2 * linux/fs/jbd2/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
51 #include <asm/uaccess.h>
53 #include <asm/system.h>
55 EXPORT_SYMBOL(jbd2_journal_extend
);
56 EXPORT_SYMBOL(jbd2_journal_stop
);
57 EXPORT_SYMBOL(jbd2_journal_lock_updates
);
58 EXPORT_SYMBOL(jbd2_journal_unlock_updates
);
59 EXPORT_SYMBOL(jbd2_journal_get_write_access
);
60 EXPORT_SYMBOL(jbd2_journal_get_create_access
);
61 EXPORT_SYMBOL(jbd2_journal_get_undo_access
);
62 EXPORT_SYMBOL(jbd2_journal_set_triggers
);
63 EXPORT_SYMBOL(jbd2_journal_dirty_metadata
);
64 EXPORT_SYMBOL(jbd2_journal_release_buffer
);
65 EXPORT_SYMBOL(jbd2_journal_forget
);
67 EXPORT_SYMBOL(journal_sync_buffer
);
69 EXPORT_SYMBOL(jbd2_journal_flush
);
70 EXPORT_SYMBOL(jbd2_journal_revoke
);
72 EXPORT_SYMBOL(jbd2_journal_init_dev
);
73 EXPORT_SYMBOL(jbd2_journal_init_inode
);
74 EXPORT_SYMBOL(jbd2_journal_update_format
);
75 EXPORT_SYMBOL(jbd2_journal_check_used_features
);
76 EXPORT_SYMBOL(jbd2_journal_check_available_features
);
77 EXPORT_SYMBOL(jbd2_journal_set_features
);
78 EXPORT_SYMBOL(jbd2_journal_load
);
79 EXPORT_SYMBOL(jbd2_journal_destroy
);
80 EXPORT_SYMBOL(jbd2_journal_abort
);
81 EXPORT_SYMBOL(jbd2_journal_errno
);
82 EXPORT_SYMBOL(jbd2_journal_ack_err
);
83 EXPORT_SYMBOL(jbd2_journal_clear_err
);
84 EXPORT_SYMBOL(jbd2_log_wait_commit
);
85 EXPORT_SYMBOL(jbd2_log_start_commit
);
86 EXPORT_SYMBOL(jbd2_journal_start_commit
);
87 EXPORT_SYMBOL(jbd2_journal_force_commit_nested
);
88 EXPORT_SYMBOL(jbd2_journal_wipe
);
89 EXPORT_SYMBOL(jbd2_journal_blocks_per_page
);
90 EXPORT_SYMBOL(jbd2_journal_invalidatepage
);
91 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers
);
92 EXPORT_SYMBOL(jbd2_journal_force_commit
);
93 EXPORT_SYMBOL(jbd2_journal_file_inode
);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode
);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode
);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate
);
97 EXPORT_SYMBOL(jbd2_inode_cache
);
99 static int journal_convert_superblock_v1(journal_t
*, journal_superblock_t
*);
100 static void __journal_abort_soft (journal_t
*journal
, int errno
);
101 static int jbd2_journal_create_slab(size_t slab_size
);
104 * Helper function used to manage commit timeouts
107 static void commit_timeout(unsigned long __data
)
109 struct task_struct
* p
= (struct task_struct
*) __data
;
115 * kjournald2: The main thread function used to manage a logging device
118 * This kernel thread is responsible for two things:
120 * 1) COMMIT: Every so often we need to commit the current state of the
121 * filesystem to disk. The journal thread is responsible for writing
122 * all of the metadata buffers to disk.
124 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
125 * of the data in that part of the log has been rewritten elsewhere on
126 * the disk. Flushing these old buffers to reclaim space in the log is
127 * known as checkpointing, and this thread is responsible for that job.
130 static int kjournald2(void *arg
)
132 journal_t
*journal
= arg
;
133 transaction_t
*transaction
;
136 * Set up an interval timer which can be used to trigger a commit wakeup
137 * after the commit interval expires
139 setup_timer(&journal
->j_commit_timer
, commit_timeout
,
140 (unsigned long)current
);
142 /* Record that the journal thread is running */
143 journal
->j_task
= current
;
144 wake_up(&journal
->j_wait_done_commit
);
147 * And now, wait forever for commit wakeup events.
149 write_lock(&journal
->j_state_lock
);
152 if (journal
->j_flags
& JBD2_UNMOUNT
)
155 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
156 journal
->j_commit_sequence
, journal
->j_commit_request
);
158 if (journal
->j_commit_sequence
!= journal
->j_commit_request
) {
159 jbd_debug(1, "OK, requests differ\n");
160 write_unlock(&journal
->j_state_lock
);
161 del_timer_sync(&journal
->j_commit_timer
);
162 jbd2_journal_commit_transaction(journal
);
163 write_lock(&journal
->j_state_lock
);
167 wake_up(&journal
->j_wait_done_commit
);
168 if (freezing(current
)) {
170 * The simpler the better. Flushing journal isn't a
171 * good idea, because that depends on threads that may
172 * be already stopped.
174 jbd_debug(1, "Now suspending kjournald2\n");
175 write_unlock(&journal
->j_state_lock
);
177 write_lock(&journal
->j_state_lock
);
180 * We assume on resume that commits are already there,
184 int should_sleep
= 1;
186 prepare_to_wait(&journal
->j_wait_commit
, &wait
,
188 if (journal
->j_commit_sequence
!= journal
->j_commit_request
)
190 transaction
= journal
->j_running_transaction
;
191 if (transaction
&& time_after_eq(jiffies
,
192 transaction
->t_expires
))
194 if (journal
->j_flags
& JBD2_UNMOUNT
)
197 write_unlock(&journal
->j_state_lock
);
199 write_lock(&journal
->j_state_lock
);
201 finish_wait(&journal
->j_wait_commit
, &wait
);
204 jbd_debug(1, "kjournald2 wakes\n");
207 * Were we woken up by a commit wakeup event?
209 transaction
= journal
->j_running_transaction
;
210 if (transaction
&& time_after_eq(jiffies
, transaction
->t_expires
)) {
211 journal
->j_commit_request
= transaction
->t_tid
;
212 jbd_debug(1, "woke because of timeout\n");
217 write_unlock(&journal
->j_state_lock
);
218 del_timer_sync(&journal
->j_commit_timer
);
219 journal
->j_task
= NULL
;
220 wake_up(&journal
->j_wait_done_commit
);
221 jbd_debug(1, "Journal thread exiting.\n");
225 static int jbd2_journal_start_thread(journal_t
*journal
)
227 struct task_struct
*t
;
229 t
= kthread_run(kjournald2
, journal
, "jbd2/%s",
234 wait_event(journal
->j_wait_done_commit
, journal
->j_task
!= NULL
);
238 static void journal_kill_thread(journal_t
*journal
)
240 write_lock(&journal
->j_state_lock
);
241 journal
->j_flags
|= JBD2_UNMOUNT
;
243 while (journal
->j_task
) {
244 wake_up(&journal
->j_wait_commit
);
245 write_unlock(&journal
->j_state_lock
);
246 wait_event(journal
->j_wait_done_commit
, journal
->j_task
== NULL
);
247 write_lock(&journal
->j_state_lock
);
249 write_unlock(&journal
->j_state_lock
);
253 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
255 * Writes a metadata buffer to a given disk block. The actual IO is not
256 * performed but a new buffer_head is constructed which labels the data
257 * to be written with the correct destination disk block.
259 * Any magic-number escaping which needs to be done will cause a
260 * copy-out here. If the buffer happens to start with the
261 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
262 * magic number is only written to the log for descripter blocks. In
263 * this case, we copy the data and replace the first word with 0, and we
264 * return a result code which indicates that this buffer needs to be
265 * marked as an escaped buffer in the corresponding log descriptor
266 * block. The missing word can then be restored when the block is read
269 * If the source buffer has already been modified by a new transaction
270 * since we took the last commit snapshot, we use the frozen copy of
271 * that data for IO. If we end up using the existing buffer_head's data
272 * for the write, then we *have* to lock the buffer to prevent anyone
273 * else from using and possibly modifying it while the IO is in
276 * The function returns a pointer to the buffer_heads to be used for IO.
278 * We assume that the journal has already been locked in this function.
285 * Bit 0 set == escape performed on the data
286 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
289 int jbd2_journal_write_metadata_buffer(transaction_t
*transaction
,
290 struct journal_head
*jh_in
,
291 struct journal_head
**jh_out
,
292 unsigned long long blocknr
)
294 int need_copy_out
= 0;
295 int done_copy_out
= 0;
298 struct buffer_head
*new_bh
;
299 struct journal_head
*new_jh
;
300 struct page
*new_page
;
301 unsigned int new_offset
;
302 struct buffer_head
*bh_in
= jh2bh(jh_in
);
303 journal_t
*journal
= transaction
->t_journal
;
306 * The buffer really shouldn't be locked: only the current committing
307 * transaction is allowed to write it, so nobody else is allowed
310 * akpm: except if we're journalling data, and write() output is
311 * also part of a shared mapping, and another thread has
312 * decided to launch a writepage() against this buffer.
314 J_ASSERT_BH(bh_in
, buffer_jbddirty(bh_in
));
317 new_bh
= alloc_buffer_head(GFP_NOFS
);
320 * Failure is not an option, but __GFP_NOFAIL is going
321 * away; so we retry ourselves here.
