attr
);
4689 if (!attribute
->store
)
4692 err
= attribute
->store(s
, buf
, len
);
4697 static void kmem_cache_release(struct kobject
*kobj
)
4699 struct kmem_cache
*s
= to_slab(kobj
);
4705 static const struct sysfs_ops slab_sysfs_ops
= {
4706 .show
= slab_attr_show
,
4707 .store
= slab_attr_store
,
4710 static struct kobj_type slab_ktype
= {
4711 .sysfs_ops
= &slab_sysfs_ops
,
4712 .release
= kmem_cache_release
4715 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4717 struct kobj_type
*ktype
= get_ktype(kobj
);
4719 if (ktype
== &slab_ktype
)
4724 static const struct kset_uevent_ops slab_uevent_ops
= {
4725 .filter
= uevent_filter
,
4728 static struct kset
*slab_kset
;
4730 #define ID_STR_LENGTH 64
4732 /* Create a unique string id for a slab cache:
4734 * Format :[flags-]size
4736 static char *create_unique_id(struct kmem_cache
*s
)
4738 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4745 * First flags affecting slabcache operations. We will only
4746 * get here for aliasable slabs so we do not need to support
4747 * too many flags. The flags here must cover all flags that
4748 * are matched during merging to guarantee that the id is
4751 if (s
->flags
& SLAB_CACHE_DMA
)
4753 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4755 if (s
->flags
& SLAB_DEBUG_FREE
)
4757 if (!(s
->flags
& SLAB_NOTRACK
))
4761 p
+= sprintf(p
, "%07d", s
->size
);
4762 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4766 static int sysfs_slab_add(struct kmem_cache
*s
)
4772 if (slab_state
< SYSFS
)
4773 /* Defer until later */
4776 unmergeable
= slab_unmergeable(s
);
4779 * Slabcache can never be merged so we can use the name proper.
4780 * This is typically the case for debug situations. In that
4781 * case we can catch duplicate names easily.
4783 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4787 * Create a unique name for the slab as a target
4790 name
= create_unique_id(s
);
4793 s
->kobj
.kset
= slab_kset
;
4794 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4796 kobject_put(&s
->kobj
);
4800 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4802 kobject_del(&s
->kobj
);
4803 kobject_put(&s
->kobj
);
4806 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4808 /* Setup first alias */
4809 sysfs_slab_alias(s
, s
->name
);
4815 static void sysfs_slab_remove(struct kmem_cache
*s
)
4817 if (slab_state
< SYSFS
)
4819 * Sysfs has not been setup yet so no need to remove the
4824 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4825 kobject_del(&s
->kobj
);
4826 kobject_put(&s
->kobj
);
4830 * Need to buffer aliases during bootup until sysfs becomes
4831 * available lest we lose that information.
4833 struct saved_alias
{
4834 struct kmem_cache
*s
;
4836 struct saved_alias
*next
;
4839 static struct saved_alias
*alias_list
;
4841 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4843 struct saved_alias
*al
;
4845 if (slab_state
== SYSFS
) {
4847 * If we have a leftover link then remove it.
4849 sysfs_remove_link(&slab_kset
->kobj
, name
);
4850 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4853 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4859 al
->next
= alias_list
;
4864 static int __init
slab_sysfs_init(void)
4866 struct kmem_cache
*s
;
4869 down_write(&slub_lock
);
4871 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4873 up_write(&slub_lock
);
4874 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4880 list_for_each_entry(s
, &slab_caches
, list
) {
4881 err
= sysfs_slab_add(s
);
4883 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4884 " to sysfs\n", s
->name
);
4887 while (alias_list
) {
4888 struct saved_alias
*al
= alias_list
;
4890 alias_list
= alias_list
->next
;
4891 err
= sysfs_slab_alias(al
->s
, al
->name
);
4893 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4894 " %s to sysfs\n", s
->name
);
4898 up_write(&slub_lock
);
4903 __initcall(slab_sysfs_init
);
4904 #endif /* CONFIG_SYSFS */
4907 * The /proc/slabinfo ABI
4909 #ifdef CONFIG_SLABINFO
4910 static void print_slabinfo_header(struct seq_file
*m
)
4912 seq_puts(m
, "slabinfo - version: 2.1\n");
4913 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4914 "<objperslab> <pagesperslab>");
4915 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4916 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4920 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4924 down_read(&slub_lock
);
4926 print_slabinfo_header(m
);
4928 return seq_list_start(&slab_caches
, *pos
);
4931 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4933 return seq_list_next(p
, &slab_caches
, pos
);
4936 static void s_stop(struct seq_file
*m
, void *p
)
4938 up_read(&slub_lock
);
4941 static int s_show(struct seq_file
*m
, void *p
)
4943 unsigned long nr_partials
= 0;
4944 unsigned long nr_slabs
= 0;
4945 unsigned long nr_inuse
= 0;
4946 unsigned long nr_objs
= 0;
4947 unsigned long nr_free
= 0;
4948 struct kmem_cache
*s
;
4951 s
= list_entry(p
, struct kmem_cache
, list
);
4953 for_each_online_node(node
) {
4954 struct kmem_cache_node
*n
= get_node(s
, node
);
4959 nr_partials
+= n
->nr_partial
;
4960 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4961 nr_objs
+= atomic_long_read(&n
->total_objects
);
4962 nr_free
+= count_partial(n
, count_free
);
4965 nr_inuse
= nr_objs
- nr_free
;
4967 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4968 nr_objs
, s
->size
, oo_objects(s
->oo
),
4969 (1 << oo_order(s
->oo
)));
4970 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4971 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4977 static const struct seq_operations slabinfo_op
= {
4984 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4986 return seq_open(file
, &slabinfo_op
);
4989 static const struct file_operations proc_slabinfo_operations
= {
4990 .open
= slabinfo_open
,
4992 .llseek
= seq_lseek
,
4993 .release
= seq_release
,
4996 static int __init
slab_proc_init(void)
4998 proc_create("slabinfo", S_IRUGO
, NULL
, &proc_slabinfo_operations
);
5001 module_init(slab_proc_init
);
5002 #endif /* CONFIG_SLABINFO */