323 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
327 /* keep subsequent assertions sane */
329 init_buffer(new_bh
, NULL
, NULL
);
330 atomic_set(&new_bh
->b_count
, 1);
331 new_jh
= jbd2_journal_add_journal_head(new_bh
); /* This sleeps */
334 * If a new transaction has already done a buffer copy-out, then
335 * we use that version of the data for the commit.
337 jbd_lock_bh_state(bh_in
);
339 if (jh_in
->b_frozen_data
) {
341 new_page
= virt_to_page(jh_in
->b_frozen_data
);
342 new_offset
= offset_in_page(jh_in
->b_frozen_data
);
344 new_page
= jh2bh(jh_in
)->b_page
;
345 new_offset
= offset_in_page(jh2bh(jh_in
)->b_data
);
348 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
350 * Fire data frozen trigger if data already wasn't frozen. Do this
351 * before checking for escaping, as the trigger may modify the magic
352 * offset. If a copy-out happens afterwards, it will have the correct
353 * data in the buffer.
356 jbd2_buffer_frozen_trigger(jh_in
, mapped_data
+ new_offset
,
362 if (*((__be32
*)(mapped_data
+ new_offset
)) ==
363 cpu_to_be32(JBD2_MAGIC_NUMBER
)) {
367 kunmap_atomic(mapped_data
, KM_USER0
);
370 * Do we need to do a data copy?
372 if (need_copy_out
&& !done_copy_out
) {
375 jbd_unlock_bh_state(bh_in
);
376 tmp
= jbd2_alloc(bh_in
->b_size
, GFP_NOFS
);
378 jbd2_journal_put_journal_head(new_jh
);
381 jbd_lock_bh_state(bh_in
);
382 if (jh_in
->b_frozen_data
) {
383 jbd2_free(tmp
, bh_in
->b_size
);
387 jh_in
->b_frozen_data
= tmp
;
388 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
389 memcpy(tmp
, mapped_data
+ new_offset
, jh2bh(jh_in
)->b_size
);
390 kunmap_atomic(mapped_data
, KM_USER0
);
392 new_page
= virt_to_page(tmp
);
393 new_offset
= offset_in_page(tmp
);
397 * This isn't strictly necessary, as we're using frozen
398 * data for the escaping, but it keeps consistency with
399 * b_frozen_data usage.
401 jh_in
->b_frozen_triggers
= jh_in
->b_triggers
;
405 * Did we need to do an escaping? Now we've done all the
406 * copying, we can finally do so.
409 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
410 *((unsigned int *)(mapped_data
+ new_offset
)) = 0;
411 kunmap_atomic(mapped_data
, KM_USER0
);
414 set_bh_page(new_bh
, new_page
, new_offset
);
415 new_jh
->b_transaction
= NULL
;
416 new_bh
->b_size
= jh2bh(jh_in
)->b_size
;
417 new_bh
->b_bdev
= transaction
->t_journal
->j_dev
;
418 new_bh
->b_blocknr
= blocknr
;
419 set_buffer_mapped(new_bh
);
420 set_buffer_dirty(new_bh
);
425 * The to-be-written buffer needs to get moved to the io queue,
426 * and the original buffer whose contents we are shadowing or
427 * copying is moved to the transaction's shadow queue.
429 JBUFFER_TRACE(jh_in
, "file as BJ_Shadow");
430 spin_lock(&journal
->j_list_lock
);
431 __jbd2_journal_file_buffer(jh_in
, transaction
, BJ_Shadow
);
432 spin_unlock(&journal
->j_list_lock
);
433 jbd_unlock_bh_state(bh_in
);
435 JBUFFER_TRACE(new_jh
, "file as BJ_IO");
436 jbd2_journal_file_buffer(new_jh
, transaction
, BJ_IO
);
438 return do_escape
| (done_copy_out
<< 1);
442 * Allocation code for the journal file. Manage the space left in the
443 * journal, so that we can begin checkpointing when appropriate.
447 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
449 * Called with the journal already locked.
451 * Called under j_state_lock
454 int __jbd2_log_space_left(journal_t
*journal
)
456 int left
= journal
->j_free
;
458 /* assert_spin_locked(&journal->j_state_lock); */
461 * Be pessimistic here about the number of those free blocks which
462 * might be required for log descriptor control blocks.
465 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
467 left
-= MIN_LOG_RESERVED_BLOCKS
;
476 * Called with j_state_lock locked for writing.
477 * Returns true if a transaction commit was started.
479 int __jbd2_log_start_commit(journal_t
*journal
, tid_t target
)
482 * The only transaction we can possibly wait upon is the
483 * currently running transaction (if it exists). Otherwise,
484 * the target tid must be an old one.
486 if (journal
->j_running_transaction
&&
487 journal
->j_running_transaction
->t_tid
== target
) {
489 * We want a new commit: OK, mark the request and wakeup the
490 * commit thread. We do _not_ do the commit ourselves.
493 journal
->j_commit_request
= target
;
494 jbd_debug(1, "JBD: requesting commit %d/%d\n",
495 journal
->j_commit_request
,
496 journal
->j_commit_sequence
);
497 wake_up(&journal
->j_wait_commit
);
499 } else if (!tid_geq(journal
->j_commit_request
, target
))
500 /* This should never happen, but if it does, preserve
501 the evidence before kjournald goes into a loop and
502 increments j_commit_sequence beyond all recognition. */
503 WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
504 journal
->j_commit_request
,
505 journal
->j_commit_sequence
,
506 target
, journal
->j_running_transaction
?
507 journal
->j_running_transaction
->t_tid
: 0);
511 int jbd2_log_start_commit(journal_t
*journal
, tid_t tid
)
515 write_lock(&journal
->j_state_lock
);
516 ret
= __jbd2_log_start_commit(journal
, tid
);
517 write_unlock(&journal
->j_state_lock
);
522 * Force and wait upon a commit if the calling process is not within
523 * transaction. This is used for forcing out undo-protected data which contains
524 * bitmaps, when the fs is running out of space.
526 * We can only force the running transaction if we don't have an active handle;
527 * otherwise, we will deadlock.
529 * Returns true if a transaction was started.
531 int jbd2_journal_force_commit_nested(journal_t
*journal
)
533 transaction_t
*transaction
= NULL
;
535 int need_to_start
= 0;
537 read_lock(&journal
->j_state_lock
);
538 if (journal
->j_running_transaction
&& !current
->journal_info
) {
539 transaction
= journal
->j_running_transaction
;
540 if (!tid_geq(journal
->j_commit_request
, transaction
->t_tid
))
542 } else if (journal
->j_committing_transaction
)
543 transaction
= journal
->j_committing_transaction
;
546 read_unlock(&journal
->j_state_lock
);
547 return 0; /* Nothing to retry */
550 tid
= transaction
->t_tid
;
551 read_unlock(&journal
->j_state_lock
);
553 jbd2_log_start_commit(journal
, tid
);
554 jbd2_log_wait_commit(journal
, tid
);
559 * Start a commit of the current running transaction (if any). Returns true
560 * if a transaction is going to be committed (or is currently already
561 * committing), and fills its tid in at *ptid
563 int jbd2_journal_start_commit(journal_t
*journal
, tid_t
*ptid
)
567 write_lock(&journal
->j_state_lock
);
568 if (journal
->j_running_transaction
) {
569 tid_t tid
= journal
->j_running_transaction
->t_tid
;
571 __jbd2_log_start_commit(journal
, tid
);
572 /* There's a running transaction and we've just made sure
573 * it's commit has been scheduled. */
577 } else if (journal
->j_committing_transaction
) {
579 * If ext3_write_super() recently started a commit, then we
580 * have to wait for completion of that transaction
583 *ptid
= journal
->j_committing_transaction
->t_tid
;
586 write_unlock(&journal
->j_state_lock
);
591 * Return 1 if a given transaction has not yet sent barrier request
592 * connected with a transaction commit. If 0 is returned, transaction
593 * may or may not have sent the barrier. Used to avoid sending barrier
594 * twice in common cases.
596 int jbd2_trans_will_send_data_barrier(journal_t
*journal
, tid_t tid
)
599 transaction_t
*commit_trans
;
601 if (!(journal
->j_flags
& JBD2_BARRIER
))
603 read_lock(&journal
->j_state_lock
);
604 /* Transaction already committed? */
605 if (tid_geq(journal
->j_commit_sequence
, tid
))
607 commit_trans
= journal
->j_committing_transaction
;
608 if (!commit_trans
|| commit_trans
->t_tid
!= tid
) {
613 * Transaction is being committed and we already proceeded to
614 * submitting a flush to fs partition?
616 if (journal
->j_fs_dev
!= journal
->j_dev
) {
617 if (!commit_trans
->t_need_data_flush
||
618 commit_trans
->t_state
>= T_COMMIT_DFLUSH
)
621 if (commit_trans
->t_state
>= T_COMMIT_JFLUSH
)
626 read_unlock(&journal
->j_state_lock
);
629 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier
);
632 * Wait for a specified commit to complete.
633 * The caller may not hold the journal lock.
635 int jbd2_log_wait_commit(journal_t
*journal
, tid_t tid
)
639 read_lock(&journal
->j_state_lock
);
640 #ifdef CONFIG_JBD2_DEBUG
641 if (!tid_geq(journal
->j_commit_request
, tid
)) {
643 "%s: error: j_commit_request=%d, tid=%d\n",
644 __func__
, journal
->j_commit_request
, tid
);
647 while (tid_gt(tid
, journal
->j_commit_sequence
)) {
648 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
649 tid
, journal
->j_commit_sequence
);
650 wake_up(&journal
->j_wait_commit
);
651 read_unlock(&journal
->j_state_lock
);
652 wait_event(journal
->j_wait_done_commit
,
653 !tid_gt(tid
, journal
->j_commit_sequence
));
654 read_lock(&journal
->j_state_lock
);
656 read_unlock(&journal
->j_state_lock
);
658 if (unlikely(is_journal_aborted(journal
))) {
659 printk(KERN_EMERG
"journal commit I/O error\n");
666 * Log buffer allocation routines:
669 int jbd2_journal_next_log_block(journal_t
*journal
, unsigned long long *retp
)
671 unsigned long blocknr
;
673 write_lock(&journal
->j_state_lock
);
674 J_ASSERT(journal
->j_free
> 1);
676 blocknr
= journal
->j_head
;
679 if (journal
->j_head
== journal
->j_last
)
680 journal
->j_head
= journal
->j_first
;
681 write_unlock(&journal
->j_state_lock
);
682 return jbd2_journal_bmap(journal
, blocknr
, retp
);
686 * Conversion of logical to physical block numbers for the journal
688 * On external journals the journal blocks are identity-mapped, so
689 * this is a no-op. If needed, we can use j_blk_offset - everything is
692 int jbd2_journal_bmap(journal_t
*journal
, unsigned long blocknr
,
693 unsigned long long *retp
)
696 unsigned long long ret
;
698 if (journal
->j_inode
) {
699 ret
= bmap(journal
->j_inode
, blocknr
);
703 printk(KERN_ALERT
"%s: journal block not found "
704 "at offset %lu on %s\n",
705 __func__
, blocknr
, journal
->j_devname
);
707 __journal_abort_soft(journal
, err
);
710 *retp
= blocknr
; /* +journal->j_blk_offset */
716 * We play buffer_head aliasing tricks to write data/metadata blocks to
717 * the journal without copying their contents, but for journal
718 * descriptor blocks we do need to generate bona fide buffers.
720 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
721 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
722 * But we don't bother doing that, so there will be coherency problems with
723 * mmaps of blockdevs which hold live JBD-controlled filesystems.
725 struct journal_head
*jbd2_journal_get_descriptor_buffer(journal_t
*journal
)
727 struct buffer_head
*bh
;
728 unsigned long long blocknr
;
731 err
= jbd2_journal_next_log_block(journal
, &blocknr
);
736 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
740 memset(bh
->b_data
, 0, journal
->j_blocksize
);
741 set_buffer_uptodate(bh
);
743 BUFFER_TRACE(bh
, "return this buffer");
744 return jbd2_journal_add_journal_head(bh
);
747 struct jbd2_stats_proc_session
{
749 struct transaction_stats_s
*stats
;
754 static void *jbd2_seq_info_start(struct seq_file
*seq
, loff_t
*pos
)
756 return *pos
? NULL
: SEQ_START_TOKEN
;
759 static void *jbd2_seq_info_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
764 static int jbd2_seq_info_show(struct seq_file
*seq
, void *v
)
766 struct jbd2_stats_proc_session
*s
= seq
->private;
768 if (v
!= SEQ_START_TOKEN
)
770 seq_printf(seq
, "%lu transaction, each up to %u blocks\n",
772 s
->journal
->j_max_transaction_buffers
);
773 if (s
->stats
->ts_tid
== 0)
775 seq_printf(seq
, "average: \n %ums waiting for transaction\n",
776 jiffies_to_msecs(s
->stats
->run
.rs_wait
/ s
->stats
->ts_tid
));
777 seq_printf(seq
, " %ums running transaction\n",
778 jiffies_to_msecs(s
->stats
->run
.rs_running
/ s
->stats
->ts_tid
));
779 seq_printf(seq
, " %ums transaction was being locked\n",
780 jiffies_to_msecs(s
->stats
->run
.rs_locked
/ s
->stats
->ts_tid
));
781 seq_printf(seq
, " %ums flushing data (in ordered mode)\n",
782 jiffies_to_msecs(s
->stats
->run
.rs_flushing
/ s
->stats
->ts_tid
));
783 seq_printf(seq
, " %ums logging transaction\n",
784 jiffies_to_msecs(s
->stats
->run
.rs_logging
/ s
->stats
->ts_tid
));
785 seq_printf(seq
, " %lluus average transaction commit time\n",
786 div_u64(s
->journal
->j_average_commit_time
, 1000));
787 seq_printf(seq
, " %lu handles per transaction\n",
788 s
->stats
->run
.rs_handle_count
/ s
->stats
->ts_tid
);
789 seq_printf(seq
, " %lu blocks per transaction\n",
790 s
->stats
->run
.rs_blocks
/ s
->stats
->ts_tid
);
791 seq_printf(seq
, " %lu logged blocks per transaction\n",
792 s
->stats
->run
.rs_blocks_logged
/ s
->stats
->ts_tid
);
796 static void jbd2_seq_info_stop(struct seq_file
*seq
, void *v
)
800 static const struct seq_operations jbd2_seq_info_ops
= {
801 .start
= jbd2_seq_info_start
,
802 .next
= jbd2_seq_info_next
,
803 .stop
= jbd2_seq_info_stop
,
804 .show
= jbd2_seq_info_show
,
807 static int jbd2_seq_info_open(struct inode
*inode
, struct file
*file
)
809 journal_t
*journal
= PDE(inode
)->data
;
810 struct jbd2_stats_proc_session
*s
;
813 s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
816 size
= sizeof(struct transaction_stats_s
);
817 s
->stats
= kmalloc(size
, GFP_KERNEL
);
818 if (s
->stats
== NULL
) {
822 spin_lock(&journal
->j_history_lock
);
823 memcpy(s
->stats
, &journal
->j_stats
, size
);
824 s
->journal
= journal
;
825 spin_unlock(&journal
->j_history_lock
);
827 rc
= seq_open(file
, &jbd2_seq_info_ops
);
829 struct seq_file
*m
= file
->private_data
;
839 static int jbd2_seq_info_release(struct inode
*inode
, struct file
*file
)
841 struct seq_file
*seq
= file
->private_data
;
842 struct jbd2_stats_proc_session
*s
= seq
->private;
845 return seq_release(inode
, file
);
848 static const struct file_operations jbd2_seq_info_fops
= {
849 .owner
= THIS_MODULE
,
850 .open
= jbd2_seq_info_open
,
853 .release
= jbd2_seq_info_release
,
856 static struct proc_dir_entry
*proc_jbd2_stats
;
858 static void jbd2_stats_proc_init(journal_t
*journal
)
860 journal
->j_proc_entry
= proc_mkdir(journal
->j_devname
, proc_jbd2_stats
);
861 if (journal
->j_proc_entry
) {
862 proc_create_data("info", S_IRUGO
, journal
->j_proc_entry
,
863 &jbd2_seq_info_fops
, journal
);
867 static void jbd2_stats_proc_exit(journal_t
*journal
)
869 remove_proc_entry("info", journal
->j_proc_entry
);
870 remove_proc_entry(journal
->j_devname
, proc_jbd2_stats
);
874 * Management for journal control blocks: functions to create and
875 * destroy journal_t structures, and to initialise and read existing
876 * journal blocks from disk. */
878 /* First: create and setup a journal_t object in memory. We initialise
879 * very few fields yet: that has to wait until we have created the
880 * journal structures from from scratch, or loaded them from disk. */
882 static journal_t
* journal_init_common (void)
887 journal
= kzalloc(sizeof(*journal
), GFP_KERNEL
);
891 init_waitqueue_head(&journal
->j_wait_transaction_locked
);
892 init_waitqueue_head(&journal
->j_wait_logspace
);
893 init_waitqueue_head(&journal
->j_wait_done_commit
);
894 init_waitqueue_head(&journal
->j_wait_checkpoint
);
895 init_waitqueue_head(&journal
->j_wait_commit
);
896 init_waitqueue_head(&journal
->j_wait_updates
);
897 mutex_init(&journal
->j_barrier
);
898 mutex_init(&journal
->j_checkpoint_mutex
);
899 spin_lock_init(&journal
->j_revoke_lock
);
900 spin_lock_init(&journal
->j_list_lock
);
901 rwlock_init(&journal
->j_state_lock
);
903 journal
->j_commit_interval
= (HZ
* JBD2_DEFAULT_MAX_COMMIT_AGE
);
904 journal
->j_min_batch_time
= 0;
905 journal
->j_max_batch_time
= 15000; /* 15ms */
907 /* The journal is marked for error until we succeed with recovery! */
908 journal
->j_flags
= JBD2_ABORT
;
910 /* Set up a default-sized revoke table for the new mount. */
911 err
= jbd2_journal_init_revoke(journal
, JOURNAL_REVOKE_DEFAULT_HASH
);
917 spin_lock_init(&journal
->j_history_lock
);
922 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
924 * Create a journal structure assigned some fixed set of disk blocks to
925 * the journal. We don't actually touch those disk blocks yet, but we
926 * need to set up all of the mapping information to tell the journaling
927 * system where the journal blocks are.
932 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
933 * @bdev: Block device on which to create the journal
934 * @fs_dev: Device which hold journalled filesystem for this journal.
935 * @start: Block nr Start of journal.
936 * @len: Length of the journal in blocks.
937 * @blocksize: blocksize of journalling device
939 * Returns: a newly created journal_t *
941 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
942 * range of blocks on an arbitrary block device.
945 journal_t
* jbd2_journal_init_dev(struct block_device
*bdev
,
946 struct block_device
*fs_dev
,
947 unsigned long long start
, int len
, int blocksize
)
949 journal_t
*journal
= journal_init_common();
950 struct buffer_head
*bh
;
957 /* journal descriptor can store up to n blocks -bzzz */
958 journal
->j_blocksize
= blocksize
;
959 journal
->j_dev
= bdev
;
960 journal
->j_fs_dev
= fs_dev
;
961 journal
->j_blk_offset
= start
;
962 journal
->j_maxlen
= len
;
963 bdevname(journal
->j_dev
, journal
->j_devname
);
964 p
= journal
->j_devname
;
965 while ((p
= strchr(p
, '/')))
967 jbd2_stats_proc_init(journal
);
968 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
969 journal
->j_wbufsize
= n
;
970 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
971 if (!journal
->j_wbuf
) {
972 printk(KERN_ERR
"%s: Can't allocate bhs for commit thread\n",
977 bh
= __getblk(journal
->j_dev
, start
, journal
->j_blocksize
);
980 "%s: Cannot get buffer for journal superblock\n",
984 journal
->j_sb_buffer
= bh
;
985 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
989 kfree(journal
->j_wbuf
);
990 jbd2_stats_proc_exit(journal
);
996 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
997 * @inode: An inode to create the journal in
999 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1000 * the journal. The inode must exist already, must support bmap() and
1001 * must have all data blocks preallocated.
1003 journal_t
* jbd2_journal_init_inode (struct inode
*inode
)
1005 struct buffer_head
*bh
;
1006 journal_t
*journal
= journal_init_common();
1010 unsigned long long blocknr
;
1015 journal
->j_dev
= journal
->j_fs_dev
= inode
->i_sb
->s_bdev
;
1016 journal
->j_inode
= inode
;
1017 bdevname(journal
->j_dev
, journal
->j_devname
);
1018 p
= journal
->j_devname
;
1019 while ((p
= strchr(p
, '/')))
1021 p
= journal
->j_devname
+ strlen(journal
->j_devname
);
1022 sprintf(p
, "-%lu", journal
->j_inode
->i_ino
);
1024 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1025 journal
, inode
->i_sb
->s_id
, inode
->i_ino
,
1026 (long long) inode
->i_size
,
1027 inode
->i_sb
->s_blocksize_bits
, inode
->i_sb
->s_blocksize
);
1029 journal
->j_maxlen
= inode
->i_size
>> inode
->i_sb
->s_blocksize_bits
;
1030 journal
->j_blocksize
= inode
->i_sb
->s_blocksize
;
1031 jbd2_stats_proc_init(journal
);
1033 /* journal descriptor can store up to n blocks -bzzz */
1034 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
1035 journal
->j_wbufsize
= n
;
1036 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
1037 if (!journal
->j_wbuf
) {
1038 printk(KERN_ERR
"%s: Can't allocate bhs for commit thread\n",
1043 err
= jbd2_journal_bmap(journal
, 0, &blocknr
);
1044 /* If that failed, give up */
1046 printk(KERN_ERR
"%s: Cannot locate journal superblock\n",
1051 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
1054 "%s: Cannot get buffer for journal superblock\n",
1058 journal
->j_sb_buffer
= bh
;
1059 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
1063 kfree(journal
->j_wbuf
);
1064 jbd2_stats_proc_exit(journal
);
1070 * If the journal init or create aborts, we need to mark the journal
1071 * superblock as being NULL to prevent the journal destroy from writing
1072 * back a bogus superblock.
1074 static void journal_fail_superblock (journal_t
*journal
)
1076 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1078 journal
->j_sb_buffer
= NULL
;
1082 * Given a journal_t structure, initialise the various fields for
1083 * startup of a new journaling session. We use this both when creating
1084 * a journal, and after recovering an old journal to reset it for
1088 static int journal_reset(journal_t
*journal
)
1090 journal_superblock_t
*sb
= journal
->j_superblock
;
1091 unsigned long long first
, last
;
1093 first
= be32_to_cpu(sb
->s_first
);
1094 last
= be32_to_cpu(sb
->s_maxlen
);
1095 if (first
+ JBD2_MIN_JOURNAL_BLOCKS
> last
+ 1) {
1096 printk(KERN_ERR
"JBD: Journal too short (blocks %llu-%llu).\n",
1098 journal_fail_superblock(journal
);
1102 journal
->j_first
= first
;
1103 journal
->j_last
= last
;
1105 journal
->j_head
= first
;
1106 journal
->j_tail
= first
;
1107 journal
->j_free
= last
- first
;
1109 journal
->j_tail_sequence
= journal
->j_transaction_sequence
;
1110 journal
->j_commit_sequence
= journal
->j_transaction_sequence
- 1;
1111 journal
->j_commit_request
= journal
->j_commit_sequence
;
1113 journal
->j_max_transaction_buffers
= journal
->j_maxlen
/ 4;
1115 /* Add the dynamic fields and write it to disk. */
1116 jbd2_journal_update_superblock(journal
, 1);
1117 return jbd2_journal_start_thread(journal
);
1121 * void jbd2_journal_update_superblock() - Update journal sb on disk.
1122 * @journal: The journal to update.
1123 * @wait: Set to '0' if you don't want to wait for IO completion.
1125 * Update a journal's dynamic superblock fields and write it to disk,
1126 * optionally waiting for the IO to complete.
1128 void jbd2_journal_update_superblock(journal_t
*journal
, int wait
)
1130 journal_superblock_t
*sb
= journal
->j_superblock
;
1131 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1134 * As a special case, if the on-disk copy is already marked as needing
1135 * no recovery (s_start == 0) and there are no outstanding transactions
1136 * in the filesystem, then we can safely defer the superblock update
1137 * until the next commit by setting JBD2_FLUSHED. This avoids
1138 * attempting a write to a potential-readonly device.
1140 if (sb
->s_start
== 0 && journal
->j_tail_sequence
==
1141 journal
->j_transaction_sequence
) {
1142 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1143 "(start %ld, seq %d, errno %d)\n",
1144 journal
->j_tail
, journal
->j_tail_sequence
,
1149 if (buffer_write_io_error(bh
)) {
1151 * Oh, dear. A previous attempt to write the journal
1152 * superblock failed. This could happen because the
1153 * USB device was yanked out. Or it could happen to
1154 * be a transient write error and maybe the block will
1155 * be remapped. Nothing we can do but to retry the
1156 * write and hope for the best.
1158 printk(KERN_ERR
"JBD2: previous I/O error detected "
1159 "for journal superblock update for %s.\n",
1160 journal
->j_devname
);
1161 clear_buffer_write_io_error(bh
);
1162 set_buffer_uptodate(bh
);
1165 read_lock(&journal
->j_state_lock
);
1166 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1167 journal
->j_tail
, journal
->j_tail_sequence
, journal
->j_errno
);
1169 sb
->s_sequence
= cpu_to_be32(journal
->j_tail_sequence
);
1170 sb
->s_start
= cpu_to_be32(journal
->j_tail
);
1171 sb
->s_errno
= cpu_to_be32(journal
->j_errno
);
1172 read_unlock(&journal
->j_state_lock
);
1174 BUFFER_TRACE(bh
, "marking dirty");
1175 mark_buffer_dirty(bh
);
1177 sync_dirty_buffer(bh
);
1178 if (buffer_write_io_error(bh
)) {
1179 printk(KERN_ERR
"JBD2: I/O error detected "
1180 "when updating journal superblock for %s.\n",
1181 journal
->j_devname
);
1182 clear_buffer_write_io_error(bh
);
1183 set_buffer_uptodate(bh
);
1186 write_dirty_buffer(bh
, WRITE
);
1189 /* If we have just flushed the log (by marking s_start==0), then
1190 * any future commit will have to be careful to update the
1191 * superblock again to re-record the true start of the log. */
1193 write_lock(&journal
->j_state_lock
);
1195 journal
->j_flags
&= ~JBD2_FLUSHED
;
1197 journal
->j_flags
|= JBD2_FLUSHED
;
1198 write_unlock(&journal
->j_state_lock
);
1202 * Read the superblock for a given journal, performing initial
1203 * validation of the format.
1206 static int journal_get_superblock(journal_t
*journal
)
1208 struct buffer_head
*bh
;
1209 journal_superblock_t
*sb
;
1212 bh
= journal
->j_sb_buffer
;
1214 J_ASSERT(bh
!= NULL
);
1215 if (!buffer_uptodate(bh
)) {
1216 ll_rw_block(READ
, 1, &bh
);
1218 if (!buffer_uptodate(bh
)) {
1220 "JBD: IO error reading journal superblock\n");
1225 sb
= journal
->j_superblock
;
1229 if (sb
->s_header
.h_magic
!= cpu_to_be32(JBD2_MAGIC_NUMBER
) ||
1230 sb
->s_blocksize
!= cpu_to_be32(journal
->j_blocksize
)) {
1231 printk(KERN_WARNING
"JBD: no valid journal superblock found\n");
1235 switch(be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1236 case JBD2_SUPERBLOCK_V1
:
1237 journal
->j_format_version
= 1;
1239 case JBD2_SUPERBLOCK_V2
:
1240 journal
->j_format_version
= 2;
1243 printk(KERN_WARNING
"JBD: unrecognised superblock format ID\n");
1247 if (be32_to_cpu(sb
->s_maxlen
) < journal
->j_maxlen
)
1248 journal
->j_maxlen
= be32_to_cpu(sb
->s_maxlen
);
1249 else if (be32_to_cpu(sb
->s_maxlen
) > journal
->j_maxlen
) {
1250 printk (KERN_WARNING
"JBD: journal file too short\n");
1254 if (be32_to_cpu(sb
->s_first
) == 0 ||
1255 be32_to_cpu(sb
->s_first
) >= journal
->j_maxlen
) {
1257 "JBD2: Invalid start block of journal: %u\n",
1258 be32_to_cpu(sb
->s_first
));
1265 journal_fail_superblock(journal
);
1270 * Load the on-disk journal superblock and read the key fields into the
1274 static int load_superblock(journal_t
*journal
)
1277 journal_superblock_t
*sb
;
1279 err
= journal_get_superblock(journal
);
1283 sb
= journal
->j_superblock
;
1285 journal
->j_tail_sequence
= be32_to_cpu(sb
->s_sequence
);
1286 journal
->j_tail
= be32_to_cpu(sb
->s_start
);
1287 journal
->j_first
= be32_to_cpu(sb
->s_first
);
1288 journal
->j_last
= be32_to_cpu(sb
->s_maxlen
);
1289 journal
->j_errno
= be32_to_cpu(sb
->s_errno
);
1296 * int jbd2_journal_load() - Read journal from disk.
1297 * @journal: Journal to act on.
1299 * Given a journal_t structure which tells us which disk blocks contain
1300 * a journal, read the journal from disk to initialise the in-memory
1303 int jbd2_journal_load(journal_t
*journal
)
1306 journal_superblock_t
*sb
;
1308 err
= load_superblock(journal
);
1312 sb
= journal
->j_superblock
;
1313 /* If this is a V2 superblock, then we have to check the
1314 * features flags on it. */
1316 if (journal
->j_format_version
>= 2) {
1317 if ((sb
->s_feature_ro_compat
&
1318 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES
)) ||
1319 (sb
->s_feature_incompat
&
1320 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES
))) {
1321 printk (KERN_WARNING
1322 "JBD: Unrecognised features on journal\n");
1328 * Create a slab for this blocksize
1330 err
= jbd2_journal_create_slab(be32_to_cpu(sb
->s_blocksize
));
1334 /* Let the recovery code check whether it needs to recover any
1335 * data from the journal. */
1336 if (jbd2_journal_recover(journal
))
1337 goto recovery_error
;
1339 if (journal
->j_failed_commit
) {
1340 printk(KERN_ERR
"JBD2: journal transaction %u on %s "
1341 "is corrupt.\n", journal
->j_failed_commit
,
1342 journal
->j_devname
);
1346 /* OK, we've finished with the dynamic journal bits:
1347 * reinitialise the dynamic contents of the superblock in memory
1348 * and reset them on disk. */
1349 if (journal_reset(journal
))
1350 goto recovery_error
;
1352 journal
->j_flags
&= ~JBD2_ABORT
;
1353 journal
->j_flags
|= JBD2_LOADED
;
1357 printk (KERN_WARNING
"JBD: recovery failed\n");
1362 * void jbd2_journal_destroy() - Release a journal_t structure.
1363 * @journal: Journal to act on.
1365 * Release a journal_t structure once it is no longer in use by the
1367 * Return <0 if we couldn't clean up the journal.
1369 int jbd2_journal_destroy(journal_t
*journal
)
1373 /* Wait for the commit thread to wake up and die. */
1374 journal_kill_thread(journal
);
1376 /* Force a final log commit */
1377 if (journal
->j_running_transaction
)
1378 jbd2_journal_commit_transaction(journal
);
1380 /* Force any old transactions to disk */
1382 /* Totally anal locking here... */
1383 spin_lock(&journal
->j_list_lock
);
1384 while (journal
->j_checkpoint_transactions
!= NULL
) {
1385 spin_unlock(&journal
->j_list_lock
);
1386 mutex_lock(&journal
->j_checkpoint_mutex
);
1387 jbd2_log_do_checkpoint(journal
);
1388 mutex_unlock(&journal
->j_checkpoint_mutex
);
1389 spin_lock(&journal
->j_list_lock
);
1392 J_ASSERT(journal
->j_running_transaction
== NULL
);
1393 J_ASSERT(journal
->j_committing_transaction
== NULL
);
1394 J_ASSERT(journal
->j_checkpoint_transactions
== NULL
);
1395 spin_unlock(&journal
->j_list_lock
);
1397 if (journal
->j_sb_buffer
) {
1398 if (!is_journal_aborted(journal
)) {
1399 /* We can now mark the journal as empty. */
1400 journal
->j_tail
= 0;
1401 journal
->j_tail_sequence
=
1402 ++journal
->j_transaction_sequence
;
1403 jbd2_journal_update_superblock(journal
, 1);
1407 brelse(journal
->j_sb_buffer
);
1410 if (journal
->j_proc_entry
)
1411 jbd2_stats_proc_exit(journal
);
1412 if (journal
->j_inode
)
1413 iput(journal
->j_inode
);
1414 if (journal
->j_revoke
)
1415 jbd2_journal_destroy_revoke(journal
);
1416 kfree(journal
->j_wbuf
);
1424 *int jbd2_journal_check_used_features () - Check if features specified are used.
1425 * @journal: Journal to check.
1426 * @compat: bitmask of compatible features
1427 * @ro: bitmask of features that force read-only mount
1428 * @incompat: bitmask of incompatible features
1430 * Check whether the journal uses all of a given set of
1431 * features. Return true (non-zero) if it does.
1434 int jbd2_journal_check_used_features (journal_t
*journal
, unsigned long compat
,
1435 unsigned long ro
, unsigned long incompat
)
1437 journal_superblock_t
*sb
;
1439 if (!compat
&& !ro
&& !incompat
)
1441 /* Load journal superblock if it is not loaded yet. */
1442 if (journal
->j_format_version
== 0 &&
1443 journal_get_superblock(journal
) != 0)
1445 if (journal
->j_format_version
== 1)
1448 sb
= journal
->j_superblock
;
1450 if (((be32_to_cpu(sb
->s_feature_compat
) & compat
) == compat
) &&
1451 ((be32_to_cpu(sb
->s_feature_ro_compat
) & ro
) == ro
) &&
1452 ((be32_to_cpu(sb
->s_feature_incompat
) & incompat
) == incompat
))
1459 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1460 * @journal: Journal to check.
1461 * @compat: bitmask of compatible features
1462 * @ro: bitmask of features that force read-only mount
1463 * @incompat: bitmask of incompatible features
1465 * Check whether the journaling code supports the use of
1466 * all of a given set of features on this journal. Return true
1467 * (non-zero) if it can. */
1469 int jbd2_journal_check_available_features (journal_t
*journal
, unsigned long compat
,
1470 unsigned long ro
, unsigned long incompat
)
1472 if (!compat
&& !ro
&& !incompat
)
1475 /* We can support any known requested features iff the
1476 * superblock is in version 2. Otherwise we fail to support any
1477 * extended sb features. */
1479 if (journal
->j_format_version
!= 2)
1482 if ((compat
& JBD2_KNOWN_COMPAT_FEATURES
) == compat
&&
1483 (ro
& JBD2_KNOWN_ROCOMPAT_FEATURES
) == ro
&&
1484 (incompat
& JBD2_KNOWN_INCOMPAT_FEATURES
) == incompat
)
1491 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1492 * @journal: Journal to act on.
1493 * @compat: bitmask of compatible features
1494 * @ro: bitmask of features that force read-only mount
1495 * @incompat: bitmask of incompatible features
1497 * Mark a given journal feature as present on the
1498 * superblock. Returns true if the requested features could be set.
1502 int jbd2_journal_set_features (journal_t
*journal
, unsigned long compat
,
1503 unsigned long ro
, unsigned long incompat
)
1505 journal_superblock_t
*sb
;
1507 if (jbd2_journal_check_used_features(journal
, compat
, ro
, incompat
))
1510 if (!jbd2_journal_check_available_features(journal
, compat
, ro
, incompat
))
1513 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1514 compat
, ro
, incompat
);
1516 sb
= journal
->j_superblock
;
1518 sb
->s_feature_compat
|= cpu_to_be32(compat
);
1519 sb
->s_feature_ro_compat
|= cpu_to_be32(ro
);
1520 sb
->s_feature_incompat
|= cpu_to_be32(incompat
);
1526 * jbd2_journal_clear_features () - Clear a given journal feature in the
1528 * @journal: Journal to act on.
1529 * @compat: bitmask of compatible features
1530 * @ro: bitmask of features that force read-only mount
1531 * @incompat: bitmask of incompatible features
1533 * Clear a given journal feature as present on the
1536 void jbd2_journal_clear_features(journal_t
*journal
, unsigned long compat
,
1537 unsigned long ro
, unsigned long incompat
)
1539 journal_superblock_t
*sb
;
1541 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1542 compat
, ro
, incompat
);
1544 sb
= journal
->j_superblock
;
1546 sb
->s_feature_compat
&= ~cpu_to_be32(compat
);
1547 sb
->s_feature_ro_compat
&= ~cpu_to_be32(ro
);
1548 sb
->s_feature_incompat
&= ~cpu_to_be32(incompat
);
1550 EXPORT_SYMBOL(jbd2_journal_clear_features
);
1553 * int jbd2_journal_update_format () - Update on-disk journal structure.
1554 * @journal: Journal to act on.
1556 * Given an initialised but unloaded journal struct, poke about in the
1557 * on-disk structure to update it to the most recent supported version.
1559 int jbd2_journal_update_format (journal_t
*journal
)
1561 journal_superblock_t
*sb
;
1564 err
= journal_get_superblock(journal
);
1568 sb
= journal
->j_superblock
;
1570 switch (be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1571 case JBD2_SUPERBLOCK_V2
:
1573 case JBD2_SUPERBLOCK_V1
:
1574 return journal_convert_superblock_v1(journal
, sb
);
1581 static int journal_convert_superblock_v1(journal_t
*journal
,
1582 journal_superblock_t
*sb
)
1584 int offset
, blocksize
;
1585 struct buffer_head
*bh
;
1588 "JBD: Converting superblock from version 1 to 2.\n");
1590 /* Pre-initialise new fields to zero */
1591 offset
= ((char *) &(sb
->s_feature_compat
)) - ((char *) sb
);
1592 blocksize
= be32_to_cpu(sb
->s_blocksize
);
1593 memset(&sb
->s_feature_compat
, 0, blocksize
-offset
);
1595 sb
->s_nr_users
= cpu_to_be32(1);
1596 sb
->s_header
.h_blocktype
= cpu_to_be32(JBD2_SUPERBLOCK_V2
);
1597 journal
->j_format_version
= 2;
1599 bh
= journal
->j_sb_buffer
;
1600 BUFFER_TRACE(bh
, "marking dirty");
1601 mark_buffer_dirty(bh
);
1602 sync_dirty_buffer(bh
);
1608 * int jbd2_journal_flush () - Flush journal
1609 * @journal: Journal to act on.
1611 * Flush all data for a given journal to disk and empty the journal.
1612 * Filesystems can use this when remounting readonly to ensure that
1613 * recovery does not need to happen on remount.
1616 int jbd2_journal_flush(journal_t
*journal
)
1619 transaction_t
*transaction
= NULL
;
1620 unsigned long old_tail
;
1622 write_lock(&journal
->j_state_lock
);
1624 /* Force everything buffered to the log... */
1625 if (journal
->j_running_transaction
) {
1626 transaction
= journal
->j_running_transaction
;
1627 __jbd2_log_start_commit(journal
, transaction
->t_tid
);
1628 } else if (journal
->j_committing_transaction
)
1629 transaction
= journal
->j_committing_transaction
;
1631 /* Wait for the log commit to complete... */
1633 tid_t tid
= transaction
->t_tid
;
1635 write_unlock(&journal
->j_state_lock
);
1636 jbd2_log_wait_commit(journal
, tid
);
1638 write_unlock(&journal
->j_state_lock
);
1641 /* ...and flush everything in the log out to disk. */
1642 spin_lock(&journal
->j_list_lock
);
1643 while (!err
&& journal
->j_checkpoint_transactions
!= NULL
) {
1644 spin_unlock(&journal
->j_list_lock
);
1645 mutex_lock(&journal
->j_checkpoint_mutex
);
1646 err
= jbd2_log_do_checkpoint(journal
);
1647 mutex_unlock(&journal
->j_checkpoint_mutex
);
1648 spin_lock(&journal
->j_list_lock
);
1650 spin_unlock(&journal
->j_list_lock
);
1652 if (is_journal_aborted(journal
))
1655 jbd2_cleanup_journal_tail(journal
);
1657 /* Finally, mark the journal as really needing no recovery.
1658 * This sets s_start==0 in the underlying superblock, which is
1659 * the magic code for a fully-recovered superblock. Any future
1660 * commits of data to the journal will restore the current
1662 write_lock(&journal
->j_state_lock
);
1663 old_tail
= journal
->j_tail
;
1664 journal
->j_tail
= 0;
1665 write_unlock(&journal
->j_state_lock
);
1666 jbd2_journal_update_superblock(journal
, 1);
1667 write_lock(&journal
->j_state_lock
);
1668 journal
->j_tail
= old_tail
;
1670 J_ASSERT(!journal
->j_running_transaction
);
1671 J_ASSERT(!journal
->j_committing_transaction
);
1672 J_ASSERT(!journal
->j_checkpoint_transactions
);
1673 J_ASSERT(journal
->j_head
== journal
->j_tail
);
1674 J_ASSERT(journal
->j_tail_sequence
== journal
->j_transaction_sequence
);
1675 write_unlock(&journal
->j_state_lock
);
1680 * int jbd2_journal_wipe() - Wipe journal contents
1681 * @journal: Journal to act on.
1682 * @write: flag (see below)
1684 * Wipe out all of the contents of a journal, safely. This will produce
1685 * a warning if the journal contains any valid recovery information.
1686 * Must be called between journal_init_*() and jbd2_journal_load().
1688 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1689 * we merely suppress recovery.
1692 int jbd2_journal_wipe(journal_t
*journal
, int write
)
1696 J_ASSERT (!(journal
->j_flags
& JBD2_LOADED
));
1698 err
= load_superblock(journal
);
1702 if (!journal
->j_tail
)
1705 printk (KERN_WARNING
"JBD: %s recovery information on journal\n",
1706 write
? "Clearing" : "Ignoring");
1708 err
= jbd2_journal_skip_recovery(journal
);
1710 jbd2_journal_update_superblock(journal
, 1);
1717 * Journal abort has very specific semantics, which we describe
1718 * for journal abort.
1720 * Two internal functions, which provide abort to the jbd layer
1725 * Quick version for internal journal use (doesn't lock the journal).
1726 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1727 * and don't attempt to make any other journal updates.
1729 void __jbd2_journal_abort_hard(journal_t
*journal
)
1731 transaction_t
*transaction
;
1733 if (journal
->j_flags
& JBD2_ABORT
)
1736 printk(KERN_ERR
"Aborting journal on device %s.\n",
1737 journal
->j_devname
);
1739 write_lock(&journal
->j_state_lock
);
1740 journal
->j_flags
|= JBD2_ABORT
;
1741 transaction
= journal
->j_running_transaction
;
1743 __jbd2_log_start_commit(journal
, transaction
->t_tid
);
1744 write_unlock(&journal
->j_state_lock
);
1747 /* Soft abort: record the abort error status in the journal superblock,
1748 * but don't do any other IO. */
1749 static void __journal_abort_soft (journal_t
*journal
, int errno
)
1751 if (journal
->j_flags
& JBD2_ABORT
)
1754 if (!journal
->j_errno
)
1755 journal
->j_errno
= errno
;
1757 __jbd2_journal_abort_hard(journal
);
1760 jbd2_journal_update_superblock(journal
, 1);
1764 * void jbd2_journal_abort () - Shutdown the journal immediately.
1765 * @journal: the journal to shutdown.
1766 * @errno: an error number to record in the journal indicating
1767 * the reason for the shutdown.
1769 * Perform a complete, immediate shutdown of the ENTIRE
1770 * journal (not of a single transaction). This operation cannot be
1771 * undone without closing and reopening the journal.
1773 * The jbd2_journal_abort function is intended to support higher level error
1774 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1777 * Journal abort has very specific semantics. Any existing dirty,
1778 * unjournaled buffers in the main filesystem will still be written to
1779 * disk by bdflush, but the journaling mechanism will be suspended
1780 * immediately and no further transaction commits will be honoured.
1782 * Any dirty, journaled buffers will be written back to disk without
1783 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1784 * filesystem, but we _do_ attempt to leave as much data as possible
1785 * behind for fsck to use for cleanup.
1787 * Any attempt to get a new transaction handle on a journal which is in
1788 * ABORT state will just result in an -EROFS error return. A
1789 * jbd2_journal_stop on an existing handle will return -EIO if we have
1790 * entered abort state during the update.
1792 * Recursive transactions are not disturbed by journal abort until the
1793 * final jbd2_journal_stop, which will receive the -EIO error.
1795 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1796 * which will be recorded (if possible) in the journal superblock. This
1797 * allows a client to record failure conditions in the middle of a
1798 * transaction without having to complete the transaction to record the
1799 * failure to disk. ext3_error, for example, now uses this
1802 * Errors which originate from within the journaling layer will NOT
1803 * supply an errno; a null errno implies that absolutely no further
1804 * writes are done to the journal (unless there are any already in
1809 void jbd2_journal_abort(journal_t
*journal
, int errno
)
1811 __journal_abort_soft(journal
, errno
);
1815 * int jbd2_journal_errno () - returns the journal's error state.
1816 * @journal: journal to examine.
1818 * This is the errno number set with jbd2_journal_abort(), the last
1819 * time the journal was mounted - if the journal was stopped
1820 * without calling abort this will be 0.
1822 * If the journal has been aborted on this mount time -EROFS will
1825 int jbd2_journal_errno(journal_t
*journal
)
1829 read_lock(&journal
->j_state_lock
);
1830 if (journal
->j_flags
& JBD2_ABORT
)
1833 err
= journal
->j_errno
;
1834 read_unlock(&journal
->j_state_lock
);
1839 * int jbd2_journal_clear_err () - clears the journal's error state
1840 * @journal: journal to act on.
1842 * An error must be cleared or acked to take a FS out of readonly
1845 int jbd2_journal_clear_err(journal_t
*journal
)
1849 write_lock(&journal
->j_state_lock
);
1850 if (journal
->j_flags
& JBD2_ABORT
)
1853 journal
->j_errno
= 0;
1854 write_unlock(&journal
->j_state_lock
);
1859 * void jbd2_journal_ack_err() - Ack journal err.
1860 * @journal: journal to act on.
1862 * An error must be cleared or acked to take a FS out of readonly
1865 void jbd2_journal_ack_err(journal_t
*journal
)
1867 write_lock(&journal
->j_state_lock
);
1868 if (journal
->j_errno
)
1869 journal
->j_flags
|= JBD2_ACK_ERR
;
1870 write_unlock(&journal
->j_state_lock
);
1873 int jbd2_journal_blocks_per_page(struct inode
*inode
)
1875 return 1 << (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
1879 * helper functions to deal with 32 or 64bit block numbers.
1881 size_t journal_tag_bytes(journal_t
*journal
)
1883 if (JBD2_HAS_INCOMPAT_FEATURE(journal
, JBD2_FEATURE_INCOMPAT_64BIT
))
1884 return JBD2_TAG_SIZE64
;
1886 return JBD2_TAG_SIZE32
;
1890 * JBD memory management
1892 * These functions are used to allocate block-sized chunks of memory
1893 * used for making copies of buffer_head data. Very often it will be
1894 * page-sized chunks of data, but sometimes it will be in
1895 * sub-page-size chunks. (For example, 16k pages on Power systems
1896 * with a 4k block file system.) For blocks smaller than a page, we
1897 * use a SLAB allocator. There are slab caches for each block size,
1898 * which are allocated at mount time, if necessary, and we only free
1899 * (all of) the slab caches when/if the jbd2 module is unloaded. For
1900 * this reason we don't need to a mutex to protect access to
1901 * jbd2_slab[] allocating or releasing memory; only in
1902 * jbd2_journal_create_slab().
1904 #define JBD2_MAX_SLABS 8
1905 static struct kmem_cache
*jbd2_slab
[JBD2_MAX_SLABS
];
1907 static const char *jbd2_slab_names
[JBD2_MAX_SLABS
] = {
1908 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
1909 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
1913 static void jbd2_journal_destroy_slabs(void)
1917 for (i
= 0; i
< JBD2_MAX_SLABS
; i
++) {
1919 kmem_cache_destroy(jbd2_slab
[i
]);
1920 jbd2_slab
[i
] = NULL
;
1924 static int jbd2_journal_create_slab(size_t size
)
1926 static DEFINE_MUTEX(jbd2_slab_create_mutex
);
1927 int i
= order_base_2(size
) - 10;
1930 if (size
== PAGE_SIZE
)
1933 if (i
>= JBD2_MAX_SLABS
)
1936 if (unlikely(i
< 0))
1938 mutex_lock(&jbd2_slab_create_mutex
);
1940 mutex_unlock(&jbd2_slab_create_mutex
);
1941 return 0; /* Already created */
1944 slab_size
= 1 << (i
+10);
1945 jbd2_slab
[i
] = kmem_cache_create(jbd2_slab_names
[i
], slab_size
,
1946 slab_size
, 0, NULL
);
1947 mutex_unlock(&jbd2_slab_create_mutex
);
1948 if (!jbd2_slab
[i
]) {
1949 printk(KERN_EMERG
"JBD2: no memory for jbd2_slab cache\n");
1955 static struct kmem_cache
*get_slab(size_t size
)
1957 int i
= order_base_2(size
) - 10;
1959 BUG_ON(i
>= JBD2_MAX_SLABS
);
1960 if (unlikely(i
< 0))
1962 BUG_ON(jbd2_slab
[i
] == NULL
);
1963 return jbd2_slab
[i
];
1966 void *jbd2_alloc(size_t size
, gfp_t flags
)
1970 BUG_ON(size
& (size
-1)); /* Must be a power of 2 */
1972 flags
|= __GFP_REPEAT
;
1973 if (size
== PAGE_SIZE
)
1974 ptr
= (void *)__get_free_pages(flags
, 0);
1975 else if (size
> PAGE_SIZE
) {
1976 int order
= get_order(size
);
1979 ptr
= (void *)__get_free_pages(flags
, order
);
1981 ptr
= vmalloc(size
);
1983 ptr
= kmem_cache_alloc(get_slab(size
), flags
);
1985 /* Check alignment; SLUB has gotten this wrong in the past,
1986 * and this can lead to user data corruption! */
1987 BUG_ON(((unsigned long) ptr
) & (size
-1));
1992 void jbd2_free(void *ptr
, size_t size
)
1994 if (size
== PAGE_SIZE
) {
1995 free_pages((unsigned long)ptr
, 0);
1998 if (size
> PAGE_SIZE
) {
1999 int order
= get_order(size
);
2002 free_pages((unsigned long)ptr
, order
);
2007 kmem_cache_free(get_slab(size
), ptr
);
2011 * Journal_head storage management
2013 static struct kmem_cache
*jbd2_journal_head_cache
;
2014 #ifdef CONFIG_JBD2_DEBUG
2015 static atomic_t nr_journal_heads
= ATOMIC_INIT(0);
2018 static int journal_init_jbd2_journal_head_cache(void)
2022 J_ASSERT(jbd2_journal_head_cache
== NULL
);
2023 jbd2_journal_head_cache
= kmem_cache_create("jbd2_journal_head",
2024 sizeof(struct journal_head
),
2026 SLAB_TEMPORARY
, /* flags */
2029 if (!jbd2_journal_head_cache
) {
2031 printk(KERN_EMERG
"JBD: no memory for journal_head cache\n");
2036 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
2038 if (jbd2_journal_head_cache
) {
2039 kmem_cache_destroy(jbd2_journal_head_cache
);
2040 jbd2_journal_head_cache
= NULL
;
2045 * journal_head splicing and dicing
2047 static struct journal_head
*journal_alloc_journal_head(void)
2049 struct journal_head
*ret
;
2051 #ifdef CONFIG_JBD2_DEBUG
2052 atomic_inc(&nr_journal_heads
);
2054 ret
= kmem_cache_alloc(jbd2_journal_head_cache
, GFP_NOFS
);
2056 jbd_debug(1, "out of memory for journal_head\n");
2057 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__
);
2060 ret
= kmem_cache_alloc(jbd2_journal_head_cache
, GFP_NOFS
);
2066 static void journal_free_journal_head(struct journal_head
*jh
)
2068 #ifdef CONFIG_JBD2_DEBUG
2069 atomic_dec(&nr_journal_heads
);
2070 memset(jh
, JBD2_POISON_FREE
, sizeof(*jh
));
2072 kmem_cache_free(jbd2_journal_head_cache
, jh
);
2076 * A journal_head is attached to a buffer_head whenever JBD has an
2077 * interest in the buffer.
2079 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2080 * is set. This bit is tested in core kernel code where we need to take
2081 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2084 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2086 * When a buffer has its BH_JBD bit set it is immune from being released by
2087 * core kernel code, mainly via ->b_count.
2089 * A journal_head is detached from its buffer_head when the journal_head's
2090 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2091 * transaction (b_cp_transaction) hold their references to b_jcount.
2093 * Various places in the kernel want to attach a journal_head to a buffer_head
2094 * _before_ attaching the journal_head to a transaction. To protect the
2095 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2096 * journal_head's b_jcount refcount by one. The caller must call
2097 * jbd2_journal_put_journal_head() to undo this.
2099 * So the typical usage would be:
2101 * (Attach a journal_head if needed. Increments b_jcount)
2102 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2104 * (Get another reference for transaction)
2105 * jbd2_journal_grab_journal_head(bh);
2106 * jh->b_transaction = xxx;
2107 * (Put original reference)
2108 * jbd2_journal_put_journal_head(jh);
2112 * Give a buffer_head a journal_head.
2116 struct journal_head
*jbd2_journal_add_journal_head(struct buffer_head
*bh
)
2118 struct journal_head
*jh
;
2119 struct journal_head
*new_jh
= NULL
;
2122 if (!buffer_jbd(bh
)) {
2123 new_jh
= journal_alloc_journal_head();
2124 memset(new_jh
, 0, sizeof(*new_jh
));
2127 jbd_lock_bh_journal_head(bh
);
2128 if (buffer_jbd(bh
)) {
2132 (atomic_read(&bh
->b_count
) > 0) ||
2133 (bh
->b_page
&& bh
->b_page
->mapping
));
2136 jbd_unlock_bh_journal_head(bh
);
2141 new_jh
= NULL
; /* We consumed it */
2146 BUFFER_TRACE(bh
, "added journal_head");
2149 jbd_unlock_bh_journal_head(bh
);
2151 journal_free_journal_head(new_jh
);
2152 return bh
->b_private
;
2156 * Grab a ref against this buffer_head's journal_head. If it ended up not
2157 * having a journal_head, return NULL
2159 struct journal_head
*jbd2_journal_grab_journal_head(struct buffer_head
*bh
)
2161 struct journal_head
*jh
= NULL
;
2163 jbd_lock_bh_journal_head(bh
);
2164 if (buffer_jbd(bh
)) {
2168 jbd_unlock_bh_journal_head(bh
);
2172 static void __journal_remove_journal_head(struct buffer_head
*bh
)
2174 struct journal_head
*jh
= bh2jh(bh
);
2176 J_ASSERT_JH(jh
, jh
->b_jcount
>= 0);
2177 J_ASSERT_JH(jh
, jh
->b_transaction
== NULL
);
2178 J_ASSERT_JH(jh
, jh
->b_next_transaction
== NULL
);
2179 J_ASSERT_JH(jh
, jh
->b_cp_transaction
== NULL
);
2180 J_ASSERT_JH(jh
, jh
->b_jlist
== BJ_None
);
2181 J_ASSERT_BH(bh
, buffer_jbd(bh
));
2182 J_ASSERT_BH(bh
, jh2bh(jh
) == bh
);
2183 BUFFER_TRACE(bh
, "remove journal_head");
2184 if (jh
->b_frozen_data
) {
2185 printk(KERN_WARNING
"%s: freeing b_frozen_data\n", __func__
);
2186 jbd2_free(jh
->b_frozen_data
, bh
->b_size
);
2188 if (jh
->b_committed_data
) {
2189 printk(KERN_WARNING
"%s: freeing b_committed_data\n", __func__
);
2190 jbd2_free(jh
->b_committed_data
, bh
->b_size
);
2192 bh
->b_private
= NULL
;
2193 jh
->b_bh
= NULL
; /* debug, really */
2194 clear_buffer_jbd(bh
);
2195 journal_free_journal_head(jh
);
2199 * Drop a reference on the passed journal_head. If it fell to zero then
2200 * release the journal_head from the buffer_head.
2202 void jbd2_journal_put_journal_head(struct journal_head
*jh
)
2204 struct buffer_head
*bh
= jh2bh(jh
);
2206 jbd_lock_bh_journal_head(bh
);
2207 J_ASSERT_JH(jh
, jh
->b_jcount
> 0);
2209 if (!jh
->b_jcount
) {
2210 __journal_remove_journal_head(bh
);
2211 jbd_unlock_bh_journal_head(bh
);
2214 jbd_unlock_bh_journal_head(bh
);
2218 * Initialize jbd inode head
2220 void jbd2_journal_init_jbd_inode(struct jbd2_inode
*jinode
, struct inode
*inode
)
2222 jinode
->i_transaction
= NULL
;
2223 jinode
->i_next_transaction
= NULL
;
2224 jinode
->i_vfs_inode
= inode
;
2225 jinode
->i_flags
= 0;
2226 INIT_LIST_HEAD(&jinode
->i_list
);
2230 * Function to be called before we start removing inode from memory (i.e.,
2231 * clear_inode() is a fine place to be called from). It removes inode from
2232 * transaction's lists.
2234 void jbd2_journal_release_jbd_inode(journal_t
*journal
,
2235 struct jbd2_inode
*jinode
)
2240 spin_lock(&journal
->j_list_lock
);
2241 /* Is commit writing out inode - we have to wait */
2242 if (test_bit(__JI_COMMIT_RUNNING
, &jinode
->i_flags
)) {
2243 wait_queue_head_t
*wq
;
2244 DEFINE_WAIT_BIT(wait
, &jinode
->i_flags
, __JI_COMMIT_RUNNING
);
2245 wq
= bit_waitqueue(&jinode
->i_flags
, __JI_COMMIT_RUNNING
);
2246 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
2247 spin_unlock(&journal
->j_list_lock
);
2249 finish_wait(wq
, &wait
.wait
);
2253 if (jinode
->i_transaction
) {
2254 list_del(&jinode
->i_list
);
2255 jinode
->i_transaction
= NULL
;
2257 spin_unlock(&journal
->j_list_lock
);
2263 #ifdef CONFIG_JBD2_DEBUG
2264 u8 jbd2_journal_enable_debug __read_mostly
;
2265 EXPORT_SYMBOL(jbd2_journal_enable_debug
);
2267 #define JBD2_DEBUG_NAME "jbd2-debug"
2269 static struct dentry
*jbd2_debugfs_dir
;
2270 static struct dentry
*jbd2_debug
;
2272 static void __init
jbd2_create_debugfs_entry(void)
2274 jbd2_debugfs_dir
= debugfs_create_dir("jbd2", NULL
);
2275 if (jbd2_debugfs_dir
)
2276 jbd2_debug
= debugfs_create_u8(JBD2_DEBUG_NAME
,
2279 &jbd2_journal_enable_debug
);
2282 static void __exit
jbd2_remove_debugfs_entry(void)
2284 debugfs_remove(jbd2_debug
);
2285 debugfs_remove(jbd2_debugfs_dir
);
2290 static void __init
jbd2_create_debugfs_entry(void)
2294 static void __exit
jbd2_remove_debugfs_entry(void)
2300 #ifdef CONFIG_PROC_FS
2302 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2304 static void __init
jbd2_create_jbd_stats_proc_entry(void)
2306 proc_jbd2_stats
= proc_mkdir(JBD2_STATS_PROC_NAME
, NULL
);
2309 static void __exit
jbd2_remove_jbd_stats_proc_entry(void)
2311 if (proc_jbd2_stats
)
2312 remove_proc_entry(JBD2_STATS_PROC_NAME
, NULL
);
2317 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2318 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2322 struct kmem_cache
*jbd2_handle_cache
, *jbd2_inode_cache
;
2324 static int __init
journal_init_handle_cache(void)
2326 jbd2_handle_cache
= KMEM_CACHE(jbd2_journal_handle
, SLAB_TEMPORARY
);
2327 if (jbd2_handle_cache
== NULL
) {
2328 printk(KERN_EMERG
"JBD2: failed to create handle cache\n");
2331 jbd2_inode_cache
= KMEM_CACHE(jbd2_inode
, 0);
2332 if (jbd2_inode_cache
== NULL
) {
2333 printk(KERN_EMERG
"JBD2: failed to create inode cache\n");
2334 kmem_cache_destroy(jbd2_handle_cache
);
2340 static void jbd2_journal_destroy_handle_cache(void)
2342 if (jbd2_handle_cache
)
2343 kmem_cache_destroy(jbd2_handle_cache
);
2344 if (jbd2_inode_cache
)
2345 kmem_cache_destroy(jbd2_inode_cache
);
2350 * Module startup and shutdown
2353 static int __init
journal_init_caches(void)
2357 ret
= jbd2_journal_init_revoke_caches();
2359 ret
= journal_init_jbd2_journal_head_cache();
2361 ret
= journal_init_handle_cache();
2365 static void jbd2_journal_destroy_caches(void)
2367 jbd2_journal_destroy_revoke_caches();
2368 jbd2_journal_destroy_jbd2_journal_head_cache();
2369 jbd2_journal_destroy_handle_cache();
2370 jbd2_journal_destroy_slabs();
2373 static int __init
journal_init(void)
2377 BUILD_BUG_ON(sizeof(struct journal_superblock_s
) != 1024);
2379 ret
= journal_init_caches();
2381 jbd2_create_debugfs_entry();
2382 jbd2_create_jbd_stats_proc_entry();
2384 jbd2_journal_destroy_caches();
2389 static void __exit
journal_exit(void)
2391 #ifdef CONFIG_JBD2_DEBUG
2392 int n
= atomic_read(&nr_journal_heads
);
2394 printk(KERN_EMERG
"JBD: leaked %d journal_heads!\n", n
);
2396 jbd2_remove_debugfs_entry();
2397 jbd2_remove_jbd_stats_proc_entry();
2398 jbd2_journal_destroy_caches();
2402 * jbd2_dev_to_name is a utility function used by the jbd2 and ext4
2403 * tracing infrastructure to map a dev_t to a device name.
2405 * The caller should use rcu_read_lock() in order to make sure the
2406 * device name stays valid until its done with it. We use
2407 * rcu_read_lock() as well to make sure we're safe in case the caller
2408 * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2411 struct devname_cache
{
2412 struct rcu_head rcu
;
2414 char devname
[BDEVNAME_SIZE
];
2416 #define CACHE_SIZE_BITS 6
2417 static struct devname_cache
*devcache
[1 << CACHE_SIZE_BITS
];
2418 static DEFINE_SPINLOCK(devname_cache_lock
);
2420 static void free_devcache(struct rcu_head
*rcu
)
2425 const char *jbd2_dev_to_name(dev_t device
)
2427 int i
= hash_32(device
, CACHE_SIZE_BITS
);
2429 struct block_device
*bd
;
2430 static struct devname_cache
*new_dev
;
2433 if (devcache
[i
] && devcache
[i
]->device
== device
) {
2434 ret
= devcache
[i
]->devname
;
2440 new_dev
= kmalloc(sizeof(struct devname_cache
), GFP_KERNEL
);
2442 return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2444 spin_lock(&devname_cache_lock
);
2446 if (devcache
[i
]->device
== device
) {
2449 ret
= devcache
[i
]->devname
;
2450 spin_unlock(&devname_cache_lock
);
2453 call_rcu(&devcache
[i
]->rcu
, free_devcache
);
2455 devcache
[i
] = new_dev
;
2456 devcache
[i
]->device
= device
;
2458 bdevname(bd
, devcache
[i
]->devname
);
2461 __bdevname(device
, devcache
[i
]->devname
);
2462 ret
= devcache
[i
]->devname
;
2463 spin_unlock(&devname_cache_lock
);
2466 EXPORT_SYMBOL(jbd2_dev_to_name
);
2468 MODULE_LICENSE("GPL");
2469 module_init(journal_init
);
2470 module_exit(journal_exit
);